Thisis Chapter 9 from the second edition of :

Networks, Routers and Transputers:
Function, Performance and applications

Edited by: M.D. May, PW. Thompson, and PH. Welch

a INMOS Limited 1993

Thisedition hasbeen madeavail ableelectronically sothat it may befreely copied and distributed.
Permission to modify the text or to use excerpts must be obtained from INMOS Limited. Copies
of this edition may not be sold. A hardbound book edition may be obtained from |OS Press:

|OS Press IOS Press, Inc.

Van Diemenstraat 94 P.O. Box 10558

1013 CN Amsterdam Burke, VA 22009-0558
Netherlands U.SA.

|OS Press/Lavis Marketing Kaigai Publications, Ltd.

73 Lime Walk 21 Kanda Tsukasa—Cho 2—Chome
Headington Chiyoda—Ka

Oxford OX3 7AD Tokyo 101

England Japan

This chapter was written by J.M. Kerridge.

9 The Implementation of Large
Parallel Database Machines on
T9000 and C104 Networks

The design of large database machines requires the resulting implementation be scalable and
cheap. Thismeansthat use has to be made of commodity itemswhenever possible. Thedesign
also hasto ensurethat scalability isincorporated into the machinefromitsinception rather than as
an after—thought. Scalability manifestsitself intwo different ways. First, theinitial sizeof asys-
tem when it isinstalled should be determined by the performance and size requirements of the
desired application at that time. Secondly, the system should be scalable as processing require-
ments change during the life-time of the system. The T9000 and C104 provide a means of de-
signing alarge parallel database machinewhich can be constructed from commodity components
in amanner that permits easy scalability.

9.1 Database Machines

A database machine providesahighlevel interface to the stored dataso that the user isnot aware
of theaccess path to that data. Further, the user can specify what dataisrequired and not how the
dataisto befound. Inarelational database machine, the topic of this paper, the datais storedin
tables. Each row of atable contains anumber of columns each of which contain asingle atomic
value. Rows are distinguished from each other by the value of one of the columns having adis-
tinct value. Datafrom one table can be combined with that from another by a process known as
relational join. If we assumethat in each table thereisacolumn which holds datafrom the same
domain, then we can join the tables on those columns. In general, the output from ajoin isthe
concatenation of one row from each of the tables where the joining columns have equal values.

A database machine allows different usersto access the database at the sametimefor any opera-
tion. Thusdifferent users can be accessing the database to read, write, modify and erase rows of
tables. Theeffect of each user hasto bemadeinvisibleto the other usersuntil auser hasindicated
that aunit of work iscomplete. The database machinetherefore hasto ensurethat different users
do not interfere with each other by accessing the samerowsof atable. Many users can accessthe
samerow of atableprovidedthey areall readingthedata. Themaintenance of such aconcurrency
management system is expensive and most of the current algorithms are based upon the use of a
large memory to hold locking information. The design to be presented in this paper will show
how a scalable concurrency management system can be constructed.

Itisvital that the datastoredin the databaseis correct and consistent. Thismeansthat datavalues
have to be checked whenever dataiswritten, erased and modified. Thisconsistency isachieved
by the use of integrity constraints which can be of severa different kinds. First, thereisasimple
check constraint to ensure that a value is contained within a simple range of values. A second
more complex check constraint can beinvoked which ensuresthat avalueinacolumnof atableis
related in someway to avaluein another row of the sametable, or on somefunction appliedtothe
table asawhole. This can then be extended to a check which refersto another table. Finally, a
referential constraint imposes relationships between tables. The column, or columns, which
uniquely identify arow inatablearecalled the PRIMARY KEY of that table. Another table may
store the same valuesin a column of that table. This column will not be the primary key of the
second table, though it may form part of the primary key of the second table. The database system
has to ensure that only values which occur in the first table are stored in the second table. The
column in the second tableis said to beaFOREIGN KEY which referencesthefirst table. If we

insert arow into the second table then we must check that the value of the foreign key (or keys)
occurring in that row already existsin the referenced table (or tables). Similarly, if arow isto be
deleted from the first table then we must ensure that there are no rowsin the second table which
have the foreign key column with the same value asthat which isto be deleted. In either case, if
thisreferential constraint failsthen the operation on the database should beterminated. Itisgen-
erally agreed that if full constraint checking is imposed on existing database implementations
then the performance of the system will be reduced to 25% of current performance. Thus many
database systems are run without consistency checking, especially referential checking, so that
theoverhead isnotimposed. Thedesignto bediscussed inthispaper will permit theimplementa-
tion of afull constraint system with a scal able performance.

A key aspect of current databasetechnology isthe ability to manipulate complex datatypes. This
ismanifested in the interest in object oriented databases. We shall describe how object oriented
capabilities are captured by the design.

A final factor which iscrucial to database machine performance isthat of recovery from errors.
Oates and Kerridge [1][2] have shown how a recovery system can be implemented in parallel
with the datamani pul ation component of adatabase machine. Thearchitectureto bedescribedin
this paper will show how these capabilities can be captured.

