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9 The Implementation of Large
Parallel Database Machines on
T9000 and C104 Networks

The design of large database machines requires the resulting implementation be scalable and
cheap.  This means that use has to be made of commodity items whenever possible.  The design
also has to ensure that scalability is incorporated into the machine from its inception rather than as
an after–thought.  Scalability manifests itself in two different ways.  First, the initial size of a sys-
tem when it is installed should be determined by the performance and size requirements of the
desired application at that time.  Secondly, the system should be scalable as processing require-
ments change during the life–time of the system.  The T9000 and C104 provide a means of de-
signing a large parallel database machine which can be constructed from commodity components
in a manner that permits easy scalability.

9.1 Database Machines
A database machine provides a high level interface to the stored data so that the user is not aware
of the access path to that data.  Further, the user can specify what data is required and not how the
data is to be found.  In a relational database machine, the topic of this paper, the data is stored in
tables.  Each row of a table contains a number of columns each of which contain a single atomic
value.  Rows are distinguished from each other by the value of one of the columns having a dis-
tinct value.  Data from one table can be combined with that from another by a process known as
relational join.  If we assume that in each table there is a column which holds data from the same
domain, then we can join the tables on those columns.  In general, the output from a join is the
concatenation of one row from each of the tables where the joining columns have equal values.

A database machine allows different users to access the database at the same time for any opera-
tion.  Thus different users can be accessing the database to read, write, modify and erase rows of
tables.  The effect of each user has to be made invisible to the other users until a user has indicated
that a unit of work is complete.  The database machine therefore has to ensure that different users
do not interfere with each other by accessing the same rows of a table.  Many users can access the
same row of a table provided they are all reading the data.  The maintenance of such a concurrency
management system is expensive and most of the current algorithms are based upon the use of a
large memory to hold locking information.  The design to be presented in this paper will show
how a scalable concurrency management system can be constructed.

It is vital that the data stored in the database is correct and consistent.  This means that data values
have to be checked whenever data is written, erased and modified.  This consistency is achieved
by the use of integrity constraints which can be of several different kinds.  First, there is a simple
check constraint to ensure that a value is contained within a simple range of values.  A second
more complex check constraint can be invoked which ensures that a value in a column of a table is
related in some way to a value in another row of the same table, or on some function applied to the
table as a whole.  This can then be extended to a check which refers to another table.  Finally, a
referential constraint imposes relationships between tables.  The column, or columns, which
uniquely identify a row in a table are called the PRIMARY KEY of that table.  Another table may
store the same values in a column of that table.  This column will not be the primary key of the
second table, though it may form part of the primary key of the second table.  The database system
has to ensure that only values which occur in the first table are stored in the second table.  The
column in the second table is said to be a FOREIGN KEY which references the first table.  If we
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insert a row into the second table then we must check that the value of the foreign key (or keys)
occurring in that row already exists in the referenced table (or tables).  Similarly, if a row is to be
deleted from the first table then we must ensure that there are no rows in the second table which
have the foreign key column with the same value as that which is to be deleted.  In either case, if
this referential constraint fails then the operation on the database should be terminated.  It is gen-
erally agreed that if full constraint checking is imposed on existing database implementations
then the performance of the system will be reduced to 25% of current performance.  Thus many
database systems are run without consistency checking, especially referential checking, so that
the overhead is not imposed.  The design to be discussed in this paper will permit the implementa-
tion of a full constraint system with a scalable performance.

A key aspect of current database technology is the ability to manipulate complex data types.  This
is manifested in the interest in object oriented databases.  We shall describe how object oriented
capabilities are captured by the design.

A final factor which is crucial to database machine performance is that of recovery from errors.
Oates and Kerridge [1][2] have shown how a recovery system can be implemented in parallel
with the data manipulation component of a database machine.  The architecture to be described in
this paper will show how these capabilities can be captured.

Many of the ideas expressed in this paper result from the highly successful IDIOMS [3][4]project
which resulted in the demonstration of a database machine which could undertake both On–line
Transaction Processing (OLTP) and Management Information System (MIS) queries on the same
data concurrently.  The IDIOMS machine demonstrated this capability for banking applications
specified by the Trustees Savings Bank plc.  One purpose of this demonstrator was to show that a
low–cost scalable architecture could be constructed.  This aspect is further enhanced with the use
of T9000 and C104 technology.

