
The Design and Construction of Deadlock-Free
Concurrent Systems

Jeremy Malcolm Randolph Martin

Thesis submitted for the degree of D. Phil to the School of Sciences in
the University of Buckingham 1996

Abstract
The Design and Construction of Deadlock-Free Concurrent Systems

Jeremy Martin

It is a difficult task to produce software which is guaranteed never to fail, but it is a vital
goal for which to strive in many real-life situations. The problem is especially complex
in the field of parallel programming, where there are extra things that can go wrong. A
particularly serious problem is deadlock. Here we consider how to construct systems
which are guaranteed deadlock-free by design.

Design rules, old and new, which eliminate deadlock are catalogued, and their the-
oretical foundation illuminated. Then the development of a software engineering tool
is described which proves deadlock-freedom by verifying adherence to these methods.
Use of this tool is illustrated with several case studies.

The thesis concludes with a discussion of related issues of parallel program relia-
bility.

Acknowledgements

I am indebted to my supervisors Ian East and Sabah Jassim for their guidance, encour-
agement and enthusiasm for science. I have also benefited greatly from discussions
with their former colleague John Rowe. My thesis is based largely on previous work
and ideas of Bill Roscoe and Peter Welch, both of whom have been very helpful.

I am very grateful to my sister, Clare, who originally suggested to me the idea of
studying for a doctorate and put me in touch with my supervisors. She also provided
me with much useful background material. The University of Buckingham has proved
a very pleasant environment where to work, with excellent facilities. I must also thank
my employers, Oxford University Computing Services, for giving me time off to study.

Many thanks are due to my wife, Nathalie, who often found that although my body
was present my mind was elsewhere. Thanks also to my children Adrian, Alex (who
popped up half way through) and Clarisse (who popped up right at the end) for all the
fun that we have had.

This thesis is dedicated, with love, to the memory of Phyllis Amy Martin, 1906 –
1994.

iii

Contents

Introduction 1

1 CSP and Deadlock 5
Introduction ��� 5
1.1 The CSP Language ��� 6
1.2 The Failures-Divergences Model ������������������������������������� 13
1.3 Operational Semantics ��� 19
1.4 Language Extensions ��� 24
1.5 Deadlock Analysis ��� 25

2 Design Rules for Deadlock Freedom 34
Introduction ��� 34
2.1 Cyclic Processes ��� 35
2.2 Client-Server Protocol ��� 45
2.3 Resource Allocation Protocol ��� 55

3 A Tool for Proving Deadlock-Freedom 62
Introduction ��� 62
3.1 Normal Form Transition Systems ������������������������������������� 63
3.2 Deadlock Checker ��� 66
3.3 Checking Adherence to Design Rules ��������������������������������� 70
3.4 Towards a General Purpose Algorithm ��������������������������������� 92

4 Engineering Applications 106
Introduction ��� 106
4.1 The occam Programming Language ����������������������������������� 107
4.2 Case Studies ��� 108

Conclusions and Directions for Future Work 124

References 130

A Partial Orders 134

iv

B Graphs and Digraphs 136

v

List of Figures

0.1 Deadlocked Dining Philosophers ������������������������������������� 2

1.1 Laws of CSP I ��� 11
1.2 Laws of CSP II ��� 12
1.3 Denotational Semantics for CSP I ������������������������������������� 17
1.4 Denotational Semantics for CSP II ������������������������������������� 18
1.5 State Transition Systems ��� 19
1.6 Operational Semantics for CSP I ��������������������������������������� 22
1.7 Operational Semantics for CSP II ������������������������������������� 23
1.8 Wait-for Digraphs ��� 28

2.1 Networks of I/O-SEQ and I/O-PAR Processes ������������������������� 37
2.2 LATCH: a Composite I/O-PAR Process ������������������������������� 39
2.3 Connection Digraph with Channel Labelling ������������������������� 44
2.4 Multi-phase Channel Labelling ��������������������������������������� 46
2.5 Client-Server Digraph for FARM ��������������������������������������� 50
2.6 Composite Client-Server Process ������������������������������������� 51
2.7 Client-Server Digraph and Exploded Client-Server Digraph ����������� 53
2.8 Adding Client-Server Connections ������������������������������������� 55
2.9 Connection Graph for Dining Philosophers ��������������������������� 57
2.10 Arm-Wrestling Philosophers ��� 60
2.11 Bank Database System ��� 61

3.1 Transition System Resulting from Compilation ����������������������� 64
3.2 Pre-normalisation ��� 65
3.3 Normal Form Transition System ��������������������������������������� 66
3.4 Normal Form Transition Systems for Dining Philosophers ����������� 69
3.5 Normal Form Transition Systems for Two-Place Buffer ��������������� 74
3.6 Normal Form Transition System for General Resource Process ������� 76
3.7 Hasse Digraph and Normal Form Transition System for CELL

���������
� 81

3.8 Normal Form Transition System for FOREMAN
�����

����������������� 84
3.9 Construction of SDD for Dining Philosophers ������������������������� 94
3.10 Client-Server Digraph for CLOCK Network ��������������������������� 98

vi

4.1 Labelled Connection Diagram for Laplace Solver ��������������������� 110
4.2 Cube Router ��� 113
4.3 Routing Strategies for Ring and Grid ��������������������������������� 117
4.4 Connection Digraph for COMMANDER ����������������������������� 121
4.5 Client-Server Digraph for Improved Design ��������������������������� 123
4.6 CSP Toolkit – A Vision for the Future ��������������������������������� 129

B.1 A Graph ��� 136

vii

List of Tables

3.1 Machine Readable CSP ��� 67

4.1 Relationship between occam and CSP ������������������������������� 107

viii

Declaration

I would like to draw attention to the following material contained within this thesis
which I believe to be original.

Chapter 2: Theorems 7 and 9 are new results which generalise a theorem of A. W.
Roscoe and N. Dathi and several theorems of P. H. Welch. Theorem 7 forms part of a
joint publication:

J. Martin, I.East and S. Jassim Design Rules for Deadlock-Freedom, Transputer Com-
munications, September 1994.

The definition of the Client-Server Protocol, and the results which follow, are a new
formal adaptation of informal ideas due to Welch, G. R. R. Justo and C. J. Willcock. The
Extended Resource Allocation Protocol (rule 11) is also new.

Chapter 3: Apart from the section which describes the normalisation of transition
systems, this chapter is based entirely on original work.

Chapter 4: The first two case studies considered are original implementations of
existing algorithms. The third is an original analysis of a published algorithm which
reveals a deficiency and proposes a solution to this problem.

To the best of my knowledge, none of this material has ever previously been sub-
mitted for a degree in this or any other university.

ix

.

x

Introduction

The Deadlock Problem

Throughout our lives we take for granted the safety of complex structures that surround
us. We live and work in buildings with scant regard for the lethal currents of electricity
and flammable gas coarsing through their veins. We cross high bridges with little fear
of them crumbling into the depths below. We are secure in the knowledge that these
objects have been constructed using sound engineering principles.

Now, increasingly, we are putting our lives into the hands of complex computer pro-
grams. One could cite aircraft control systems, railway signalling systems, and medical
databases as examples. But whereas the disciplines of electrical and mechanical engi-
neering have long been well understood, software engineering is in its infancy. Unlike
other fields, there is no generally accepted certification of competence for its practition-
ers.

Formal scientific methods for reliable software production have been developed,
but these tend to require a level of mathematical knowledge beyond that of most pro-
grammers. Engineers, in general, are usually more concerned with practical issues than
with the underlying scientific theory of their particular discipline. They want to get on
with the business of building powerful systems. They rely on scientists to provide them
with safety rules which they can incorporate into their designs. For instance, a bridge
designer needs to know certain formulae to calculate how wide to set the span of an
arch – he does not need to know why the formulae work. Software engineering is in
need of a battery of similar rules to provide a bridge between theory and practice.

The demand for increasing amounts of computing power makes parallel program-
ming very appealing. However additional dangers lurk in this exciting field. In this
thesis we explore ways to circumvent one particularly dramatic problem – deadlock.
This is a state where none of the constituent processes of a system can agree on how
to proceed, so nothing ever happens. Clearly we would desire that any sensible system
we construct could never arrive at such a state, but what can we do to ensure that this
is indeed the case?

We might think to use a computer to check every possible state of the system. But,
given that the number of states of a parallel system usually grows exponentially with the
number of processes, we would most likely find the task too great. Perhaps we would
conduct experimental tests to try to induce deadlock. This approach would reveal any

1

2 INTRODUCTION

obvious problems, but there might be deadlocks that require many years of running time
to appear which we would never detect. We could attempt to construct a mathemati-
cal proof of deadlock-freedom, but we would soon discover that, even for small pro-
grams, this is often extremely difficult and time-consuming. The problem with all these
approaches is that the deadlock issue has been left to the end of the software develop-
ment process, when it is really too late. Design rules are needed, which may be applied
á priori: rules which guarantee deadlock-freedom, are not too restrictive, and are easy
to follow.

Early work in concurrency was framed in the context of multitasking operating sys-
tems. The idea was to share an expensive collection of hardware resources between a
number of user processes. The classic illustration of the risk of deadlock in this situa-
tion is the Dining Philosophers of E. W. Dijkstra (described in [Hoare 1985]).

Five philosophers sit around a table. Each has a fork to his left. An everlasting bowl
of spaghetti is placed in the middle of the table. A philosopher spends most of his time
thinking, but whenever he is hungry he picks up the fork to his left and plunges it into
the bowl. As the spaghetti is very long and tangled he requires another fork to carry
it to his mouth, so he picks up the fork to his right as well. If, on attempting to pick
up either fork, he should find that it is already in use he simply waits until it becomes
available again. When he has finished eating he puts down both forks and continues to
think.

There is a serious flaw in this system, which is only revealed when all the philoso-
phers become hungry at the same time. They each pick up their left-hand fork and then
reach out for their right hand fork, which is not there – a clear case of deadlock.

Figure 0.1: Deadlocked Dining Philosophers

4

0

1

2 3

Rules of varying complexity have been devised to tackle this problem. The simplest is

INTRODUCTION 3

to allocate to each resource a unique integer priority. Then deadlock may be avoided by
ensuring that no user process ever tries to acquire a resource with higher priority than
one it already holds. In the case of the Dining Philosophers we could label the forks
from zero to four, clockwise around the table. Four out of the five philosophers would
then have a fork of higher priority to their left than their right, and so their behaviour
would conform to the rule. The fifth, however, would have fork number zero to his left
and fork number four to his right, so he would break the rule. If he were to modify his
behaviour to always pick up the fork to his right first, the risk of deadlock would be
removed. This example illustrates the power of using design rules to prevent patholog-
ical behaviour. The theory behind this particular rule is described in Chapter 2.

As computer hardware becomes more abundant, the main issue in concurrency is
no longer how to share out sparse resources between multiple tasks, but rather how
best to spread a single task over multiple resources, in order to improve performance.
Here a task is decomposed into processes which communicate with each other, and it
is these communications which pose the threat of deadlock. Concurrent programming
languages provide little safeguard against this demon. Deadlock is also a potential haz-
ard in naturally distributed systems, such as telephone networks and control programs
for complex machines. Imagine a control program for the cooling system of a nuclear
reactor. The program might run smoothly for many years without problem. Unless rig-
orous methods had been used throughout to guarantee that the program was free from
deadlock there would be no way of knowing for sure whether a particular set of con-
ditions could one day arise that would cause it to deadlock, perhaps resulting in melt-
down.

Summary

The intention of this thesis is to provide a rigorous means of engineering deadlock-free
concurrent systems of arbitrary size. The approach taken is to provide a collection of
design rules which may be used to guarantee freedom from deadlock. These rules are
by no means complete but do offer sufficient flexibility to be applicable to a wide range
of problems. A welcome bonus is that their use often leads to algorithms which are
more structured and elegant than those developed by ‘trial and error’.

Most programmers are to some extent error-prone. With this in mind a tool has
been developed to check for conformance to the design rules. It will be shown how the
combined weapons of design rules and automatic verification provide a vital defence
against the patient and cunning foe that is deadlock.

Chapter 1 outlines the algebraic language of CSP which is used for specifying sys-
tems of communicating processes. A summary of existing techniques for deadlock
analysis using this model is provided.

Chapter 2 introduces some design rules for avoiding deadlock. These are formalised
in CSP. It is shown how they may be generalised and combined to provide a coherent
strategy for the design of deadlock-free systems.

4 INTRODUCTION

Chapter 3 describes the development of a software engineering tool for deadlock
analysis: Deadlock Checker. This is based on the results of the preceding chapters.

Chapter 4 comprises several interesting case studies of constructing deadlock-free
concurrent systems with the occam programming language, using design rules.

We conclude with a discussion of how the design approach might be extended to a
wider domain of correctness issues.

A certain amount of mathematical terminology and notation is employed, deriving
from Set Theory and Logic, Partial Orders and Graph Theory. In the interests of self-
containment, and also due to a lack of consistency in the literature, the basics of the
latter two fields are summarised in appendices A and B.

Chapter 1

Communicating Sequential Processes
and Deadlock

Introduction

This chapter is concerned with laying the mathematical foundations for the thesis. In
order to construct rigorous design rules for program design, we must first define a pro-
gramming environment. This chapter introduces the CSP language of C. A. R. Hoare,
which stands for Communicating Sequential Processes [Hoare 1985]. It is a notation
for describing patterns of communication by algebraic expressions. These may be man-
ipulated and transformed according to various laws in order to establish important prop-
erties of the system being described.

Behind CSP lies a mathematical theory of failures and divergences. Here a process
is defined in terms of abstract sets representing circumstances under which it might be
observed to go wrong. The model supplies a precise mathematical meaning to CSP
processes, and is consistent with the algebraic laws which govern them.

The standard operational model of CSP is also described. Here processes are rep-
resented by transition systems which illustrate their inner machinery. There is a close
relationship between the operational model of CSP and the Failures-Divergences model
which means that the former may be used to prove properties of a system phrased in
terms of the latter.

Following this, the concept of deadlock is formalised and we introduce techniques
for deadlock analysis, developed by S.D.Brookes, A.W.Roscoe and N.Dathi. The prob-
lem of livelock is also considered.

CSP is not a programming language strictly speaking; it is a mathematical notation.
However there are a number of concurrent programming languages based on CSP, such
as occam and Ada, so theoretical results derived using this model are applicable to real
programming.

5

6 CHAPTER 1. CSP AND DEADLOCK

1.1 The CSP Language

The basic syntax of CSP is described by the following grammar

Process ����� STOP
���

SKIP
���

event � Process
���

Process � Process
���

Process �	� alph � alph
�� Process
���

Process ����� Process
���

Process
 Process
���

Process � Process
���

Process � event
���

� �
Process

� ���
name

���
� name � Process

Here event ranges over a universal set of events, � , alph ranges over subsets of � ,
�

ranges over a set of function names, and name ranges over a set of process names.
A process describes the behaviour of an object in terms of the events in which it

may engage. The simplest process of all is STOP. This is the process which represents
a deadlocked object. It never engages in any event. Another primitive process is SKIP
which does nothing but terminate successfully; it only performs the special event � ,
which represents successful termination.

An event may be combined with a process using the prefix operator, written � . The
process bang � UNIVERSE describes an object which first engages in event bang then
behaves according to process UNIVERSE. If we want to give this new process the name
CREATION we write this as an equation

CREATION � bang � UNIVERSE

Processes may be defined in terms of themselves using the principle of recursion.
Consider a process to describe the ticking of an everlasting clock.

CLOCK � tick � CLOCK

CLOCK is a process which performs event tick and then starts again. (This is a some-
what abstract definition. No information is given as to the duration or frequency of
ticks. We are simply told that the clock will keep on ticking.)

1.1. THE CSP LANGUAGE 7

In an algebraic sense CLOCK has been defined as the solution to an equation of the
form �

��� �
� �

It is not always the case in mathematics that such equations have solutions (e.g. there
is no real solution to � �������	�
���). Fortunately the underlying mathematical theory
of CSP guarantees that solutions exist to all such equations. The reason for this will be
explained later. The solution to

�
�
� �

� �
is written

��� ��� � � �
where � is a dummy process variable. Using this notation we could write CLOCK as

��� � tick � �

The recursive notation is commonly extended to a set of simultaneous equations
where a number of processes are defined in terms of each other. This is known as mutual
recursion, several examples of which will be found in later chapters.

There are a number of CSP operations which combine two processes to produce a
new one. The first of these that we shall consider is sequential composition.

UNIVERSE � EXPAND � CONTRACT

is the process which first behaves like EXPAND, but when EXPAND is ready to termi-
nate it continues by behaving like CONTRACT. However it may also be possible that
EXPAND will never terminate.

It is rather more complicated to compose two processes in parallel than in sequence.
It is necessary to specify a set of events for each process, known as its alphabet. The
process denoted

PANTOHORSE �
FRONT

� ��� forward,backward,nod � ��� forward,backward,wag �
 �
BACK

represents the parallel composition of two processes: FRONT with alphabet � forward,
backward,nod � and BACK with alphabet � forward,backward,wag � . Here each process
behaves according to its own definition, but with the constraint that events which are
in the alphabet of both FRONT and BACK, i.e. forward and backward, require their
simultaneous participation. However they may progress independently on those events
belonging solely to their own alphabet. If a situation were to arise where FRONT could
only perform event forward and BACK could only perform event backward then dead-
lock would have occurred.

Parallel composition may be extended to three or more processes; given a sequence
of processes � ������� � � � � ����� with corresponding alphabets �! "� � � �
��� we write their
parallel composition as

PAR
� � � � #%$&(' � � � & � & �

8 CHAPTER 1. CSP AND DEADLOCK

Note that it is implicitly assumed that the termination event � requires the joint partic-
ipation of each process � & , whether or not it is included in their process alphabets.

An alternative form of parallel composition is interleaving, where there is no com-
munication between the component processes. In the parallel combination

BRAIN ��� � MOUTH

the two processes, BRAIN and MOUTH, progress independently of each other and no
cooperation is required on any event, except for � , the termination event. Any other
actions which are possible for both processes will only be performed by one process at
a time. Interleaving is a commutative and associative operation and so we may extend
the notation to various indexed forms, such as

��� � $&(' � � $
� � ������� � � �

A useful feature of CSP is the ability to describe nondeterministic behaviour, which
is where a process may operate in an unpredictable manner. The process

BUFFER � TWOPLACE
 THREEPLACE

may behave either like process TWOPLACE or like process THREEPLACE, but there
is no way of telling which in advance. The purpose of the
 operator is to specify con-
current systems in an abstract manner. At the design stage, there is no reason to provide
any more detail than is necessary and, where possible, implementation decisions should
be deferred until later.

This operation is known as internal choice. CSP also contains an external choice
operator � which enables the future behaviour of a process to be controlled by other
processes running along side it in parallel, which, collectively, we call its environment.

The process
MW � DEFROST � COOK

may behave like DEFROST or like COOK. Its behaviour may be controlled by its envi-
ronment provided that this control is exercised on the very first event. If an initial event
button1 is offered by DEFROST that is not an initial event of COOK, then the environ-
ment may coerce MW into behaving like DEFROST, by performing button1 as its initial
event. If, however, the environment were to offer an initial event that is allowed by both
DEFROST and COOK then the choice between them would be nondeterministic.

Both the choice operators may be extended to indexed forms. We write

� ��� � � � � �

to represent the behaviour of an object which offers any event of a set to its environ-
ment. Once some initial event � has been performed the future behaviour of the object
is described by the process � � . However, the process

 ��� � � � � �

1.1. THE CSP LANGUAGE 9

(where, for technical reasons, must be finite) offers exactly one event � from to its
environment, the choice being non-deterministic.

Sometimes it is useful to be able to restrict the definition of a process to a subset of
relevant events that it performs. This is done using the hiding operator (�). The process

CREATION � bang

behaves like CREATION, except that each occurrence of event bang is concealed. Note
that it is not permitted to hide event � .

Concealment may introduce nondeterminism into deterministic processes. It may
also introduce the phenomenon of divergence. This is a drastic situation where a process
performs an endless series of hidden actions. Consider, for instance, the process

CLOCK � tick

which is clearly a divergent process.
It is conventional to extend the notation to � � , where is a finite set of events.
Finally let us briefly consider process relabelling. Let

�
be an alphabet transfor-

mation function
� � � � � , which satisfies the property that only finitely many events

may be mapped onto a single event. Then the process
� � � � can perform the event

� ��� �
whenever � can perform event

�

. As an example consider a function new which maps
tick to tock. Then we have

new
�
CLOCK

� � tock � new
�
CLOCK

�

Some important algebraic laws which govern CSP processes are given in figures 1.1
and 1.2, which vary in complexity. They are taken from [Hoare 1985], [Brookes 1983],
and [Brookes and Roscoe 1985a]. (In some cases the syntax has been modified to con-
form to the version of CSP described above.) Note that this is not a complete list. The
following example illustrates the use of these laws.

Consider a process to describe a vending machine which sells tea for a price of one
coin and coffee for two coins.

VM � coin � � �
tea � VM

� � �
coin � coffee � VM

� �

After inserting a coin, a customer can control the future behaviour of the machine by
either inserting another coin, or taking a cup of tea.

We now define a process which describes a particular customer who loves tea and
is prepared to pay for it. Coffee he will tolerate, but only if it is provided free of charge.

TD � �
coin � tea � TD

� � �
coffee � TD

�

10 CHAPTER 1. CSP AND DEADLOCK

To illustrate the use of algebraic laws to simplify CSP process definitions, consider
what happens when the tea drinker tries to use the vending machine. Both processes
have alphabet � coin,coffee,tea � .

SYSTEM � VM � ��� coin,coffee,tea � � � coin,coffee,tea �
 � TD

�
��
�
�
coin � � �

tea � VM
� � �

coin � coffee � VM
� � �

� ��� coin,coffee,tea � ��� coin,coffee,tea �
 �� �
coin � tea � TD

� � �
coffee � TD

� �

���
�

� coin �
��
�
� �

tea � VM
� � �

coin � coffee � VM
� �

� � � coin,coffee,tea � ��� coin,coffee,tea �
��
tea � TD

� �
�

using law 1.22 with
�

� � coin � � � ��� coin,coffee � ��� �
� coin �
� coin � tea � �

VM �	� � coin,coffee,tea � ��� coin,coffee,tea �
�� TD
�

using law 1.22 with
�

� � tea,coin � � � �
� tea � ��� � � tea �
� coin � tea � SYSTEM

The system has been reduced to a very simple sequential definition. We see that
although no coffee will be consumed in this situation, the system will never deadlock.

The account of the CSP language given here is incomplete. Only the core language
has been considered with certain ‘advanced’ operators omitted. The language described
corresponds to the modern version of CSP, as given in [Formal Systems 1993], which
differs slightly from the language presented in Hoare’s book [Hoare 1985].

1.1. THE CSP LANGUAGE 11

Figure 1.1: Laws of CSP I

SKIP � � � � � SKIP � � (1.1)

STOP � � � STOP (1.2)� � ��� � ��� � � � � � ��� � (1.3)��� � � � ��� � � � � � ��� � (1.4)

� � � ���
 ��� � � �	�	� ��
�� � (1.5)

� �	�� ����

�
 � � � �	�	� ���
���� � � � � � � �	�
 ��� � � � �
�� ���
 ��� (1.6)

� � ����� � � ��� � � (1.7)

� ��� � SKIP � � (1.8)

� ����� � � ��� ��� � � � � ��� ��� � ��� ��� (1.9)

�
�� � � (1.10)

�
�� � �
 � (1.11)

�
 � �
�� � � � �
�� �
�� (1.12)

� � � � � (1.13)

� ��� � � ��� (1.14)

� � � � ��� � � � � ��� � ��� (1.15)

� �	�� �	�
 � � �
�� � � � � � � �	�
 ��� �
 � � �	�� �	�
���� �
(1.16)

� � � �
�� � � � � ��� �
 � � ��� � (1.17)

�
 � � ��� � � � �
�� � � � �
�� � (1.18)� � � � � � � � � � � � � � � � �
 � � � � �
� � � � �
�� � (1.19)

� � STOP � � (1.20)

� ��� ��� � � � � � STOP (1.21)

12 CHAPTER 1. CSP AND DEADLOCK

Figure 1.2: Laws of CSP II

Let � � � ��� � � � � �

� � ��� ����� � ���
Then � �	�� ���
 ��� � ��� �
	�� � � �
��� � � ���
�� ����� �

where �
��� � � � � if ��� �
� otherwise

and � � � � � ��� if ��� �
� otherwise

and
� � � ��� � �
 � � � � �
 � � � �

assuming
���

 and � �
� (1.22)

��� ��� ��� � ��� � �������! �#" �%$ � �� � � � �&� ��� ��� � � ��� ��� ���' �#" �($ � �) � � � � �� �! �#" �%$ � � �� � �����&� ��� ��� � �� � � � � (1.23)

SKIP �"� � SKIP (1.24)

STOP �"� � STOP (1.25)� � �"� � � � � � � � � � � � (1.26)� � � � � �"� � � � � (1.27)� � � � � � � � � � � � � � � if �+*� � (1.28)� � � � � �"� � � � � � � � � � � � � (1.29)� � � � ���
�� � � �"� � � �	�� ��� � � � �
 � � � � � �
if �,*� (1.30)� �
�� � �"� � � � � � �
 � � � � � (1.31)� � � � � � � � � � � � � �"� � � � � � �
 � � � � � � � � � � � � �"� � � �
if �+*� � (1.32)� �

STOP
� � STOP (1.33)� ��� � � � � � � � � � � � � � (1.34)� � � � � � � � � � � � � � � � if

�.- � � � � � � � � (1.35)� � � ��� ��� � � � � � � ��� � � � � � (1.36)� � � ��� � � � � � � � � � � � (1.37)� � �
�� � � � � � �
 � � � � (1.38)� � � � � - � � � � � � � � � � � � (1.39)

1.2. THE FAILURES-DIVERGENCES MODEL 13

1.2 The Failures-Divergences Model

In the preceding section the concept of communicating processes was introduced infor-
mally and the corresponding algebraic laws were stated without mathematical justifica-
tion. In this section a precise semantic definition of CSP processes is given from which
the laws can be deduced. This is known as the Failures-Divergences model. Here a
process is defined in terms of important observable properties – traces, failures and
divergences.

A trace of a process � is any finite sequence of events that it may initially perform.
For instance

� � coffee,coffee,coffee � � � coin,tea ����� traces
����� �

The following useful operations are defined on traces

� Catenation: ���
	
��� � � � � � � � � �
� �
� �
	 � � 	 � � � � � 	 $ � ����� � � � � � ��� � 	 � � � � � 	 $ �

� Restriction: ���� � , trace � restricted to elements of set �
Example: � � � � � $ ��� � ����� � � ���� � � � � � $ � � � � � � � $ � � � � �

� Replication: � $ trace � repeated � times.

Example: � � � � � � � � � � � � � � � �
� Count: ��� � number of occurrences of event � in trace �

Example: � � � � � � � � � � ��� � ���
� Length: ��� � the length of trace � .

Example: � � � � � � $ � � ���
� Merging: merge

� � � 	 � the set of all possible interleavings of trace � with trace	
Example: merge

� � � � � � � � $ � � �
� � � � � � $ � � � � � $ � � � � � $ � � � � � �
A complication to trace interleaving is that the � event requires the joint par-
ticipation of both traces. This means that a trace which contains � cannot be
interleaved with one that does not.

Examples: merge
� � � � � � � � � � $ � � � � �

��� �� �
� � � � $ � � � �
� � � $ � � � � � �
� $ � � � � � � �

� �
�!

merge
� � � � � � � � � � $ � � � � �

14 CHAPTER 1. CSP AND DEADLOCK

The failures of a process describe the circumstances under which it might deadlock.
Each failure of a process � consists of a pair

� � � � �
where � is a trace of � and

�
is

a set of events which if offered to � by its environment after it has performed trace � ,
might be completely refused. For instance

� � coin,tea,coin,tea,coin,coin � � � tea,coin � � � failures
�
VM

�

This describes a situation where the vending machine VM has dispensed two cups of
tea and then accepted two coins. At this point the machine is willing only to dispense
coffee. If a user arrives who wants tea, and is only prepared to take a cup of tea or to
insert another coin then deadlock will ensue.

The concept of failures is commonly used to write specifications for the behaviour
of CSP processes. Consider the following specification.

� � � � � � � failures
� � � � � � in � ��� out ��� out *�

�

This states that whenever process � has performed the event in more often than the
event out it must guarantee not to refuse event out. This might form part of the overall
specification for a buffer.

The divergences of a process are a list of the traces after which it might diverge, e.g.

� � � divergences
�
CLOCK � tick

�

There are several further aspects of notation that are needed in order to define the
model which are as follows. The Power-Set of a set , written � , consists of all
subsets of . The Finite Power-Set of , written �

� � , consists of all finite subsets of
 . The set of all finite sequences (including �!�) that may be formed from elements of
 is written �� .

The Failures-Divergences model is based on a universal set of events � . Each CSP
process is uniquely defined by a pair of sets

� � � � �
, corresponding to its failures and

divergences, such that

�
�

� �	� � �� �
� �

There are seven axioms that such a pair of sets must satisfy in order to qualify as a
process. (Note that there are several versions of these in existence in the literature. This
version comes from [Brookes and Roscoe 1985a].)

(1)
� � � � � � � � �

(2)
� � � 	 � � � � � � ��� � � � � � � � �

(3)
� � � � � � ��
 � � � ��� � � � � � � �

(4)
� � � � � � ��
 � � $ � �

�

� � � � � $ � � � � � *� � � � ��� � � � �
 � � � �
(5)

� � � � � �
� �
�

� � � � � � � � ��� � � � � � � �
(6) � � �
 	 � � � ��� ��� 	 � �
(7) � � �
 ���

� ��� � � � � � � �

1.2. THE FAILURES-DIVERGENCES MODEL 15

Putting the first four axioms into words tells us that every process starts off with an
empty trace (axiom 1). In order to perform trace � , it must be able to perform any prefix
of � (axiom 2). A subset of a refusal set is also a refusal set (axiom 3). If the process
can refuse the events in

�
, and cannot perform any of the events in � as its next step,

then it may also refuse
�

 � (axiom 4). These are all basic intuitive properties of

processes.
Axiom 5 states that a set may be refused if all its finite subsets may be refused. This

is to allow for the possibility of � being an infinite set without complicating the theory.
Axioms 6 and 7 state that once a process diverges it may subsequently perform any

trace imaginable and will behave in a totally nondeterministic manner. This is a rather
harsh treatment of the phenomenon of divergence. If we put our CLOCK in a vacuum to
hide its ticking we would not expect such dramatic behaviour. It is, however, a conve-
nient means to make the theory work better based on the assumption that the possibility
of divergence is catastrophic (see [Roscoe 1994]).

There is a natural partial order (see appendix A) on the set of all processes given
by � � � � � � ��� � � �

� �
�
���

� � ����� �

� ��� �

�
The interpretation of this is that process � � is worse than � � if it can deadlock or

diverge whenever � � can. This ordering is in fact a complete partial order. The bottom,
or worst, element � represents the process which always diverges, corresponding to
the decision to treat this form of behaviour as the least desirable. It is a chaotic process
which can do absolutely anything in a totally unpredictable manner. It is defined as
follows.

failures
� � � � � �	� � �

divergences
� � � � � �

The failures and divergences of the fundamental CSP terms are defined in figures
1.3 and 1.4. (These are the same as in [Brookes and Roscoe 1985a], except that the
definitions of parallel composition and interleaving are modified to reflect the fact that
in the modern version of CSP these operators implicitly require the cooperation of both
processes in performing the � event.) This covers all closed, non-recursive CSP terms.

All of the CSP operators can be shown to be well-defined. In other words, if you
apply any of them to existing CSP processes, the resulting object will itself be a process:
its failures and divergences obeying the seven axioms of the model. They are also con-
tinuous, with respect to

�
. This is important because it means that any recursive CSP

equation of the form
�

� � �
� �

has a solution, by Tarski’s fixed point theorem (see
appendix A). The least solution is given by

� � � � �
� � �	��� � $ � � � � � � N �

16 CHAPTER 1. CSP AND DEADLOCK

This means that if you want to find the solution to
�

�
� �
� �

you start at the bottom
� and repeatedly apply the function � to it. For instance CLOCK is the limit of the
series

� � tick � � � tick � tick � � � tick � tick � tick � � � � �
The failures and divergences of � � ��� �

� �
may be calculated as follows

divergences
� � � � � �

� � � � �
$�� N

divergences
� � $ � � � �

failures
� � � � � �

� � � � �
$�� N

failures
� � $ � � � �

This is how we define the meaning of recursion in CSP.
This approach may be extended to mutual recursion, where a number of processes

are defined by a system of simultaneous equations. The trick here is to let
�

be a vec-
tor of processes, satisfying an equation of the form

�
� � �

� �
. The solution is then

defined as the least fixed point of � in the same way as before.
Whilst the fact that recursion is well-defined in CSP is crucial to the theory, it is

really only of technical interest to a designer of concurrent systems. Basically it allows
him to specify processes recursively, assured in the knowledge that it is a sound prac-
tice.

The failures-divergences model of CSP is used for formal reasoning about the be-
haviour of concurrent systems defined by CSP equations. The partial ordering of non-
determinism is very important to the stepwise refinement of concurrent systems. Start-
ing from an abstract non-deterministic definition, details of components may be inde-
pendently fleshed out whilst preserving important properties of the overall system such
as freedom from deadlock. This will be explained in more detail later.