9.2 Review of the T8 Design
In this section a brief overview of the IDIOMS design is presented.  It demonstrates the limita-
tions of the T8 transputer as a basis for building a system which can be scaled easily.  Scalability
manifests itself in two different ways.  First, a system has to be scaled to match the initial size of
the application, thereby dealing with different sized applications.  Subsequently, the system has to
be scaled to deal with changes of application.  For example, the amount of data or the number of
applications may increase or the response time of the system may have to be improved.  Figure 9.1
shows the basic IDIOMS design.  Transactions are passed to the T processors, where access is
made to the disc for the required records to undertake the transaction.  It is presumed that data is
partitioned over the discs connected to the T processors.  In this case the partitioning uses the
account number.  Speed of access to the account information is improved by the use of an index.
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Figure 9.1 Basic IDIOMS architecture
Key:

T Transaction processor   SE Storage engine   D Data dictionary 
R Relational processor   C Communication engine   # Disc controller

It is also presumed that the transaction processing time is small; that is, in general a transaction
will access a single account, modify it in some simple manner and write the updated record back
to disc.  Conversely, it is presumed that a Management Information System (MIS) query will ac-
cess many records in the database.  and will thus take a long time to process.  The Storage Engines
connected to the Transaction processors are able to read data from the transaction data but not
write data back.  This means that an MIS query can be interrupted so that the T processor can
access the disc, because this operation must be given priority.  The IDIOMS machine design al-
lows the transaction to access the data as if it were a traditional record structure and can thus be
processed using a language such as C.  The Storage Engine accesses the data as if it were SQL
tables so that it can be processed in a relational manner.  The machine design permits both opera-
tions concurrently on the same dataset.  The overall design strategy is to ensure that the discs con-
nected to the transaction processors (T) have sufficient spare access capacity to allow the amount
of MIS activity required.  The IDIOMS machine has demonstrated a transaction processing per-
formance improvement of 45 times over the current mainframes used by TSB.  The current sys-
tem is incapable of providing MIS support.  The demonstrator has shown that for the current mix
of transactions there is sufficient disc access capacity available that the running of concurrent
MIS queries results in no appreciable diminution of transaction processing performance [5].

The remaining Storage Engines are used to store data which is only accessed by the MIS system,
for example summary and statistical tables.  This data can be joined with the data held on the
transaction discs in the relational processors R.  MIS queries are input to the Data Dictionary (D)
processor where they are parsed and processing resources are allocated as required.  The data dic-
tionary has sufficient information to know which parts of which tables are placed on which disc so
that only those discs which hold data needed for the query actually contribute to the necessary
processing.  A sequence of relational operations can be constructed as a pipeline by sending the
output of one Relational Engine (R) to the input of another using the communications ring of C
processors.  More details of relational processing techniques in such a machine can be found in
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[6].  The network of C processors provides the scalability of the system because we can add extra
nodes in the C processor structure as required.  Thus we can add transaction nodes, MIS nodes and
relational processing on an as needed basis.  Compare this with a traditional mainframe solution
where it is impossible to add the precise amount of extra capability required, rather the increment
in performance quite often increases capability that did not need to be enlarged.  In the following
sections we shall discuss the changes that can be made to the IDIOMS design as a result of using
T9000 and C104 technology.

9.3 A Processor Interconnection Strategy
Networks of up to 512 processors can easily be constructed using a simple three–level CLOS net-
work (see figure 7.1).  The network is replicated for each of the links of the T9000 if full intercon-
nection is required.  In the case of a database machine we may need to have more processors than
this and we may also need to ensure that the original design permits easy on–site increase in size.
Applications which can justify such processing needs usually cannot be taken out of service for
long periods because they are critical to an organisation’s profitability.  Figure 9.2 shows how a
network of five–levels can be constructed which allows 1920 T9000s to be connected.

Figure 9.2 A five–level indirect network

The components in this network are all C104s.  The terminal links are then connected to T9000s.
The periphery of this network has sufficient capacity to hold 1920 T9000s each connected by a
single link.  If all four links are to be connected then the complete network has to be replicated
four times.  The element of the network to the right is duplicated and connected to the eight central
C104s twice more, once for the lower connections and once to the upper connections.  A total of
152 C104s are required to connect just one link of each transputer and thus 608 are required if all
four links are to be interconnected.  It should be noted that any communication between transput-
ers on the same edge of the structure requires only three levels of communication rather than the
five needed to cross from one edge to another.  This structure gives sufficient capability for scal-
ability once the database machine has been installed.  The system needs initially to be set up with
just one of the four quadrants and even that does not need to be fully populated.  Thereafter the
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initial quadrant can be fully populated and subsequent quadrants filled as necessary.  If only one
quadrant is used then there is no need for the 8 central C104s.

9.4 Data Storage
Of crucial importance to any database machine is the provision of a high bandwidth, large vol-
ume, fault tolerant data storage sub–system.  We chose to make the same design decision as was
done in IDIOMS, namely that an operating system is not used to control the data storage because
the file system is usually inappropriate for database operation.  We therefore chose to store the
data directly on the disc storage and use a Data Storage Description Language to specify the
placement of the data[7].  This then permits greater and more flexible control of the database ma-
chine.  Furthermore, the data dictionary process can utilize the information to make query proces-
sing more efficient.

In this design we propose to obtain fault tolerance by simply maintaining several copies of the
data in a triple modular redundancy scheme.  This is sometimes known as disc mirroring.  We
shall obtain high bandwidth by providing a large number of link connections to the disc subsys-
tem.  In some ways the design is similar to the many RAID (Redundant Array of Inexpensive
Discs) products which are currently being marketed, except that we have chosen not to distribute
the bits of a word over many discs.  The design which is given presumes that a direct link interface
to the disc unit is provided.  Currently, of course, this is not the case, but the design gives compel-
ling reasons why this should be done.

However before we can present the design a few basic facts about disc accessing are required.
Disc manufacturers always quote a disc transfer speed which assumes that the read head is cor-
rectly located on the desired block before the transfer takes place.  They also quote seek and laten-
cy figures which indicate the time taken to move the head to the correct track and to wait for the
desired sector to rotate under the head.  The figure they don’t quote is the effect of these times on
overall performance.  In experiments we have undertaken which are confirmed in another re-
port[8] it was shown that an effective rate of about 0.5Mbyte/sec could be achieved from a
SCSI–1 disc which had a rated performance of 3 Mbytes/sec.  This was the figure for sequential
access.  The actual rate for random reads was of the order of 0.1 Mbytes/sec.  Faster disc technolo-
gy may improve this overall performance but the access rate is still going to be substantially less
than the figure quoted by disc manufacturers.  The way that disc manufacturers overcome this
performance is by constructing disc strings, that is having a number of discs on the same bus,
hence the SCSI bus system which permits upto seven discs on the bus.  It has been found that the
optimum number of discs to have on a SCSI–1 bus is four[9].  This figure matches the 0.5 Mbytes/
sec and the rated performance of SCSI–1 of 2 Mbytes/sec, for sequential access.  In order to
achieve good performance in a disc array it is usually suggested that consecutive data blocks are
placed on separate drives so that the seek and latency time can be overlapped.  This works well if
most of the accesses are sequential as happens for files in traditional operating system environ-
ments.  However in a database system this is not the case and there is thus little likelihood of dis-
tributing disc blocks over drives having a beneficial effect.  If such disc block striping were to be
undertaken it would be best to do this over a string of drives connected to a single control proces-
sor.  Figure 9.3 shows the structure of a simple disc sub–unit comprising 31 drives.
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Figure 9.3 Disc sub–unit
The sub–unit chooses to have only one disc per connection to the C104.  It is presumed that the
disc drive contains an interface compatible with a T9000 link.  In the short term this could be
achieved by use of a standard disc with extra interface circuitry.  The number of discs connected to
a single T9000 link is justified because the bandwidth of a T9000 link is 17.48 Mbytes/sec bi–
directionally.  This capacity divided by the actual disc performance of 0.5Mbytes/sec result in up
to 34 discs being reasonable.  This sub–unit of itself has no fault tolerance and is not scalable.
These aspects are achieved by making the sub–unit a component of a complete disc sub–system,
as shown in figure 9.4.