1.2. THE FAILURES-DIVERGENCES MODEL 17

Figure 1.3: Denotational Semantics for CSP I

divergences
�
STOP

� � � �
failures

�
STOP

� � � � ��� � � �
divergences

�
SKIP

� � � �
failures

�
SKIP

� � � � � � � � � � � � � � �

 � � � � ��� � � � �
divergences

� � � � � � � � � � � � ��� � divergences
� � � �

failures
� � � � � � � � � � �

� � �
� �

� � � � � �

 � � � � �
� � � � � � � � � � � � failures

� � � �
divergences

� � ��� � � divergences
� � �

� � � 	 � � � � � � � traces

� � �
 � � -free

 	 � divergences

� � � �
failures

� � ��� � � � � � � � � � � � -free

� � � �
 � � � � � failures

� � � �

� � ���
	 � � � � ����� � � � traces
� � �
 � � -free
� 	 � � � � failures
� � � �

 � � � � � � ��� � divergences
� � � � � �

divergences� � �	�� �	�
 ��� � �

�������� �������

� � 	 ��� � � �
 ��
 � � � � �
�����
�

� � �� � �
 � � � � � divergences
� � �
� �� � ��
 � � � � � traces

� � � �
� � ���� � �
 � � � � � divergences

� � �
� �� � �
 � � � � � traces
� � � �

� ����
�

� ������
������!

failures
� � �	�� �	�
 ��� � �

�������� �������

� � � �
 �
 � � � � � � �
 �
 � � � � �

��� � �
 � � � �
 �

� � �
 � � � �
� � � � � � �
 ��
 � � � � �

� ���� � �
 � � � � �

� � � failures
� � �

� � �� � �
 � � � � � � � � failures

� � �

� ������
������!

 � � � � � � ��� � divergences
� � � � �	�
 ��� � �

18 CHAPTER 1. CSP AND DEADLOCK

Figure 1.4: Denotational Semantics for CSP II

divergences
� � ������� � �

��� �� � �
� 	 � � � merge

� � � 	 �
� � � � divergences
� � �
 	 � traces

� � � � �
� � � traces

� � �
 	 � divergences
� � � � �

� �
�!

failures
� � ��� ��� � �

���������� ���������

� � � � � � � �
� 	 ������

�
� � � � � � � � � � � failures

� � �
� 	 � � � � failures
� � � � �� � � � � � � failures
� � �
� 	 � � � � � � � � failures

� � � �
������
�

� � merge
� � � 	 �

� ��������
��������!

 � � � � � � ��� � divergences
� � ��� ��� � �

divergences
� �
�� � � divergences

� � �
 divergences
� � �

failures
� �
�� � � failures

� � �
 failures
� � �

divergences
� � � � � � divergences

� � �
 divergences
� � �

failures
� � ��� � �

��� ��
� � � � � � � � � � � � failures

� � �
�

failures
� � � �� � *� � �
� � � � � � failures

� � �
 failures
� � � �

� �
�!

 � � � � � � ��� � divergences
� � ��� � �

divergences
� � � � � �

��� ��
� ���� � � � � � � � � � 	 �� � � divergences

� � �� � � � � � � � � � $ � traces
� � � � � �

� �
�!

failures
� � � � � � � � � �� � � � � � � � �

� � � � � � �
 � � � � � failures
� � � �

 � � � � � � ��� � divergences
� � ��� � � � �

divergences
� � � � � � � � � � � � 	 ��� � divergences

� � � �
failures

� - � � � � � � failures
� � � �

 � � � � � � ��� � divergences
� � � � � � �

1.3. OPERATIONAL SEMANTICS 19

1.3 Operational Semantics

So far we have encountered two ways of looking at communicating processes: firstly
as algebraic expressions and secondly in terms of abstract mathematical sets based on
their observable behaviour. There is no obvious way of seeing from either of these rep-
resentations how our processes might be realised on a machine. We need a more con-
crete approach – an operational model. The operational semantics of CSP is a mapping
from CSP expressions to state transition systems. A state transition system is a labelled
digraph where each vertex represents a state in which the process may rest. The out-
going arcs from each vertex represent the events that the process is ready to perform
when in the associated state. The destination vertex of each of these arcs represents
the new state that the process attains by performing the associated event. There is one
particular vertex that is marked as the initial state of the process. A special event � is
used to represent concealed events or internal decisions. States which have outgoing

� -labelled arcs are called unstable. Those which do not are called stable.
Transition systems for certain processes that we have previously encountered are

shown in figure 1.5. Note that recursion is represented here by the presence of circuits
in the digraphs.

Figure 1.5: State Transition Systems

T

tick CLOCK

tick tea

coffee

coin

coin

coin

coffee

tea

coin tea TD
coffee TD

coin
tea VM

coin coffee VM

tea VM
coin coffee VM

coffee VM

tea TD

VM

TD

CLOCK (
)

T

T

The operational semantics of CSP is defined by a set of inference rules which define
a mapping from closed CSP terms to transition systems. Each clause consists of a (pos-
sibly empty) set of assertions � � � � � � $ � and a conclusion � presented in the form

 � � � � � $�

20 CHAPTER 1. CSP AND DEADLOCK

Consider, for example, the rules which define sequential composition.

� �� � �� � � � � �� � � � � � �
� *� �

�
�

� � �� � � � ���� �
The first clause states that if a process � can perform a certain event

�
, where

�
can be

any event except for � , and its subsequent behaviour is then described by the process
� � , then process � ��� can also perform

�
and its subsequent behaviour is described by

� � � � . The second clause tells us that if � can terminate straight away, by performing
event � , then � � � can perform an internal event � and then behave like � .

The full set of operational rules for the subset of the CSP language that we are
using is given in figures 1.6 and 1.7. These clauses are taken from [Roscoe 1988a]
and [Formal Systems 1993]. They may be used to systematically construct transition
digraphs from systems of CSP equations, as is done by the refinement checking pro-
gram FDR [Formal Systems 1993]. As an example, let us consider how the transition
digraph for process TD, figure 1.5, is constructed. First of all the defining CSP equation
is converted into a syntax tree as follows

TD
�

coin � tea � TD � coffee � TD
�

coin � tea � TD coffee � TD
coin � coffee �

tea � TD TD
tea �

TD

The syntax tree shows how the defining CSP term for TD is composed from operators
acting on sub-processes. Each framed process term represents a potential state of TD
or a state of one of its sub-processes. We can expand some of these straight away using
the operational rule for event prefixing.

coin � tea � TD coin� tea � TD

tea � TD tea� TD

coffee � TD
coffee� TD

We are now ready to expand the external choice construct which gives us

coin � tea � TD � coffee � TD coin� tea � TD

1.3. OPERATIONAL SEMANTICS 21

coin � tea � TD � coffee � TD
coffee� TD

The rule for recursion enables us to make the following connection.

TD
�� coin � tea � TD � coffee � TD

It may not be immediately obvious how this follows from the rule for recursion, which
is phrased in terms of the � operator. The reason that it does follow is that we are actu-
ally using TD as an abbreviation for

� �
� coin � tea �

�
� coffee �

�

It is now the case that every state reachable from TD has been expanded, and together
they constitute a state-transition system for TD, which is

��������� ��������

TD
�� coin � tea � TD � coffee � TD

coin � tea � TD � coffee � TD coin� tea � TD

coin � tea � TD � coffee � TD
coffee� TD

tea � TD tea� TD

� �������
�������!

(Note that states coin � tea � TD and coffee � TD are not reachable from TD.)
This gives us the finite state machine shown in figure 1.5. It is important to note that
not all CSP expressions have finite operational representations. Some simple examples
of infinite state processes are given in [Roscoe 1994].

It is straightforward to derive the failures and divergences of a process from its
state transition system. However there may be many operational representations of
a single process, just as there may be many algebraic representations. It is shown in
[Roscoe 1988a] that the denotational semantics of CSP, i.e. the failures-divergences
model, and the operational semantics are congruent. This means that if � is the map-
ping from operational semantics to failures and divergences, and op is the represen-
tation of a CSP operation in the operational model, and op is the representation of the
same CSP operation in the denotational model then for any process � in the operational
model we have

�
�
op

� � � � � op
�

�
� � � �

This means that the behaviour of a process predicted by its failures and divergences
will be the same as that which can be observed of its operational representation. So we
may use the operational semantics of CSP in order to prove properties of process behav-
iour which are phrased in the Failures-Divergences model. This feature turns out to be
particularly useful when the operational representation of a process is finite although
its failures and divergences are infinite, as is usually the case in practice. More on this
in chapter 3.

22 CHAPTER 1. CSP AND DEADLOCK

Figure 1.6: Operational Semantics for CSP I
Primitive processes:

SKIP
�

� STOP
Prefix:

��� � � � �� �
External choice: � �� � �� � ��� � �� � �

� *� �

� �� � �� � ��� � �� � �
� *� �

� �� � �� � ��� � �� � � � � � �

� �� � �� � ��� � �� � � ��� � �
Internal choice:

� �
�� ���� �
� �
�� � �� �

Sequential Composition:

� �� � �� � � � � �� � � � � � �
� *� �

� �� � �� � � � ���� �

1.3. OPERATIONAL SEMANTICS 23

Figure 1.7: Operational Semantics for CSP II
Parallel Composition:

� �� � �
� � � �	�
�� � �� � � �	�� ���
 ���

� � � � � � � � � �
 � � �

� �� � �
� � � �	�
�� � �� � �	�� ���
�� � �

� � � � � � � � � �
 � � �
� �� � � � �� � �

� � � ���
 ��� �� � � �	�� �	�
�� � �
� � �

�
� �
 � � �

Interleaving:
� �� � �

� � ����� �� � � ��� ���
� *� �

� �� � �
� � ����� �� � ��� � � �

� *� �

� �� � � �
�

� � �
� � ��� �

�

� � � ��� ��� �
Hiding:

� �� � �� � � � �� � � � �� �
� � �
 � � �

� �� � �� � � � �� � � � �� �
� *� �
 � � �

Alphabet Transformation:
� �� � �

� � � ����� ���� � � � � �
Recursion:

� � ��� �
� � �� � � �

�
��� �

� � �

24 CHAPTER 1. CSP AND DEADLOCK

1.4 Language Extensions

The core CSP syntax described above is very abstract, and lacks certain useful features
found in conventional sequential and parallel programming languages. The extensions
outlined below are useful for writing more detailed specifications.

Sometimes we define processes with parameters, such as

BUFF
�
in
�
out

� � in � out � BUFF
�
in
�
out

�

This is a process-schema, rather than an actual process. It defines a CSP process for
each combination of parameter values. CSP parameters may be integers, real numbers,
events, sets, matrices, etc.

A communication is a special type of event described by a pair
$
��� , where

$
is the

name of the channel on which the event takes place, and � is the value of the message
that is passed.

The set of messages communicable on channel
$

is defined

type
�%$ � �
� � � $ ��� � �
�

Input and output are defined as follows. A process which first outputs � on channel$
, then behaves like � is defined

�%$�� � � � � � �%$
��� � � �

Outputs may involve expressions of parameters such as � � � � � $�� � � � � . The
expressions are evaluated according to the appropriate laws.

A process which is initially prepared to input any value � communicable on the
channel

$
, then behave like � � � � is defined.

�%$�� � � � � � � � � ��� � type � � �%$ ��� � � � � � �

It is usual for a communication channel to be used by at most two processes at any
time: one for input and the other for output. However this restriction is not enforced in
the modern version of CSP.

Another important aspect to real programming languages is the use of conditionals.
Let

�
be a boolean expression (either true or false). Then

�	�
��
 � (“ � if

�
else � ”)

is a process which behaves like � if the value of expression
�

is true, or like � other-
wise.

These extensions are useful for specifying fine detail during the later stages of pro-
gram refinement. At the design stage we shall tend to stick to abstract, non-determinis-
tic definitions of processes. The deadlock issue will be addressed at this point. In this
way we shall build robust programs for which deadlock-freedom cannot be compro-
mised by implementation decisions made at a later stage.

1.5. DEADLOCK ANALYSIS 25

1.5 Deadlock Analysis

Terminology and Fundamental Results

The problem of the “deadly embrace” was first reported by E. W. Dijkstra relating to
resource sharing[Dijkstra 1965]. It has proved a popular topic of research ever since.
Most of the early work was presented in an informal manner, for instance [Chandy and
Misra 1979], largely due to the lack of a suitable mathematical model for concurrency at
the time. But in 1985-86, S.D.Brookes, A.W.Roscoe and N.Dathi presented some pow-
erful techniques for reasoning about deadlock based upon the solid mathematical foun-
dations of CSP. A major benefit of their approach is that it relies only on local analysis
of pairs of processes, and simple topological properties of the network configuration.
This makes it suitable for analysing networks of arbitrary size. The terminology intro-
duced here is taken from the following sources: [Brookes and Roscoe 1985b], [Roscoe
and Dathi 1986], and [Brookes and Roscoe 1991].

We consider a network, � , which is a list of processes ��� � � � � � � $ � . Associated
with each process � & is an alphabet ��� & . The corresponding process, # $&(' � � � & � ��� & � ,
is denoted PAR(�).

We view a network as consisting of a static collection of everlasting components.
Parallel programs do not need to terminate to produce useful results, and deadlock anal-
ysis is simplified if we can cast termination aside. Henceforth we shall only consider
processes which are non-terminating, i.e. they never perform the event � (although
they may still be constructed from sub-processes which do terminate).

A process � can deadlock after trace � if and only if
� � � � � � failures

� � � . We say
� is deadlock-free if

� � � traces
� � � � � � � � � *� failures

� � �
Note that this definition of deadlock-freedom also excludes any process which can

diverge (by axiom 7 of the failures model), which seems reasonable as divergence is
every bit as undesirable a phenomenon as deadlock. Network � is said to be deadlock-
free if the process PAR(�) is deadlock-free.

The following lemma describes how individual sequential processes may be con-
structed free of deadlock. Used in conjunction with the algebraic laws of CSP, it also
enables us to prove deadlock-freedom for certain small networks of processes by man-
ipulation into a sequential form. Unfortunately this technique does not scale at all well
to large networks because the resulting CSP terms usually increase in length in a manner
exponentially proportional to the number of processes which constitute the network.

Lemma 1 (Roscoe-Dathi 1986) Suppose the definition of the process � uses only the
following syntax

Process � � � SKIP
���

event � Process
���

26 CHAPTER 1. CSP AND DEADLOCK

Process � Process
���

Process
 Process
���

Process � Process
���

� �
Process

� ���
name

���
� name � Process

where “name” denotes a process variable, but � contains no free process variables,
is divergence-free, and every occurrence of SKIP in � is directly or indirectly followed
by a “ � ” to prevent successful termination. Then � is deadlock-free �

If every component process � & of a network is deadlock-free we say that the net-
work is busy. A network is triple-disjoint if no event requires the participation of more
than two processes. We shall restrict our attention to networks which are both busy and
triple disjoint. This will enable us to analyse networks for deadlock-freedom purely by
the local analysis of neighbouring pairs of processes.

We observe the convention that communication channels are used in only one direc-
tion and between only two processes. We call this the I/O convention. This guarantees
that whenever two processes are ready to communicate on a particular channel then the
communication can go ahead. Sometimes, when we are not concerned about the data
which is communicated, it is convenient to substitute a channel name for communica-
tion events in a process description. For instance, we might write

� � SKIP instead of� � � � SKIP. This is known as abstraction. If we can prove freedom from deadlock
for an abstracted version of a network then the property will also hold for the original.
A formal treatment of this is given in [Roscoe 1995].

A network state of � is defined as a trace � of PAR(�), together with a sequence
�
�
� � � � �

�
$ � of refusal sets

� & , such that for each
�
,

� � �� ��� & �
� & � � failures

� � & �

We say that a network state is maximal if each of its refusal sets is maximal, i.e.,
if
� � � � � � � � � � � $ �

�
is a maximal state of � then for each process � & there is no failure� � �� ��� & � � � such that

� & � � .
When we consider deadlock properties we find that all the relevant information is

carried by the maximal network states, as the more events that an individual process
refuses, the more likely deadlock becomes. So from now on all network states will be
taken to be maximal, as this simplifies the analysis.

There is a close relationship between a network state and the operational states of
the processes within. Suppose we visualise a network as a collection of state transition
systems – one representing each process. A network state is then rather like a cross-
section of the network. The trace � tells us what each process has done so far, and each

1.5. DEADLOCK ANALYSIS 27

refusal set
� & corresponds to a particular stable state of process � & , telling us exactly

what it is refusing to do on the next step. For instance the network

� VM
�
TD �

for which the transition systems are illustrated in figure 1.5, has a network state
� � coin � � � � coffee � � � coin,coffee � � �

which corresponds to the situation where the tea drinker has inserted a coin into the
vending machine. The vending machine is then in operational state tea � VM �
coin � coffee � VM, refusing event coffee and prepared to accept � coin, tea � . The
tea drinker is in operational state tea � TD, refusing � coin, coffee � and prepared only
to accept tea.

The following lemma characterises network states where deadlock is present.

Lemma 2 (Roscoe-Dathi 1986) PAR(�) can deadlock after trace � if and only if there
is a network state

� � � � � � � � � � � $ �
�

such that

$�
&(' �

� � & � ��� & � � $�
&(' � ��� &

�
This follows easily from the definitions. Such a state is called a deadlock state.

Suppose that, in a particular state � � � � � � � � � � � � � $ �
�

there is a process � & which
is ready to communicate with ��� , i.e.

�
��� & �

� & � � ����� *�
� �
We say that � & is making a request to ��� in state � , which is written

� &��� � � �
We say that this request is ungranted if also � � refuses to respond to � & ’s request: i.e.

��� &
�

��� �
��� &

�
�

This is written
� &��� � ��� �

The set of shared events within a network is known as its vocabulary, written � .

� � �
&
	' �

�
��� &

�
����� �

Sometimes we are only interested in ungranted requests from � & to � � when neither
process is able to communicate outside the vocabulary of the network, i.e. in addition
to the above �

��� & �
� & �
 �

��� � �
�
�
� �

� �

28 CHAPTER 1. CSP AND DEADLOCK

Then we say that � & is making an ungranted request to ��� with respect to � . We write

� & ��� �� � � � �
We say that � & is blocked in network state � of � if

�
�
� � & �� � � and � & �� ��� ��� � & ��� �� � ���

which means that � & is ready to engage in a communication with at least one other
process, but no process that � & wishes to communicate with is able to do so. Neither
� & nor any process that it wishes to communicate with is able to perform any event
outside the vocabulary of � .

The following lemma is derived from the above definitions:

Lemma 3 (Roscoe-Dathi 1986) If � is a state of a triple disjoint, busy network � ,
then � is a deadlock state if, and only if, every process in � is blocked in state � �

This result may be interpreted graphically. We define the wait-for digraph of a net-
work state as follows. It is a digraph which has a vertex for every process � & , and arcs
from any blocked process to each process for which it is waiting. Figure 1.8 shows
examples of wait-for digraphs, which illustrate lemma 3.

Figure 1.8: Wait-for Digraphs

No deadlock (��� and �
	 can run)

P

P

P P

P

1

2 3 4

5

Deadlock (all processes blocked)

P

P

P P

P

1

2 3 4

5

We may deduce an interesting feature of deadlock states. Consider a deadlock state
of a busy, triple-disjoint network � . By lemma 3 there is at least one ungranted request
from every process, with respect to the vocabulary of � . So starting with any process
� &�� , we may build an arbitrarily long sequence of ungranted requests as follows:

� & � �
� �� � � &�� �
� �� � � &�� � �

1.5. DEADLOCK ANALYSIS 29

As there are only a finite number of processes, � & , this sequence must eventually arrive
back at a process that it has already visited, i.e there is a cycle of ungranted requests

� &�� �
� �� � � & ��� � �
� �� � � � �
�
�

� � � & ����� �
� �� � � &��

Hence we have proved the following result.

Theorem 1 In any deadlock state of a triple disjoint, busy network there is a cycle of
ungranted requests with respect to its vocabulary � .

Roscoe and Dathi made use of this fact to establish a method for investigating deadlock
properties of networks which involves only local checking. The crucial idea behind this
technique is as follows. If a function is defined on the states of processes in a network
which is strictly decreasing along any chain of ungranted requests, then there can never
be a cycle of ungranted requests and hence no deadlock. An example of using this tech-
nique will be given in the next chapter.

Theorem 2 (Roscoe-Dathi 1986) Let � � ����� � � � � � $ � be a busy, triple-disjoint net-
work with vocabulary � . If there exist functions

� & , from the failures of each process � &
to a strict partial order

��� �
�
�

such that whenever � � � � � � � & � � � � � is a state of the
subnetwork � � & � � � �

� & �
� �� � ��� ��� � & � � � �� ��� & �
� & � � � � � � � ���� ����� �

�
�
� �

then � is deadlock-free. Or if there exist similar functions � & , such that

� & �
� �� � ��� ��� � & � � ���� ��� & �
� & � �
	 � � � � ���� ����� �

�
�
� �

then any deadlock state � � � � � � � � � � � � � $ �
�

of � contains a cycle of ungranted
requests,

� &��
� � �� � � & � � � �� � � � � &���� � �� � � &��
such that

� & � � � ���� ��� & � �
� & � � � ��� & � � � � �� ��� &�� �

� &�� � � � � � ��� & � � � ���� ��� & � �
� & � � � �

The existence of a cycle of ungranted requests does not always mean deadlock has
occurred. The cycle might subsequently be broken by the intervention of a process from
outside the cycle.

Deadlock-free networks exist that sometimes develop cycles of ungranted requests
and this theorem is not sufficiently powerful to prove them so. Dathi’s thesis contains
a hierarchy of stronger techniques, together with a classification of different levels of
deadlock-freedom which they may be used to establish [Dathi 1990].

30 CHAPTER 1. CSP AND DEADLOCK

By treating cycles of length two as a special case we can arrive at a useful extension
to theorem 1. We say that two processes � & and � � are in conflict with respect to � in
network state � if each one is trying to communicate with the other, but cannot agree
on which event to perform, i.e.

� & �
� �� � ���
 ��� �
� �� � � &
A conflict is basically a cycle of ungranted requests of length two. It is said to be strong
if one of the processes is able to communicate only with the other process. i.e.

� �
��� & �

� & � � ��� � � � � �
��� � �

�
�
� �

��� & �

We call a network where strong conflict can never occur strong conflict-free.

Theorem 3 (Brookes-Roscoe 1991) In any deadlock state of a triple disjoint, busy,
strong conflict-free network there is a cycle of ungranted requests with respect to its
vocabulary of length greater than two.

Proof. Consider the wait-for digraph of a deadlock state � of such a network. Starting
at any node � &�� we can form a sequence of arbitrary length

� & � �
� �� � � &�� �
� �� � � &�� � �
with the property that � & � , � & � � � , and � & � � � are all distinct for each

�
. For if � & � � � has an

ungranted request back to � & � the two processes are in conflict and as this cannot be a
strong conflict � & � � � must also have an ungranted request to some other process, which
may then be selected as � & � � � . This sequence will eventually cross itself which means
that there must be a cycle of ungranted requests of length greater than two � .

The property of strong conflict-freedom may be established by pairwise analysis of
processes in the network and in this way may be checked for networks of arbitrary size.

Brookes and Roscoe used this result to develop another technique for proving dead-
lock freedom by showing that a cycle of ungranted requests cannot occur. This relies
on the processes in the network obeying a rather special condition and so is somewhat
in the nature of a design rule.

Theorem 4 (Brookes-Roscoe 1991) Let � � ����� � � � � ��� be a busy, triple-disjoint,
strong-conflict-free network such that whenever a process � has an ungranted request
to another process � then � has previously communicated with � , and has done so
more recently than with any other process. It follows that � is deadlock-free.

Proof. Consider a deadlock state � of a strong-conflict-free network � . By theorem 3
there must exist a cycle of ungranted requests, of length at least three, as follows:

� & � �
� �� � � &�� �
� �� � � � � & � �
� �� � � & �

1.5. DEADLOCK ANALYSIS 31

Now suppose that the most recent communication between two consecutive elements
of this cycle was between � &�� and � &�� � � (where addition is modulo

�
– the length of

the cycle). Consider the ungranted request from � &���� � to � &�� . � &�� has communicated
with � &�� � � more recently than it has with � &���� � . This means that any strong-conflict-
free network which deadlocks does not satisfy the conditions of the theorem. It follows
that a network which obeys the conditions of the theorem is deadlock-free � .

This result has been used by Roscoe to develop a complex and sophisticated mes-
sage routing algorithm [Roscoe 1988b]. A generalisation of the theorem is given in
[Roscoe 1995].

Livelock

In high level concurrent programming languages, such as occam, it is conventional for
communication channels between two processes to be concealed from the environment.
This can potentially cause a form of divergence known as livelock. We say that a net-
work is livelock-free if it can never perform an infinite sequence of internal or hidden
actions, i.e.

divergences
�
PAR

� � � � � � �
� �
Roscoe discovered a useful technique (detailed in [Dathi 1990]) for establishing this
important property. It is described here in a slightly simplified form.

Theorem 5 (Roscoe 1982) Suppose � � � ��� � � � � ����� is a triple-disjoint network of
non-divergent processes such that for every � & in �

� & � �
���� & � ��� &
�

����� � � is divergence-free

then PAR
� � � � � is divergence-free �

In other words, if no process in a network can ever perform an infinite sequence of
communications with its predecessors then the network is livelock-free. (This can be
proved by induction.) This theorem is found to be useful in many cases, although it
requires careful ordering of the processes within the network to be effective.

Network Decomposition

The communication architecture of a triple-disjoint network may be represented by a
communication graph. This consists of a vertex to represent each process and an edge
to connect each pair of processes with overlapping alphabets. The next theorem des-
cribes how deadlock analysis of a network may be broken down into the analysis of a
collection of smaller components by the removal of disconnecting edges (see appendix
B) from the communication graph.

32 CHAPTER 1. CSP AND DEADLOCK

Theorem 6 (Brookes-Roscoe 1991) Consider the communication graph of a network
� with a set of disconnecting edges which separates the network into components

� � � � � � � � � �
If each pair of processes joined by a disconnecting edge is conflict-free with respect to
� and each subnetwork � � is deadlock-free, then so is � � .

A proof of this theorem is given in [Brookes and Roscoe 1991].
This result is useful for the hierarchical construction of networks. It offers a safe

way of connecting subsystems together without introducing any risk of deadlock.

Hiding

An important feature of reasoning with CSP is the use of the concealment operator,
which enables us to hide those events that we are not interested in. This can greatly
simplify deadlock analysis of a network.

Lemma 4 If � � � is deadlock-free, then � is deadlock-free �
Used with CSP law 1.30, this result enables us to add extra external communications

to the component processes of a deadlock-free network. Deadlock freedom will be pre-
served as long as the behaviour of each component is unchanged when these events are
concealed.

Lemma 5 Suppose � is a network ��� � � � � � � $ � . Let � � be a network � � � � � � � � � $ � � ,
such that

� & � � �
��� & � � ��� & � �
� &

� *� � ��� �
��� & � � ��� & �

�
����� � �
� �

then

PAR
� � � � PAR

� � � � � $�
&(' �

�
��� & � � ��� & �

Furthermore, if � is deadlock-free then so is � � .
Proof.

PAR
� � � � #%$&(' � � � & � ��� & �

� # $&(' � � � & � � �
��� & � � ��� & � � ��� & �

� � # $&(' � � � & � � ��� & � � � � $�
&(' �

�
��� & � � ��� & � by application of law 1.30

� PAR
� � � � � $�

&(' �
�

��� & � � ��� & �

It now follows from lemma 4 that � � inherits deadlock-freedom from � �

1.5. DEADLOCK ANALYSIS 33

Refinement

CSP processes are related by a complete partial order
�

, which we described in section
1.2. � � � means that every behaviour pattern that is possible for � is also possible
for � . We say that � is a specification for � , and that � is a refinement of � .

The operation of parallel composition with any particular process is known to be
monotonic, i.e. order-preserving, with respect to this partial ordering (in fact all CSP
operations are). This leads us to the following observation.

Lemma 6 Suppose that � � ����� � � � � � ��� and � � � ��� �� � � � � � �� � are networks where

� � � � � � � � ��� � � � & � � �&
then PAR

� � � � PAR
� � � � �

In particular this means that if � is deadlock-free then so is � � . Similarly if � is
livelock-free then so is � � .

This result makes an important statement about the way in which we should design
and build concurrent systems, which has already been hinted at. At the design stage we
should specify each of our components in as abstract a manner as is possible. Impor-
tant properties of the system as a whole which are shown to hold at this stage, such as
freedom from deadlock and divergence, will be preserved as we gradually refine each
component into the finished product.

Chapter 2

Design Rules for Deadlock Freedom

Introduction

The problem of determining whether any given concurrent system can ever deadlock
is similar to the famous halting problem of Turing machines – it is undecidable. This
means that there can never be an algorithmic method for proving deadlock freedom
which will work in the general case [Mairson 1989].

If the system consists only of finite-state processes then we can always theoretically
check deadlock-freedom by exhaustive state analysis, but as the number of states of the
system as a whole tends to be exponentially proportional to the number of processes this
technique is only viable for very small networks.

The previous chapter details efficient proof techniques which will work in a wide
variety of cases, but there is no guarantee that existing systems will be amenable to
them in practice. What is needed is a set of rules which enable us to guarantee deadlock-
freedom at the design stage before the major work of building the system has been done.

Here we describe three practical design paradigms which may be used for this pur-
pose.

� Networks of cyclic-ordered processes: Each process behaves according to a fixed
cyclic communication pattern. Useful for computationally intensive tasks, such
as finite-element analysis or neural network simulation.

� Client-Server systems: Processes communicate according to a master-slave pro-
tocol. Applications include process farms and message routing systems.

� User-Resource systems: User processes compete for shared resources. Applica-
ble to distributed databases and operating systems.

These rules have the joint advantages of being easy to use and also being backed up
with mathematical rigour. We use the theoretical results of the previous chapter to prove
them correct, and to show how they may be combined hierarchically. Used in this way
they are suitable for the construction of a rich variety of concurrent systems.

34

2.1. CYCLIC PROCESSES 35

2.1 Cyclic Processes

Many parallel applications consist of large arrays of simple processes, with fixed cyclic
communications patterns. P. H. Welch discovered some deadlock-prevention rules for
certain processes of this type [Welch 1987]. He presented these results informally in
the context of the occam programming language. We shall now state and prove them
in the formal context of CSP.

A process � is called I/O-SEQ if it operates cyclically such that, once per cycle, it
communicates on a finite set of input channels � in parallel, then it communicates on a
finite set of output channels � also in parallel.

Abstracting away any data that is passed, we can write a I/O-SEQ process, with
input channel set � , and output channel set � with the following CSP equation.

I/O-SEQ
�
�
�
�
� � � ����� � � $ � SKIP

� � � ��� ��� ��� � � SKIP
� � I/O-SEQ

�
�
�
�
�

� I/O-SEQ
�
�
�
�
� � �
��

A process which communicates on all its channels in parallel on every cycle is called
I/O-PAR. In CSP we write it like this

I/O-PAR
�
�
�
�
� � � ����� � �	�
� $ � SKIP

� � I/O-PAR
�
�
�
�
�

� I/O-PAR
�
�
�
�
� � �
��

When I/O-PAR and I/O-SEQ processes are combined in a network we observe the
I/O convention. Recall that this means that a channel may be used by at most two
processes, one for input and the other for output. The connection digraph of a network
of I/O-PAR and I/O-SEQ processes is constructed in the following way. A vertex is used
to represent each process and an arc is used to represent each shared channel, directed
from the process for which it is an output channel towards the process for which it is an
input channel. A sequence of channels which forms a path in the connection diagram
of a network is called a data-flow path ; a sequence of channels which forms a circuit
is called a data-flow circuit

These processes may be composed in ways which guarantee deadlock freedom acc-
ording to some simple design rules.

Rule 1 (Welch 1987) Any network of I/O-PAR processes is deadlock-free.

In other words, any network constructed exclusively from I/O-PAR components, no
matter how large will never deadlock.

Rule 2 (Welch 1987) A connected network of I/O-SEQ processes is deadlock-free if,
and only if, it has no data-flow circuits.

36 CHAPTER 2. DESIGN RULES FOR DEADLOCK FREEDOM

Rule 3 (Welch 1987) A connected network of I/O-SEQ and I/O-PAR processes is free
of deadlock if, and only if, it has no data-flow circuits which pass through only I/O-SEQ
processes.

We shall now prove the correctness of these rules using theorem 2 (page 29). Note
that rules 1 and 2 are corollaries of rule 3, so it is only necessary to prove the last result.

Proof. Let � � ��� � � � � � � $ � be a connected network of I/O-SEQ and I/O-PAR
processes. Then for each maximal failure

� � � � �
of � & we define a variant function,� & � � � � � � �

, which calculates the number of complete cycles of I/O operations that � &
has completed after trace � . This is given by

� & � � � � � � � �
� � � �
� ��� & ���

From the definitions we can deduce that a process in this network can never be wait-
ing for an I/O-SEQ process which has performed more cycles than it has, and can only
be waiting to communicate with an I/O-PAR process which has performed less cycles
than it has. So let � be a state

� � � � � & � � � � � of the subnetwork � � & � ��� � . Then if ��� is
I/O-SEQ

� & �
� �� � � � ��� � & � � ���� ��� & �
� & � �
	 �

�
� � � �� ��� � �

�
�
� �

but if � � is I/O-PAR

� & ��� �� � � � ��� � & � � � �� ��� & �
� & � � � �

�
� � ���� ��� � �

�
�
� �

Suppose that � has a deadlock state � , then by theorem 2 there must be a cycle of
ungranted requests in state � such that the variant function of each process is the same.
It follows from the above observations that all the processes in the cycle of ungranted
requests must be I/O-SEQ. Each of these processes must be waiting for input from its
successor in the cycle, so the cycle of ungranted requests corresponds to a data-flow
circuit (in the opposite direction) passing through only I/O-SEQ processes.

Otherwise suppose that the network contains a data-flow circuit through I/O-SEQ
processes. Each process on this circuit is bound to come to a halt during its first cycle to
wait forever for input from its predecessor. No process in the network can ever advance
more than one cycle beyond any of its neighbours in the connection digraph, so dead-
lock will eventually ensue because the network is connected �

Figure 2.1 illustrates examples of networks constructed from I/O-SEQ and I/O-PAR
elements. One of these has a data-flow circuit passing exclusively through I/O-SEQ
processes and so deadlocks; the other has no such circuit and so is deadlock-free.

Composite Processes

Sometimes we may build a component from I/O-SEQ and I/O-PAR processes, and then
wish to replicate it many times in a larger system. The next rule describes how, in the

2.1. CYCLIC PROCESSES 37

Figure 2.1: Networks of I/O-SEQ and I/O-PAR Processes

I/O-SEQ

I/O-SEQ

I/O-SEQ

I/O-SEQ I/O-SEQ

I/O-SEQI/O-SEQ

I/O-SEQ

I/O-SEQ

I/O-SEQ I/O-SEQ

I/O-SEQ

I/O-PAR I/O-PAR

I/O-SEQ I/O-SEQ

Deadlocks

I/O-PAR I/O-PAR

I/O-SEQ I/O-SEQ

Deadlock-free

right circumstances, we may treat such a component as a single process for the purpose
of deadlock analysis. We shall start with some new definitions.

If a connected network, � , of I/O-SEQ processes has no data-flow circuits we say
that PAR

� � � is a composite-I/O-SEQ process.
The input and output channels of PAR

� � � are taken to be those channels which do
not belong to the vocabulary of � and so are used by only a single process. We call
these the external channels of � .

If a connected network, � , of I/O-SEQ and I/O-PAR components, has neither a data-
flow circuit, passing through only I/O-SEQ processes, nor a data-flow path from an
I/O-SEQ process with an external input channel to an I/O-SEQ process with an exter-
nal output channel, passing through only I/O-SEQ processes, we say that PAR

� � � is a
composite-I/O-PAR process.

We find that Welch’s rules generalise to composite processes as follows.

Rule 4 (Welch 1987) A connected network � of composite-I/O-SEQ and composite-
I/O-PAR processes is deadlock-free if, and only if, it has no data-flow circuits which
pass through only composite-I/O-SEQ processes.

Proof. Let � � be the network of I/O-PAR and I/O-SEQ processes that may be derived
from � by breaking each process down into its basic components. This rule follows
from rule 3 by proving that � contains a data-flow circuit through composite-I/O-SEQ
processes if, and only if, � � contains a data-flow circuit through I/O-SEQ processes.

In graph-theoretic terms the connection diagram of � is a contraction of that of � �
(see appendix B). Suppose that � contains a data-flow circuit through only composite-
I/O-SEQ processes, then, clearly, � � contains a data-flow circuit passing only through
I/O-SEQ processes.

38 CHAPTER 2. DESIGN RULES FOR DEADLOCK FREEDOM

Alternatively, suppose that a data-flow circuit, � , is contained within � � , passing
only through I/O-SEQ processes. Under the contraction of connection diagrams from
� � to � , � maps either to a directed closed trail of � , or to a single vertex. (Note
that a closed trail differs from a circuit in that its vertices are not necessarily distinct
– it may ‘cross’ itself.) The latter option may be eliminated immediately as it implies
the presence of a data-flow circuit within a composite process, which is prohibited by
definition. The former option implies that � contains a directed closed trail through
composite-I/O-SEQ processes, because there can be no path through a composite-I/O-
PAR process that does not cross a simple I/O-PAR element. Any directed closed trail of
� entails at least one circuit.

So � contains a data-flow circuit through composite-I/O-SEQ processes, if and only
if � � contains a data-flow circuit through I/O-SEQ processes, and the required result
may now be deduced from rule 3 �

It is useful to note that basic I/O-SEQ and I/O-PAR processes are also composite-
I/O-SEQ and composite-I/O-PAR respectively. This enables us to build a deadlock-free
network from a mixture of basic and composite processes.

Example – Emulating VLSI Circuits

Welch originally formulated these design rules in order to emulate VLSI circuits, using
the occam programming language. He used rule 4 to construct various ‘circuits’ hier-
archically. For example, a ‘latch’ component is shown in figure 2.2. This is built from
two I/O-PAR ‘nand’ gates and two I/O-SEQ ‘delta’ processes (which simply duplicate
their input signal). The latch component is composite-I/O-PAR.

Welch used this technique to predict the behaviour of complex electronic circuits
prior to their realisation in silicon. He was able to construct deadlock-free networks
with hundreds of thousands of processes, using design rules 1 to 4. These rules have
subsequently been used for many other applications by occam programmers. (e.g. See
[Macfarlane 1992].) Rules 1 and 2 were also reported in [Roscoe and Dathi 1986].

A General Rule

Dijkstra and Scholten developed a rule for cyclic processes which communicate exactly
once with each of their neighbours on each cycle in fixed sequence [Dijkstra 1982].
This was extended by Roscoe and Dathi to allow sets of communications to be per-
formed in parallel, as with Welch’s rules. Here we generalise all these results to produce
a partial order based rule.

A cyclic-PO process is a process � with a finite set of communication channels
� , which operates cyclically, communicating on each of its channels once per cycle.
The order of communication is governed by a strict partial order

� � � � � , whereby �
becomes ready to communicate on a channel

$
for the � th time, once it has completed

2.1. CYCLIC PROCESSES 39

Figure 2.2: LATCH: a Composite I/O-PAR Process

NAND
(I/O-PAR) (I/O-SEQ)

DELTA

NAND
(I/O-PAR) (I/O-SEQ)

DELTA

LATCH

its
� � � � � th cycle, and has communicated on all the channels below

$
by � on its � th

cycle. This can be defined formally as follows.

CYCLIC-PO
� � � � � � ��� � � � � � � � �

��� � � � DONE
�
�
� � ��� � � � � � � � �

� DONE � ���
� ��� mins � " - DONE ��� � � � ��� � � � DONE
 � � � � � �

� CYCLIC-PO
� � � � � � �

Where mins
� � � � � is defined as the minimal elements of subset � of � , given by

mins
� � � � � ��� � � � �.* � ���

�
� � � � �

Now we consider a network of cyclic-PO processes, � � ��� � � � � � � , where

� & � CYCLIC-PO
�

��� & � � & �

The set of communication channels of the network as a whole, � �&(' � ��� & , is called � � .
We use symbol

to represent the aggregate of the various partial orderings, � & , i.e.

$ &
 $
�
�
� �

�
�

$ & � � $ �
The direction of data-flow along communication channels, if any, is irrelevant to

the deadlock properties of cyclic-PO networks. Sometimes it is meaningless to assign

40 CHAPTER 2. DESIGN RULES FOR DEADLOCK FREEDOM

any direction to a channel. For this reason we shall here consider the connection graph
of a network rather than the connection digraph. This is constructed in the same way
except that it is undirected.

An undirected, closed trail of dependent channels is a sequence of channels of � � ,
� $ � � � $ ��� , which forms a closed trail in the connection graph of � (see appendix B for
definitions), and satisfies $ �
 $

�

� �

 $ �
 $ �

Theorem 7 A connected network of cyclic-PO processes is deadlock-free if, and only
if, it has no undirected, closed trail of dependent channels.

Proof. Suppose there exists an undirected, closed trail of dependent channels, such that
$ �
 $

�

� �

 $ �
 $ �
No communication can ever take place on any of these channels, so the processes they
are connected to will never complete their first I/O cycle. No cyclic-PO process can
ever have advanced more than one I/O cycle beyond its neighbours in the connection
graph of � , so there is a limit to the number of events that any component process can
execute. Hence deadlock will eventually ensue.

Now suppose instead that we have arrived at a deadlock state � of � . Every process
is unable to proceed, and has at least one ungranted request (with respect to �).

Consider any ungranted request � &�� �
� �� � � & � , where � &�� wants to communicate on
some channel

$ � for the � � th time, but � & � is refusing to participate. Either � &�� and � & �
have both completed the same number of I/O cycles, but � &�� has not yet communicated
on all its channels below

$ � by

on the current cycle, or � &�� has completed one less
I/O cycle than � & � . It follows that � &�� is waiting to communicate on some channel

$
�

for the � � th time, where either
� � � � � � �
 �($ �
 $

�
�

or � � � � � .
We can repeat this argument to construct an arbitrarily long sequence of pairs

�%$ � � � � � � �%$ � � � � � � �%$�� � � � � � �
Where

� �
�

� � � & � � &�� � �
 �($ &
 $ &�� � � � � � � & � � &�� � �
The channels of this sequence correspond to a walk in the underlying graph of � .

The decreasing sequence � � � � � � � � � � must have a limit, i.e.

� � �
� � 	 � � � � � ���

Hence
$
�

 $

� � �
 $
� � �

� �

As � � is finite, this sequence must eventually repeat a term, i.e.

�
� �	�
�

$
� ��

 $
� ��
�� �
 � �
 $

� �

���� � $
� �

where
$
� �

�
� �

� $
� �

���� - � are all distinct.

2.1. CYCLIC PROCESSES 41

This sequence is represented by a closed trail in the connection graph of � �
This theorem describes the deadlock properties of networks of cyclic processes in

general. If each process can complete its first I/O cycle the network will never deadlock.
It is worth mentioning a special case of cyclic-PO processes. We define a cyclic-

LOP process to be a cyclic-PO process where
�

��� � � � takes the form of a linearly
ordered partition. This means that ��� is partitioned into subsets � � � � � � � � such that

� $ � ��� � � � $
� ��� � � � �

� $ � ��� � � $ � � $
� � � � �

$ �
� � � � � � � � ��� � � � $ � $ � ��� & � $ � $ �

The I/O-PAR and I/O-SEQ cyclic processes, defined by Welch, both have cyclic-LOP
communication patterns. The � relation is empty for an I/O-PAR process. For an I/O-
SEQ process,

$ & � $
� if and only if

$ & is an output channel and
$
� is an input channel. For

a network, � , of cyclic-LOP processes we can derive a result with a simpler topological
requirement than for cyclic-PO processes. This is a slight extension of a theorem due
to Roscoe and Dathi.

An undirected, circuit of dependent channels is a sequence of channels of � � , � $ � � �$ ��� , which forms a circuit in the connection graph of � , and satisfies

$ �
 $
�

� �

 $ �
 $ �

Theorem 8 A connected network consisting of cyclic-LOP processes is free of dead-
lock if, and only if, it has no undirected circuit of dependent channels

This is proved in virtually the same manner as Welch’s rules. In a deadlock state of
a network of cyclic-LOP processes, there must be a cycle of ungranted requests where
each process has performed the same number of I/O cycles. The crucial observation
is that if � & has an ungranted request to ��� , trying to perform some event

$
and both

processes have performed the same number of I/O cycles then every event that � � is
ready to perform is beneath

$
in the partial ordering � � �

The result that Roscoe and Dathi proved was the same as this except that it enforced
the extra restriction that at most one channel be permitted between any two processes

These theorems may be too complicated to be considered design rules in their own
right, however a suite of design rules for computationally intensive parallel systems
can be derived. For instance Welch’s rules drop out as simple corollaries. Here is an
example of a new design rule.

Rule 5 A connected network of cyclic-PO processes is deadlock-free if, and only if,
there exists a labelling of the connection graph, given by � � � � � N, which satisfies

$ &
 $
� ��� � �($ & � ��� �%$ � �

42 CHAPTER 2. DESIGN RULES FOR DEADLOCK FREEDOM

Proof. We use the technique of reductio ad absurdum. Suppose the conditions of the
rule hold, and yet � can deadlock. Then, by theorem 7, there is a sequence of channels
satisfying

$ �
 $
�

� �

 $ �
 $ �
��� � �($ � � ��� �($ �

�
� � � � �%$ � � � � �%$ � �

��� � �($ � � ��� �($ � � �

Conversely if V is deadlock-free, by the nature of its construction it must have a trace� of finite length which includes every element of � � . We label each element of � �
according to the position of its first appearance in � to derive a labelling which satisfies
the conditions of the theorem. This completes the proof �

To design a network using this rule, we first draw a connection graph (or digraph
if we prefer) and label each channel with a numeric value, representing a logical order.
Then if each process is implemented as a cyclic-PO process, capable of communicat-
ing on its channels in order of increasing value, the network is deadlock-free. (When
a process has more than one channel of the same value, it should be implemented to
communicate in parallel on those channels.)

Example – A Toroidal Cellular Automaton

To demonstrate this approach, we consider a � � � cellular automaton program, where
each cell compares its state with those of its four neighbours in strict, clockwise order.
This is based on a program described in [Dewdney 1989]. The idea is that each cell
maintains an integer state and whenever it finds that its state is exactly one less than
that of a neighbour, it changes state to match. (All comparisons are done using modulo
arithmetic.). When a large grid is used some interesting patterns evolve.

Blind to the risk of deadlock we might give each cell process an identical commu-
nication pattern, such as defined by the following processes where each cell communi-
cates with its neighbours in the order left, up, right, then down.

CELL
� � � � � � LEFT

� � � � �

LEFT
� � � � � � � �

�

�
�

�
� left � SKIP � ��� � � � � � � � � � � right � SKIP

� � UP
� � � � �

UP
� � � � � � � �

�

�
�

�
� up � SKIP ��� � � � �

�

� � � � � � down � SKIP
� � RIGHT

� � � � �

RIGHT
� � � � � � � �

�

�
�

�
� right � SKIP ��� � � � � � � � � � � � left � SKIP

� � DOWN
� � � � �

DOWN
� � � � � � � �

�

�
�

�
� down � SKIP ��� � � � �

�

� � � � � � up � SKIP
� � LEFT

� � � � �

� CELL
� � � � � �

� �

�

�
�

�
� left

� �

�

� � � � � � right
� �

�

�
�

�
� up

� �

�

�
�

� � � � down
�

�

�
�

�
� right

� �

�

� ��� � � � left
� �

�

�
�

�
� down

� �

�

�
�

� � � � up
�

2.1. CYCLIC PROCESSES 43

In this process definition all integer arithmetic is modulo 4. The network is given
by

� CELL
� ��� ��� �

� �

�
CELL

� ��� � � � � � � CELL
� � � ��� � � � � CELL

� � � � � �
This arrangement leads to immediate deadlock because there exist many undirected,

closed trails of dependent channels. We tackle this problem by labelling each channel
of the network, and then recoding each process to communicate on its channels accord-
ing to the ascending order of its labels. The labelling scheme shown in figure 2.3 allows
each component to communicate in strict clockwise order as required. But cells alter-
nate as to whether to start by communicating on the left or on the right. This gives us
a new definition for CELL as follows

CELL
� � � � � � LEFT

� � � � � � � � � � � �
modulo � � ���

� RIGHT
� � � � �

An implementation of this network, programmed in occam2, is given in [Martin
et al 1994].

In practice it would be desirable to add extra channels to this network to monitor the
state of each cell, and reset the system when required. Use of the cyclic-PO paradigm
would require that each channel be used on every I/O cycle, which might be unneces-
sary. In the next section theorem 7 will be extended to allow processes to communicate
on a subset of their channels on any given I/O cycle (as long as neighbouring processes
are in agreement as to which channels are to be used), and also to allow the channel
ordering to be changed between successive cycles.

Multi-phase Communication Patterns

A multi-phase-PO process is a deadlock-free process, � , with a set of communication
channels, ��� , which operates cyclically, communicating once on a predefined subset
of its channels on each cycle. On its

�
th cycle, � communicates according to a partial

order �
�
� � � � � � � � � �

where �
� � � �

�
��� : � communicates on channel

$
on its

�
th cycle if and only if$ � �

� � � � , in which case it becomes ready to do so once it has completed its
� � � � � th

cycle, and has communicated on all the channels of �
� � � � below

$
by � � � � on its

�
th

cycle �
We say that a network of multi-phase-PO processes, � ��� � � � � ����� , is concordant

if neighbouring processes agree on which subset of channels to use on each I/O cycle:

� � � N � � � � � � � � � � � ��� � � � � � � � �
� � � � &

�
����� � ��� &

�
�
� � � ���

44 CHAPTER 2. DESIGN RULES FOR DEADLOCK FREEDOM

Figure 2.3: Connection Digraph with Channel Labelling

2

0

0

2

2

0

0

2

e.(i+1).j.left

0

0

2

2

0

0

2

2

0

0

2

2

0

0

2

2

0

0

2

2

0

0

2

2

3 1 1 3 3 1 1

1 3 3 1 1 3 3

3 3 11

3

1

1 1 3 3 1 1 3 3

3 3 1 1

e.i.j.left

e.(i-1).j.right

e.i.j.up e.i.(j-1).down

e.i.j.right

e.i.(j+1).up e.i.j.down

2.2. CLIENT-SERVER PROTOCOL 45

Theorem 9 A connected, concordant network of multi-phase-PO processes is free of
deadlock if, and only if,

� � � N � � � � there is no undirected, closed trail of

 � � � -

dependent channels �
The proof of this is virtually identical to that of theorem 7, and we can derive a similar
design rule.

Rule 6 If there exists a partial labelling of the channels of a network of multi-phase-
PO processes, for every I/O cycle, given by the partial functions � � � � ���� N, which
satisfies

$ &
 � � � $ � ��� � � �($ & � ��� � �%$ � �
� � � � � � � � � � � � ��� &

�
domain

� � � � � �
� � � � &

then the network is deadlock-free �
Figure 2.4 illustrates how this rule may be used to add a control process to the toroid-

al cellular automaton. In this design each cell communicates bidirectionally with the
control process after the completion of every fourth cycle of communication with its
neighbours.

2.2 Client-Server Protocol

The cyclic paradigm may be used effectively to solve many common problems in par-
allel computing. However for certain problems it is too restrictive in the respect that it
enforces a pre-determined communication pattern. In practice, we often need to allow
the communication patterns of processes to vary according to external requirements. A
more flexible design rule from this perspective is the Client-Server Protocol. This was
originally formulated by P. Brinch Hansen in the context of operating systems [Brinch
Hansen 1973]. It has since been adapted by Welch, G. R. R. Justo and C. J. Willcock as a
means of designing deadlock-free concurrent systems using occam [Welch et al 1993].
The version of the protocol presented here is a formal adaptation and extension of the
ideas of these authors, which were stated informally.

The main requirement is that processes communicate on each one of their channels
either as a client or as a server, according to a strict protocol. A network of client-server
processes is deadlock-free if it has no cycle of client-server relationships.

A basic client-server CSP process � has a finite set of external channels partitioned
into separate bundles, each of which has a type, in relation to � , which is either client or
server. Each channel bundle consists of either a pair of channels, a requisition and an
acknowledgement, � � � � � , or a single channel (which we call a drip) � � � . (This allows
client-server conversations to be either one way or two way). We write the set of client
bundles of � as clients

� � � , and the server bundles as servers
� � � .

In the subsequent analysis, the event of communication on a channel is again rep-
resented purely by the channel name, ignoring any data that is passed. The purpose of

46 CHAPTER 2. DESIGN RULES FOR DEADLOCK FREEDOM

Figure 2.4: Multi-phase Channel Labelling

1

CONTROL

k= 5,10,15,...

1

0

0

1

CONTROL

k= 1,2,3,4,

 6,7,8,9,

...
 11,12,13,14,

0

3 3

2

0

1

0 2

2

1

0

3

1 1

0

2

3 3

2

0

1

0

33

1 1

2

2

1

0

33 1

0

1 3

2

1

2

3

2

3 1

0

1

0

2

3

2

3 1

0

0

3

0

0

1

2

2

3

0

0

1

2

2

0

1

2.2. CLIENT-SERVER PROTOCOL 47

this is clarity and simplicity. Following this convention, a basic client-server process,
� , must obey the following rules

(a) � is divergence-free, deadlock-free and non-terminating.
� � � � � � � failures

� � � �
�
*� �

(b) When � is in a stable state (no internal activity possible), either it is ready to
communicate on all its requisition and drip server channels or it is ready to com-
municate on none of them. In CSP terms this means that maximal refusal sets of
� include either all the requisition and drip server channels or none of them, i.e.

� � � � � � � failures
� � � �

�
maximal ���� � � � � � � servers

� � � � � *� � �

� � � � � � � � servers

� � � � � *�
� � � �� � � � � � � servers

� � � � � � � �

� � � � � � � � servers

� � � � � � � � �
(c) � always communicates on any bundle pair � � � � � , in the sequence

� � � � � � � �
� � ,

i.e.
� � � � � � � clients

� � �
 servers
� � � � � � � traces

� � � � � 	 � � � � � � � � � 	 �

(d) When � communicates on a client requisition channel, it must guarantee to accept
the corresponding acknowledgement, i.e.
� � � � � � � clients

� � � � � � � � � � � failures
� � � � � � �

� ��� � ��� ��� *�
� �

When we construct a client-server network � from a set of client-server processes
����� � � � � ��� , each client bundle of a process must either be a server bundle of exactly
one other process, or consist of channels external to the network. Similarly each server
bundle of any process must either be a client bundle of exactly one other process or be
external to the network. No other communication between processes is permitted, i.e.

� � � � � � � � � � � � � � clients
� � & �

Either �
� �
�

� *� �
 � � servers
� � � �

Or let � � ��� � � � � � � � � then � � � � � � � � � � � � ��� �
� � � � � � � � � � � � � � servers

� � & �
Either �

� �
�

� *� �
 � � clients
� � � �

Or let � � ��� � � � � � � � � then � � � � � � � � � � � � ��� �
� *� � ��� Let

�
clients � &

�
servers � � �
 �

clients � �
�

servers � & � �
� � ���

�
� � � � � � �

�
� � � � � � � ���
�

�
� � � � � �
�

�
� � ���

Then ��� &
�

��� � �
� � �
�
� � � � � � �

�
� �
�
� �

� � �
�
� � � � � � �

�
� � �

48 CHAPTER 2. DESIGN RULES FOR DEADLOCK FREEDOM

The client-server digraph of a client-server network consists of a vertex represent-
ing every process, and, an arc representing each shared bundle, directed from the proc-
ess for which it is of type client, towards that for which it is of type server.

Rule 7 (Client-Server Theorem) A client-server network, composed from basic proc-
esses, which has a circuit-free client-server digraph, is deadlock-free.

Proof. First we observe that the matching requirements for client and server bundles
within a network enforce triple-disjointedness within a client-server network. Rule (a)
ensures that basic client-server networks are also busy.

Let � be a client-server network, composed from basic processes, the client-server
digraph of which contains no circuit. Suppose it has a deadlock state � . There must
be a cycle of ungranted requests in state � by theorem 1 (page 29). Because the client-
server digraph is circuit-free this cycle of ungranted requests cannot consist entirely of
requests from client to server or vice-versa. It must contain a subsequence

� & �
� �� � � � �
� �� � ���
where � & communicates with ��� as client to server and ��� communicates with � � as
server to client. (Note that if the cycle of ungranted requests has length only two then
� & and � � are the same process.)

We shall now show that the basic client-server protocol renders this situation impos-
sible. First we note that by rules (c) and (d) ��� can only be waiting to communicate
with ��� on a server requisition or drip channel; an acknowledgement is never refused.
Hence ��� is ready to communicate on all its server requisition and drip channels by rule
(b). So � & must be waiting for an acknowledgement from ��� . However, by rule (c), ���
must have already acknowledged every previous requisition event in order to be ready
to communicate on all its requisition channels. So � & cannot have an ungranted request
to ��� after all. This contradiction proves that the system has no deadlock state � .

Example – A Simple Process Farm

We consider an application where computing-intensive tasks are performed in parallel
using a standard farm network configuration. A farmer employs � foremen each of
whom is responsible for

�
workers. When a worker process becomes idle it reports

the result of any work done to its foreman, using channel
�
�

�
�

�
, where

�
denotes worker

and
�

denotes foreman. The foreman reports this on channel
$
�

�
to the farmer who, in

turn, replies with a new task using channel
�
�

�
, The foreman then assigns the new task

to the worker with channel
�
�

�
�

�
. Here the relationship between worker and foreman

and the relationship between foreman and farmer are both client to server.
The CSP communication patterns of the component processes are given as follows.

FARMER � � $ - �& '�� $ � � � �
�

� � FARMER

2.2. CLIENT-SERVER PROTOCOL 49

clients
�
FARMER

� � � �
servers

�
FARMER

� � � � $ � ��� � � � � � � � � � $ � � � � � � ��� � � � � � � ���
� FARMER � � $ � ��� � � � $ � � � � � � � � � ��� � � � � � � � � � � ���

FOREMAN
� � � � � � - �� '�� �

�

�
�

� � $
�

� � �
�

� � �
�

�
�

� � FOREMAN
� � �

clients
�
FOREMAN

� � � � � � � $ � � ���
�

� � �
servers

�
FOREMAN

� � � � � � � � � �
�

��� �
�

�
�

� � � � � � � � � �
�

� � � � � � � � �
�

� � � � � ���
� FOREMAN

� � � � � � � �
�

���
� �

� �
�

�
�

� � � � � � � � �
�

���
� �

� �
�

�
�

� � � � � � $ � � � �
�

� �

WORKER
� � � � � � �

�

�
�

� � �
�

�
�

� � WORKER
� � � � �

clients
�
WORKER

� � � � � � � � � � � �
�

� � �
�

�
�

� ���
servers

�
WORKER

� � � � � � � � �
� WORKER

� � � � � � � � � �
�

� � �
�

�
�

� �

It is straightforward to verify that each process obeys the basic client-server proto-
col. The client-server digraph is illustrated in figure 2.5. It has no circuits hence the
network is guaranteed deadlock-free.

Polling on a Channel

The technique of polling on a channel is a means by which a process can attempt to
communicate on a channel without the risk of becoming blocked. In high level imple-
mentation languages this is achieved by the use of time-outs, possibly of zero dura-
tion. The version of CSP that we are using is untimed so there is no direct equivalent
to this. However polling may still be represented using the available syntax. Consider
the process �

in � � � timeout � � � � timeout

This process cannot become blocked trying to communicate on channel in, because it
is always able to perform the internal event timeout.

While a process is attempting to poll a channel its state is unstable. Note that rule
(b) of the basic client-server definition only applies to stable states. This means that the
restriction that a process must either offer its services to all its clients or none of them at
a given time may be overcome if polling is used. (However one has to be very careful in
order to avoid introducing divergence.) An example of using polling in a client-server
network is given in [Martin and Welch 1996].

50 CHAPTER 2. DESIGN RULES FOR DEADLOCK FREEDOM

Figure 2.5: Client-Server Digraph for FARM

<a.(n-1).(m-1), b.(n-1).(m-1)>

FARMER

<c.0, d.0>

FOREMAN(n-1)

FOREMAN(0)

WORKER(n-1,0)

<a.0.0, b.0.0>

WORKER(n-1,m-1)

WORKER(0,m-1)

WORKER(0,0)

<a.0.(m-1), b.0.(m-1)>

<a.(n-1).0, b.(n-1).0>

<c.(n-1), d.(n-1)>

Composite Processes

A composite client-server process V is a client-server network ��� � � � � � ����� composed
solely from basic client-server processes, of which the client-server digraph contains
no circuits; we define

clients
� � � �

�� ��&(' � clients
� � & � �

��
� ' � servers

� � � �
��

servers
� � � �

�� ��&(' � servers
� � & � �

��
� ' � clients

� � � �
��

In other words the client and server bundles of � are those of the component processes
� & which are not paired off.

We represent a composite client-server process by a single vertex in a client-server
digraph. The following result shows that this is consistent with the composition rule
governing basic processes.

Rule 8 (Client-Server Closure) A client-server network, composed from composite
processes, with a circuit-free client-server digraph, is deadlock-free.

2.2. CLIENT-SERVER PROTOCOL 51

Proof. Starting with a network such as described in the statement of the theorem
with client-server digraph

�
, consider the client-server digraph

� � of the network which
is derived when each composite process is separated back into its basic components.
Digraph

�
is a contraction of

� � . Suppose that
� � contains a circuit. By definition this

cannot be local to a single composite process, and so it must map onto a closed trail in�
. But as

�
has no circuit it has no closed trail either – a contradiction. So

� � has no
circuit and the result follows from rule 7 �

It is important to note that any basic client-server process is itself composite client-
server (although the reverse is not true). Hence we can apply the result to mixtures
of composite and basic processes. This rule is clearly useful for designing networks
hierarchically. Complex subnetworks may be reused with ease. Black-box processes,
that have been shown to abide by the composite client-server specifications, may be
safely incorporated.

However the rule is too weak in some circumstances, as we shall demonstrate below.
We need to find a generalisation.

We define a dependence relationship
�

between server bundles and client bun-
dles of a composite client-server process � as follows: if � � servers

� � � and � �
clients

� � � then � � � means that there is a path from the process with server bundle
� to that with client bundle � , in the client-server digraph of � .

Figure 2.6: Composite Client-Server Process

ca

b

Figure 2.6 shows a hypothetical composite client-server process BLACKBOX, with
external client-server channel bundles

�
,
�
, and

$
. Here we have

servers
�
BLACKBOX

� � � � �
clients

�
BLACKBOX

� � � ��� $ �� � � � � ��� � $ �

52 CHAPTER 2. DESIGN RULES FOR DEADLOCK FREEDOM

We construct an exploded client-server digraph of a network of composite processes
in the following way. The digraph contains a vertex for every client and server bundle
of each process. If � and � � are vertices representing bundles

�
and

� � of the same com-
posite process � & we draw an arc from � to � � if, and only if,

� � � � in � . If � and � �
represent bundles of different processes � and � � then we draw an arc from � to � � if,
and only if, both vertices represent the same channel bundle, � as a client bundle and
� � as a server bundle.

We can derive the following result from these definitions.

Rule 9 A client-server network, composed from composite client-server processes and
with a circuit-free exploded client-server digraph, is deadlock-free.

Proof. Starting with a network such as described in the statement of the theorem,
consider the client-server digraph

� � of the network which is derived when each com-
posite process is separated back into its basic components. Suppose that this contains
a circuit. This must be of the form

� � � � � �
�
� � � �

� �
�
� �

� �
� $ �

� �
�
� �
� � �

� �
� � �

�
� �

�
� � $ �

�
� �

� � � � �
�
� � � �

� �
�
� �

� �
� $ � �

where each subsequence � � �
�
� � � � � �

� $ � � corresponds to a path through the client-server
digraph of one of the original composite client-server processes, say � � , and each arc�
� represents a channel bundle shared by two such composite processes � � - � and � �

(where arithmetic is modulo
�

).
In the exploded client-server digraph of the original network, let each external chan-

nel bundle
�

of composite process � be represented by a vertex
�
� � . Then each bundle�

� is represented by two vertices, say
�
� � ��� - � and

�
� � ��� , because bundle

�
� is shared

by processes � � - � and � � . These two vertices will be joined by an arc. Now for each
pair of bundles

�
� ,
�
� � � it is clear that

�
�

� �
� � � . Hence each pair of vertices

�
� � ��� ,�

� � � � � � will also be joined by an arc. So the exploded client-server digraph must con-
tain a circuit

� ��� � � � � � � � � � �
� � �	�

� � � �
� �
� � � �

� �
� �

� �	�
$ � � $

� � � � � $
� � ��� � � � $

� � � � � � � �
This is a contradiction so there is no circuit in

� � and the result follows by rule 7 �
Figure 2.7 displays two representations of a network constructed from six copies

of BLACKBOX (with suitably relabelled channels): the client-server digraph, and an
exploded client-server digraph. The former contains a circuit, so we cannot use rule 8
to show that the network is deadlock-free. However the latter contains none. So the
network is deadlock-free by rule 9.

Note that when “exploding” a composite process, it is not always necessary to allo-
cate a new vertex to every client or server bundle. Sometimes we can use a single
node to represent several client or server bundles, without losing any information. This
depends on the structure of the relation

�
.

2.2. CLIENT-SERVER PROTOCOL 53

Figure 2.7: Client-Server Digraph and Exploded Client-Server Digraph

ca

b

ca

b

The benefit of rules 8 and 9 is that we avoid repeating superfluous information in
the diagrams we draw to design our programs. Instances of complex subnetworks are
reduced to single nodes (or simplified representations when rule 8 is too weak).

Adding a Client-Server Interface to an Arbitrary Network

Rules 8 and 9 make available a hierarchical approach to software construction, based on
multiple layers of the client-server model. It would also be nice to be able to use other
paradigms to design subnetworks, and then wrap them up with a client-server interface
for inclusion in a wider context.