Figure 9.4 A complete disc sub–system
Each of the disc sub–units has one connection which connects it to the external environment.  The
other two connections are taken to a pair of C104s which provide connection between the sub–
units.  The two T9000’s (T) which are also connected to the C104s are used to provide a fault
tolerant repository of information about the data stored on the disc sub–system.  The complete
disc sub–system can comprise a maximum of 30 sub–units, though of course, it does not have to
be fully populated initially.  Assuming a fully populated system we can construct a disc sub–sys-
tem which holds from 18Gbytes using 20 Mbyte capacity drives to 2325 Gbytes using 2.5 Gbyte
capacity drives.  In both cases, the bandwidth available is 524 Mbytes/second.  As disc perfor-
mance improves it will be necessary to reduce the number of discs connected to the C104 so that it
matches the available link bandwidth.  It should be noted that the capacity of the system will be
reduced to one–third if a triple modular redundancy strategy is adopted.

Fault tolerance can be achieved by ensuring that every time data is written to the system two co-
pies are sent via the sub–unit controlling transputer and the C104s to two other sub–units, where a
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copy of the data is kept.  Thus we can be guaranteed that within one transfer time through a C104
data will have arrived at two other sub–units where the data can be replicated.  At that point it may
be necessary to wait to confirm the satisfactory writing of the data to all of the sub–units.  A well
understood two–phase commit protocol could be used to ensure system integrity.  Read perfor-
mance can be substantially improved because there are now three copies of the data.  Even though
a read request may be directed to a specified system connection link, there is no difference if the
actual read is sent to a different sub–unit if one of the sub–units happens to be overloaded.  The
design could be criticized because there is only one link between the system connection and each
disc.  The effect of this weakness is however reduced because we have three copies of each data
block, each on different disc units each having their own primary system connection.  It is thus
vital that we have a flexible interconnection strategy between the disc sub–system and the rest of
the database machine.

9.5 A Disc Interconnection Strategy
Figure 9.5 shows the connection between the disc sub–system and the rest of the architecture
when attached to an indirect network generated by 48 C104s, which permits 512 terminal connec-
tions.

Figure 9.5 Disc sub–system interconnection

Each of the TI processors in figure 9.5 provide a generic Table Interface process to the disc sub–
system.  The disc sub–system is simply connected to the routing chips one link per terminal con-
nection.  This interconnection strategy permits the use of generic table handlers rather than the
dedicated ones in the original IDIOMS design.  Thus the table partitioning that was explicit in the
IDIOMS design has become implicit in the T9000 based design.  The table is allocated to the disc
sub–system in such a way that the separate parts can be accessed in parallel by multiple TI pro-
cesses.  The TI process will usually have to manipulate the index that is used to access the part of
the table that has been allocated to the particular TI process.  A given query may not access the
whole table and therefore only the required number of TI processes will have to be allocated to
satisfy the table handling requirements of the query.

We now investigate how the remaining links on the TI process can be used given that the disc
sub–system and the TI processes are on the same interconnection layer.  First, we presume that the
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interconnection layers are replicated so that the transputers holding the TI process can be con-
nected to other layers remembering that the disc sub–system is only connected to one layer.  Thus
we would end up with four layers of interconnection.  We now have to allocate processes to these
layers.  It is not necessary in the connection system shown in figure 9.5 to consider locality of
reference because all processors are equidistant from each other.  In the interconnection architec-
ture shown in figure 9.2 it would be necessary to consider which processes do communicate with
each other so that those which communicate frequently are in a part of the network where there is
a three level communication structure rather than one involving five levels.  In the following sec-
tions we shall discuss the connections that have to be made between the processes that make up the
database machine.

9.6 Relational Processing
Figure 9.6 shows the way in which the IDIOMS relational engines were constructed using three
T8 transputers.  This structure was required because it was necessary to provide some local buff-
ering of data between the Storage Engine processors, which were sending data to the Relational
Engine over the communication structure.

Buffer Buffer

Join

Figure 9.6 IDIOMS style relational engine

This design then imposed some software difficulties because the synchronization which normally
occurs between occam processes is lost when that communication takes place between processes
which are not on adjacent processors.  This loss of synchronization can be overcome by having
each message acknowledged by a special message which is sent from the buffer process to the
storage engine which has sent the data.  This extra communication results in a reduction in
throughput because the sending process has to wait until it receives an acknowledgement before it
can send the next block of data.  The omission of the acknowledgement means that the buffer
process has to be able to send messages to the storage engine, in sufficient time, so that data is not
sent to the buffer process which cannot be stored in it.

This problem does not occur with the T9000/C104 solution because the hardware allows pro-
cesses to communicate with each other directly.  Thus the complete relational processor architec-
ture can be implemented on a single transputer with the same process structure.  However, the
buffer process does not need to send wait messages to the sending process, it just does not input
any more data when it becomes full, thus the sending process becomes blocked trying to output
data.  Provided the processes have been correctly constructed this causes no problem.  The buffer
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processes are still required because it makes relational processing more efficient when a nested
loops join has to be undertaken (every row of one table is compared with every row of a second
table).

A general relational process can therefore be allocated to any one of the transputers in the archi-
tecture.  In order to undertake the required processing the relational processor will need to be in-
formed of the structure of the tables to be joined and the type of join processing to be undertaken.
In addition, the relational processor will need to be told where the output from the relational pro-
cessing is to be sent.  This aspect of resource allocation and control of processing will be discussed
in section 11.

9.7 Referential Integrity Processing
Figure 9.7 shows a typical situation that occurs in relational databases involving a many–to–
many relationship between customers and their accounts.  A many–to–many relationship cannot
be directly represented so an intermediate linker table is introduced which implements two one–
to–many relationships.  The primary key of the Accounts table is the column A which contains the
account number.  The primary key of the Customer table is the column C which contains the cus-
tomer identification number.  The primary key of Account–Customer is a compound key com-
prising A and C, that is the combination of A and C is unique whereas individual values of A and C
may be replicated.  A fuller description can be found in [12].  A corollary of this structure is that in
order to send letters to account holders it is necessary to join Accounts to Account–Customer on
the common column A and then to join the result to Customer on the common column C.

Figure 9.7 Foreign key, primary key relationships

Figure 9.7 shows the checks which have to be undertaken when undertaking insert, update and
delete operations upon a database in which referential integrity processing has been specified.
Thus, if it is desired to delete a row from either the Accounts or Customer tables, then it is first
necessary to check that no row in the table Account–Customer has the same key value as that
which is about to be deleted.  That is the value of the column A or C respectively must have been
deleted from Account_Customer before it is deleted from Accounts or Customer.  Similarly, if a
value of the primary key of Accounts A, is updated, then a check has to be made in Account–Cus-
tomer to ensure that there are no rows which have the old value of A remaining.

Whenever a row is inserted into Account–Customer a check has to be made in both Accounts and
Customer that a row with the same value for A and C already exist.  This is known as a foreign key
check.  Similarly, if a row in the Account_Customer table is updated a foreign key check has to be
carried out to ensure that the new values already exist in the referenced tables.
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It is obvious from the foregoing description that much processing is involved in the checking of
referential constraints especially in systems which involve much updating of data.  It is for this
reason that many existing database applications execute without referential processing enabled
because the processing overhead is too great.  Figure 9.8 shows how two co–operating processors
can be used to implement a referential co– processing system.

Figure 9.8 Referential co–processor architecture

The referential co–processor contains a copy, sometimes known as a concrete view, of the prima-
ry key column(s) of a table partition.  This means that a particular referential co– processor is
dedicated to a particular table partition and is not a general processor which can be allocated on an
as needed basis like table interface processors.  The referential co– processor can be accessed by
any number of table interface processors because the access is read only as an existence check is
being undertaken to check whether or not a value already exists in the referential co–processor.  If
a table interface process modifies the primary key of a table then those changes have to be com-
municated to the appropriate referential co–processors.  This modification has to be done exclu-
sively so that update anomalies cannot occur between table interface and referential co–proces-
sors.  The referential co–processor is just a terminal transputer in the interconnect in just the same
way as a table interface processor is connected.  The only difference is that the referential co–
processor undertakes the referential processing for a particular table partition.  Thus, when a
query is parsed that will invoke referential processing, access to the required referential co–pro-
cessors will have to be granted.

The main advantage of this architecture is that the bulk of referential processing does not require
access to the complete table, just to the columns which are referenced by other tables.  It is thus
sensible to provide this capability as a dedicated resource.  The bulk of table accesses are, in fact,
to read data from the table in response to queries, which need no referential processing.  The dis-
advantage is that the data in the referential co–processor has to be up to date with all changes made
to the database.  This is closely linked with concurrency management which is discussed in the
next section.