Here we consider how to modify an arbitrary network, so that it appears as a single
basic client-server process to its environment.

We start with a deadlock-free network � � ��� � � � � � � $ � , where each process � &
is itself divergence-free, deadlock-free and non-terminating. We want to add external
communications to the components of this network to make it behave like a single basic
client-server process. The resulting network will be called

� � � � ��� � � � � � � $ � �
where each process � & � performs events in the alphabet of � & and possibly additional
events, which are external to the network, i.e.

� *� � ��� �
��� & � � ��� & �

�
����� � � � �

The basic rule of thumb is that we may freely add client connections to any com-
ponent process � & , but we may add server connections to at most one such process.

Adherence to the following rules will guarantee that � � will behave as a single basic
client-server process.

54 CHAPTER 2. DESIGN RULES FOR DEADLOCK FREEDOM

1. The additional channels of each process � & � are partitioned into client and server
bundles, and � & � must obey the basic client-server protocol on these bundles.

(The client-server bundles of � � are taken to be the union of those of each com-
ponent, which will be disjoint. It is clear that � � will adhere to rules (c) and (d)
of the basic client-server protocol if each process � & � does)

2. No more than one process � & � may have server connections.

(This is to ensure that � � obeys rule (b) of the basic protocol. This restriction
may be avoided if polling is used)

3. The new connections added to each process � & must not interfere with its internal
behaviour, i.e.

� & � � �
��� & � � ��� & � �
� &

(By lemma 5 this condition guarantees that � � is deadlock-free, divergence-free
and non-terminating – rule (a) of the basic client-server protocol.)

Example – Adding a Flexible Control Mechanism

In section 2.1 we designed a deadlock-free toroidal cellular array monitored by a control
process, to be constructed using the multi-phase-po protocol. That approach required
monitoring to be performed at fixed, predetermined intervals. A more flexible design is
to add client connections to each cell, served by the control process. The new version
looks like this.

CELL � � � � � � � LEFT � � � � � � � � � � � �
modulo � � �

� RIGHT � � � � � �

CHAT
� � � � � � SKIP
 out �

�
�

� � in �
�
�

� � SKIP

LEFT � � � � � � � � �
�

�
�

�
� left � SKIP ����� � � � � � � � � � � right � SKIP

� �
CHAT

� � � � � � UP � � � � � �

UP � � � � � � � � �
�

�
�

�
� up � SKIP � ��� � � �

�

� � � � � � down � SKIP
� �

CHAT
� � � � � � RIGHT � � � � � �

RIGHT � � � � � � � � �
�

�
�

�
� right � SKIP � ��� � � � � ��� � � � � left � SKIP

� �
CHAT

� � � � � � DOWN � � � � � �

DOWN � � � � � � � � �
�

�
�

�
� down � SKIP ��� � � � �

�

� � � � � � up � SKIP
� �

CHAT
� � � � � � LEFT � � � � � �

� CELL� � � � � � �
��� ��

�

�

�
�

�
� left

� �

�

� � � � � � right
� �

�

�
�

�
� up

� �

�

�
�

� � � � down
�

�

�
�

�
� right

� �

�

� � � � � � left
� �

�

�
�

�
� down

� �

�

�
�

� ��� � up
� � � �

�

� � � � 	 � �
�

�

� �
�!

2.3. RESOURCE ALLOCATION PROTOCOL 55

After each interaction with a neighbour the cell may non-deterministically decide
to talk to a CONTROL process, implemented as follows.

CONTROL � �
�
&('�� �

�

� '�� out �
�
�

� � in �
�
�

� � CONTROL

We have added a client bundle of the form

� out �
� � � �

in �
�
�

� �
to each cell. No server bundles have been added, and the additional channels do not
affect the internal working of each process, i.e.

CELL � � � � � � ��� in � �
�

� �
out �

�
�

� � � CELL
� � � � �

This may be proved using the algebraic laws of CSP. It follows that the complete cel-
lular array now appears as a single basic client-server process to its environment. The
client-server digraph which results is shown in figure 2.8. This contains no circuits so
the entire system is deadlock free. It is now a simple matter to build extra client-server
components onto the system, such as a user interface and a graphics handler.

Figure 2.8: Adding Client-Server Connections

CONTROLTORUS

2.3 Resource Allocation Protocol

The Resource Allocation Protocol was discussed briefly in the introduction. It will
now be formalised, based on the treatment given in [Roscoe and Dathi 1986]. Then
an extended version will be presented which allows resources to be built on to existing
deadlock-free networks.

A user-resource network consists of a set of user processes � � � � � � � � � � which
compete for a linearly ordered set of resource processes

� � � � � � � � ��� � � � � which have
the following communication pattern.

� � � � & � � �
����� �
� � � claim & � � release & � � � � �

56 CHAPTER 2. DESIGN RULES FOR DEADLOCK FREEDOM

Each resource
�

is initially ready to be claimed by any user process
�

using channel
claim & � . Then once it has been claimed it waits to be released, on channel release & � ,
before returning to its initial state. Note that in this abstract model any details of mes-
sage passing corresponding to the claim and release events are omitted.

Clearly the channels claim & � and release & � are only meant to be used by user process
� & , i.e.

� *� � ��� � claim & � � release & � �
�

�
�
� ��� �

We assume that each user process
� & is deadlock-free and non-terminating. It never

tries to claim a resource that it already holds, nor to release one that it does not, i.e.

� � � traces
� � & � � � 	 � � � claim & � � ��� release & � �
	 �

Rule 10 (Resource Allocation Protocol) Consider a user-resource network � con-
structed from users � � � � � � � � � � and resources

� ��� � � � � � � � � � � � . Suppose that no
user process ever attempts to acquire a higher resource than any that it already holds,
i.e.

� � � traces
� � & � �� � � claim & � � � � release & � �
 � � � ��� � � ��� ��� � claim & � �!*� traces

� � & �

and also that it never communicates with any other user process

� *� � ��� �
� & � �

� � �
� �
Then the network is deadlock-free.

Proof. Suppose the condition of the protocol is adhered to, yet there is a deadlock
state � . So there exists a cycle of ungranted requests by theorem 1 (page 29), which
must be of the following form due to the bipartite nature of the network.

� & � �� � � � � �� � � &�� �� � � � � � � � & � �� � � � � �� � � & �
Here user

� & � wants to claim resource � � � , which is already held by user
� &�� , which

wants to claim resource � � � , etc. This implies the following contradiction

� � � ��� � � � � � ��� � � ��� � � �

We conclude that the network can never deadlock �
The Dining Philosophers network can be modelled in CSP as follows:

2.3. RESOURCE ALLOCATION PROTOCOL 57

PHIL
� � � � takes �

�
�

� � takes �
�
�

� � � � � � eats �
� �

drops �
�
�

� � � � � � drops �
�
�

� � PHIL
� � �

� PHIL
� � � � � takes �

�
�

� �
takes �

�
�

� � � � � � eats �
� �

drops �
�
�

� � � � � � drops �
�
�

� �

FORK
� � � � � � &(' � takes �

�
�

� � drops �
�
�

� � FORK
� � �

� FORK
� � � � � takes �

�
�

� �
drops �

�
�

� �
� �

�
takes � � � �

�
drops � � � � �

� �
�

PHIL
����� �

PHIL
� � � � PHIL

�
�
� �

PHIL
� � � � PHIL

�
�
�

FORK
����� �

FORK
� � � � FORK

�
�
� �

FORK
� � � � FORK

�
�
���

where integer arithmetic is modulo 5.

Figure 2.9: Connection Graph for Dining Philosophers

FORK(2)

takes.0.4

PHIL(0)

FORK(1) FORK(3)

FORK(4)FORK(0)

PHIL(1)

PHIL(2) PHIL(3)

PHIL(4)

takes.3.3

takes.4.3drops.1.1

drops.1.0

takes.2.1

drops.2.1

takes.2.2

drops.2.2 drops.3.2

takes.3.2

drops.3.3

drops.4.3
takes.1.1

takes.1.0 drops.4.4 takes.4.4

takes.0.0

drops.0.0 drops.0.4

The connection graph of this network is displayed in figure 2.9. If we take the forks to
be the resource processes, ordered by

FORK
�

�
�
� FORK

� � � � FORK
�
�
�
� FORK

� � � � FORK
�����

58 CHAPTER 2. DESIGN RULES FOR DEADLOCK FREEDOM

and the philosophers to be the user processes, we see that the Resource Allocation Pro-
tocol is adhered to by all processes except PHIL

�����
. As explained in the introduction,

deadlock is possible for this system, for instance after trace

� takes �
�
� �
�
takes � � � ��� takes � � � � � takes � � � � � takes � � � � �

This is rectified by redefining PHIL
� ���

to pick up his right-hand fork first.

PHIL
� ��� � takes �

�
� � � takes �

�
�

� � eats �
� �

drops �
�
� � � drops �

�
�

� � PHIL
�����

The resulting network is deadlock-free.

An Extended Protocol

The user processes will now be allowed to communicate with each other, so long as
they do not attempt to do so while they are still holding any resources. The following
result, inspired by an example from [Roscoe and Dathi 1986], will make it possible to
build resources onto an existing deadlock-free network, without introducing any risk
of deadlock.

Rule 11 (Extended Resource Allocation Protocol) Take a user-resource network �
constructed from users � � � � � � � � � � and resources

� � �
� � � � � ��� � � � � . Suppose that no
user process ever attempts to acquire a higher resource than any it already holds, and
never attempts to communicate with another user process while holding a resource, i.e.

� � � traces
� � & � �� ��� claim & � � ��� release & � �
 � � � ��� � � ��� ��� � claim & � �!*� traces

� � & �
�

�
�
� ��� claim & � � ��� release & � �
 ��*� � ���

� � � �
� & � �

���
�

��� � � �'*� traces
� � & �

If the subnetwork of user processes � � � � � � � � � � is deadlock-free then the combined
network of user processes and resource processes � � � � � � � � � � �
� � � � � ����� is also dead-
lock-free.

Proof. Suppose that the conditions of the protocol are adhered to and also that the
subnetwork of user processes � � � � � � � � ��� is deadlock-free, yet there is a deadlock state
� of the network. In this state every process is blocked. First we consider the possibility
that in state � no resource has been claimed, and therefore every resource is available
to be claimed by any user process. It follows that each user process is only waiting to
communicate with other user processes, i.e it is unable to perform any event outside the
vocabulary of the subnetwork of user processes. So the subnetwork � � � � � � � � � � itself
has a state, derived from � , in which every process is blocked. This is a deadlock state
which contradicts our hypothesis.

2.3. RESOURCE ALLOCATION PROTOCOL 59

So it must be the case that in state � at least one resource � & has been claimed. It is
therefore waiting to be released by some user process

� � . Because
� � is currently hold-

ing resource � & , it is not allowed to attempt communication with another user process
so it must be waiting to claim another resource. In this way we can proceed to con-
struct a cycle of ungranted requests, as was done in the proof of the basic Resource
Allocation Protocol, leading to the same contradiction. We conclude that the network
is deadlock-free � .

Example – The Arm-Wrestling Philosophers

To illustrate this we present a slight variation of the Dining Philosophers story, with
arm-wrestling contests introduced to relieve the tedium of endless spaghetti eating and
thinking. The philosophers are ranked according to seniority, given by

PHIL
�

�
�
� PHIL

� � � � PHIL
�
�
�
� PHIL

� � � � PHIL
� � �

A philosopher may decide to eat some spaghetti or to challenge a senior philosopher to
an arm-wrestling bout. Between meals he is also prepared to accept a challenge from
any of his juniors. The new CSP definitions for the philosophers are given as follows.

PHIL
� ��� �

�
takes �

�
� � � takes �

�
�

� � eats �
� �

drops �
�
� � � drops �

�
�

� � PHIL
����� �

�

 � &(' � wrestles �

�
�

� � PHIL
�������

PHIL
� � � �

���
�

�
takes �

�
�

� � takes �
�
�

� � � � � � eats �
� �

drops �
�
�

� � � � � � drops �
�
�

� � PHIL
� � � �

�

 � � ' &�� � wrestles �

�
�

� � PHIL
� � � �

����
� �

�
� & - �� '�� wrestles �

�
�

� � PHIL
� � � � � � � � � � �

PHIL
�

�
� �

�
takes � � � � � takes � � � � � eats � � �
drops � � � � � drops � � � � � PHIL

�
�
� � �

�
�
�

� '�� wrestles �
�
� � � PHIL

�
�
� �

� PHIL
� � � � � takes �

�
�

� �
takes �

�
�

� � � � � � eats �
� �

drops �
�
�

� � � � � � drops �
�
�

� �

 � wrestles �

�
�

� � � � � �
 � wrestles �
�
�

� � ��� � �

The subnetwork of philosophers is a simple example of a client-server network,
where each philosopher interacts with his juniors as a server and his seniors as a client.
It is easily shown to conform to the basic client-server protocol. Also the Extended
Resource Allocation Protocol is observed when it comes to the use of forks. Hence the
complete network of philosophers and forks is deadlock-free.

60 CHAPTER 2. DESIGN RULES FOR DEADLOCK FREEDOM

Figure 2.10: Arm-Wrestling Philosophers

FORK(2)

PHIL(0)

FORK(1) FORK(3)

FORK(4)

wrestles.1.4

FORK(0)

PHIL(1)

PHIL(2) PHIL(3)

PHIL(4)

takes.3.3
drops.2.1

takes.4.3drops.1.1

drops.1.0 takes.4.4

wrestles.2.3

wrestles.3.4

wrestles.0.4

takes.2.1

takes.2.2

drops.2.2 drops.3.2

takes.3.2

drops.3.3

drops.4.3
takes.1.1

takes.1.0
drops.4.4

drops.0.0

takes.0.0

drops.0.4

takes.0.4

wrestles.1.2

wrestles.0.1

wrestles.2.4

wrestles.1.3

wrestles.0.2

wrestles.0.3

Example – A Parallel Database

The Extended Resource Allocation Protocol is generally applicable to parallel algo-
rithms for manipulating and processing large datasets. For example, figure 2.11 illus-
trates a simple design for a bank database. Each account is modelled as a resource
process ACCOUNT� . The user processes are configured as a farm network (consisting
of a master and some slaves) to perform operations in parallel. Carrying out a trans-
action between two accounts requires that they be simultaneously held by a particu-
lar user process. There is clearly potential for deadlock here. Suppose that SLAVE �
is told to move some money from ACCOUNT � to ACCOUNT � , while at the same time
SLAVE
 is told to move some money from ACCOUNT � to ACCOUNT � . If SLAVE� first
opens ACCOUNT � and SLAVE
 first opens ACCOUNT � they will become involved in
a deadly embrace, which is likely to propagate throughout the system with disastrous
consequences. The worst thing about this kind of deadlock is that it may take months or
years of running time to appear, and so might not be revealed by testing. The possibil-
ity of deadlock in this situation could be removed through placement of an ordering on
the accounts (which may be arbitrary) followed by adherence to the Extended Resource
Allocation Protocol. The system might be generalised to a multi-user distributed data-
base, with more complicated transactions. As long as all the database records required
for a transaction are known in advance, the protocol is easily obeyed by claiming them

2.3. RESOURCE ALLOCATION PROTOCOL 61

in ascending order. A similar approach to this is described in [Wolfson 1987].
In practice, deadlock is found to be a significant problem in multi-user databases.

P. Marcino reports on an insurance database application which regularly experiences
over a hundred deadlocks in a single day [Marcino 1995]. He points out that the dead-
lock issue was ignored during the design phase, and only became apparent during ini-
tial testing. This is an all too common scenario. Much effort has been directed towards
deadlock-detection algorithms [Knapp 1987]. Once a deadlock has been detected steps
can then be taken to remove it by “rewinding” certain processes. It would seem to be
much better programming practice to prevent deadlock from arising in the first place.

Figure 2.11: Bank Database System

User Processes

SLAVE

SLAVE

1

n

MASTER

ACCOUNT1

ACCOUNT2

ACCOUNT3

4ACCOUNT

5ACCOUNT

ACCOUNTm

SLAVE2

Resource Processes

Transactions and enquiries

Information

Chapter 3

A Tool for Proving Deadlock-Freedom

Introduction

This chapter describes the development of Deadlock Checker, a tool which checks for
adherence to the various design rules. It provides a vital safeguard against human error
in their application.

As computer programs become increasingly vast and complex and are used for more
and more safety-critical applications the use of formal mathematical methods in their
development is becoming crucial. Lives may depend on it. However there are two
important barriers to overcome. Firstly the large amount of work required in apply-
ing rigorous formal methods might seem infeasible. Secondly, computer programmers
come from diverse backgrounds, and the level of mathematics involved will be off-
putting to many, and also increase the chance of error.

An important feature of the design rules of the previous chapter is that they are easy
to describe in an informal, intuitive manner as well as having precise, formal state-
ments. The algorithms employed by Deadlock Checker, described below, scale effi-
ciently to networks of arbitrary size. The combination of simple design rules and effi-
cient machine verification would seem to be a powerful weapon against deadlock. It
offers a solution to both the problems described above in the specific context of build-
ing deadlock-free concurrent systems.

Deadlock Checker operates by testing properties of individual CSP processes, or
pairs of processes, within a network. This is done using normal form transition sys-
tems, which were devised by Roscoe for use in the refinement checking program FDR.
The act of normalising a transition system is described below. A method of checking
failures specifications for individual processes and pairs of processes, using normalised
transition systems, is then developed. This technique enables the automatic verification
of adherence to the design rules of the previous chapter.

Deadlock Checker also implements a more general deadlock analysis algorithm. A
network’s state dependence digraph is defined where each vertex corresponds to a state
of an individual process, and each arc represents a potential ungranted request between

62

3.1. NORMAL FORM TRANSITION SYSTEMS 63

processes. It is shown that if the state dependence digraph is circuit-free then the net-
work is deadlock-free. This can be used to prove many useful networks deadlock-free,
going beyond the bounds of the design rules. The programmer is allowed to be more
adventurous and perhaps to bend the rules. The drawback with this approach is that
diagnostic messages are less informative.

3.1 Normal Form Transition Systems

The design rules which Deadlock Checker understands are defined by specifications in
the failures-divergences model of CSP. The processes to be analysed are non-terminat-
ing, which means that they have failures sets of infinite size. These are clearly unwieldy
objects to use for machine verification. Fortunately Roscoe has developed a method
for forming a unique finite representation of any process which has a finite number of
operational states [Roscoe 1994]. This is basically a hybrid form of its operational and
denotational representations which is called a normal form transition system. It is a
digraph where each arc represents an event, and each vertex a composite state, labelled
with either a set of minimal acceptance sets or a flag � to symbolise divergence.

Rather than offering a precise description, we shall outline the process of normalis-
ation with the aid of a worked example. Consider a process � defined by the mutually
recursive CSP equations

� � � � � � �
 $ � �
� � � � � � �
 $ � �

This process description is somewhat over-complicated for the behaviour it describes,
as we shall soon see.

First the syntax is parsed into a tree of operators acting on processes or pairs of
processes. This in turn is converted into a state transition system using the inference
rules for operational semantics. (See section 1.3 for a description of this procedure.)
Figure 3.1 illustrates the transition system for � . Recall that � represents an internal
decision – this is to cater for nondeterminism. States which have no � transition event
are described as stable, as no further internal activity is possible in those states.

Normalisation of a transition system is performed in three stages. Firstly a search is
made for states from which an infinite series of hidden events is immediately possible,
(i.e. states from which an indefinitely long walk of � -labelled arcs can be constructed).
Any such state is divergent and is labelled with � . In our example � is found to have
no divergent state.

The second stage, called pre-normalisation, involves the elimination of � arcs from
the transition system, and also results in a unique event labelling of arcs originating
from any node.

First the initial state is grouped together with any state that is reachable from there
by performing a sequence of � events. This group of states, which we shall call

�
� ,is

64 CHAPTER 3. A TOOL FOR PROVING DEADLOCK-FREEDOM

Figure 3.1: Transition System Resulting from Compilation

T

P

a b Q

c P

b Q

Q

a b P

b P

a

b

a

b

c
a b Q c P

a b P c P

T

T
T

T

T

3.1. NORMAL FORM TRANSITION SYSTEMS 65

collectively mapped to the initial state of the pre-normal state-transition system. Fig-
ure 3.2 shows how the initial state in the transition system for � (itself labelled �) is
grouped with states labelled

� � � � �
 $ � � ,
� � � � � and

$ � � .
If

�
� contains any divergent state then the new state is also labelled as divergent.

Otherwise the new state is labelled with a list of minimal acceptance sets. (Minimal
acceptance sets are the complement of maximal refusal sets. Acceptance sets are used
here only because they typically smaller than refusal sets. The information carried is the
same.) This is constructed by looking at all the stable states within

�
� and, for each one,

the set of initial events that it offers. In figure 3.2 the state labelled
� � � � � offers

� � � and the state labelled
$ � � offers � $ � , so the initial state in the new transition

system is labelled with minimal acceptance sets � � � � � � $ � � .
For each initial event � that is offered by states of

�
� , apart from � , a single tran-

sition is formed in the pre-normal transition system, leading to a new state constructed
from the group of states reachable from states within

�
� by performing event � possi-

bly followed by a sequence of � events. The new state is labelled using the technique
described above. Each time that a new group of states is formed a check is made to see
whether it has already been discovered. The activity terminates once there are no more
new state groupings to be found. Figure 3.2 illustrates the entire pre-normalisation pro-
cedure for process � .

Figure 3.2: Pre-normalisation

}Acceptance set: b

State 1

{ } { }Acceptance sets: a c,

State 0

{ {} }Acceptance sets: a c,

State 2

Acceptance set: b { }

State 3

b

a

b

c

a

c

{

T

P

a b Q

c P

b Q

Q

a b P

b P

a

b

a

b

c
a b Q c P

a b P c P

T

T

T

T

T

In the third stage any states which are indistinguishable in terms of subsequent be-
haviour are combined to form a unique compact normal form. Those states to be iden-
tified together are determined by first marking each state with either � if it is divergent,
or its initial actions and minimal acceptance sets, and then computing the fixed point
of the following sequence of equivalence relations:

66 CHAPTER 3. A TOOL FOR PROVING DEADLOCK-FREEDOM

� � ��� � � � if, and only if, they have the same marking.

� � � � $ � �
�
�
�
�

��� � � $
�
�
�

� � �� � � �� �

� � � �� � ��
 � �
�� � �� ��� � �� � $

� ��
�

In our example � � partitions the states of the pre-normal form into � � ��� � � � � � � ��� � .
This partition is preserved by � � , and so it represents the fixed point of � $. This gives
us the unique representation of � of figure 3.3. Given that the initial state of this system
is
�

it is simple to calculate the failures and divergences of � from this representation
(by walking around the digraph).

Figure 3.3: Normal Form Transition System

}Acceptance set: b

State 1

{ } { }Acceptance sets: a c

{

,

b

State 0

a

c

Let us be more precise about the relationship between the failures and divergences
of a general process � and its normalised transition system

�
(if one exists). For every

minimal divergent trace � of � there will be a unique walk from the initial state � �
of

�
to a divergent state, with the transitions labelled according to � . Conversely the

labels of any walk from � � to a divergent state of
�

form a minimal divergence of � .
For every maximal failure

� � � � �
of � , such that � is not a divergence of � , there will

be a unique walk labelled as � , going from � � to a non-divergent state � , which has a
minimal acceptance set � �

�
. Conversely, for every walk labelled � from � � to a non-

divergent state � , � has maximal failures
� � � � � � � � � � � � � � � � where � � � �

are the minimal acceptance sets of state � .
FDR uses normal form transition systems to check for the refinement relation

�
between two processes

�
and � . By stepping through the states of the two processes

simultaneously, it is checked whether every possible behaviour of � is permitted by
�

[Roscoe 1994]. In particular, FDR is often used to prove deadlock freedom by check-
ing for refinement against the worst possible deadlock-free process of a given alphabet.
Full details of how it is used are given in [Formal Systems 1993]. It is a very general
tool but it runs into problems with large networks because of the exponential network
state explosion as the number of processes increases.

3.2 Deadlock Checker

Deadlock Checker is implemented on top of FDR version 1.4, using the powerful func-
tional programming language ML. (An excellent introduction is given to ML in [Paul-

3.2. DEADLOCK CHECKER 67

Table 3.1: Machine Readable CSP
Typeset CSP ASCII CSP

STOP STOP

SKIP SKIP
� � � e -> P$�� � � � c!x -> P$�� � � � c?y -> P

� � � �	�
�� � P [A||B] Q

� ��� ��� P ||| Q

�
�� P |˜| Q

� ��� P [] Q

� & � � � � � �
[] i:A @ P(i)

� � P \ A

�	�
� � � � �
 � if i == n then P else Q

son 1991].) It takes a network of CSP programs as input, in the machine-readable syn-
tax of Scattergood [Scattergood 1992]. FDR is used to compile the network into a set of
individual normal form transition systems – one for each process. These are then used
for performing the local checks required to guarantee adherence to the various design
paradigms and prove deadlock-freedom. In this way networks with very large numbers
of states may rapidly be proven deadlock-free.

The main difference between machine readable CSP and the algebraic form is that,
in the former, the type of communication channels has to be explicitly defined using
a pragma statement. The representation of various CSP operators in ASCII format is
given in table 3.1.

Comment lines beginning with --+ are used to specify to Deadlock Checker exactly
which processes constitute the network to be analysed. There is no need to define the
alphabets of these processes as the compiler calculates them automatically (as being
exactly those events that each process may ever perform). However, there are circum-
stances where one might wish explicitly to define the process alphabets, and this feature
could be included in a future version of the program. Dijkstra’s classic Dining Philoso-
phers network may be defined as follows.

--- CSP process definitions

PHILNAMES = {0,1,2,3,4}
FORKNAMES = {0,1,2,3,4}
pragma channel eats:PHILNAMES
pragma channel takes,drops:PHILNAMES.FORKNAMES

PHIL(i) = takes.i.i -> takes.i.((i-1)%5) -> eats.i ->
drops.i.((i-1)%5) -> drops.i.i -> PHIL(i)

FORK(i) = takes.i.i -> drops.i.i -> FORK(i) []

68 CHAPTER 3. A TOOL FOR PROVING DEADLOCK-FREEDOM

takes.((i+1)%5).i -> drops.((i+1)%5).i -> FORK(i)

--- Define network for Deadlock Checker

--+ PHIL(0),PHIL(1),PHIL(2),PHIL(3),PHIL(4)
--+ FORK(0),FORK(1),FORK(2),FORK(3),FORK(4)

This file, which is called phils.csp is processed by Deadlock Checker into a file
phils.net containing a set of normalised transition systems - one for each process in
the network, by starting up the program and typing the following command.

compile ”phils.csp” ”phils.net”;

Figure 3.4 illustrates the normal form transition systems for the Dining Philosophers
network.

The interactive analysis may now proceed. First we must type a command to put
Deadlock Checker into interactive mode.

teletype ();

Welcome to Deadlock Checker

Command (h for help, q to quit):

Typing h summons the following menu of commands.

h - help: display this menu

l <file> - load network file

n - display list of networks in memory

s <name> - select network

c - display currently selected network

p - display list of processes in current network

d - decompose network analysis

v - check for acyclic deadlock freedom

(SDD algorithm)

x - check for acyclic deadlock freedom

(CSDD algorithm)

o - check for deadlock in cyclic-po network

w - check for deadlock in client-server network

a - check for resource allocation protocol

r - restrict network to its vocabulary

t - test for livelock-freedom (Roscoe’s rule)

We load the compiled network definition as follows.

Command (h for help, q to quit):l phils.net

3.2. DEADLOCK CHECKER 69

Figure 3.4: Normal Form Transition Systems for Dining Philosophers

State 0

State 1

State 2 State 3

State 4

takes.1.1

eats.0

takes.1.0 drops.1.0

drops.1.1

State 0

State 1 State 2

takes.1.1

drops.1.1
drops.2.1

takes.2.1

State 0

State 1

State 2 State 3

State 4

takes.2.2

takes.2.1 drops.2.1

drops.2.2

State 0

State 1 State 2

State 0

State 1

State 2 State 3

State 4

takes.2.2

drops.2.2
drops.3.2

takes.3.2

takes.3.3

takes.3.2 drops.3.2

drops.3.3

State 0

State 1 State 2

takes.3.3

drops.3.3
drops.4.3

takes.4.3

State 0

State 1

State 2 State 3

State 4

takes.4.4

takes.4.3 drops.4.3

drops.4.4

State 0

State 1 State 2

takes.4.4

drops.4.4
drops.0.4

takes.0.4

State 0

State 1 State 2

takes.1.0

drops.1.0
drops.0.0

takes.0.0

State 0

State 1

State 2 State 3

State 4

drops.0.4

drops.0.0takes.0.0

takes.0.4

PHIL(2)

FORK(1)

FORK(2)

PHIL(3)

FORK(3)

PHIL(4)

FORK(4)

PHIL(0)

FORK(0)

PHIL(1)

eats.1

eats.2

eats.3

eats.4

70 CHAPTER 3. A TOOL FOR PROVING DEADLOCK-FREEDOM

Then we instruct Deadlock Checker to check for adherence to the Resource Allocation
Protocol.

Command (h for help, q to quit):a

Network phils.net is busy

Network phils.net is triple-disjoint

Process FORK(4) acts as a resource

Process FORK(3) acts as a resource

Process FORK(2) acts as a resource

Process FORK(1) acts as a resource

Process FORK(0) acts as a resource

Process PHIL(4) is not a resource

User process PHIL(4) obeys resource allocation protocol

User process PHIL(3) obeys resource allocation protocol

User process PHIL(2) obeys resource allocation protocol

User process PHIL(1) obeys resource allocation protocol

User process PHIL(0) claims resource FORK(4) still holding FORK(0)

This network is not deadlock-free, and Deadlock Checker reveals the problem. The
techniques used by Deadlock Checker to perform this analysis, and the other commands,
will now be explained in detail. Further details are also to be found in [Martin 1995].

3.3 Checking Adherence to Design Rules

In this section we shall give details of the various algorithms employed by Deadlock
Checker to test adherence to design rules. These algorithms will be illustrated with
examples. We shall also estimate their time complexity as a function of � , where �
is the number of processes in the network, unless otherwise stated.

Checking Network Prerequisites

Recall that our networks must be triple-disjoint, meaning that no event may be shared
by more than two processes, and busy, meaning that each process must be deadlock-
free, divergence-free and non-terminating. The property of triple-disjointedness can
be established by the following algorithm

1. Assume that the events in the network ����� � � � � � $ � are numbered from � to
�

(we
use the integer keys that FDR assigns to each event during compilation). Set up
two arrays, first and second, with dimension

�
which are initially “undefined”.

2. Scan the alphabet of each process � & in turn. For each event
� � ��� & , if first

��� �
is undefined then set

first
� � � ��� �

3.3. CHECKING ADHERENCE TO DESIGN RULES 71

otherwise if second
� � �

is undefined then set

second
��� � ��� �

otherwise halt, because event
�

lies in the alphabet of three processes, and so the
network is not triple-disjoint.

If we assume that the average number of events in the alphabet of each process
remains fixed as the number of processes in the network, � , increases then the time
complexity is �

� � �
‘Business’ is also checked in �

� � � time, if we assume that the average number of
states of each process remains roughly constant as � increases. We simply check every
state of every process to make sure that it is not labelled as divergent and also does not
have the empty set as a minimal acceptance set.

The prototype version of Deadlock Checker is programmed using only the standard
core of ML. As this has no imperative arrays, the program does not achieve the theo-
retical efficiency of certain algorithms that it implements.

Checking Trace and Refusal Specifications

Any information about failures and divergences of a process may be extracted from its
normalised transition system. Specifications on refusal sets are easy to check because
all the required information may be deduced from the list of minimal acceptance sets
stored at each vertex, and each vertex only needs to be looked at once. However a trace
specification could potentially lead to an infinite search if not carefully stated.

Consider the specification

� � � traces
� � � � � ��� � � �

� 	
�
� � � � �
	 � � �

Starting at the initial state of � we might search through the transition digraph, keeping
a record of the current trace, and checking every possible trace for � � � and ��� � . This
search might never terminate for a component of a busy network.

There is a much better approach to this problem, as follows. We write our specifi-
cation like this � � � traces

� � � � �
	
�
� � � � � � ��� � 	 �

Then we define an incremental trace function
�

as follows

� � � � � � �

� � ��� � � � � �
� � � � � � � if � � �

� � � � � � if � � �
� � � � otherwise

It is clear that � � � � � �
� � � � � � � � �

72 CHAPTER 3. A TOOL FOR PROVING DEADLOCK-FREEDOM

We start an exhaustive search through the transition system for pairs of the form�
�
� � � , where � is a state and � is a possible value of

� � � � at that state. The search
terminates either when there are no new such pairs to be found, or if we find a pair for
which � �

�
	 � 	 ���

.
There are two reasons why this approach is better. Firstly we have defined our vari-

ant function,
�

, in an incremental way, which means that we do not need to store any
information about traces. The value of

� � � � at each point in the search can be calculated
purely from the information stored at the previous point. Secondly we have converted
an endless search into one that is guaranteed to terminate, due to the bounds placed on
the range of

�
.