9.8 Concurrency Management
Figure 9.9 shows the architecture of the concurrency management system.  Each Table Interface
processor is a terminal processor in the interconnect structure as are the Transaction Manager pro-
cessors (TM).  The TM processors support one or more TM processes, though we shall assume
this is just one for ease of explanation.  There have to be as many TM processes as there are per-
mitted concurrent transactions because we wish to ensure that the processing of one transaction is
not disturbed by the processing of the other transactions which are running concurrently.
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A transaction is a sequence of queries which a single user issues as an atomic piece of work.  That
is, either the whole transaction is successful and all modifications to the database are saved in the
database, or the transaction fails and thus has no effect on the database whatsoever.  A transaction
may fail because a row from a table required by one transaction has already been allocated to a
different concurrent transaction.  It is a requirement of database management systems that they
exhibit the principle of serializability.  This principle ensures that the effect of a number of con-
current transactions is the same when executed concurrently as if they had been executed one after
the other.  In addition the effect of one transaction cannot be seen by other transactions until the
transaction comes to an end and commits the changes to the database.

The design of this concurrency management system presumes that interference between transac-
tions is low, which is reasonable for commercial style applications.  For CAD/CAM applications
this may not be justified and a different approach would be required because the nature of transac-
tions is different, in particular, they tend to be much longer, which increases the likelihood of in-
terference between transactions.

Each table is divided into a number of partitions to increase the parallel access to the table and to
reduce the possibility of transactions interfering with each other.  Each partition has its own, spe-
cific, Partition Manager process allocated to a dedicated processor which is connected to the in-
terconnect in the same way as any other terminal processor.  This process records which rows of
the table partition have been allocated to which transaction.  A Table Interface process determines
whether or not it wishes to have access to a row.  If it does require access to a row it sends a mes-
sage to the Partition Manager associated with the table partition which the Table Interface process
is accessing.  At any one time many Table Interface processes may be accessing the same partition
of a table.  We have to ensure that these requests to access a row are received in a strict order.  This
can be simply achieved by using the Resource Channel mechanism provided by the T9000.  This
mechanism allows many processes to share a single channel which they can only access once their
claim on that channel has been granted.  This has a direct correspondence with the shared channel
concept in occam3[10,11].  Figure 9.9 shows the individual shared channels with each Table In-
terface process having access to all the shared channels (indicated by the bold lines).  There are as
many shared Partition Control Channels as there are partitions in the database.
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Figure 9.9 Concurrency management architecture

In addition, each Table Interface process has to indicate to one Transaction Manager process, with
which it is associated, that it has gained access to a row of a table partition.  If a Transaction Inter-
face process attempts to access a row that has already been allocated to another transaction then
the transaction becomes blocked and has to send a blocked message to its Transaction Manager.
Yet again this mechanism has to ensure that access to the Transaction Manager is controlled and
this can be simply achieved by the use of a resource channel.  There are as many Lock Control
Channels as there are Transaction Manager processes.  Each Table Interface process can access all
the Lock Control Channels.

The Partition Manager maintains a record of which rows of the associated table partition have
been allocated to which transaction.  The Transaction Manager maintains a record of those rows
of table partitions that have been allocated to the particular transaction.  In addition, the Transac-
tion Manager needs to know with which other transactions it could interfere, so that it can deter-
mine if transaction deadlock has occurred.  Two or more transactions are said to interfere with
each other if they both access at least one table partition in common.  In this case it possible that
one transaction has already gained access to a row which the other transactions require.  In this
case the second transaction is made to wait until the first transaction commits its work.  Transac-
tion deadlock occurs when the transaction which is not blocked attempts to access a row which
had been allocated previously to the other, now blocked, transaction.  Neither transaction can
make any progress because they are both waiting for each other to finish, which is impossible.
This is just a simple deadlock; far more complex situations can happen in reality with many more
transactions.
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The traditional solution, adopted by most existing database management system implementa-
tions is to store all the lock information in a single data structure which allows the detection of
such deadlock cycles.  Necessarily, the access to this data structure, which is expensive to main-
tain becomes a bottleneck in the system.  In the approach outlined above the amount of data that is
saved for the normal situation, where no transaction blocking or deadlock occurs is very light-
weight.  It simply involves the communication of two sets of values from the Table Interface pro-
cess, one set to the Partition Manager and the other to the Transaction Manager.  In the normal
case when the transaction completes successfully all the data structures (which are just simple
lists of values containing no internal structure) will be emptied so that the memory space can be
re–used for the next query.

If a transaction becomes blocked it has to determine whether or not a deadlock has occurred.  This
can be achieved by the Transaction Manager sending messages to other Transaction Managers
with which it is known that the transaction interferes.  If it is possible to construct a cycle amongst
blocked transactions then it is known that deadlock has occurred and one of the transactions has to
be rolled back.  The cycle is created by following through each of the Transaction Manager pro-
cessors looking at the row for which they are waiting.  A cycle occurs when it is possible to return
to the originating blocked transaction.  A Transaction Manager can be informed which row it is
waiting for and which transaction has accessed that row because that information is available in
the Partition Manager.  The decision as to which transaction to roll back is the function of the
Rollback Control process.  The system has been organized so that only one transaction can be
rolled back at one time, hence the use of a resource channel between the Rollback Manager pro-
cesses and the Rollback Controller processor, which is accessed by means of the shared channel
Rollback Control.

9.9 Complex Data Types
It is becoming more important that database systems are able to support data types other than
those traditionally supported by existing database management systems.  Usually such systems
are only capable of supporting integer, real, character and boolean data types.  Some systems have
supported date and time data types but in inconsistent ways.  Some systems have also provided an
unstructured data block into which a user can place a bit string of some length, which the user then
manipulates as necessary.

The T9000 / C104 combination in conjunction with the occam3 provides a simple means of im-
plementing complex data types through two mechanisms entitled remote call channels and li-
brary.  A library allows a data type definition to be created with a functional interface to permit
manipulation of structures passed to it using either ordinary channels or remote call channels.  A
library can be accessed by any number of concurrent user processes because it maintains no state
information between calls to the library.  A remote call permits the passing of parameters to a
procedure using two implicit channels, one to send the parameters and the other to receive the
results.  It is similar in concept to the remote procedure call mechanism provided in some operat-
ing system implementations.

We can therefore construct a system in which one or more processors contain the code for a library
which implements a particular complex data type.  This library can then be accessed either using
explicit channels or more likely by using remote call channels.  The library is actually accessed
using a resource channel which permits many user processes to access a single server process.
The bottleneck of having a single processor to deal with a given library can be simply overcome
by having many processors containing the same code and by using some form of resource sharing
strategy.  Resource channels can be passed as parameters so that a direct connection can be easily
made by referring to a single process which allocates the resource.  The complex data type proces-
sors are connected to the interconnect in the same way as any other terminal processor but once
allocated are only able to process messages for a particular data type.
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9.10 Recovery
In the IDIOMS environment recovery was undertaken at two different levels.  The first dealt with
recovery from storage media failure.  This was achieved by simple disc mirroring.  In the archi-
tecture described in this paper that aspect of recovery is dealt with by the disc sub–system using
Triple Modular Redundancy and so can be ignored.  The second type concerned recovery from
transaction failure which occurs when there is some failure in the on–line transaction processing
support infrastructure.  Typically this occurs when there is a communication system failure.  A
transaction arrives at the computer system from a remote location, such as an Automatic Teller
Machine, using a communications mechanism.  If the communications media fails before the re-
sults of the transaction can be returned to the originating point, then the effect of the transaction
has to be undone.  There are a number of techniques which can be used to overcome this problem
e.g.  before images, shadow copies and transaction logs[12], which all require the saving of in-
formation on a stable storage media such as disc during the course of transaction processing.
From the saved information it is possible to undo the effect of a particular transaction without
having to re–instate the whole database.  The architecture proposed in this paper can use these
same techniques.  Simply, a separate disc sub–system can be used to store transaction recovery
information, automatically providing media failure recovery.  A set of processors can be provided
which can undertake the necessary processing to undo the effect of an incomplete transaction

9.11 Resource Allocation and Scalability

9.11.1 Resource Allocation

The IDIOMS architecture relied upon a single Data Dictionary / Parser processor which parsed
incoming queries and allocated resources as necessary.  As such it could become a bottleneck if
the system was subject to a large number of small queries.  The parsing of queries does not need to
be restricted to a single processor.  The parsing process entails the decomposition of a query into
its component parts which can be allocated to separate processors for each query.  A number of
different processing strategies can then be identified which will depend upon the number of pro-
cessors that are actually available when the query is resourced.  The generation of these strategies
can be undertaken without knowing what actual resources are available.  In addition the strategies
can be evaluated against each other to determine the most cost effective against some system de-
fined cost function.