This technique can be extended to a network of two processes ��� � �"� , and a speci-
fication on network states

� � � � � �
� �

� � � . We assume that the specification is expressed
as a predicate

PRED
� � � � � � � � � � � $

� � � � � �
� �

�
�

involving a number of incremental trace functions
� & and maximal refusal sets

�
� and�

� of � and � .
Two sets of records are maintained: pending and done. Each record is of the form�

� �
�
� �

� � � � � � � � $
�
, where

�
� �

�
� �

�
is a pair of normal form states in which � and �

may simultaneously rest, and each � & is the value of
� & � � � for a corresponding trace � .

The algorithm proceeds as follows.

1. Initially pending consists of a single record corresponding to the original state of
the system, and done is empty.

pending ��� � � ��� ��� � � � � � � � � � � � $
� � � � � �

done ��� � �
2. Take a new record from pending to be processed.

� ��� �
� �

�
� �

� � � � � � � � $
� � pending

pending ��� pending � � � �
3. Now check whether record

�
satisfies the specification. Suppose that � � has a

set of minimal acceptance sets and � � has a set � of minimal acceptance sets.

If �
� � � � � � � � PRED

� � � � � � � � $
�

��� � � � � � � � �
then halt. (The specifi-

cation is not satisfied). Otherwise

done ��� done
 � � �
4. Now construct the set new of successor records of

�
, by considering every tran-

sition that is possible for PAR
� ��� � �"� � from state pair

�
� �

�
� �

�
. Assume that

�

3.3. CHECKING ADHERENCE TO DESIGN RULES 73

corresponds to some trace � of PAR
� ��� � � � � . Then

new ���

� �
� � � � � �

� � � � ��� � � � � � � � � � $
� ��� � � � � � �

� � ��� � � �
 � �
�� � � � �

� �

� �
�
� � � � � � � � � � � � � � � � � � $

� � � � � � � � �
� � � � � ���
 � �

�� � � � �

� �
� �� � � � � � � � � � � � � � � � � � � $

� � � � � � � � �
� � ���

�
� �
 � �

�� � ��
 � �
�� � � � �

Although we have not stored any record of a value of � that corresponds to
�
, it is

not actually required in order to perform this calculation due to the incremental
method of defining the various trace functions.

5. Now we eliminate records from new that have already been processed and merge
the remainder into pending.

pending � � pending
 �
new � done

�

6. If pending � � � then halt. (The specification is satisfied.) Otherwise return to
step 2.

This algorithm is not certain to terminate for every given set of incremental trace
functions

� & and predicate PRED. But if there is a finite range of values for each
� & out-

side which satisfaction of PRED is impossible then termination is guaranteed for any
network ��� � � � .

The following example is included in order to illustrate this technique. Consider
the network � � � LEFT

�
RIGHT � with the following process definitions.

LEFT � in � mid � LEFT

� LEFT � � in,mid �

RIGHT � mid � out � RIGHT

� RIGHT � � mid,out �
Suppose we wish to prove that the following trace specification is satisfied by PAR

� � � .
�
	 ��� in � � � out

	 �

� is an abstract representation of a double buffer, which inputs information on channel
in and outputs it on channel out. The specification simply states that the number of
messages held in the buffer at any given time lies between nought and two inclusive.

We proceed by defining an incremental trace function
�

as follows
� � � � � � �

� � � � � � � � �
� � � � � ��� if � � in� � � � � � if � � out� � � � otherwise

74 CHAPTER 3. A TOOL FOR PROVING DEADLOCK-FREEDOM

It is clear that � � � � � � � in � � � out

In this case our predicate function PRED is given by

PRED
� � � � � � � �

�
	 � � � �
	 ���

Normal form state transition systems for the network � are shown in figure 3.5. We
now proceed to form an exhaustive set of records of the form

�
� LEFT

�
� RIGHT

�
val

�

consisting of a state of process LEFT, a corresponding state of process RIGHT and a
possible value for

� � � � when the processes are in those states.

Figure 3.5: Normal Form Transition Systems for Two-Place Buffer

State 0

Acceptance set: mid

LEFT

State 0

RIGHT

Acceptance set: mid

Acceptance set: out

mid

State 1

outin mid

Acceptance set: in{

{

{

{

}

}

}

}

State 1

The search proceeds as follows. First we have

pending �
� � ��� ������� � � done �
� �
Check

��������� ���
; possible transition is in; leads to record:

� � � ��� � � . Now we have

pending ��� � � ����� � � � � done � � � ��� ������� �
Check

� � ����� � � ; possible transition is mid; leads to record:
����� � � � � . Now we have

pending � � � ��� � � � � � � done � � � ����� ����� � � � � ��� � � �
Check

� ��� � � � � ; possible transitions are in, out; lead to records:
� � � � � � � , ��������� ��� .

Now we have

pending � � � � � � � � � � � done � � ��������� ��� � � � � ��� � � � ��� � � � � � �

3.3. CHECKING ADHERENCE TO DESIGN RULES 75

Check
� � � � � � � ; possible transition is out; leads to record:

� � ��� � � � . Now we have

pending �
� � � done �
� ��������� ��� � � � � ��� � � � ����� � � � � � � � � � � � � �
The search is now complete. Every record that was found satisfies the original specifi-
cation, and we shall conclude that it is satisfied by PAR

� � � . This is rather a bold claim
given that the set of traces of PAR

� � � is infinite and we have only examined four cases.
But it may be justified by using induction on traces, as follows.

Every trace � of PAR
� � � corresponds to a unique pair of normal-form states

�
� LEFT

�
� RIGHT

�

These are found by constructing the unique walk in the normal-form transition system
of LEFT with labels � �� � LEFT, and the unique walk in the normal-form transition
system of RIGHT with labels ���� � RIGHT. We shall call this state pair

�
� LEFT

� � � � � RIGHT
� � � �

Now suppose that for a certain trace 	 , we know that record
�
� LEFT

� 	 � � � RIGHT
� 	 � � � � 	 � �

lies in set done, constructed above. Now consider a trace 	 � � � � of � . This corre-
sponds to a state pair �

� LEFT
� 	 � � � � � � � RIGHT

� 	 � � � � � �
which must be reachable from

�
� LEFT

�
� RIGHT

�
by one or both of the processes perform-

ing event � . It follows that record
�
� LEFT

� 	 � � � � � � � RIGHT
� 	 � � � � � � � � 	 � � � � � �

must also lie in set done, due to the incremental way in which this set was constructed.
We actually know that

�
� LEFT

� � � � � � RIGHT
� � � � � � � � � � � � ��������� ��� � done

because this is the record that was used to start the search. Hence, by induction, every
trace � of � is represented in done by a record of the form

�
� LEFT

� � � � � RIGHT
� � � � � � � � �

So we conclude that the original specification is satisfied by all traces of PAR
� � � .

Although this proof technique is tedious for humans it is very easy to automate on
a computer. It would be feasible to extend the technique to networks of more than
two processes, but due to the exponential state explosion as networks grow larger, this
would have limited potential in practice.

Note that, for individual processes, it is often feasible to perform this kind of spec-
ification check using FDR directly. In order to prove that a process � satisfies some
specification one constructs a process

�
that is the worst possible process that satisfies

the specification and then shows that ��� �
. However specifications of networks of

two processes which involve the refusal sets of individual processes, such as the formal
statement of conflict-freedom, cannot be checked directly using FDR.

76 CHAPTER 3. A TOOL FOR PROVING DEADLOCK-FREEDOM

Resource Allocation Protocol

Deadlock Checker includes a check for adherence to the Extended Resource Alloca-
tion Protocol. This depends on the processes which constitute the network being pre-
sented in a particular order. The network is assumed to consist of a sequence of user
processes � � � � � � � ��� followed by an ordered sequence of resource processes � � � � �
� � � . Observe that in the example of the Dining Philosophers network (page 67) the
processes are presented in the following order (which conforms to this requirement)

--+ PHIL(0),PHIL(1),PHIL(2),PHIL(3),PHIL(4)
--+ FORK(0),FORK(1),FORK(2),FORK(3),FORK(4)

The analysis proceeds in two stages. The first stage is to start from the end of the
list and work backwards to see how many processes behave as resources.

Checking that a process � behaves as a resource relies on the fact that the normal-
form transition system of a resource process has a very specific form. Consider a gen-
eral resource process

� � � �&(' � $ & � � & � �
The normal-form transition system for this process is shown in figure 3.6. It has an
initial state representing the situation where the resource has not been ‘claimed’, plus
one state for each claim channel

$ & , representing the state of having been claimed on
that channel.

Figure 3.6: Normal Form Transition System for General Resource Process

State 0

Acceptance Set:

c c c{ }, , ...
1 2 k

r
1

c
1 k

State 1

Acceptance Set:

r{ }
1

Acceptance Set:

r{ }

Acceptance Set:

r{ }

State 2 State k

2 k

c
r

c
r

2
2

k

To establish whether a given process � is of this form involves firstly attempting to
split its alphabet into a set of claim-release pairs � �%$ � � � � � � � � �%$ � �	� � � � . The initial state
of � should have a single minimal acceptance set � $ � � � � � $ � � equal to the set of initial

3.3. CHECKING ADHERENCE TO DESIGN RULES 77

events of � . Then for each
$ & there should be a transition to a state

� & with a single
minimal acceptance set � � & � and a single transition back to the initial state of � . Each
of the

� & must be distinct and different from all the
$ & .

If this splitting of ��� proves successful, it must then be checked that each of the
claim-release pairs consists of events from the alphabet of a process before � in the
network list. Also no two event pairs should match the same process. If this is so �
is taken to be a valid resource process. At the same time a list of claim-release pairs,
cr list

� � �
, is constructed for each user process

�
, consisting of records of the form� �($ �	� � � � � , where

�($ �	� �
is a claim-release pair and � is a resource number (taken as the

numeric order of the resource in the network). (Note that we have relaxed the condition
that each resource needs to make itself available to every user process. A resource may
be private to a particular subset of users.)

Performing this check on the normal-form transition system for process FORK
�

�
�

(see figure 3.4) results in splitting up its alphabet into two pairs

� � takes � � � �
�
drops � � � �

� � �
takes �

�
� �
�
drops �

�
� �
� �

It is then found that

� takes � � � �
�
drops � � � ���

�
� PHIL

�
�
�

� takes �
�
� �
�
drops �

�
� ���

�
� PHIL

� ���

So it is concluded that FORK
�

�
�

is a resource.
As soon as a process is discovered which does not behave as a resource it is taken

to be a user process, along with all the processes which precede it in the network order-
ing. In the case of the Dining Philosophers, the first non-resource process discovered
is PHIL

�
�
�
. Each user process must then be checked for adherence to the Extended

Resource Allocation protocol. This protocol was defined formally using failures speci-
fications on page 58. We need to check that each user process

�
communicates with its

resources in alternating sequence on each
�%$ � � �

pair in cr list
� � �

. Also that it attempts
only to claim resources ordered below those that it already holds, and never attempts to
communicate with another user while holding a resource. This is achieved by casting
the specification in terms of incremental trace functions and then using the technique
described on page 71, as follows.

Let
cr list

� � � � � � �($ � �	� � � � � � � � � � � � �($ � � � � � � � � � �
Then, for each

� � � � � � � � � � define
� & � � � � ��� $ & � ��� � &

Incrementally, this is written
� & � �!� � � �

� & � � � � � � � �
� � & � � � ��� if � � $ &� & � � � � � if � � � &� & � � � otherwise

78 CHAPTER 3. A TOOL FOR PROVING DEADLOCK-FREEDOM

Function
� & � � � should take the value � whenever user

�
is holding resource � & and oth-

erwise take the value
�

. In this case, rather than examining the minimal acceptance sets
of

�
after trace � , we need to look at its initial events � . These are available as the tran-

sition events that are possible from the normal form state of
�

that corresponds to � .
We define

PRED
� � � � � � � � � � � � � � � � � � �

��
�

� � � � � � � � � � � � � � 	 �
�
� � �
	 ���

� � � � � � � � ���
� � � �

�

$ & � � ��� � & � � � �
� � � � *� �
� �
�

�
� � ��� � � � �

� �
�

If this specification check succeeds for each user process then the deadlock analysis
is reduced to the subnetwork � � � � � � � � � which must be analysed by other means. It
may well be that the user processes have disjoint alphabets, in which case no further
analysis is required.

It is important to note a minor flaw in the part of the algorithm which identifies
resource processes. It is possible that a network could contain one or more processes
which are intended to be treated as users, but which never actually use any resources
and appear to behave like resources themselves. These could be identified as such in the
searching process described above, which could then lead to a valid deadlock-free net-
work being rejected. This is very unlikely to occur in practice. The problem could be
avoided by modifying Deadlock Checker to insist that resource processes be explicitly
labelled as such, but as this would cause unnecessary inconvenience in the vast majority
of cases it has not been done.

Complexity

We shall continue to assume that as the number of processes in a network, � , increases,
the number of states and events of each process remains approximately fixed. This
means that the time taken to perform any local analysis of an individual process, or
pairs of neighbouring processes, can be assumed to be independent of the size of the
network.

Let us consider the algorithm for checking the Resource Allocation Protocol. We
assume that the proportion of user processes to resource processes remains fixed as �
grows. Starting at the end of the network list, the claim-release channels pairs for each
resource process discovered need to be matched with the alphabet of a process which
precedes it. Each matching operation can be done in constant time by making use of
the two arrays first and second, indexed by events in � � , which were set up in order to
verify triple-disjointedness (page 70). So the entire matching process is �

� � � . All the
other checking performed is local to a process, and so �

� � � for the network as a whole
(by the above assumptions). This gives us an overall complexity of �

� � � .

3.3. CHECKING ADHERENCE TO DESIGN RULES 79

Cyclic Processes

To analyse a network purporting to be cyclic-PO, we need to check that each process
communicates cyclically on its channels according to some partial order, for which we
construct the Hasse digraph. This is the minimal representation of a partial order; it
has a vertex for each element of the partial order and an arc � � whenever element � is
directly below � , i.e.

� � �
 * � � � � � � � �
Then, in order to prove deadlock-freedom, we must show that the union of the Hasse
digraphs, which we call the channel dependence digraph, contains no circuit.

Recall that we formally defined the cyclic-po process CYCLIC-PO
� � �

�
�
, which

communicates on the set of channels
�

, partially ordered by � , as follows.

CYCLIC-PO
� � �

�
� � ��� �

� � � � � � �
��� � X �

DONE
�
�
� � ��� � X � � � � � �

� DONE �
�
�

� ��� mins � � - DONE ��� � � � ��� �
� �

DONE
 � � � � � �

Where mins
� � � � � is defined as the minimal elements of subset � of

�
, given by

mins
� � � � � ��� � � � �.* � ���

�
� � � � �

It can be shown that this definition is unchanged when
� � �

�
�

is replaced with its
Hasse digraph.

For verifying that a process � is cyclic and extracting its Hasse channel ordering
a two pass algorithm is employed as follows. The first pass tries to extract a Hasse
digraph on the assumption that the process is indeed cyclic. In each state � of the nor-
mal form transition system of � we look at every transition

� � � � � � that does not take us
back to the the initial state of � . If an event

� � is possible in state � � that was not pos-
sible in state � we assume that

� � � �

. When this first stage is complete we will have
constructed a relation � on the channels of � . If � is cyclic-PO this will actually be the
Hasse digraph of its channel ordering. This is because whenever a cyclic-PO process
performs an event

�

and then immediately becomes ready to perform event
� � , without

having completed a cycle,
� � must be directly above

�

in the channel ordering. If � is
not cyclic-po the relation that we have constructed will be meaningless.

If the � relation contains a cycle
$ � � � � � $

� �
$ � we can eliminate � straight

away. Otherwise we must now check whether the behaviour of � adheres exactly to
CYCLIC-PO

�
��� � � � . This relies on the normal-form transition system of the latter

having a very specific form. Each state corresponds to the process ��� � ��� � DONE
�
�
�

for a particular set of events DONE. We perform the check using a depth-first search
(see appendix B) starting from the initial state of � . For each state of � that we visit we
maintain a record of the events that have been performed to arrive there, and call this
set DONE. We then check that the immediate behaviour at each state, as given by its

80 CHAPTER 3. A TOOL FOR PROVING DEADLOCK-FREEDOM

acceptance sets and transition events, conforms to that of ��� � X �
DONE

�
�
�
. We also

check that DONE is consistent when a state is visited more than once. Whenever the
initial state is revisited, DONE should be equal to ��� . This second pass can only suc-
ceed if � is cyclic-PO with ordering � .

If every process in the network is found to be cyclic-PO, the Hasse digraphs of their
channel orderings are aggregated into a global channel dependence digraph. We know
from theorem 7, page 40, that the network is deadlock-free if, and only if, there is no
circuit in the

relation $ �
 $

�

� �

 $ �
 $ �
Now

is the union of the full channel orderings of each process in the network and

so the channel dependency digraph is a subset of

. However it is a subset which car-
ries all the vital information and it may easily be shown that the channel dependency
digraph contains a circuit if, and only if,

contains a cycle. It follows that the network

is deadlock-free if, and only if, there is no circuit in the channel dependency digraph.
This is checked using the DFS algorithm.

To demonstrate the use of this tool we recall the toroidal cellular array. This is coded
in machine-readable CSP as follows.

n=4
indices = {0,1,2,3}
pragma channel e:indices.indices.{left,up,right,down}

CELL(i,j) = if ((i+j)%2==0) then LEFT(i,j) else RIGHT(i,j)

LEFT(i,j) = e.i.j.left -> e.((i-1)%n).j.right -> UP(i,j) []
e.((i-1)%n).j.right -> e.i.j.left -> UP(i,j)

UP(i,j) = e.i.j.up -> e.i.((j-1)%n).down -> RIGHT(i,j) []
e.i.((j-1)%n).down -> e.i.j.up -> RIGHT(i,j)

RIGHT(i,j) = e.i.j.right -> e.((i+1)%n).j.left -> DOWN(i,j) []
e.((i+1)%n).j.left -> e.i.j.right -> DOWN(i,j)

DOWN(i,j) = e.i.j.down -> e.i.((j+1)%n).up -> LEFT(i,j) []
e.i.((j+1)%n).up -> e.i.j.down -> LEFT(i,j)

--+ CELL(0,0),CELL(1,0),CELL(2,0),CELL(3,0)
--+ CELL(0,1),CELL(1,1),CELL(2,1),CELL(3,1)
--+ CELL(0,2),CELL(1,2),CELL(2,2),CELL(3,2)
--+ CELL(0,3),CELL(1,3),CELL(2,3),CELL(3,3)

Each process is cyclic and communicates with each of its neighbours in turn. (Note that
the interleaving construct has been algebraically transformed into external choice. This
is due to a syntax restriction placed on CSP by FDR 1.4.) Deadlock should be avoided
because alternate cells commence with different orientations. The Hasse digraph and
normal-form state transition system for process CELL

� � �����
are illustrated in figure 3.7.

3.3. CHECKING ADHERENCE TO DESIGN RULES 81

Figure 3.7: Hasse Digraph and Normal Form Transition System for CELL
� ��� ���

e.3.0.right

e.0.3.down

e.0.0.right

e.0.0.down

e.0.0.left

e.0.0.up

e.1.0.left

e.0.1.up

Hasse Digraph

Acceptance set:

Acceptance set:
{ }

Acceptance set:

Acceptance set:

Acceptance set:
{ }

Normal Form Transition System

Acceptance set:

Acceptance set:

Acceptance set:
{ }

Acceptance set:

e.0.0.left e.3.0.right

e.3.0.right e.0.0.left

Acceptance set:

State 0:
Acceptance set:
e.0.0.left, e.3.0.right{ }

Acceptance set:
State 1: State 2:

State 3:

e.0.0.up, e.0.3.down

e.0.0.up e.0.3.down

State 4: State 5:

e.0.3.down e.0.0.up

State 6:

e.0.0.right,e.1.0.left

e.0.0.right e.1.0.left

State 7: State 8:

State 9:

e.1.0.left e.0.0.right

e.0.0.down, e.0.1.up

e.0.0.down e.0.1.up

e.0.1.up e.0.0.down

e.3.0.right{ } e.0.0.left{ }

e.0.3.down{ } e.0.0.up{ }

e.1.0.left{ } e.0.0.right{ }

e.0.1.up{ } e.0.0.down{ }

State 10: State 11:

82 CHAPTER 3. A TOOL FOR PROVING DEADLOCK-FREEDOM

We load the compiled network definitions, and check for adherence to the cyclic-PO
protocol.

Command (h for help, q to quit):l torus.net

Command (h for help, q to quit):o

For each process in the network a report like this one is returned

Process CELL(0,0) is cyclic-po:

(e.0.0.up > e.3.0.right), (e.0.3.down > e.3.0.right),

(e.0.0.up > e.0.0.left), (e.0.3.down > e.0.0.left),

(e.0.0.right > e.0.3.down), (e.1.0.left > e.0.3.down),

(e.0.0.right > e.0.0.up), (e.1.0.left > e.0.0.up),

(e.0.0.down > e.1.0.left), (e.0.1.up > e.1.0.left),

(e.0.0.down > e.0.0.right), (e.0.1.up > e.0.0.right)

The program then checks for circuits in the channel dependency digraph, and finding
none reports

Network torus.net is deadlock-free

If we change the dimensions of the toroidal array to � � � , it turns out that the
network will deadlock, as is revealed by Deadlock Checker in the following way.

Found closed trail of dependent channels:

<e.4.4.right,e.4.4.up,e.4.3.right,e.0.4.up,e.4.4.right>

Network torus5.net deadlocks

When deadlock has been identified the reason behind it is always reported.
The algorithm for checking cyclic-PO networks involves local checking of each

process to establish its channel ordering, which is �
� � � , plus a check for circuits in the

channel dependence digraph. We can assume that the number of edges in this graph
grows proportionally to � by taking the number of edges in the Hasse digraph of each
process to be independent of � . Checking for circuits can be performed in linear time
with the DFS algorithm. So the cyclic-PO network check can be done with �

� � � com-
plexity.

Client-Server Protocol

Deadlock Checker contains a tool for verifying that a network has been implemented
according to the basic client-server protocol (described on page 45). There are two
phases to the method employed. Firstly the program attempts to identify the client and

3.3. CHECKING ADHERENCE TO DESIGN RULES 83

server channels bundles of each process in the network. For this to be feasible, the order
in which the processes are supplied in the network is significant. A process should com-
municate with those before it as a server and those after it as a client. This would guar-
antee that the client-server digraph would be free of circuits. Secondly the program
checks for conformance to the basic CSP specifications using the channel bundles that
have just been calculated.

The first part of the algorithm, that which calculates the channel bundles of each
process, has limitations. It will not succeed in correctly identifying client and server
channel bundles for certain valid basic client-server networks. There are two possi-
ble reasons for this. The first is that it is assumed that there is no polling on client or
server channels. (By polling we mean a process communicating on a channel when
in an unstable state, for instance if it is waiting for some concealed time-out event.)
The second, which is less important, is only likely to arise due to a coding error and is
described below.

However the method for verifying that a process with given client and server chan-
nel bundles obeys the basic protocol is precise, and will work for any basic client-server
network. It is a simple application of the specification checking technique described on
page 71.

To assist with explaining this algorithm, we shall consider its application to the sim-
ple process farm described in chapter 2. The machine readable description of this net-
work is as follows.

iset = {0,1,2,3,4}
jset = {0,1,2}
pragma channel a,b: iset.jset
pragma channel c,d: iset

WORKER(i,j) = a.i.j -> b.i.j -> WORKER(i,j)

FOREMAN(i) = [] j:jset @ (a.i.j -> c.i ->
d.i -> b.i.j -> FOREMAN(i))

FARMER = [] i:iset @ (c.i -> d.i -> FARMER)

--+ WORKER(0,0),WORKER(0,1),WORKER(0,2),
--+ WORKER(1,0),WORKER(1,1),WORKER(1,2),
--+ WORKER(2,0),WORKER(2,1),WORKER(2,2),
--+ WORKER(3,0),WORKER(3,1),WORKER(3,2),
--+ WORKER(4,0),WORKER(4,1),WORKER(4,2),
--+ FOREMAN(0),FOREMAN(1),FOREMAN(2),FOREMAN(3),FOREMAN(4)
--+ FARMER

The normal form transition system for process FOREMAN
� ���

is illustrated in figure
3.8.

In order to try to establish the client and server bundles of a network the following
steps are performed

84 CHAPTER 3. A TOOL FOR PROVING DEADLOCK-FREEDOM

Figure 3.8: Normal Form Transition System for FOREMAN
� ���

Acceptance set:
State 0:

{ }a.0.0,a.0.1,a.0.2

Acceptance set:

Acceptance set:

Acceptance set:Acceptance set:

Acceptance set:

Acceptance set:

Acceptance set:

Acceptance set:

Acceptance set:
State 1: State 2:

a.0.2

State 3:

State 4: State 5: State 6:

State 7: State 8: State 9:

c.0 c.0 c.0

d.0d.0d.0

b.0.0 b.0.1 b.0.2

{ } { } { }

{ } { } { }

}{ { } { }

c.0 c.0 c.0

d.0 d.0 d.0

b.0.0 b.0.1 b.0.2

a.0.0 a.0.1

3.3. CHECKING ADHERENCE TO DESIGN RULES 85

1. For each process � in the network list, the set of channels which it uses to com-
municate with predecessors in the list is compiled: � � � � . This should represent
the union of channels in � ’s server bundles, which must be disjoint, i.e. there is
no channel shared by two server bundles.

For process FOREMAN
� ���

we find that

� � FOREMAN
� ��� � �
� � � � � ��� ���

2. For each process � , we start at its initial state and perform a depth-first search
until we find a state

�
where � can accept communication on a server channel,

i.e. there is a minimal acceptance set which intersects with � � � � . By rule
(b) of the basic client-server definition,

�
� � � � should consist of all the server

requisition and drip channels of � . (This assumes that there is no communication
by polling, in which case a server requisition or drip might have already occurred
without having appeared in a minimal acceptance set.)

Process FOREMAN
� ���

accepts communication on server channels while in its
initial state, where it has a minimal acceptance set �
� � � � � ��� � � � � � � � � � � ��� .

3. For each channel
$

in
�
� � � � we take the corresponding transition from state�

to a new state
� � . We then construct a server bundle from

$
by performing

a DFS, rooted at
� � , to find a successor state where � has a transition on some

server channel
$ � . If

$ � lies in
�
� � � � , i.e it is a requisition or a drip, then

$
must

be a drip, otherwise
�%$ � $ � � is a requisition-acknowledge bundle. If, however, the

DFS terminates without finding another communication on a server channel it
means that the process might never be able to communicate on a server channel
again after performing event

$
. In this case we take

$
to be a drip channel. It

is theoretically possible that this is incorrect and that
$

is actually a requisition
channel, but in practice this is most likely to be a coding error in process � .

Applying this step to FOREMAN
� ���

involves performing DFS searches rooted
at states 1, 2, and 3 to find the next state where a server event may be performed.
In each case a new server event is discovered (in states 7, 8 and 9 respectively)
which results in the construction of three requisition-acknowledge bundles for
the process, as follows:

servers
�
FOREMAN

����� � �
� � � � � � ��� ��� �

4. Having calculated the server channel bundles of a process � , we must check that
they are disjoint, and that their union is � � � � . Both these properties are clearly
satisfied for FOREMAN

�����
.

86 CHAPTER 3. A TOOL FOR PROVING DEADLOCK-FREEDOM

5. The next step is to assign each server bundle of � to another process as a client
bundle. This is done by checking that the channels which form each server bun-
dle belong to the alphabet of some preceding process in the list. If there is any
server bundle which cannot be matched in this way then something is wrong with
the network being checked. The three server bundles of FOREMAN

� ���
are allo-

cated as client bundles to WORKER
� ��� ���

, WORKER
� ��� � � and WORKER

�����
�
�

respectively.

If each stage has been successful, then we shall have calculated a set of client and server
bundles for each process, which can now be checked against the basic protocol. How-
ever it is possible that this procedure might have failed even if the processes were valid,
for the two reasons given above. It is important to make clear that this limitation could
never result in Deadlock Checker passing a network as being deadlock-free when it
actually deadlocks. The restriction could easily be overcome by requiring the client and
server bundles to be explicitly defined in the original CSP network script, although this
would be inconvenient to the user. Perhaps both options should be offered in a future
version of Deadlock Checker. (However the more general SDD algorithm, which will
be described below, can correctly identify deadlock-freedom for any basic client-server
network, regardless of the order in which the processes are supplied.)

The second phase, which is checking that each process obeys the basic client-server
protocol, is a straightforward application of the CSP specification checking technique
described on page 71, using the formal definition of the rules of the basic client-server
protocol, recast in terms of incremental trace functions.

To demonstrate the tool in action again, here is the analysis of the simple process
farm.

Command (h for help, q to quit):l farm.net

Command (h for help, q to quit):w

For each process in the network a report of the following form is returned

Process FOREMAN(0) obeys client-server protocol:

clients(FOREMAN(0)) = {<c.0,d.0>}

servers(FOREMAN(0)) = {<a.0.0,b.0.0>,<a.0.1,b.0.1>,<a.0.2,b.0.2>}

As each process satisfies the protocol the program concludes that the network will never
deadlock.

Network farm.net is deadlock-free

We shall now estimate the complexity of the algorithm for checking adherence to
the basic client-server protocol with the usual assumptions about the number of states
and events of each process. Calculating the set of server channels, � � � & � , for each

3.3. CHECKING ADHERENCE TO DESIGN RULES 87

process � & , can be done in constant time, by making use of arrays first and second that
were set up in the course of testing for triple-disjointedness (page 70). Once this set has
been separated into server bundles for � & , by local analysis, these may each be matched
up with a preceding process in the network in the same manner. The act of checking
each process for conformance to the protocol, is again purely local to each process and
so �

� � � . Hence the overall complexity is �
� � � .

Network Decomposition

Deadlock Checker implements the method for factorising deadlock analysis of Brookes
and Roscoe (theorem 6, page 32). This involves finding all the disconnecting edges of
the network communication graph. Any such edge that is shown to be conflict-free may
be removed. Deadlock analysis is then reduced to checking that each of the remain-
ing network fragments (essential components) is deadlock-free. First we need to con-
struct the communication graph for the network, and calculate its vocabulary � . This
is straightforward given the alphabet of each process, which is calculated at the com-
pilation stage.

Finding the disconnecting edges of the graph can be done in linear time, using a
variant of the DFS algorithm. This is described in appendix B. It is then required to
check that the pair of processes

� � � � � which constitutes each disconnecting edge is
conflict-free. This is done by checking that for every state � of the subnetwork � � � �"�
the following condition holds.

� � � �
�
�

� � �
 � ���
�

� � � �

The specification checking technique described on page 71 is applied here. Any dis-
connecting edge which is found to be conflict-free is removed from the communica-
tion graph. When this phase is finished the DFS algorithm is employed once again to
assemble the residual components.

The subnetwork that each essential component represents is then assigned a name,
and placed on a ‘stack’ of networks. It may then be analysed by other methods. Dead-
lock Checker maintains a tree-structure on this stack for hierarchical proofs. So, if and
when deadlock-freedom has been established for each essential component, the original
network will be reported as being deadlock-free.

The following example demonstrates the construction of a hierarchical proof using
Deadlock Checker. Consider the Telephoning, Arm-Wrestling, Dining Philosophers.
This is a system constructed from two tables of arm-wrestling philosophers, with a tele-
phone link added between the two most senior philosophers. The CSP code is as fol-
lows

PHILNAMES= {0,1,2,3,4}
FORKNAMES = {0,1,2,3,4}
TABLENAMES = {A,B}

88 CHAPTER 3. A TOOL FOR PROVING DEADLOCK-FREEDOM

pragma channel eats:TABLENAMES.PHILNAMES
pragma channel takes,drops:TABLENAMES.PHILNAMES.FORKNAMES
pragma channel wrestles:TABLENAMES.PHILNAMES.PHILNAMES
pragma channel phone

-- Junior philosopher: may challenge any of his seniors to an
-- arm-wrestling contest, between meals. He is left handed for
-- adherence to Resource Allocation Protocol.

JPHIL(x) = takes.x.0.4 -> takes.x.0.0 -> eats.x.0 ->
drops.x.0.0 -> drops.x.0.4 -> JPHIL(x) |˜|
(|˜| j:{j | j <- PHILNAMES, 0<j} @ wrestles.x.0.j ->
JPHIL(x))

-- Intermediate philosopher: may challenge any of his seniors to
-- an arm-wrestling contest or accept a challenge from a junior,
-- between meals.

PHIL(i,x) = (takes.x.i.i -> takes.x.i.((i-1)%5) -> eats.x.i ->
drops.x.i.((i-1)%5) -> drops.x.i.i -> PHIL(i,x) |˜|
(|˜| j:{j | j <- PHILNAMES, i<j} @ wrestles.x.i.j ->

PHIL(i,x))) []
([] j:{j | j <- PHILNAMES, j<i} @ wrestles.x.j.i ->
PHIL(i,x))

-- Senior philosopher: accepts arm-wrestling challenges from his
-- juniors between meals; may also telephone senior philosopher
-- on other table or accept a call from him between meals.