Once the strategies have been identified, the actual resources required can be communicated to a
single processor which knows what resources are available.  If one of the strategies can be accom-
modated then the resources can be allocated and the parser process can be sent information about
the resources it can use so that it can send appropriate messages to the processors which will en-
able query processing to begin.  When a query terminates a message can be sent from one of the
processors to the single processor which holds resource availability information.  If more than
one strategy can be resourced, then the resource allocator processor can decide which strategy to
use.  The resource allocator processor could contain constraints which have to be met in order that
a query can be started.  It may be that at specific times of the day it would not be feasible to start a
query which consumes most of the processing resource.  For example, in banking systems it is
known that there is a peak in transactions around lunch–time, hence it would be sensible to deny
access to a large query which would use most of the processing resource just before midday.

Figure 9.10 shows a processor structure which will implement such a resource allocation strategy.
We presume that queries arrive from the users into a User processor.  The User processor then
accesses the Resource Allocator process using the shared channel to determine which Parser pro-
cess to use.  If none are available the User process will be made to wait until one becomes avail-
able.  The query is then sent to the indicated Parser process.  It should be noted that all User pro-
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cesses are connected to all Parser processes.  The Parser process then decomposes the query and
determines the different strategies which are possible.  The Parser process then accesses the Re-
source Allocator process using the shared channel Resource Request, which ensures that only one
request for resources is dealt with at one time and thus it is not possible for the same resource to be
allocated to more than one query.  The Parser process will send information to the allocated re-
sources, using channels not shown in the diagram, indicating the processing to be undertaken.
Generally results will be returned to the User process from the Relational processors (R), hence it
is necessary to connect all the R processors to all the User processors.  When the query is complete
the User process will send a message using the shared channel which accesses the Resource Allo-
cator process to indicate that the resources used by the query are no longer required and can be
allocated to another query.

Figure 9.10 Resource allocation processor structure

9.11.2 Scalability

The system described in this paper is scalable in the two ways identified previously.  First, the
installed size of a system can be matched with the initial system requirements.  In coming to this
initial size the system designer must be aware of the likely increases in storage and performance
that will ensue.  For example, it is not uncommon for system to double in storage requirements
over the first two years with a consequent increase in processing requirements.  Thus it is vital that
the system interconnect is designed so that the perceived increases can be accommodated.  It is
thus not sensible to build an interconnect that is limited to 512 terminal connection points if it can
be anticipated that more will be needed in the future.

Secondly, the system can be scaled after installation by simply adding further resources.  These
resources can be added wherever they are required within the functional components in the ma-
chine because there is a uniform interconnect mechanism with a known cost.  The only constraint
would be in the five–level indirect structure, shown in figure 9.2, where it may be preferable to
add some facilities within a three–level interconnect regime to ensure the required performance.
In adding extra resources the only part which has to be changed is the resource allocator process
discussed previously.  Each component in the architecture that has been described is essentially a
generic component, even if in use it is made specific to a particular task, such as the referential
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co–processors.  This means that no new software has to be constructed.  Thus the implementation
of the system as a highly parallel system has afforded an easy mechanism for scalability.

A key factor in the operation of the database machine will be the collection of statistics so that
optimal data storage can be achieved.  A vital component of the collection of statistics is the moni-
toring of the changes in queries with time as the use of the database develops.  We have already
started work on such an automated system[13].

9.12 Conclusions
This paper has presented the outline for the design of a highly parallel database machine which is
solely dedicated to that single task.  The use of a general purpose processor has been avoided
thereby ensuring that the design has had to make few compromises concerning the implementa-
tion.  The advantage bestowed by the T9000/C104 combination is that we can design each indi-
vidual software component as a stand–alone entity which makes the system inherently scalable.
A further advantage of the use of these hardware components is that the resulting interconnect is
uniform in the latency that it imposes upon the system thus the system designer does not have to
take any special precautions to place closely coupled processes on adjoining processors.  The pa-
per has also shown how it is possible to build a highly parallel disc sub–system.  It is a subject for
further research to best determine how data should be allocated in such a system in order to maxi-
mize parallel access to the data stored in the disc sub–system.  Undoubtedly, the use of a Data
Storage Description Language[14], such as that developed for the IDIOMS project will be re-
quired.
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