SPHIL(x) = (takes.x.4.4 -> takes.x.4.3 -> eats.x.4 ->
drops.x.4.3 -> drops.x.4.4 -> SPHIL(x)) []

phone -> SPHIL(x) []
([] j:{j | j <- PHILNAMES, j<4} @ wrestles.x.j.4 ->
SPHIL(x))

FORK(i,x) = takes.x.i.i -> drops.x.i.i -> FORK(i,x) []
takes.x.((i+1)%5).i -> drops.x.((i+1)%5).i -> FORK(i,x)

--+ JPHIL(A),PHIL(1,A),PHIL(2,A),PHIL(3,A),SPHIL(A)
--+ JPHIL(B),PHIL(1,B),PHIL(2,B),PHIL(3,B),SPHIL(B)
--+ FORK(0,A),FORK(1,A),FORK(2,A),FORK(3,A),FORK(4,A)
--+ FORK(0,B),FORK(1,B),FORK(2,B),FORK(3,B),FORK(4,B)

The first stage of proving this network deadlock-free is to separate it into essential
components (which in this case are the two tables of philosophers and forks).

Command (h for help, q to quit):l armphonephils.net

Command (h for help, q to quit):d

Network armphonephils.net is triple-disjoint

3.3. CHECKING ADHERENCE TO DESIGN RULES 89

Network armphonephils.net is busy

SPHIL(A) and SPHIL(B) are conflict-free wrt vocab

Deadlock analysis reduced to:

<JPHIL(A), PHIL(1,A), PHIL(2,A), PHIL(3,A), SPHIL(A),

FORK(0,A), FORK(1,A), FORK(2,A), FORK(3,A), FORK(4,A)>

<JPHIL(B), PHIL(1,B), PHIL(2,B), PHIL(3,B), SPHIL(B),

FORK(0,B), FORK(1,B), FORK(2,B), FORK(3,B), FORK(4,B)>

The two new subnetworks will have now been added to the stack. One of these is
selected and then analysed first as a user resource network, and then as a client-server
network once its resources have been stripped away.

Command (h for help, q to quit):n (list networks)

armphonephils.net (unresolved)

armphonephils.net_0 (unresolved) essential component

armphonephils.net_1 (unresolved) essential component

Command (h for help, q to quit):s armphonephils.net 0

Command (h for help, q to quit):a

Network armphonephils.net_0 is busy

Network armphonephils.net_0 is triple-disjoint

Process FORK(4,A) acts as a resource

...

Process SPHIL(A) is not a resource

User process SPHIL(A) obeys resource allocation protocol

...

Deadlock analysis reduces to:

<JPHIL(A), PHIL(1,A), PHIL(2,A), PHIL(3,A), SPHIL(A)>

Command (h for help, q to quit):n

armphonephils.net (unresolved)

armphonephils.net_0 (unresolved)

armphonephils.net_1 (unresolved)

armphonephils.net_0_3 (unresolved) resources stripped

Command (h for help, q to quit):c (display current network)

armphonephils.net_0_3

Command (h for help, q to quit):w

Network armphonephils.net_0_3 is busy

Network armphonephils.net_0_3 is triple-disjoint

Process JPHIL(A) obeys client-server protocol

clients(JPHIL(A)) =

{<wrestles.A.0.4>, <wrestles.A.0.3>,

<wrestles.A.0.2>, <wrestles.A.0.1>}

90 CHAPTER 3. A TOOL FOR PROVING DEADLOCK-FREEDOM

servers(JPHIL(A)) = {}

...

Network armphonephils.net_0_3 is deadlock-free

Network armphonephils.net_0 is deadlock_free

To complete the deadlock analysis the other essential component is analysed in the
same manner

Command (h for help, q to quit):s armphonephils.net 1

Command (h for help, q to quit):a

...

Command (h for help, q to quit):w

...

Network armphonephils.net_1_4 is deadlock-free

Network armphonephils.net_1 is deadlock_free

Network armphonephils.net is deadlock_free

The proof of deadlock-freedom for the network of Telephoning, Arm-wrestling,
Dining Philosophers has now been completed.

The algorithm for network decomposition requires the construction of the network
communication graph and vocabulary. Using the following algorithm, it is possible to
do this with complexity �

� � log
� � � � .

1. Start with the two arrays, first and second, that were constructed in order to estab-
lish triple disjointedness. Scan the two arrays to construct the list of pairs of the
form

�
first

��� � �
second

��� � �
such that both elements of the pair have been defined.

This list will contain all the edges of the communication graph, but some of them
may be duplicated. The set of values of

�

which contribute to this list is the vocab-
ulary of the network.

2. Purge duplicate pairs from the list by performing a merge-sort (as described in
[Paulson 1991]). This will result in a list of the edges in the communication graph.

The first step of this algorithm has complexity �
� � � , where � is now taken as the num-

ber of edges in the communication graph; the second, which involves performing a
merge-sort, has complexity �

� � log
� � � � .

To complete the network decomposition, local checks of process pairs remain to be
done, which is �

� � � , and also some global graph operations, which can also be done in
�
� � � using the DFS. So network decomposition can be done with overall complexity

�
� � log

� � � � .

3.3. CHECKING ADHERENCE TO DESIGN RULES 91

Restricting a Network to its Vocabulary

Deadlock Checker also has a feature to restrict a network to its vocabulary (only shared
events visible). By lemma 5 (page 32) we know that if a network transformed in this
way is deadlock-free then so must have been the original network. This is useful, for
instance, in the case of a network containing a cyclic-PO essential component, where
some of the processes have had extra channels added for communication with processes
in other essential components, which are not used according to the cyclic-PO paradigm.

However it is possible for the act of hiding these extra channels to introduce diver-
gence, which renders the resulting network unsuitable for deadlock analysis by our
methods. This only happens when an arbitrarily long sequence of communications on
the external channels is possible.

The technique that we use to restrict a network to its vocabulary comprises the fol-
lowing steps

1. The vocabulary of the network � is calculated (those events which occur in the
alphabet of two processes).

2. For each process � & all events in ��� � � are hidden. In the normal-form transition
system for � this involves relabelling with � those transitions labelled with any
of these events and removing acceptance sets which include these events.

3. The resulting transition system then needs to be renormalised. This is performed
using Roscoe’s algorithm as described in section 3.1.

4. The transformed network is placed on Deadlock Checker’s network stack. If it
is subsequently proven deadlock-free then so must be the original network.

Checking for Livelock-Freedom

Deadlock Checker does not overlook the important property of livelock-freedom. We
implement the proof rule of Roscoe (theorem 5, page 31) which works in many cases.
The order in which the processes are supplied is significant here. The intention is to
establish divergence-freedom after all internal communications have been hidden. To
do this, we need to show that no process can communicate indefinitely with those before
it in the network list, as follows.

1. For each process � & we calculate the subset of its alphabet shared with predeces-
sors in the process list and call this

� & .
2. We then consider the subgraph of the normal-form transition system of � & con-

taining only those arcs labelled with events which lie in
� & .

3. If this subgraph contains no circuit then � & cannot communicate indefinitely with
its predecessors in the network list.

92 CHAPTER 3. A TOOL FOR PROVING DEADLOCK-FREEDOM

3.4 Towards a General Purpose Algorithm

The SDD algorithm

The tools described above are useful for proving deadlock-freedom for networks con-
structed according to rigid design rules. But they do not allow for any improvisation by
the creative programmer. The only scope for improvement is the addition of checking
code for extra design rules, as and when required.

Despite these limitations, the design rules that are understood by Deadlock Checker
enable the automatic proof of deadlock-freedom for networks of an unprecedented size.

In this section we shall describe the development of an alternative algorithm, which
has no knowledge of design rules, and yet turns out to be able to do much offered by
the above tools, and more besides. A characteristic of deadlock-states of busy, triple-
disjoint networks, is that they involve a cycle of ungranted requests (theorem 1, page
29). So if we can prove that a network can never have a cycle of ungranted requests,
then it is deadlock-free. This is the fundamental principle which underlies the proof
technique of variant functions (theorem 2, page 29).

We now present a closely related alternative to variants, the SDD algorithm. This
attempts to prove deadlock-freedom by forming a state-dependence digraph. This is
basically a kind of giant wait-for digraph which instead of having just a single vertex
to represent a process has a different vertex for each minimal acceptance set of each
normal-form state.

1. Starting with a network of normalised transition systems ��� � � � �
�
� � � ����� we form

the communication graph
�

, and a digraph, SDD, which is initially empty.

2. For each edge
� � � � � � of

�
we form the set

� � � � � � � of all normal-form state
pairs

� � � � � � that processes � and � � can be in simultaneously.

3. For each pair
� � � � � � in each

� � � � � � � , for each minimal acceptance set of
�

and for each minimal acceptance set � of
� � , if � has an ungranted request to � � ,

with respect to � – the vocabulary of the network, add arc
� � � � � � � � � � � � � � � � � �

to digraph SDD. And if � � has an ungranted request to � , with respect to � , add
arc

� � � � � � � � � � � � � � � � � � .
4. We now have constructed a digraph, SDD. If this is circuit-free the network is

reported as being deadlock-free.

Theorem 10 A busy, triple-disjoint network, which has a circuit-free state dependence
digraph, is deadlock-free

Proof. Consider a busy, triple-disjoint network � � ��� � � � � � $ � . Suppose that � has
a deadlock state

� � � � � � � � � � � � $ �
�

3.4. TOWARDS A GENERAL PURPOSE ALGORITHM 93

In this state there is a cycle of ungranted requests

� & � �
� �� � � &�� �
� �� � � � & � �
� �� � � & �
Where each process � & � has performed trace ���� ��� & � , and is refusing set

� & � . Let
this trace and refusal set correspond to state and acceptance set

� � &�� � &�� � of the normal
form transition system for � &�� . As � &�� has an ungranted request to � &�� � � in state � , the
analysis of the two processes will produce an arc from vertex

� � &�� � � &�� � &�� � to vertex� � &�� � � � � &�� � � � &�� � � � in the state dependence digraph. Performing this analysis of each
pair of consecutive processes in the cycle of ungranted requests will result in a circuit
in the state dependence digraph.

So we have shown that if there is a deadlock-state of � , then there is a circuit in its
state dependence digraph. This completes the proof �

Here is what happens when we apply the SDD algorithm to the Dining Philosophers
network.

Command (h for help, q to quit):l phils.net

Command (h for help, q to quit):v

Network phils.net is triple-disjoint

Network phils.net is busy

Found possible cycle of ungranted requests:

FORK(0) ready to do drops.0.0 blocked by PHIL(0)

PHIL(0) ready to do takes.0.4 blocked by FORK(4)

FORK(4) ready to do drops.4.4 blocked by PHIL(4)

PHIL(4) ready to do takes.4.3 blocked by FORK(3)

FORK(3) ready to do drops.3.3 blocked by PHIL(3)

PHIL(3) ready to do takes.3.2 blocked by FORK(2)

FORK(2) ready to do drops.2.2 blocked by PHIL(2)

PHIL(2) ready to do takes.2.1 blocked by FORK(1)

FORK(1) ready to do drops.1.1 blocked by PHIL(1)

PHIL(1) ready to do takes.1.0 blocked by FORK(0)

The state dependence digraph for the Dining Philosophers is shown in figure 3.9,
constructed from the normal form transition systems shown in figure 3.4. (As each
process in the network is deterministic there is exactly one minimal acceptance set cor-
responding to each state. In the case of a non-deterministic system there would need to
be more than one vertex to represent certain states in the state-dependence digraph.) It
contains a single circuit, representing the situation where each philosopher has picked
up his left fork.

Although SDD works in many cases where the variant functions could have been
used, it is not quite so powerful, because of the fact that an arbitrary number of maximal
failures of a process can be mapped onto a single state in the normal form. One example
of this is that the SDD technique will often fail for networks of cyclic processes which

94 CHAPTER 3. A TOOL FOR PROVING DEADLOCK-FREEDOM

Figure 3.9: Construction of SDD for Dining Philosophers

FORK(4)
State 0

State 1

State 2 State 3

State 4

State 0

State 1 State 2

State 0

State 1

State 2 State 3

State 4

State 0

State 1 State 2

State 0

State 1

State 2 State 3

State 4

State 0

State 1 State 2

State 0

State 1

State 2 State 3

State 4

State 0

State 1 State 2

State 0

State 1 State 2

State 0

State 1

State 2 State 3

State 4

PHIL(0)

FORK(0)

PHIL(1)

FORK(1)

PHIL(2)

FORK(2)

PHIL(3)

FORK(3)

PHIL(4)

3.4. TOWARDS A GENERAL PURPOSE ALGORITHM 95

are amenable to variant function technique. It will sometimes find a ‘phantom’ cycle of
ungranted requests which cannot actually occur. For instance, consider what happens
when we apply the algorithm to the deadlock-free toroidal cellular array.

Command (h for help, q to quit):l torus.net

Command (h for help, q to quit):v

Found possible cycle of ungranted requests:

CELL(2,3) ready to do e.2.3.right e.3.3.left

blocked by CELL(3,3)

CELL(3,3) ready to do e.3.2.down e.3.3.up

blocked by CELL(3,2)

CELL(3,2) ready to do e.0.2.left e.3.2.right

blocked by CELL(0,2)

CELL(0,2) ready to do e.0.1.down e.0.2.up

blocked by CELL(0,1)

CELL(0,1) ready to do e.0.1.right e.1.1.left

blocked by CELL(1,1)

CELL(1,1) ready to do e.1.0.down e.1.1.up

blocked by CELL(1,0)

CELL(1,0) ready to do e.1.0.right e.2.0.left

blocked by CELL(2,0)

CELL(2,0) ready to do e.2.0.up e.2.3.down

blocked by CELL(2,3)

The cycle of ungranted requests that has been reported cannot actually occur. Proc-
ess CELL(2,3) can only have an ungranted request to CELL(3,3) if the latter has yet to
complete its previous communication cycle. Also no cyclic-PO process can ever have
an ungranted request to a another one that has completed more cycles. Following the
potential cycle of ungranted requests in this way actually takes us back to the original
process CELL(2,3) in the same state but on an earlier cycle. Clearly a process cannot be
on two I/O cycles simultaneously, so the potential cycle of ungranted requests is unreal.
What it actually represents is a spiral of ungranted requests backwards in time.

We shall address this problem by refining the algorithm later on, but first let us
explore the power of this prototype version in relation to some other design rules.

Applications of the SDD algorithm

Theorem 11 Any circuit-free client-server network composed from finite-state ‘basic’
processes has a circuit-free state dependence digraph

Proof. Consider a basic client-server network � � � � � � � � � � $ � , with a circuit-free
topology. This is deadlock-free by rule 7 (page 47). We shall show that the state depen-
dence digraph of � can never have a path of length 2, going through states of processes

96 CHAPTER 3. A TOOL FOR PROVING DEADLOCK-FREEDOM

� & � ��� � � � , such that the relationship between � & and ��� is client to server and the rela-
tionship between � � and ��� is server to client. Then the circuit-freedom of the state
dependence digraph will follow as a direct consequence of the circuit-freedom of the
client-server digraph.

So first suppose that there is an arc in the state dependence digraph

� � ��� � � � � � � � � � � � � � � � � �

where � � communicates with ��� as server to client. This arc represents a potential
ungranted request in the subnetwork

��� � � ��� �
and we can deduce, from the definition of the basic client-server protocol, that this can
only occur when ��� is waiting for � � to perform a requisition or drip event. It also fol-
lows from rule (b) that � � is ready to perform all its server requisition and drip events,
i.e they are all contained in � .

Now suppose that there is another arc in the state dependence digraph

� � � & � � & � & � � � ��� � � � � � � �

where � & communicates with � � as client to server. This arc represents an ungranted
request in the subnetwork

��� & � � � �
We already know that � contains every server requisition and drip event of ��� , so � &
must be waiting to communicate with � � on a client acknowledge channel. But this is
impossible by rule (c) of the protocol.

This contradiction means that there is no path in the state dependence digraph which
goes from client to server and then from server to client. Therefore, as the client-server
digraph is circuit-free, there can be no circuit in the state dependence digraph, so the
network will be reported as being deadlock-free by the SDD algorithm. �

The SDD algorithm is clearly more powerful than the tool for checking deadlock-
freedom in basic client-server networks. It will always work and does not require the
processes to be supplied in any particular order. However, as it has no intelligence reg-
arding the actual protocol, it will probably be less useful as a debugging aid, especially
for analysing networks constructed by teams rather than by individuals.

Theorem 12 Any finite-state user-resource network which obeys the Resource Alloca-
tion Protocol has a circuit-free state-dependence digraph.

Proof. Consider a finite-state user-resource network which adheres to the Resource
Allocation Protocol (page 56). Suppose that there is a circuit in its state-dependence

3.4. TOWARDS A GENERAL PURPOSE ALGORITHM 97

digraph. Due to the bipartite nature of the network, this circuit must run through a
sequence of vertices of the form

� � � &�� � � &�� � &�� � � � � � � � � � � � � � � � � � � � � & � � � & � � & � � � � � � � � � � � � � � � �
A user process can only have an ungranted request to a resource when it is waiting to
claim it. We deduce that for each process � � � , state

�
� � is the normal-form state where

it is waiting to be released by the next process in the circuit,
� &�� � � (addition modulo

�
),

which is in state
� & � � � . (See figure 3.6.)

Now the arc
� � � � � � � � � � � � � � � � &�� � � � � &�� � � � &�� � � � � represents an actual ungranted

request within the subnetwork � � &�� � � &�� � � � so it must be possible for
� &�� � � to be holding

resource � � � in state
� &�� � � . As it also tries to claim resource � � � � � from this state, it

follows that � � � ��� � � � � , by the terms of the protocol. Applying this result all the way
around the circuit leads to the following contradiction

� � � ��� � � � � � � � � � � ��� � � �

From this we conclude that the state-dependence digraph is actually circuit-free, and
the network will be reported as being free of deadlock by the SDD algorithm �

In practice, the SDD algorithm also seems to be a useful tool for analysing user-
resource networks, where the users communicate with each other, obeying the Extended
Resource Allocation Protocol. It has no trouble with proving the Arm-Wrestling Dining
Philosophers deadlock-free (or indeed the Telephoning Arm-Wrestling Dining Philoso-
phers). It would be nice if whenever the subnetwork of user processes could be proven
deadlock-free by the SDD algorithm so could be the whole network. However this is
not always the case, as the following example illustrates.

pragma channel a,b,c,c1,r1,c2,r2

U1 = (b -> U1 |˜| a -> U1) [] c1 -> r1 -> U1
U2 = (c -> U2 |˜| b -> U2) [] c2 -> r2 -> U2
U3 = a -> c -> U3
R = c1 -> r1 -> R [] c2 -> r2 -> R

--+ U1, U2, U3, R

Here network � � � � � � � � � � is provably deadlock-free by the SDD algorithm, but
� � � � � � � � � � � � is not, even though it obeys the Extended Resource Allocation Pro-
tocol, and so is, in fact, deadlock-free. In the former case events

$ � ,
� � ,

$
� , and

�
� lie

outside the vocabulary, so there are no ungranted requests between
� � and

� � with
respect to the vocabulary. But in the latter case the vocabulary includes all these events
and a potential cycle of ungranted requests is reported.

U2 ready to do b blocked by U1
U1 ready to do a blocked by U3
U3 ready to do c blocked by U2

98 CHAPTER 3. A TOOL FOR PROVING DEADLOCK-FREEDOM

Analysing Non-Standard Networks with SDD

Welch, Justo and Willcock consider an interesting example of client-server network
where the basic protocol has been slightly abused [Welch et al 1993]. The system com-
prises a USER process which is stimulated by regular ‘ticks’ from a CLOCK process.
The USER process may reset the interval between ticks by means of a reset channel.
Conceptually, process USER communicates as both a client and a server with process
CLOCK. In order to avoid a circuit of client-server relationships a ‘circuit-breaker’,
consisting of a one-place overwriting buffer OWB together with a prompter PROMPT,
is inserted along the reset channel. The client-server digraph of the resulting system is
shown in figure 3.10.

Figure 3.10: Client-Server Digraph for CLOCK Network

PROMPT

< tick >
CLOCK USER

OWB

< reset > < user_reset >

< req, ans >

The machine-readable CSP code for this network is as follows:

pragma channel tock,user_reset,req,ans,reset,time_out

USER = tock -> (USER |˜| user_reset -> USER)
PROMPT = req -> ans -> reset -> PROMPT
OWB = user_reset -> (req -> ans -> OWB [] OWB)
CLOCK = reset -> CLOCK [] time_out -> tock -> CLOCK

--+ PROMPT,CLOCK,USER,OWB

In this definition CLOCK has an internal event time out. This event represents a
signal from an internal timer process that it is time to send out the next tock. Each
process behaves according to the basic client-server protocol, apart from OWB. This
process will shut down service on channel req whenever its buffer is empty. This con-
travenes rule (b) of the protocol. Nonetheless Welch, Justo and Willcock claim that the
network is deadlock-free. This cannot be shown by the algorithm which tests adherence
to the basic client-server protocol, but it is no problem for the SDD algorithm.

3.4. TOWARDS A GENERAL PURPOSE ALGORITHM 99

Command (h for help, q to quit):l clock.net

Command (h for help, q to quit):v

Checking PROMPT with CLOCK

Checking PROMPT with OWB

Checking USER with CLOCK

Checking USER with OWB

Network clock.net is deadlock-free

This is a good example of a situation where a programmer’s intuition has been auto-
matically confirmed by SDD, avoiding the need for an analytic proof. As the system
was designed with an aircraft control system in mind, this could be useful.

Accommodating Cyclic Processes

In general, the SDD is unable to prove networks of cyclic processes deadlock-free.
However these are an important ingredient of many parallel algorithms. Fortunately
we can remedy the problem as follows. First of all we extend the network analysis to
produce a state-dependence digraph with coloured arcs.

Remember that arc
� � � � � � � � � � � � � � � � � � , represents an ungranted request from

process � in state
�

to process � � in state
� � . If this can occur only when � and � �

have each visited their initial state exactly the same number of times, we colour the arc
red. Alternatively if � must have visited its initial state more times than � � we colour
the arc green. Otherwise the arc is coloured blue to represent uncertainty.

The arc colouring is calculated in a similar way to the technique for specification
checking described on page 71. First we construct a set of records of the form

� � �
�
� ���

�
count �

Each record contains a pair of states that � and � � may simultaneously be at together
with a numeric labelling: count. This represents the number of times that the initial
state of � has been ‘crossed’ minus the number of times that the initial state of � � has
been crossed. A process is said to have crossed its initial state whenever it performs an
event which returns it to its initial state. If the numeric labelling of state pairs is found
to be inconsistent, i.e two records are found � � �

�
� ���

�
count � and � � �

�
� ���

�
count � � with

count *� count � , then all the numbering information regarding states of � � � � � � is dis-
carded. Any ungranted request found between the two processes is regarded as being
‘uncertain’ and coloured blue. If, however, a consistent numbering is discovered it may
be used to colour ungranted requests red, green or blue in the manner described above.

To illustrate how the coloured state dependence digraph is constructed, let us return
to the example of the two-place buffer from page 73. Recall that this was defined as
follows

LEFT � in � mid � LEFT

100 CHAPTER 3. A TOOL FOR PROVING DEADLOCK-FREEDOM

� LEFT � � in,mid �

RIGHT � mid � out � RIGHT

� RIGHT � � mid,out �

� � � LEFT
�
RIGHT �

The exhaustive search for records of the form
�
� LEFT

�
� RIGHT

�
count

�
proceeds as fol-

lows. First we have
pending �
� ��������� ��� � , done � � �

Check
��������� ���

; possible transition is in; neither initial state is crossed; leads to record:� � � ������� . Now we have

pending ��� � � � ������� � , done �
� ��������� ��� �
Check

� � � ����� � ; possible transition is mid; initial state of LEFT is crossed; leads to
record:

� ��� � � � � . Now we have

pending �
� � ��� � � � � � , done �
� ��������� ��� � � � � ������� �
Check

� ��� � � � � ; possible transitions are in and out; if in is performed neither initial
state is crossed but if out is performed initial state of RIGHT is crossed; lead to records� � � � � � � and

� ��� �������
. Now we have

pending �
� � � � � � � � � , done �
� � � ����� ��� � � � ��� ����� � � ��� � � � � �
Check

� � � � � � � ; possible transition is out; initial state of RIGHT is crossed; leads to
record

� � ����� ��� . Now we have

pending � � � , done �
� ��������� ��� � � � � ������� � ����� � � � � � � � � � � � � �
Now we have discovered all the state pairs in which processes LEFT and RIGHT may
simultaneously rest. For each pair we have found an invariant property count which
represents the number of times that LEFT has visited its initial state more than RIGHT.

Suppose that LEFT and RIGHT are embedded in some network � � which has a
vocabulary � containing events in and out. We find that state pair

� ��� ���
involves an

ungranted request from RIGHT to LEFT with respect to � . This is represented as a red
arc in the coloured state dependence digraph because the value of count is always zero
for this state pair. We also find that state pair

� � � � � involves an ungranted request from
LEFT to RIGHT with respect to � . This is represented as a green arc in the coloured
state dependence digraph because the value of count is always 1 for this state pair. The
other state pairs,

����� � � and
� � � ��� do not involve any ungranted requests.

3.4. TOWARDS A GENERAL PURPOSE ALGORITHM 101

So the analysis of LEFT and RIGHT would result in the addition of the following
arcs to the coloured state dependence digraph for � � .

Red arc:

��
�
��
� Process: RIGHT

State:
�

Acceptance set: � mid �

� �
� �

��
� Process: LEFT

State:
�

Acceptance set: � in �

� �
�
� �
�

Green arc:

��
�
��
� Process: LEFT

State: �
Acceptance set: � mid �

� �
� �

��
� Process: RIGHT

State: �
Acceptance set: � out �

� �
�
� �
�

When the same analysis is applied to processes FORK
� ���

and PHIL
�����

in the Din-
ing Philosophers network, inconsistencies are found in the count variable. This obvi-
ous by the fact that process FORK

�����
may cross its initial state any number of times,

by cycling on events takes � � � � and drops � � � � , before process FORK
�����

has performed
any event at all. In this case all the ungranted requests detected between the processes
would appear as blue arcs in the coloured state dependence digraph.

Any circuit in the coloured state-dependence digraph containing a blue arc remains
a potential cause of deadlock, so does any circuit which contains only red arcs. But a
circuit containing no blue arcs and at least one green arc does not represent a cycle of
ungranted requests in the network, for the ungranted requests cannot all occur simulta-
neously.

We check for deadlock-freedom as follows. First we use a variant of the DFS to
remove all those arcs from the digraph which do not lie on any circuit (described in
appendix B). If any blue arc remains then there is potential for deadlock. Otherwise
all the remaining arcs must be red or green. The only risk of deadlock in this case is if
there is a circuit consisting only of red arcs, so we remove all the greens arcs and then
see whether any circuit still remains.

Given that the motivation for the CSDD algorithm was to be able to handle cyclic
processes, the following result is not altogether surprising.

Theorem 13 Take a deadlock-free network of cyclic-LOP processes. Its coloured state-
dependence digraph contains neither a blue arc nor a circuit of red arcs.

Proof. Let � � ����� � � � � $ � be a deadlock-free network of cyclic-LOP processes. Each
process is finite-state by definition. We observe that although a cyclic-LOP process
does not necessarily visit the same states on each cycle, its initial state is always crossed
between cycles. Between any two visits to a particular state, such a process performs
every event in its alphabet the same number of times, equal to the number of times that
it has crossed its initial state.

Consider a subnetwork of two communicating cyclic-LOP processes, ��� & � ��� � . Sup-
pose that these processes may simultaneously be in states � � � and � � � . Between two
particular visits to this state pair, suppose that � & performs

� & cycles of events in ��� &

102 CHAPTER 3. A TOOL FOR PROVING DEADLOCK-FREEDOM

and ��� performs
�
� cycles of events in ����� . As the processes communicate with each

other we have
��� &

�
��� � *�
� �

Let
$

be an event from ��� &
�

��� � . Between the two visits to the state pair, event
$

has been performed
� & times by � & and has also been performed

�
� times by ��� . So� & � �

� ; in other words � & and � � must each cross their initial state the same number
of times between any two visits to a given pair of states.

This means that when the subnetwork ��� & � ���%� is analysed for records of the form

�
� � �

�
� � �

�
count

�

where count represents the number of times more that � & has crossed its initial state
than � � , we shall find that count is invariant for any pair of states.

A cyclic-LOP process can only have an ungranted request to another process which
has performed the same number of cycles or one less cycle. It follows that the coloured
state dependence digraph for � contains only red and green arcs, no blue arcs. Suppose
that a circuit of red arcs were found. This would correspond to a sequence of processes

��� &�� � � � � & � � � &�� �
such that each process � & � would have a state where it could perform some event

$
� with

its successor in the sequence but not be able to to perform some other event
$

� - � with
its predecessor in the sequence, despite having completed the same number of cycles.
This would imply the existence of a circuit in the

relation,

$ �
 � �
 $
�

 $ �

which would contradict theorem 8 (page 41), so there can be no circuit of red arcs in the
coloured state dependence digraph for � . It follows that � will be passed as deadlock-
free by the CSDD algorithm �

Unlike the SDD algorithm, the CSDD algorithm has no problem with the toroidal
cellular array.

Command (h for help, q to quit):x

Network torus.net is deadlock-free

Although the new algorithm can handle cyclic-LOP networks it is not guaranteed
to be able to prove deadlock-freedom for cyclic-PO networks in general, as these may
have legitimate cycles of ungranted requests at times, despite being deadlock-free.

Note that when it is required to use CSDD to prove deadlock-freedom for hybrid
networks including cyclic subnetworks, one has to be careful that the extra communi-
cations added to the cyclic processes do not remove the property that they should each
cross their initial state exactly once after each cycle.

3.4. TOWARDS A GENERAL PURPOSE ALGORITHM 103

Each stage in the analysis has �
� � � complexity (where � is the number of edges

in the communication graph), given our usual assumptions about the number of states
and events of each process, except for the construction of the communication graph and
vocabulary, which we have shown to be feasible with �

� � log
� � � � complexity. Thus

the CSDD algorithm can be performed with complexity �
� � log

� � � � .
Allowing for Weak Conflict

Another useful way to extend the SDD algorithm is to incorporate theorem 3 (page 30).
Recall that if a network is shown to be free of strong conflict then any deadlock state
must contain a cycle of ungranted requests of length at least three. This means that if
the state dependence digraph of a strong conflict free network contains no circuits of
length three or more then the network is deadlock-free regardless of how many circuits
of length two are found.

The property of strong conflict freedom may be checked during the construction of
the state dependence digraph at virtually no extra cost. If a strong conflict is found then
it is reported and the algorithm terminates.

Searching for circuits of length three or more in a simple digraph may be performed
by the following algorithm. For each arc

� � � � � � of the digraph
� � � � � , use the DFS

to look for a path from � � to � in the digraph
� � � � � � � � � � � � � � . If no such path is

found then the digraph has no circuit of length three or more.
For our coloured digraph, we adapt this algorithm as follows. First we check that

there is no circuit of length at least three containing a blue arc. For each blue arc
� � � � � �

we use the DFS to look for a path from � � to � in the digraph
� � � � � � � � � � � � � � . If

no such circuit is found then we remove all the blue and green arcs from the digraph
and search for a circuit of length three or more in the resulting red digraph. If none is
found we have proved deadlock-freedom.

In the prototype version of Deadlock Checker, this improvement has been included
as part of the CSDD test, but not the SDD test. Unfortunately the technique that we use
to check for circuits of length three or more, increases the complexity to �

� � � � , as a
DFS search may now be required for each arc in the digraph. However, there may well
exist a more efficient technique than this.

Potential for Further Improvement

Despite the improvements that we have made to the original SDD algorithm, the possi-
bility remains of detecting bogus cycles of ungranted requests. One way in which this
has been observed in practice has been the detection of a circuit in the state dependence
digraph which crosses more than one state of the same process. It is clearly impossible
for a process to be in two states at the same time so such a circuit cannot represent a
real cycle of ungranted requests.

Suppose that we now colour the vertices of the state dependence digraph, where
each colour represents the states of a particular process. To avoid the problem described

104 CHAPTER 3. A TOOL FOR PROVING DEADLOCK-FREEDOM

above we are looking for an algorithm to determine whether this digraph contains a
circuit in which every vertex has a different colour. At the time of writing no efficient
algorithm has been found to decide this question in general (which may easily be shown
to belong to class NP). However even an inefficient algorithm would be useful in the
case where the state-dependence digraph contains only a small number of circuits.

A more promising approach involving this vertex colouring is based on the concept
of request selector functions[Dathi 1990, Roscoe 1995]. Suppose that there is some
vertex of the state dependence digraph, � � � � � � � � , which has outgoing arcs to
vertices which have several different colours. Now suppose that we choose one par-
ticular such colour � � � � and delete every outgoing arc from � that points to a vertex
with a different colour from � � � � . If the stripped down version of the state dependence
digraph which results contains no circuit then it is still the case that the network must
be deadlock-free. The result still holds no matter how many vertices � are treated in
this manner.

This may be informally justified as follows. What we have actually done is to choose
a particular process to which � has a request, when it is accepting the events of in
state

�
, and to ignore requests to other processes. For any deadlock state of the net-

work, we could still find a cycle of ungranted requests corresponding to a circuit in the
stripped down state dependence digraph.

It is thought that this technique should be useful as follows. Suppose that a state-
dependence digraph has been constructed and is found to contain circuits. An algorithm
is envisaged which would attempt to find a sequence of vertex and colour selections
leading to the removal of sufficient arcs to render the digraph circuit-free, and hence
prove deadlock-freedom.

We could also extend the power of the checker to embrace the design rule of Brookes
and Roscoe (theorem 4, page 30). We might do this by adding an extra dimension to the
coloured state dependence digraph: arcs would either be ‘flashing’ or ‘non-flashing’.
An ungranted request from a state of process � to a state of process � would be set
to be flashing only if it had been shown that � must have communicated with � more
recently than with any other process in that situation. Then any circuit of flashing arcs,
of length greater than two, could not represent a real cycle of ungranted requests in the
network, as the ungranted requests could not occur simultaneously. This follows from
the reasoning we used to prove theorem 4.

It would also be relatively straightforward to allow for networks where the processes
can terminate. Dathi defines a network to be prudent if no process ever tries to com-
municate with one that is only willing to perform event � [Dathi 1990]. With a slight
adjustment to the definition of deadlock-freedom to allow for termination, the CSDD
algorithm could be implemented in exactly the same way for a network containing ter-
minating processes which had been shown to be prudent.

Due to the exponential state explosion as a network grows in size, it seems unlikely
that there is an algorithm for deciding deadlock-freedom for finite-state processes which
is both efficient and complete. There are certain networks for which deadlock-freedom
depends on some crucial property of global states. For instance the analysis of a ‘token-

3.4. TOWARDS A GENERAL PURPOSE ALGORITHM 105

ring’ system in [Brookes and Roscoe 1991] involves proving that there is exactly one
‘token’ present in any state of the system. The techniques described above, being based
on local analysis, would be inadequate for this particular task. However there is cer-
tainly much scope for automatic assistance in performing analyses of this nature. The
limitations of proving deadlock-freedom purely by local analysis are further discussed
in [Roscoe 1995].

There is clearly potential for expanding the armoury of efficient verification tech-
niques such as CSDD. If these are to be used in anything other than a trial and error
fashion they must be backed up with further design rules which will enable networks
to be built not only deadlock-free, but that may be easily verified so.

Chapter 4

Engineering Applications

Introduction

This chapter is intended to illustrate how the preceding work may be applied to real
problems in software engineering. The occam programming language is introduced
for this purpose and its relationship with CSP is elaborated. We then present three
examples of designing and building industrial-scale deadlock-free concurrent systems.

The first problem considered is the numerical solution to Laplace’s equation using
the method of successive over-relaxation. This is typical of the sort of computationally-
intensive task that parallel computers are often required to perform. Deadlock-freedom
is incorporated into the design by using the cyclic-PO paradigm.

Next we describe the construction of a deadlock-free message routing program for
a multiprocessor computer system. Traditionally, one of the most laborious tasks in
parallel programming has been the routing of messages between processes which run
on non-adjacent physical processors. For this reason a great deal of effort has been
directed towards developing deadlock-free message routing programs. The intention
of this is to separate all the physical message passing onto a lower conceptual level,
and to implement virtual channels between any two locations in a processor network.
Here we describe the construction of a store and forward deadlock-free message rout-
ing system for a network of eight processors configured as a cube. The client-server
paradigm is used for this purpose. We then modify the program to implement worm-
hole routing, which is generally more efficient than store and forward-routing. In so
doing we breach the rules of the client-server paradigm. However the resulting system
is proven deadlock-free using the SDD algorithm.

The final example involves a published algorithm for a control system for a tele-
vision studio. The system is shown to be prone to deadlock. However, with a simple
modification, it may be transformed into a circuit-free client-server network resulting
in guaranteed deadlock-freedom.

106

4.1. THE OCCAM PROGRAMMING LANGUAGE 107

Table 4.1: Relationship between occam and CSP
occam CSP
SEQ � ���
P
Q

PAR
� � �	� ��� � � �
 ��� � � �

���
�

� � �
P
Q

a?x
� � � � SKIP

b!y
� � � � SKIP

ALT
$ � � � � � � � � � �

c?x
P

d?y
Q

IF � �
�
 �

b
P

NOT b
Q

WHILE TRUE � � � � �
�

P

4.1 The occam Programming Language

The occam programming language, which is described in [INMOS 1988], was origi-
nally derived from the CSP model. The notation is somewhat different, but is elegant
nonetheless. The language is unusual in that the indentation of the lines of code is syn-
tactically significant. In the absence of an efficient compiler for CSP itself, occam
represents the most appropriate implementation language for programs designed using
CSP specifications.

Table 4.1 lists some roughly equivalent constructions between the two languages.
One significant difference is that the occam parallel operator incorporates automatic
hiding of communication events, which remain visible in CSP. This feature has the
potential to introduce the phenomenon of livelock into a network. There are also cer-
tain extra high-level aspects to occam, such as prioritised external choice, timers and
the assignment of variables.

Ideally we would like to build checks for deadlock-freedom and livelock-freedom
into occam compilers. One way to do this would be to convert into CSP state-transition
digraphs as used by the algorithms of Deadlock Checker. The translation of occam into
CSP is considered informally in [Scattergood and Seidel 1994]. Problems arise from

108 CHAPTER 4. ENGINEERING APPLICATIONS

the treatment of the values of variables, leading to a potential explosion in the state-size
of the resulting CSP. For instance a process that has a local variable which can take any
real numeric value, usually needs to have at least one CSP state for each value.

Realistically we have to look at how much information can be discarded in the con-
version, without removing any potential deadlocks or livelocks so that these may be
detected. We need to establish a safe level of abstraction which maximises the per-
formance of the tools. It is usually safe to represent communication events in occam
purely by their channel names in the CSP specification. The one exception is when
using a variant protocol on a particular channel. If the inputting process is unwilling to
accept the type of datum offered by the outputting process, a local deadlock will ensue.
(However, if an exhaustive case list is offered by the inputting process there can be no
problem, but this may be impractical.).

The opposite route of translation from CSP to occam is considered in [Scott 1994].
The conversion is based on denotational semantics for occam [Goldsmith et al 1993].

4.2 Case Studies

Numerical Solution to Laplace’s Equation

We consider the design and implementation of a parallel program to calculate the first
order finite difference solution of Laplace’s equation, by the method of successive over-
relaxation. This technique is described in [Fox et al 1988].

The two dimensional Laplace equation is given by� � �� � � �
� � �� � � � �

We seek a solution for the unknown potential,
�

, across a rectangular grid domain,
given fixed boundary values. We define an

� � � array
� � � � , to represent the

�
th

approximation to the result. Individual array elements are denoted
� � � �& � , where i ranges

from
�

to
� � � , and j ranges from

�
to � � � . Each generation of

�
is calculated by

the following iterative equation (We assume that
� � � � is known.)

� � � �&
�
� �

�
�
� � � � �& - �

�
� � � � � �&

�
� - � � � � � - � �&�� �

�
� � � � � - � �&

�
� � ��� � � � � � � � � � - � �&

�
�

where
� � � � � � � � �
 � � � � � � � � �

� � � �&
�
� � � � � �&

�
� otherwise (fixed boundary condition)

where � is the relaxation factor.
The design of this parallel program is similar to the toroidal cellular automaton of

section 2.1. We allocate a cyclic-PO process, CELL
� � � � �

to each grid element, con-
nected by input and output channels to its neighbours. Process CELL

� � � � �
is responsi-

ble for calculating successive iterations of
� &
�
� . (The processes representing the bound-

4.2. CASE STUDIES 109

ary elements perform a trivial task as their state is fixed.) Each process also has bidi-
rectional client-server connections to a control process, CONTROL, for periodic resets.

It will be seen that the iterative equation imposes an ordering on channels between
neighbouring grid cells – on a given I/O cycle, a process needs to wait for its imme-
diate left and upper neighbours to compute their new states, before it can inquire their
new values and compute its own new state. Figure 4.1 illustrates a feasible deadlock-
free channel ordering for this strategy. Based on this labelled connection diagram, the
communication pattern of each process in the network is defined as follows.

CHAT
� � � � � � SKIP
 out �

�
�

� � in �
�
�

� � SKIP

CELL
� � � � � � CHAT

� � � � � �� ���
�

�
�

�
� left � SKIP

� ��� ����
�

�
�

�
� up � SKIP

� � �
����
�

� �
�

� � ��� � � � � left � SKIP
� ��� �� �

�

�
�

� � ��� � � up � SKIP
� ��� �� �

�

� � � � � � � � right � SKIP
� ��� �� �

�

�
�

� � � � � � down � SKIP
�

� ���
� �

� ���
�

�
�

�
� right � SKIP

� ��������
�

�
�

�
� down � SKIP

� � �
CELL

� � � � �

where
� � � � � � � � �
 � � � � � � � � �

CELL
� ��� � � � CHAT

� ��� � � �
�

� � � � � left � �

�

�
�

�
� right � CELL

� ��� � �

CELL
� � � � � � � � CHAT

� � � � � � � �
�

�

� � � � � � � � left � �

�

� � � �
�
�

�
� right � CELL

� � � � � � �

where
� � � � � � � � �

CELL
� � � ��� � CHAT

� � � ��� �
�

�

�
� � � up � �

�

�
�

�
� down � CELL

� � � ���

CELL
� � � � � � � � CHAT

� � � � � � � �
�

�

�
�

� � � � � � up � �

�

�
�

� � � �
�
� down � CELL

� � � � � � �

110 CHAPTER 4. ENGINEERING APPLICATIONS

Figure 4.1: Labelled Connection Diagram for Laplace Solver

O

N

T

R

O

L

L

E

R

(i,j)
CELL

e.(i+1).j.left

e.i.j.up e.i.(j-1).down

e.i.j.righte.(i-1).j.right

e.i.j.left

e.i.(j+1).up e.i.j.down

C

n+2

1 2 2 3 3 4

2 3 3 4 4 5

3 4 4 5 5 6

42 3 5

1 2 3 4

3 4 5 6

2 3 4 5

n+m-5 n+m-4
n+m-3

n+m-5

n+m-4

n+m-4
n+m-4 n+m-3

CELL

CELL
(1,0)

CELL
(2,0)

CELL
(3,0)

CELL
(m-2,0)

CELL
(0,1)

CELL
(1,1)

CELL
(2,1)

CELL
(3,1)

CELL
(m-2,1)

CELL
(m-1,1)

CELL
(0,2)

CELL
(1,2)

CELL
(2,2)

CELL
(3,2)

CELL
(m-2,2)

CELL
(m-1,2)

(0,n-2)
CELL
(1,n-2)

CELL
(2,n-2)

CELL
(3,n-2)

CELL
(m-2,
n-2)

CELL
(m-1,
n-2)

CELL
(1,n-1)

CELL
(2,n-1)

CELL
(3,n-1) (m-2,

n-1)

CELL

m-2 m-1

m-1

m-2 m-1

m

m-1 m

m

m-1

m+1

m

m m+1

n-2 n-1

n-1

n-2

n-1 n

n

n-1

n-1 n

n n+1

n

n+1

n n+1

n+2

n+1

n+1

4.2. CASE STUDIES 111

where
� � � � � � � � �

CONTROL � � � � - �&(' � � $ - �� ' � out �
�
�

� � in �
�
�

� � CONTROL
� ��

� � - �&(' �
�

out �
�
�

� � in �
�
�

� � CONTROL �
out �

�
�

� � � � � � in �
�
�

� � � � � � CONTROL
� � ��

� $ - �� ' �
�

out �
�
�

� � in �
�
�

� � CONTROL �
out �

� � � � � � � � in �
� � � � � � � � CONTROL

� �
The CSDD algorithm of Deadlock Checker can be used to verify that this particular

network is deadlock-free, for given values of � and
�

. It is straightforward to develop
an occam implementation of the program based on this specification. There follows a
possible implementation of an interior cell process.

PROC CELL (VAL INT i, j)
REAL32 w, x, y, z, state:
INT k, ncycles:
SEQ
state := 0.0 (REAL32)
WHILE TRUE
SEQ

out[i][j] ! state -- Communicate with
in[i][j] ? state; ncycles -- CONTROL
k := 0
WHILE k<ncycles
SEQ -- Perform next
k:=k+1 -- iteration
PAR

e[i][j][LEFT] ! state
e[i][j][UP] ! state

PAR
e[i+1][j][LEFT] ? w
e[i][j+1][UP] ? x
e[i-1][j][RIGHT] ? y
e[i][j-1][DOWN] ? z

state := (((((w+x)+y)+z) *
(OMEGA/4.0(REAL32))) +
(state *(1.0(REAL32) - OMEGA)))

PAR
e[i][j][RIGHT] ! state
e[i][j][DOWN] ! state

:

A Message Router

Suppose we wished to realise the Laplace solving network on a parallel machine con-
structed from a collection of Inmos transputers. We would most probably need to run a

112 CHAPTER 4. ENGINEERING APPLICATIONS

considerable number of CELL processes on each processor. However each transputer
only has four hardware links to neighbouring processors which would be insufficient
compared with the number of communication channels that would need to be imple-
mented. Some form of multiplexing would be required.

Historically this has been a somewhat irritating problem for programmers of par-
allel machines. Even for a simple process network a large amount of work has often
been needed to map it onto the target hardware configuration. Frequently the resulting
implementation has not even been semantically equivalent to the original, sometimes
resulting in unforeseen deadlocks.

Using a deadlock-free routing algorithm it is possible to implement unlimited vir-
tual channels between transputers that are semantically equivalent to synchronous hard-
ware links [Roscoe 1988b]. This work can be performed by a compiler, either partially
or totally, freeing the programmer from much low-level effort.

We now consider the design of a deadlock-free routing algorithm for a network of
eight transputers configured as a cube, based on a program from [Shumway 1990]. The
client-server paradigm will be employed. The guiding principle that we shall use is to
assign a level to each link between processors, and then to ensure than any message
arriving at a processor on level � can only depart on a level greater than � . In this
way deadlock can be avoided by ensuring that all messages travel “upwards” to their
destination, which guarantees that the client-server digraph is circuit-free. Figure 4.2
illustrates the router process topology superimposed on top of the processor topology.
Each processor runs a separate process to control each of its input and output links. It
also runs two interface processes, TO and FROM. The former collects messages which
have arrived at their destination, and passes them to the local application process. The
latter routes messages from the local application destined for other processes.

Links in the � direction are assigned level one, those in the � direction level two,
and those in the � direction level three. In order to send a message to its destination the
strategy used is first to get the � coordinate right, then the � coordinate, and finally the� coordinate.

The abstract CSP design of the program is listed below.

coords = {0,1}
direction = {dx, dy, dz}
change_direction = {xy,xz,yz}

-- 3 input links for each transputer

pragma channel i : coords.coords.coords.direction

-- Internal channels

pragma channel in, out : coords.coords.coords.direction
pragma channel q : coords.coords.coords.change_direction

-- Channels for interface to applications program

4.2. CASE STUDIES 113

Figure 4.2: Cube Router

(1,0,0)

(0,1,0)

OUTZINZ

OUTX

INX

OUTYINY

FROMTO

(1,1,0)

INZOUTZ

INX

OUTX

INYOUTY

FROM TO

INYOUTY

OUTZ INZ

INX

OUTX

TOFROM

(0,1,1)

INX

OUTX

OUTYINY

OUTZINZ

FROMTO

(1,1,1)

2

(0,0,0)

INX

INY OUTY

INZ OUTZ

TO FROM

INXOUTX

OUTX

OUTZ INZ

TOFROM

INYOUTY

OUTY INY OUTYINY

FROM TO TO FROM

INX

INX

OUTX

OUTX

INZOUTZ OUTZINZ

(1,0,1)(0,0,1)

2 2 2 2

1

1

1

1

3 3 3 33 3 3 3

1

1

1

1

2 2 2

114 CHAPTER 4. ENGINEERING APPLICATIONS

pragma channel to, from : coords.coords.coords

-- Processes to service input links

INX(x,y,z) = i.x.y.z.dx -> (out.x.y.z.dx -> INX(x,y,z) |˜|
q.x.y.z.xy -> INX(x,y,z) |˜|
q.x.y.z.xz -> INX(x,y,z))

INY(x,y,z) = i.x.y.z.dy -> (out.x.y.z.dy -> INY(x,y,z) |˜|
q.x.y.z.yz -> INY(x,y,z))

INZ(x,y,z) = i.x.y.z.dz -> out.x.y.z.dz -> INZ(x,y,z)

-- Processes to service output links

OUTX(x,y,z) = in.x.y.z.dx -> i.((x+1)%2).y.z.dx -> OUTX(x,y,z)

OUTY(x,y,z) = in.x.y.z.dy -> i.x.((y+1)%2).z.dy -> OUTY(x,y,z) []
q.x.y.z.xy -> i.x.((y+1)%2).z.dy -> OUTY(x,y,z)

OUTZ(x,y,z) = in.x.y.z.dz -> i.x.y.((z+1)%2).dz -> OUTZ(x,y,z) []
q.x.y.z.xz -> i.x.y.((z+1)%2).dz -> OUTZ(x,y,z) []
q.x.y.z.yz -> i.x.y.((z+1)%2).dz -> OUTZ(x,y,z)

-- Interface to application program

TO(x,y,z) = out.x.y.z.dx -> to.x.y.z -> TO(x,y,z) []
out.x.y.z.dy -> to.x.y.z -> TO(x,y,z) []
out.x.y.z.dz -> to.x.y.z -> TO(x,y,z)

FROM(x,y,z) = from.x.y.z -> (in.x.y.z.dx -> FROM(x,y,z) |˜|
in.x.y.z.dy -> FROM(x,y,z) |˜|
in.x.y.z.dz -> FROM(x,y,z))

-- Now specify network for Deadlock Checker. The processes are
-- listed according to their "client-server" ordering.

--+FROM(0,0,0),FROM(0,0,1),FROM(0,1,0),FROM(0,1,1),
--+FROM(1,0,0),FROM(1,0,1),FROM(1,1,0),FROM(1,1,1),
--+OUTX(0,0,0),OUTX(0,0,1),OUTX(0,1,0),OUTX(0,1,1),
--+OUTX(1,0,0),OUTX(1,0,1),OUTX(1,1,0),OUTX(1,1,1),
--+INX (0,0,0),INX (0,0,1),INX (0,1,0),INX (0,1,1),
--+INX (1,0,0),INX (1,0,1),INX (1,1,0),INX (1,1,1),
--+OUTY(0,0,0),OUTY(0,0,1),OUTY(0,1,0),OUTY(0,1,1),
--+OUTY(1,0,0),OUTY(1,0,1),OUTY(1,1,0),OUTY(1,1,1),
--+INY (0,0,0),INY (0,0,1),INY (0,1,0),INY (0,1,1),
--+INY (1,0,0),INY (1,0,1),INY (1,1,0),INY(1,1,1),
--+OUTZ(0,0,0),OUTZ(0,0,1),OUTZ(0,1,0),OUTZ(0,1,1),
--+OUTZ(1,0,0),OUTZ(1,0,1),OUTZ(1,1,0),OUTZ(1,1,1),
--+INZ (0,0,0),INZ (0,0,1),INZ (0,1,0),INZ (0,1,1),

4.2. CASE STUDIES 115

--+INZ (1,0,0),INZ (1,0,1),INZ (1,1,0),INZ (1,1,1),
--+TO (0,0,0),TO (0,0,1),TO (0,1,0),TO (0,1,1),
--+TO (1,0,0),TO (1,0,1),TO (1,1,0),TO (1,1,1)

This initial design avoids the issue of how to make routing decisions. When a message
arrives on an input channel at a particular process it is redirected non-deterministically
along any one of its output channels. Despite this disregard for any routing information
the design is sufficiently robust to be proven deadlock-free by adherence to the client-
server protocol. In this case each individual channel is a client-server bundle of size
one. A process acts as a server on its input channels and as a client on its output chan-
nels. This means that the client-server digraph for the system is the same as the con-
nection digraph. The condition that messages must always travel upwards guarantees
that it is circuit-free. (Note that the network could be represented rather more com-
pactly using an exploded client-server digraph, treating the set of processes that run
on each transputer as a single composite-client-server process.) Deadlock-freedom is
easily verified using Deadlock Checker.

Welcome to Deadlock Checker

Command (h for help, q to quit):l router.net

Command (h for help, q to quit):w

Network router.net is busy

Network router.net is triple-disjoint

Process FROM(0,0,0) obeys client-server protocol

clients(FROM(0,0,0)) =

{<in.0.0.0.dz>,

<in.0.0.0.dy>,

<in.0.0.0.dx>}

servers(FROM(0,0,0)) =

{}

...

Process TO(1,1,1) obeys client-server protocol

clients(TO(1,1,1)) =

{}

servers(TO(1,1,1)) =

{<out.1.1.1.dx>,

<out.1.1.1.dy>,

<out.1.1.1.dz>}

Network router.net is deadlock-free

The system may also be shown to be livelock-free at this stage.

Command (h for help, q to quit):t

116 CHAPTER 4. ENGINEERING APPLICATIONS

Network router.net is triple-disjoint

Network router.net is livelock-free

It is interesting to note that each of the sixty-four processes of this network may,
or may not, be holding a message at any given time, which means that the system as a
whole has at least ��� � states. This would put it well out of the range of any program
using exhaustive state checking.

From the abstract design we are now able to develop a working occam implemen-
tation without difficulty. For instance, here is the process INX which runs on each trans-
puter.

PROC INX(VAL INT x, y, z, processor)
... local declarations
WHILE TRUE
SEQ
i[x][y][z][dx] ? length :: packet
IF

packet[0] = processor -- Arrived at destination
out[x][y][z][dx] ! length :: packet

ycoord(packet[0]) <> y -- Need to fix Y coordinate
q[x][y][z][xy] ! length :: packet

TRUE -- Need to fix Z coordinate
q[x][y][z][xz] ! length :: packet

:

The technique of assigning levels to processor links in order to effect a routing strat-
egy can be generalised to processor networks of arbitrary construction. (Details are
given in [Debbage et al 1993] and [Pritchard 1992].) For certain topologies it is neces-
sary to multiplex a number of virtual links on different levels, along a particular hard-
ware link, in order to guarantee that there is always an upwards path between each pair
of processors. Figure 4.3 illustrates link labelling schemes for a ring and a grid. The for-
mer involves the use of virtual multiplexed links, but the latter does not. Multiplexing
is a potential pitfall and must be implemented with great care. A good method of mul-
tiplexing is described in [Jones and Goldsmith 1988]. A process is constructed which
utilises a single transputer link and yet is semantically equivalent to a collection of inde-
pendent one-place buffers. (Note that it cannot be assumed in general that it is safe to
add buffering along a channel of a network. Any such modification needs to be consid-
ered as part of the overall deadlock analysis.)

Worm-hole Routing

Worm-hole routing differs from store and forward routing in that a message is split up
into small packets and these are sent across the network together by cutting a virtual
path through it, and holding this path open until the last packet has passed through. The
following CSP code illustrates a modification to the design for the cube router which
uses this strategy.

4.2. CASE STUDIES 117

Figure 4.3: Routing Strategies for Ring and Grid

 Links

Grid Ring

1 2

1

12

1 2

2

1

2 1

2

3 3 3

3 3 3

4 4 4

444

1 2

3

56

8

9 10

11

12

1314

15 47

Multiplexed

coords = {0,1}
direction = {dx, dy, dz}
change_direction = {xy,xz,yz}
packets = {data, end}

-- 3 input links for each transputer

pragma channel i : coords.coords.coords.direction.packets

-- Internal channels

pragma channel in, out : coords.coords.coords.direction.packets
pragma channel q : coords.coords.coords.change_direction.packets

-- Channels for interface to applications program

pragma channel to, from : coords.coords.coords.packets

-- Processes to service input links

INX(x,y,z) = i.x.y.z.dx.data ->
(out.x.y.z.dx.data -> INX1(x,y,z) |˜|
q.x.y.z.xy.data -> INX2(x,y,z,xy) |˜|
q.x.y.z.xz.data -> INX2(x,y,z,xz))

INX1(x,y,z) = i.x.y.z.dx?p -> out.x.y.z.dx.p ->
if p == data then INX1(x,y,z) else INX(x,y,z)

INX2(x,y,z,cd) = i.x.y.z.dx?p -> q.x.y.z.cd.p ->
if p == data then INX2(x,y,z,cd) else INX(x,y,z)

118 CHAPTER 4. ENGINEERING APPLICATIONS

INY(x,y,z) = i.x.y.z.dy.data ->
(out.x.y.z.dy.data -> INY1(x,y,z) |˜|
q.x.y.z.yz.data -> INY2(x,y,z,yz))

INY1(x,y,z) = i.x.y.z.dy?p -> out.x.y.z.dy.p ->
if p == data then INY1(x,y,z) else INY(x,y,z)

INY2(x,y,z,cd) = i.x.y.z.dy?p -> q.x.y.z.cd.p ->
if p == data then INY2(x,y,z,cd) else INY(x,y,z)

INZ(x,y,z) = i.x.y.z.dz.data ->
out.x.y.z.dz.data -> INZ1(x,y,z)

INZ1(x,y,z) = i.x.y.z.dz?p -> out.x.y.z.dz.p ->
if p == data then INZ1(x,y,z) else INZ(x,y,z)

-- Processes to service output links

OUTX(x,y,z) = in.x.y.z.dx.data ->
i.((x+1)%2).y.z.dx.data -> OUTX1(x,y,z)

OUTX1(x,y,z) = in.x.y.z.dx?p -> i.((x+1)%2).y.z.dx.p ->
if p == data then OUTX1(x,y,z) else OUTX(x,y,z)

OUTY(x,y,z) = in.x.y.z.dy.data ->
i.x.((y+1)%2).z.dy.data -> OUTY1(x,y,z) []
q.x.y.z.xy.data ->
i.x.((y+1)%2).z.dy.data -> OUTY2(x,y,z,xy)

OUTY1(x,y,z) = in.x.y.z.dy?p -> i.x.((y+1)%2).z.dy.p ->
if p == data then OUTY1(x,y,z) else OUTY(x,y,z)

OUTY2(x,y,z,cd) = q.x.y.z.cd?p -> i.x.((y+1)%2).z.dy.p ->
if p == data then OUTY2(x,y,z,cd) else OUTY(x,y,z)

OUTZ(x,y,z) = in.x.y.z.dz.data ->
i.x.y.((z+1)%2).dz.data -> OUTZ1(x,y,z) []
q.x.y.z.xz.data ->
i.x.y.((z+1)%2).dz.data -> OUTZ2(x,y,z,xz) []
q.x.y.z.yz.data ->
i.x.y.((z+1)%2).dz.data -> OUTZ2(x,y,z,yz)

OUTZ1(x,y,z) = in.x.y.z.dz?p -> i.x.y.((z+1)%2).dz.p ->
if p == data then OUTZ1(x,y,z) else OUTZ(x,y,z)

OUTZ2(x,y,z,cd) = q.x.y.z.cd?p -> i.x.y.((z+1)%2).dz.p ->
if p == data then OUTZ2(x,y,z,cd) else OUTZ(x,y,z)

-- Interface to application program

TO(x,y,z) = out.x.y.z?d?p -> to.x.y.z.p -> TO(x,y,z)

FROM(x,y,z) = from.x.y.z.data ->
(in.x.y.z.dx.data -> FROM2(x,y,z,dx) |˜|
in.x.y.z.dy.data -> FROM2(x,y,z,dy) |˜|
in.x.y.z.dz.data -> FROM2(x,y,z,dz))

FROM2(x,y,z,d) = from.x.y.z?p -> in.x.y.z.d.p ->

4.2. CASE STUDIES 119

if p == data then FROM2(x,y,z,d) else FROM(x,y,z)

This design actually contravenes the rules for client-server communication. Once
the first packet of a message has been received, a process will then only be prepared to
communicate on one of its server channels. However the network is still easily proven
deadlock-free using the SDD algorithm. Livelock-freedom is also preserved.

Command (h for help, q to quit):l wormhole.net

Command (h for help, q to quit):v

Network wormhole.net is triple-disjoint

Network wormhole.net is busy

Checking INZ(1,1,1) with TO(1,1,1)

Checking INZ(1,1,0) with TO(1,1,0)

...

Network wormhole.net is deadlock-free

Command (h for help, q to quit):t

Network wormhole.net is triple-disjoint

Network wormhole.net is livelock-free

This is an interesting example because although a reasonable solution was achieved
to the initial problem using only design rules, in order to develop a more efficient solu-
tion it was necessary to bend the rules.

A Television Studio Control System

This example differs from the previous two, in that we start with a published algorithm
which is closely related to our design rules, but ultimately breaches them. First we show
that this algorithm is theoretically prone to deadlock. Then we consider how the design
can be modified to remove this problem. The system considered is in many ways a very
fine piece of engineering. The fact that it has such a fundamental flaw is by no means a
reflection on its developers. The main motivation for this thesis is that such problems
are almost inevitable in practice unless suitable design rules for avoiding them are pro-
vided.

The algorithm was developed by N. Miller and Y. Bouchlaghem for the control
of audio communications in a television studio [Miller and Bouchlaghem 1995]. The
system, which is called ‘Commander’, consists of up to 384 control panels each of
which has an associated analogue audio sound channel. The control panels are each
connected to one of four central racks via a 96-way multiplexor. Each of these racks
is then connected up to a cross-bar switch which is used to control audio connections
between users. The four racks are also connected to each other so as to pass on switch-
ing requests from users, and to request information.

The hardware is based on transputers. There is one behind each control panel, and
there are three in each rack: one to manage the multiplexor, one to control the cross-

120 CHAPTER 4. ENGINEERING APPLICATIONS

bar switch, and the third responsible for communication with the other racks, and the
implementation of the high level system functionality. Figure 4.4 shows the connection
digraph for the processes running on this system. Apart from the inter-rack connec-
tions, all message passing conforms to the client-server paradigm. Each control panel
runs a process PANEL which is a client of a multiplexor control process PANEL.MGR.
This in turn is a client of a rack management process RACK.MGR which is a client of
a process XBAR.MGR which controls a cross-bar switch.

The only place where Miller and Bouchlaghem diverge from the client-server para-
digm is in the inter-rack communications. Unfortunately we shall see that their system
can deadlock because of this. We shall concentrate on the CSP definition for the sub-
network of RACK.MGR processes. (Note that this definition conceals communications
with XBAR-MGR processes.)

RACK.MGR
� � � � from.panel.mgr.i � �

ACTION
� � � � RACK.MGR

� � � � �� � � 	' & chan �
�
�

�
� req � chan �

�
�

�
� ack � RACK.MGR

� � � �

ACTION
� � � � SKIP
 �
�� 	' & INITIATE

� � � � �
req

� �

INITIATE
� � � � � � � �

�
chan �

�
�

� � � � � � 	' & chan �
�
�

� � � ��
SKIP �

� � � ack
�

INITIATE
� � � � � � $ � � � � ��

� � 	' & chan �
�
�

� � � � chan �
�
�

� � � ��
SKIP �

� � � ack
�

INITIATE
� � � � � � $ � � � �

RACKS �
�

RACK.MGR
� � � �

RACK.MGR
� � � �

RACK.MGR
�
�
� �

RACK.MGR
� � � �

Each rack manager process is initially waiting either for a signal to arrive from its
panel manager, or a request from another rack. If it receives a request from another
rack, this is immediately answered. If it receives a signal from its panel manager it
may need to communicate with another rack. In this case it goes into “action” mode.
First it sends out its request, and in parallel waits for a message to arrive from another
rack. This message could either be the required answer to its request, or another request
requiring an answer. In the former case the process returns to its initial state, in the latter
it begins another cycle of parallel input and output. This time the output is an answer
to the request that has just been received. The process continues with cycles of parallel
inputs and outputs until an answer has been received to its original request.

When network RACKS is analysed by Deadlock Checker, using the SDD algorithm,
it is reported that strong-conflict can occur between neighbouring processes. As the
number of states of the system is relatively small (about three thousand), exhaustive
state analysis is feasible, using the FDR tool. This reveals that the network may dead-

4.2. CASE STUDIES 121

Figure 4.4: Connection Digraph for COMMANDER

RACK.MGR(1)

PANEL.MGR(0)

RACK.MGR(0)

XBAR.MGR(0)

PANEL(0,0)

PANEL(0,m)

PANEL(0,1)

RACK.MGR(3)

PANEL.MGR(3)

XBAR.MGR(3)

PANEL(3,0)

PANEL(3,1)

PANEL(3,m)

RACK.MGR(2)

XBAR.MGR(2)

PANEL.MGR(2)

PANEL(2,0)

PANEL(2,1)

PANEL(2,m)

PANEL(1,m)

PANEL(1,1)

PANEL(1,0)

XBAR.MGR(1)

PANEL.MGR(1)

122 CHAPTER 4. ENGINEERING APPLICATIONS

lock after the following trace.

� from.panel.mgr.
���

from.panel.mgr. � � from.panel.mgr. �
�

from.panel.mgr. � � chan � � � � � req
�

chan
���
� � � req

�

At this point both RACK.MGR
� ���

and RACK.MGR
�
�
�

are waiting for a message
to arrive from another rack. But it is possible that RACK.MGR

� � � and RACK.MGR
� � �

have both already committed to sending a message to each other, which would mean
deadlock. Of course we have only considered a subnetwork of the system as a whole,
so we need to check that this deadlock could still arise in the wider context. It is fairly
obvious that this is indeed the case.

Miller and Bouchlaghem report that their software has been running without prob-
lems on a system with over one hundred users, for some time. Perhaps this indicates that
there is a very low probability of deadlock occurring. However this type of uncertainty
could certainly not be tolerated in a safety critical application, such as an air traffic con-
trol system.

It is a simple matter to modify the definition of RACK.MGR to render the system
deadlock-free, through adherence to the client-server protocol. This is achieved by
splitting the process onto two levels, RACK.MGR � and RACK.MGR � � . Each lower level
process RACK.MGR � handles signals from the local panel manager as a server and also
makes requests to any of the four higher level processes RACK.MGR � � as a client. The
new CSP definitions are as follows.

RACK.MGR � � � � � from.panel.mgr.i �

�

� '�� req �
�
�

� � ack �
�
�

� � RACK.MGR � � � �

RACK.MGR � � � � � � �
�

� '�� req �
�
�

� � ack �
�
�

� � RACK.MGR � � � � �

RACKS � �
� RACK.MGR � ����� � RACK.MGR � � � � �

RACK.MGR � � � � � RACK.MGR � � � � �
RACK.MGR � � � ��� � RACK.MGR � � � � � �
RACK.MGR � � � � � � RACK.MGR � � � � �

�
The client-server digraph of this improved design is given in figure 4.5. It is circuit-

free which guarantees deadlock-freedom for the new system. It is notable that, as well
as being deadlock-free, the new design is far simpler and somewhat more elegant. This
shows how, far from being overly restrictive, design rules can enhance the creative
process of parallel software design.

4.2. CASE STUDIES 123

Figure 4.5: Client-Server Digraph for Improved Design

XBAR.MGR(1)

XBAR.MGR(0)

XBAR.MGR(2)

XBAR.MGR(3)

RACK.MGR’’(3)

PANEL.MGR(0)

PANEL(0,0)

PANEL(0,m)

PANEL(0,1)

PANEL.MGR(3)

PANEL(3,0)

PANEL(3,1)

PANEL(3,m)

PANEL.MGR(2)

PANEL(2,0)

PANEL(2,1)

PANEL(2,m)

PANEL(1,m)

PANEL(1,1)

PANEL(1,0)

PANEL.MGR(1)

RACK.MGR’(3)

RACK.MGR’(2)

RACK.MGR’(1)

RACK.MGR’(0)RACK.MGR’’(0)

RACK.MGR’’(1)

RACK.MGR’’(2)

Conclusions and Directions for Future
Work

Because of problems like deadlock and livelock, parallel programs are significantly
more difficult to design than serial ones. Perhaps for this reason concurrent program-
ming has been slow to take off. Our hunger for computing power is largely being sat-
isfied by the continual development of ever faster serial processors. However there are
limits to serial hardware technology that are likely to be approached within the next
twenty years. Explicit parallelism will then become the only means of extending the
performance of computers and the field of concurrent programming will finally have
come of age.

This thesis has described a collection of simple design rules for constructing large
scale parallel systems that can never deadlock. We have also detailed efficient tech-
niques for the machine verification of adherence to these rules. More interestingly,
a technique for efficiently proving deadlock-freedom was discovered which, despite
having no intelligence regarding the design rules, was found to be capable of proving
deadlock-freedom for networks constructed according to the majority of them. How-
ever it is important to note that this algorithm, which is called CSDD, is far from a com-
plete proof technique for deadlock-freedom. There are many deadlock-free networks
which it cannot prove to be so. It works by checking a stronger property than deadlock-
freedom – one that can be established in �

� � � � time complexity for networks of finite-
state processes, being based purely on local analysis. This compares favourably with
the exponential complexity of using FDR for deadlock analysis. On the other hand, the
FDR approach is complete for finite-state networks.

The CSDD algorithm is sufficiently simple that it seems suitable for inclusion in
compilers for high-level parallel languages such as occam. However to make this fea-
sible, we need to look at methods to restrict the size of the state-spaces to be analysed.

A tool to verify the validity of an abstraction, or indeed to perform abstraction auto-
matically would be very useful. Recall that abstraction is the act of replacing detailed
communication events by their channel names in CSP networks. In effect, this means
‘throwing away the data’. This technique has been used throughout the thesis to sim-
plify CSP expressions to be analysed for deadlock-freedom. In this way, infinite-state
networks may be proven deadlock-free by the analysis of finite state abstractions. A
formal statement of the property is given in [Roscoe 1995].

124

CONCLUSIONS 125

Without the use of abstraction, the operational representation of even a very sim-
ple occam process might be vast. A technique for conversion from occam to CSP is
described in [Scattergood and Seidel 1994] which addresses this problem.

The deadlock analysis techniques that we have described are based on a static net-
work of non-terminating processes grouped together by a single level of parallelism.
We rely on each process having a relatively small number of states. Efficient deadlock
analysis is then possible because we avoid constructing the state transition system for
the network as a whole. However if there were a large degree of embedded parallelism
in any component process of the network, we would still need to analyse some unwieldy
operational representations.

A good illustration of this problem is a program from [Jones and Goldsmith 1988]
which implements Conway’s Game of Life using an array of I/O-PAR processes, each
with 16 channels. The fact is that the abstract operational form of each of these harmless
looking processes has 65536 states. This would certainly make the pairwise process
checking performed by the CSDD algorithm impractical.

It should be possible to develop transformational techniques to cope with networks
like this which remove all the embedded parallelism to the outer layer. For instance,
consider the I/O-SEQ process

� � �	� � SKIP ��� � � � SKIP
� � �($ � SKIP ����� � � SKIP

� � �
We transform this process into a subnetwork of five purely sequential processes as

follows.

� � � � � � � � � � � � �
� � � � � � � � � � � �

� � � �
��� � � ��� � � SKIP � � � � ���
� � � � � � � � SKIP � � � � � �� � � � � � $ � SKIP � � � � � �
� � � � � � � � SKIP � � � � � �

Events � & and
� & are ‘start’ and ‘finish’ commands for each subprocess � & , sent out

by the master process � � . The following equivalence may be shown (using FDR).

� � PAR
� ��� � � � � � � �

� � � � � � � � � � � & � � & � � � � � � � � � ���
We could use this as follows. First we could prove divergence-freedom for � by

using Deadlock Checker to prove livelock-freedom for

PAR
� ��� � � � � � � �

� � � � ��� � �

That would allow us to substitute � � � � ��� � � �
� � � � � � � for � into any network to be

tested for deadlock-freedom.

126 CONCLUSIONS

Similarly transforming an I/O-PAR process with 16 channels, such as used in the
Jones and Goldsmith program, would result in a subnetwork with seventeen processes,
each one being a purely sequential cyclic process with just a handful of states. This
would provide a representation suitable for analysis by Deadlock-Checker.

It would be very useful to explore general situations where such transformations
might be applied. This approach ought to be particularly applicable to occam pro-
grams, where it is common to have several layers of embedded parallelism.

Deadlock-freedom is only the tip of the iceberg when it comes to proving desirable
properties of concurrent systems. If we were to design a signalling system for trains
based on these methods it would certainly be a good idea to prove the system deadlock-
free, but it would be somewhat more important to ensure that no two trains could ever
collide. The FDR tool can be used to do proofs like this by exhaustive state analysis.
But due to the exponential state explosion as a network grows in size this method cannot
be used for very large networks. Certainly not the Great Western Railway network.

Specifications which prohibit undesirable actions are known as safety conditions,
and are generally expressed purely in terms of traces, refusal sets being irrelevant. One
approach to proving safety properties of large systems is to factorise the proofs into
smaller manageable parts. In order to prove that no two trains can ever collide we might
attempt to prove separately a large number of statements of the form: “TRAINA and
TRAINB will never collide on the track section governed by SIGNAL1”. If we could
show that this statement held true for the subnetwork

� TRAINA
�
TRAINB

�
SIGNAL1 �

then clearly it would hold for the the network as a whole. This could be done using the
refinement checker FDR as the number of states of the subnetwork ought to be man-
ageable. There is scope for developing a logical inference tool to assist with proofs of
this kind.

It is also common to write specifications which insist that some desirable form of
behaviour should occur. For instance, we might specify that the electric doors of a
train’s carriages should never refuse to be opened when the train is standing at a plat-
form. Specifications such as this are called liveness conditions and they require the full
expressive power of the failures model.

Dathi’s thesis [Dathi 1990] contains the attractive idea of transforming a general
failures specification problem into a proof of deadlock-freedom. Given a concurrent
system � � ��� � � � � � � $ � and a specification

�
we want to show the refinement relation

failures
� � � � failures

�
PAR

� � � � �
� � � �

� � �

Dathi defines a process transformation function � so that proving the refinement reduces
to showing that the network

� � ��� � � � � � � � � � $ �
is deadlock-free. Basically � � � � is a ‘testing’ process which guarantees to deadlock
the network whenever PAR

� � � � �
� � � �

� �
exhibits any behaviour which is illegal

CONCLUSIONS 127

for
�

. Unfortunately the process � � � � is not itself deadlock-free so we cannot use any
of the local analysis techniques described in this thesis to prove the refinement. How-
ever Dathi defines a similar transformation function � � which produces better behaved
processes � � � � � . It this case it is first necessary to prove, by other means, that

traces
� � � � traces

�
PAR

� � � � �
� � � �

� � �

We may then show that the failures specification is satisfied by proving the network

� � � � � � � ��� � � � � � $ �
to be deadlock-free. It should be straightforward to automate this technique for inclu-
sion in a tool like Deadlock Checker. Design rules might then be formulated for the
type of specifications that could be checked.

A different approach is likely to be required when dealing with issues relating to
the correctness of computation rather than communication. Recalling the program to
solve Laplace’s equation in chapter 4, we have proven that this program cannot dead-
lock, but we are yet to show that it accurately calculates a solution to the problem. The
prototype CSP code does not contain enough information to do this. We need to con-
sider the refinement into the final occam version. For this program, any conventional
operational representation would be vast. In order to construct it we would effectively
have to perform the entire computation for every single possible variety of initial con-
ditions. Ideally what is required is a two-tiered form of operational semantics so that
information regarding computation is represented on a separate level from information
regarding communication.

Another important issue that has not been considered in this thesis is time. A major
motivation for parallel computation is speed of results. Therefore we are likely to have
hard real-time requirements for the systems that we design. If an airman presses the
button to switch off the autopilot he should not have to wait for half an hour for any-
thing to happen. The state of the art regarding the use of timed CSP is described in
[Davies 1993]. A complete method for proving adherence to timed specifications is
presented, but the author recognises that the large number of proofs required for appli-
cations of a significant size is likely to be infeasible. Therefore it would seem that there
is a need for design rules to be discovered which would facilitate the development of
real-time systems. Perhaps the most promising of the design rules considered here,
from this point of view, is the cyclic paradigm. The processes could be synchronised
to operate with a computation phase and a communication phase of fixed time, say � 	 .
The time for various external operations to be effective should then be easy to predict
as a multiple of � 	 . This idea is similar to the BSP paradigm of L. Valiant (documented
in [Oxford Parallel 1995]).

A Vision for the Future

It would seem that there is still some work to be done before the construction of large-
scale parallel programs can be regarded as a thoroughly safe engineering discipline.

128 CONCLUSIONS

Hopefully this thesis has outlined an approach to one of the major problems which is
of clear practical use. Ease of use and simplicity of presentation have to be major goals
in developing tools for engineers.

In the near future, there is the exciting prospect of an integrated CSP development
environment, such as illustrated in figure 4.6. Programs could be systematically refined
from their abstract specifications making use of a number of tools, to perform such func-
tions as refinement checking, abstraction checking, real-time specification checking,
conversion to and from high-level programming languages, and, of course, deadlock
and livelock analysis. In the event of a potential deadlock being detected the tool would
be able to point back to the exact position in the source of each process involved in it.

CSP is a most elegant language and it would be nice if it could be used directly for
actual programming, rather than having to convert to another language such as occam.
Then we could use the same notation all the way through from specification to imple-
mentation. In order to make an efficient CSP compiler, one would need to enforce
certain restrictions, such as the restriction in occam that external choice can only be
applied to input channels. There would also need to be some thought applied over the
treatment of the state of variables and their scope. Probably the language that we would
finally arrive at would be functionally very similar to occam, but it would look like
CSP. Of course some people might not consider the CSP notation to provide the most
readable presentation style for concurrent software, preferring the use of words to sym-
bols. There is no reason why a verbose isomorphism of CSP should not be provided
for such people, rather than a different language.

By making life easier for engineers we might reduce the potential for software-
precipitated catastrophes. But it is very important that we always maintain a clear view
of the limitations of formal methods. For instance, they cannot guard against a leaky
specification which fails to incorporate vital safety information. There will always be a
human decision-making aspect to software construction. By making the programming
environment helpful, intuitive and secure we can help to ensure that the right decisions
are made.

CONCLUSIONS 129

Figure 4.6: CSP Toolkit – A Vision for the Future

File Edit Run Compile Tools
CSP TOOLKIT

PHIL.CSP
FORK.CSP

Translate CSP -> occam
Translate CSP -> Ada
Refinement Check
Deadlock Analysis
Communication Diagram

FORK(i) = takes.i.i -> drops.i.i -> FORK(i)

 takes.((i+1)%5).i -> drops.((i+1)%5).i ->

 FORK(i)

FORK(0) PHIL(0)

FORK(3)

PHIL(3)

PHIL(4)

FORK(4)

References

[Brinch Hansen 1973] P. Brinch Hansen Operating System Principles, Prentice-Hall
1973.

[Brookes 1983] S. D. Brookes A Model for Communicating Sequential Processes,
Oxford University D.Phil Thesis 1983.

[Brookes and Roscoe 1985a] S. D. Brookes and A. W. Roscoe An Improved Failures
Model for Communicating Processes, Springer LNCS 197, 1985.

[Brookes and Roscoe 1985b] S. D. Brookes and A. W. Roscoe Deadlock Analysis in
Networks of Communicating Processes, Logic and Models of Concurrent Systems
NATO ASI series F. Vol 13. Springer 1985.

[Brookes and Roscoe 1991] S. D. Brookes and A. W. Roscoe Deadlock Analy-
sis in Networks of Communicating Processes, Distributed Computing(1991)4,
Springer-Verlag.

[Chandy and Misra 1979] K. M. Chandy and J. Misra Deadlock Absence Proofs for
Networks of Communicating Processes, Information Processing Letters, Volume
9, number 4.

[Dathi 1990] N. Dathi Deadlock and Deadlock-Freedom, Oxford University D.Phil
Thesis 1990.

[Davies 1993] J. Davies, Specification and Proof in Real Time CSP, Cambridge Uni-
versity Press 1993.

[Debbage et al 1993] M. Debbage, M. B. Hill and D. A. Nicole, Global Communica-
tions on Locally Connected Message-Passing Parallel Computers, Concurrency,
Practice and Experience, September 1993.

[Dewdney 1989] A. K. Dewdney, A Cellular Universe of Debris, Droplets, Defects
and Demons, Scientific American, August 1989.

[Dijkstra 1965] E. W. Dijkstra Cooperating Sequential Processes, Technological Uni-
versity Eindhoven, The Netherlands 1965. (Reprinted in Programming Lan-
guages, F. Genuys, ed., Academic Press, New York 1968.)

130

REFERENCES 131

[Dijkstra 1982] E. W. Dijkstra A Class of Simple Communication Patterns, Selected
Writings on Computing: A Personal Perspective, Springer-Verlag 1982.

[Even 1979] S. Even, Graph Algorithms Computer Science Press, Inc. 1979.

[Formal Systems 1993] FDR User Manual and Tutorial Formal Systems (Europe)
Ltd. 3 Alfred Street, Oxford OX1 4EH.

[Fox et al 1988] G. Fox, et al Solving Problems on Concurrent Processors, Prentice
Hall 1988.

[Goldsmith et al 1993] M. Goldsmith, A. W. Roscoe, B. G. O. Scott, Denotational
Semantics for occam2 Transputer Communications, Volume 1 Number 2 1993
and Volume 2 Number 1 1994, Wiley.

[Hoare 1985] C. A. R. Hoare Communicating Sequential Processes, Prentice-Hall
1985.

[INMOS 1988] INMOS Limited occam2 Reference Manual, Prentice Hall 1988.

[Jones and Goldsmith 1988] G. Jones and M. Goldsmith Programming in occam2,
Prentice-Hall 1988.

[Knapp 1987] E. Knapp Deadlock Detection in Distributed Databases, ACM Com-
puting Surveys, Vol 19, No 4, December 1987.

[Macfarlane 1992] D. Macfarlane A Practical Investigation of Parallel Genetic Algo-
rithms and their Application to the Structuring of Artificial Neural Networks Uni-
versity of Buckingham D.Phil Thesis 1992.

[Mairson 1989] H. Mairson On Axiomatic Characterizations of CSP (Unpublished),
Department of Computer Science, Brandeis University, Waltham, Massachusetts
02254, 1989.

[Marcino 1995] P. Marcino Re:deadlock avoidance/recovery, Contribution to news-
group comp.databases.sybase, 12th September 1995.

[Martin 1995] J. M. R. Martin Deadlock Checker User Guide and Technical Manual,
University of Buckingham Internal Report (Department of Mathematics, Statis-
tics and Computer Science) 1995.

[Martin et al 1994] J. M. R. Martin, I. East and S. Jassim Design Rules for Deadlock-
Freedom, Transputer Communications, September 1994.

[Martin and Welch 1996] J. M. R. Martin and P. H. Welch A Design Strategy for
Deadlock-Free Concurrent Systems in preparation.

132 REFERENCES

[Miller and Bouchlaghem 1995] N. Miller and Y. Bouchlaghem A Reliable Studio
Control System - The Theory and the Practice, Transputer Applications and Sys-
tems ’95, IOS Press 1995.

[Oxford Parallel 1995] The BSP Model Oxford Parallel, available via WWW as
http://www.comlab.ox.ac.uk/oucl/oxpara/bspmodel.htm.

[Paulson 1991] L. Paulson, ML for the Working Programmer, Cambridge University
Press 1991.

[Pritchard 1992] D. J. Pritchard Load Balanced Deadlock-Free Deterministic Routing
of Arbitrary Networks, Proceedings of the 1992 ACM Computer Science Confer-
ence, 1992.

[Roscoe 1988a] A. W. Roscoe, Unbounded Non-determinism in CSP, Oxford Univer-
sity Computing Laboratory (Technical Monograph PRG-67) 1988.

[Roscoe 1988b] A. W. Roscoe Routing Messages Through Networks: An Exercise in
Deadlock Avoidance, Proceedings of the 7th occam User Group Technical Meet-
ing, IOS Press 1988.

[Roscoe 1994] A. W. Roscoe, Model Checking CSP A Classical Mind, Prentice-Hall
1994.

[Roscoe 1995] A. W. Roscoe, Notes on CSP, Oxford University Lecture Notes 1995.

[Roscoe and Dathi 1986] A. W. Roscoe and Naiem Dathi The Pursuit of Dead-
lock Freedom, Oxford University Computing Laboratory (Technical Monograph
PRG-57) 1986.

[Scattergood 1992] B. Scattergood, A Parser for CSP, available by anonymous ftp
from ftp.comlab.ox.ac.uk 1992.

[Scattergood and Seidel 1994] B. Scattergood and K. Seidel, Converting occam to
CSP, Transputer Applications and Systems ’94, IOS Press 1994.

[Scott 1994] B. G. O. Scott, Translating Timed CSP Processes to occam2 Transputer
Applications and Systems ’94, IOS Press 1994.

[Shumway 1990] M. Shumway Deadlock-Free Packet Networks, INMOS Central
Applications Group, Colorado Springs 1990.

[Welch 1987] P. H. Welch Emulating Digital Logic Using Transputer Networks, Par-
allel Architectures and Languages Europe, LNCS 258, Springer-Verlag 1987.

[Welch et al 1993] P. H. Welch, G. R. R. Justo, and C. J. Willcock High-Level Par-
adigms for Deadlock-Free High-Performance Systems, Transputer Applications
and Systems ’93, IOS Press 1993.

REFERENCES 133

[Wilson 1985] R. J. Wilson Introduction To Graph Theory (Third Edition), Longman
Scientific & Technical 1985.

[Wolfson 1987] O.Wolfson The Overhead of Locking (and Commit) Protocols in Dis-
tributed Databases ACM Transactions on Database Systems, Vol 12, No. 3, Sep-
tember 1987.

Appendix A

Partial Orders

A partial order is a relation
�

acting on a set
�

, which satisfies
� � � � �
 � � � � � ��� � � �
� � � � �
 � � � � � � � � � �

The following are examples of partial orders:

(A) The set of subsets of the natural numbers, ordered by inclusion (
�

), e.g.

� � � � � � � ���
�
� � � � � � � �

�
� �

(B) The finite sequences of letters ordered lexicographically. i.e as a dictionary, where
the first letter is most significant, e.g

� � � � � � � � � � � � � � � � � � � �(�%� �
An upper bound of a subset of

�
is an element � of

�
such that

� � � � � � �
A least upper bound of a subset of

�
, written �� , is an upper bound of , such that,

for any upper bound � of , �� � � .
In example A, above, consider the subset

� ��� � � � ��� � � � � ��� � � � � � � � . The least
upper bound for S is � � � � � ��� .

A directed set is a nonempty subset �
� �

such that

� � � � ��� � � � ��� � � � � � �
 � � � � �

A partial order
�

is said to be complete, if it has a least element � , and every directed
set � � � has a least upper bound.

134

135

Example B, above, is not a complete partial order. Consider the subset

� �
� � � � � � � � � � � ��� � � � � � �
U is clearly directed, yet it has no least upper bound.

Example A, however, is a complete partial order. Any subset is directed, and has a
least upper bound. There is a least element – the empty set.

If
�

and
�

are two complete partial orders and
� � � � �

, then
�

is said to be
monotonic if

� � � � �
� �

	� � � ��� � � � � � � � � �
Also

�
is continuous if whenever �

� �
is directed, ��� � � � � � � � � � exists and equals� � � � �

.

Lemma 7 Suppose
� � �

are complete partial orders and
� � � � �

is continuous.
Then

�
is monotonic.

Theorem 14 (Tarski) If
�

is a complete partial order, and
� � � � �

is continuous,
then

�
has a least fixed point (i.e., � � � � such that

� � � � � � and, if
� � � � � � , then

� � �). This is given by
��� � $ � � � ��� � N �

Strict Partial Orders

A strict partial order is a relation
�

acting on a set
�

, which satisfies

� � � � �
 � � � � � ��� � � �

� � � ��� � � � � � �
We can always construct a strict partial order from a partial order by

� � � � � � � � � �
 � �,*� � �

And we can always construct a partial order from a strict partial order by

� � � � � � � � � � � � � � � �

We say that
�

is linearly ordered, if for any � � � � � exactly one of � � � , � � � , or
� � � holds.

Appendix B

Graphs and Digraphs

In this thesis we make frequent use of graphs to represent various properties of net-
works of processes. We adopt the terminology of [Wilson 1985].

A graph
�

is defined to be a pair
� � � � � � � � � � �

, where � � � �
is a non-empty finite

set of elements called vertices, and � � �
is a finite family of unordered pairs of ele-

ments of � � � �
called edges. (A family is a collection of elements like a set, except

that an element may occur more than once; e.g. � � � � � $ � is a set, but
��� � � � $ � � � � � $ �

is a family.)

A digraph
�

is defined to be a pair
� � ��� � � � � � �

, where � ��� �
is a non-empty

finite set of elements called vertices, and ��� �
is a finite family of ordered pairs of

elements of � � � �
called arcs.

A graph (or digraph) is simple if there are no duplicate edges (or arcs) � � and no
‘loops’ � � .

Figure B.1: A Graph

A E

F

GH

D

C

B

136

137

A walk in a graph (or digraph) is a finite sequence of edges (or arcs) of the form

� � � � � � � � � �
�
� �

� � � - � � � �
A walk in which all the edges (or arcs) are distinct is called a trail; if, in addition, the
vertices � �

� � � � � � � � � are distinct (except, possibly, � � � � �), then the trail is called a
path. A path or trail is closed if � � � � � . A closed path is called a circuit.

The simple graph

� � � � � � � � � � � � � � ��� � � � � � ��� � � � � � � � � � � �� � � � � � � � � � � � � � �

is illustrated in figure B.1. Here the sequence � � � � � � � � is both a closed trail and
a circuit; the sequence � � � ��� � � � � � � � � � � ��
� is a closed trail but not a circuit.

A graph with no circuits is known as a tree. If
�

is a digraph, the graph obtained
from

�
by replacing each arc by a corresponding edge is called the underlying graph

of
�

. A directed tree is a digraph of which the underlying graph is a tree.
A graph is connected if there exists a path between any two vertices. The vertices

of a disconnected graph may be partitioned into connected components such that two
vertices are in the same connected component if, and only if, there exists a path between
them.

A graph is said to have a separation vertex � (sometimes called an articulation
point) if there exist vertices

�
and

�
, where

� *� � and
� *� � , and all paths connecting�

and
�

pass through � . In the graph of figure B.1 the separation vertices are � ,
�

and
� . A graph which has a separation vertex is called separable, and one which has none
is called non-separable.

Let � �
�
� � � �

. If the induced subgraph
� � � � � � � � � (where

� � is the set of edges
of

�
which connect vertices of � �) is connected, non-separable and for every larger

� � � , � � � � � �
�
� , the induced subgraph

� � � � � � � � � � � � is separable, we say that � � is
a non-separable component of

�
. In the graph of figure B.1 the non-separable compo-

nents are � � � � � � , � � � � � � � , � � � � � , and � � � � ��� � .
A disconnecting edge of a graph is an edge, the removal of which increases by one

the number of connected components. This is also known as a bridge. If all the discon-
necting edges of a graph are removed the residual connected components are known
as essential components of the original graph. The graph illustrated in figure B.1 has
a single disconnecting edge

� � . Its essential components are � � � � � � � � � � and
� � � � ��� � .

A digraph is strongly connected if, for any two vertices � and � , there exists a path
from � to � and also from � to � . The vertices of a digraph which is not strongly con-
nected may be partitioned into strongly connected components using the equivalence
relation � , where � � � means that there is a path from � to � and also from � to � .

Suppose that the vertex-set of a graph (or digraph) G can be partitioned into two
subsets � � and � � , such that no edge (arc) joins two elements from the same subset.
We say that G is bipartite.

138 APPENDIX B. GRAPHS AND DIGRAPHS

We denote by
� � �

the graph (digraph) obtained by removing an edge (arc) vw,
and combining vertices v and w into a single vertex (if they are distinct). This is known
as an edge-contraction. A succession of edge-contractions is called a contraction.

The Depth-First Search Algorithm

The Depth-First Search technique is method for scanning the edges (or arcs) of a finite
graph (or digraph) which is widely recognised as a powerful technique. It is used by
Deadlock Checker in a variety of situations either to perform analysis of transition sys-
tems, or to establish global properties of networks, such as the absence of circuits. The
algorithm involves constructing a walk which traverses each edge or arc exactly once
in either direction.

The algorithms given here are based on those in [Even 1979], where proofs of cor-
rectness are to be found.

DFS for Graphs

For a (possibly disconnected) graph the algorithm proceeds as follows. Consider the
graph

� � � � � � � � � � � � �
.

1. Set up two arrays indexed by vertices of � � � �
: an array of vertices called father

and an array of integers called order. Also set up a boolean array called used,
indexed by edges of

� � � �
. Set each element of used to be false, each element of

father to be “undefined”, and each element of order to be 0. Also set
� � � �

and
� ��� � (� is the vertex we choose to start from).

2. Set
� � � � � � and order

� � � � � �

3. If there are no unused edges incident with � then go to step 5

4. Choose an unused edge ���� � . Set used
� � � � � true. If order

� � � *� �
go to step

3. Otherwise first set father
� � � ��� � , � ��� � and then go to step 2.

5. If father
� � � is defined then set � � � father

� � � and go to step 3.

6. (father
� � � is undefined). If there is a vertex � for which order

� � � � �
then set

� ��� � and go to step 2.

7. (All the vertices have been scanned) Halt.

If we assume a constant time for array lookup then this algorithm can be imple-
mented with linear time. (To implement step 6 efficiently actually requires maintaining
a linked list of those vertices that have not yet been visited.)

139

DFS for Digraphs

For a (possibly disconnected) digraph the DFS algorithm is very similar. Consider the
digraph

� � � � � � � � ��� � �
.

1. Set up two arrays indexed by vertices of � ��� �
: an array of vertices called father

and an array of integers called order. Also set up a boolean array called used,
indexed by arcs of ��� �

. Set each element of used to be false, each element of
father to be “undefined”, and each element of order to be 0. Also set

� � � �
and

� ��� � (� is the vertex we choose to start from).

2. Set
� � � � � � and order

� � � ��� �

3. If there are no unused arcs outgoing from � then go to step 5

4. Choose an unused arc �
�� � . Set used

��� � � � true. If order
� � � *� �

go to step
3. Otherwise first set father

� � � � � � , � � � � and then go to step 2.

5. If father
� � � is defined then set � ��� father

� � � and go to step 3.

6. (father
� � � is undefined). If there is a vertex � for which order

� � � � �
then set

� ��� � and go to step 2.

7. (All the vertices have been scanned) Halt.

Checking for Circuit-Freedom of a Digraph

The above algorithm is modified to check for the presence of a circuit in
�

by main-
taining a boolean array, indexed by � ��� �

, to represent which vertices belong to the
current search path. The digraph has no circuit only if, at step 4, no vertex � is ever
found which lies on the current search path.

Finding Non-Separable Components of a Graph

Consider the graph
� � � � � � � � � � � � �

.

1. Set up three arrays indexed by vertices of � � � �
: an array of vertices called father,

and two arrays of integers called order and low. Also set up a boolean array called
used, indexed by edges of

� � � �
, and an initially empty stack of vertices,

�
. Set

each element of used to be false, each element of father to be “undefined”, and
each element of order to be 0. Also set

� ��� �
and � � � � � ��� � (� is the vertex

we choose to start from).

2. Set
� � � � � � , order

� � � ��� �
, low

� � � ��� �
. Put � on

�
.

3. If there are no unused edges incident with � then go to step 5

140 APPENDIX B. GRAPHS AND DIGRAPHS

4. Choose an unused edge � �� � . Set used
� � � ��� true. If order

� � � *� �
then set

low
� � � � � Min

�
low

� � � � order
� � � �

and go to step 3. Otherwise first set father
� � � ��� � , � ��� � and then go to step

2.

5. If father
� � � is undefined or father

� � � � � � go to step 9.

6. (father
� � � *� � �) If low

� � � � order
�
father

� � � � then set

low
�
father

� � � � ��� Min
�
low

�
father

� � � � � low
� � � �

and go to step 8.

7. (low
� � � 	 order

�
father

� � � �) father
� � � is a separation vertex. All the vertices

from
�

down to and including � are now removed; together with father
� � � they

form a non-separable component.

8. Set � ��� father
� � � and go to step 3.

9. All vertices on
�

down to and including � are now removed. Together with � �
they form a non-separable component.

10. If � � still has unused incident edges then goto step 12.

11. If there is a vertex � such that order
� � � � �

then set � ��� � � ��� � and go to step
2, otherwise halt.

12. Vertex � � is a separation vertex. Let � ��� � � and go to step 4.

Finding Disconnecting Edges of a Simple Graph

The disconnecting edges of a simple graph are equivalent to its non-separable compo-
nents of size two. Hence we may find the disconnecting edges of a simple graph, such
as a network communication graph, using the algorithm for non-separable components.

Finding Strongly Connected Components of a Digraph

Consider the digraph
� � � � � � � � ��� � �

.

1. Set up three arrays indexed by vertices of � � � �
: an array of vertices called father

and two arrays of integers called order and low. Also set up a boolean array called
used, indexed by arcs of � � �

. Create an initially empty stack of vertices
�

. Set
each element of used to be false, each element of father to be “undefined”, and
each element of order to be 0. Also set

� ��� �
and � ��� � (� is the vertex we

choose to start from).

141

2. Set
� � � � � � , order

� � � ��� �
and low

� � � � � �
. Put � on

�
.

3. If there are no unused arcs outgoing from � then go to step 7.

4. Choose an unused arc �
�� � . Set used

��� � � � true. If order
� � � � �

set
father

� � � ��� � , � � � � and then go to step 2.

5. If order
� � � � order

� � � go straight back to step 3. Otherwise, if � is not on
�

(�
and � do no belong to the same component) go to step 3.

6. (order
� � � � order

� � � and both vertices are in the same component.) Set

low
� � � ��� Min

�
low

� � � � order
� � � �

and go to step 3.

7. If low
� � � � order

� � � then delete all vertices from
�

down to and including � ;
these vertices form a component.

8. If father
� � � is defined then set

low
�
father

� � � � ��� Min
�
low

�
father

� � � � � low
� � � �

� � � father
� � �

and go to step 3.

9. (father
� � � is undefined.) If there is a vertex � for which order

� � � � �
then let

� ��� � and go to step 2.

10. (All the vertices have been scanned.) Halt.

Selecting Arcs from a Digraph Lying on a Circuit

We may use the above technique to find all the arcs in a digraph which lie on a circuit.
(This is required for the CSDD algorithm of Deadlock Checker). First we partition the
vertices of the Digraph into strongly connected components, as described above. Dur-
ing the analysis a partition number

� � � � is assigned to each vertex � . We then scan
through the arcs � � of the graph, removing any where

� � � � *� � � � � . It may be easily
shown that those arcs which remain are exactly those which lie on a circuit in � .