Many of theideas expressed inthis paper result from the highly successful IDIOM S| 3][4]project
which resulted in the demonstration of a database machine which could undertake both On-ine
Transaction Processing (OLTP) and Management Information System (M1S) queriesonthesame
data concurrently. The IDIOM S machine demonstrated this capability for banking applications
specified by the Trustees Savings Bank plc. One purpose of thisdemonstrator wasto show that a
low—cost scal able architecture could be constructed. Thisaspect isfurther enhanced with theuse
of T9000 and C104 technology.

9.2 Review of the T8 Design

In this section abrief overview of the IDIOMS design is presented. It demonstrates the limita-
tions of the T8 transputer as abasisfor building asystem which can be scaled easily. Scalability
manifestsitself in two different ways. First, asystem hasto be scaled to match theinitial size of
theapplication, thereby dealing with different sized applications. Subsequently, thesystem hasto
be scaled to deal with changes of application. For example, the amount of data or the number of
applicationsmay increase or theresponsetime of the system may haveto beimproved. Figure9.1
shows the basic IDIOMS design. Transactions are passed to the T processors, where access is
made to the disc for the required records to undertake the transaction. Itis presumed that datais
partitioned over the discs connected to the T processors. In this case the partitioning uses the
account number. Speed of accessto the account information isimproved by the use of anindex.

gl

Figure9.1 Basic IDIOMS architecture
Key:
T Transaction processor SE Storage engine D Data dictionary
R Relational processor C Communication engine # Disc controller

It isalso presumed that the transaction processing timeis small; that is, in general atransaction
will access asingle account, modify it in some simple manner and write the updated record back
todisc. Conversely, itispresumed that aManagement Information System (MI1S) query will ac-
cessmany recordsinthedatabase. and will thustakealongtimeto process. The Storage Engines
connected to the Transaction processors are able to read data from the transaction data but not
write data back. This means that an MIS query can be interrupted so that the T processor can
access the disc, because this operation must be given priority. The IDIOMS machine design al-
lows the transaction to access the data asif it were atraditional record structure and can thus be
processed using alanguage such as C. The Storage Engine accesses the data asiif it were SQL
tablessothat it can be processed in arelational manner. The machine design permits both opera-
tionsconcurrently onthe samedataset. Theoverall design strategy isto ensurethat thediscs con-
nected to the transaction processors (T) have sufficient spare access capacity to allow the amount
of MISactivity required. Thel DIOMS machine has demonstrated atransaction processing per-
formance improvement of 45 times over the current mainframes used by TSB. The current sys-
temisincapable of providing MIS support. The demonstrator has shown that for the current mix
of transactions there is sufficient disc access capacity available that the running of concurrent
MIS queries results in no appreciable diminution of transaction processing performance [5].

The remaining Storage Engines are used to store datawhich isonly accessed by the M1S system,
for example summary and statistical tables. This data can be joined with the data held on the
transaction discsin therelational processorsR. MIS queriesareinput to the Data Dictionary (D)
processor wherethey are parsed and processing resourcesareallocated asrequired. Thedatadic-
tionary hassufficient information to know which partsof which tablesare placed onwhich disc so
that only those discs which hold data needed for the query actually contribute to the necessary
processing. A sequence of relational operations can be constructed as a pipeline by sending the
output of one Relational Engine (R) to the input of another using the communicationsring of C
processors. More details of relational processing techniquesin such amachine can befoundin

[6]. Thenetwork of C processors providesthe scalability of the system because we can add extra
nodesinthe C processor structureasrequired. Thuswe can add transaction nodes, MISnodesand
relational processing on an as needed basis. Compare thiswith atraditional mainframe solution
whereitisimpossibleto add the precise amount of extracapability required, rather theincrement
in performance quite often increases capability that did not need to be enlarged. Inthefollowing
sectionswe shall discussthe changesthat can be madeto the IDIOM S design asaresult of using
T9000 and C104 technol ogy.

9.3 A Processor |nterconnection Strategy

Networksof upto 512 processorscan easily be constructed using asimplethree-evel CLOS net-
work (seefigure7.1). Thenetwork isreplicated for each of thelinksof the T9000if full intercon-
nectionisrequired. Inthe case of adatabase machinewe may need to have more processorsthan
thisand we may also need to ensure that the original design permitseasy on—siteincreasein size.
Applications which can justify such processing needs usually cannot be taken out of service for
long periods because they are critical to an organisation’s profitability. Figure 9.2 shows how a
network of five-evels can be constructed which allows 1920 T9000s to be connected.

31 24
0 23

: 7
— | 16
78 15

/N

Figure9.2 A fivedevel indirect network

The componentsin thisnetwork areall C104s. Theterminal linksare then connected to T9000s.
The periphery of this network has sufficient capacity to hold 1920 T9000s each connected by a
singlelink. If all four links are to be connected then the compl ete network has to be replicated
four times. Theelement of thenetwork to theright isduplicated and connected to theeight central
C104stwice more, oncefor the lower connections and once to the upper connections. A total of
152 Cl04sarerequired to connect just onelink of each transputer and thus 608 arerequired if all
four linksareto beinterconnected. It should be noted that any communication between transput-
ers on the same edge of the structure requires only threelevels of communication rather than the
five needed to cross from one edge to another. Thisstructure gives sufficient capability for scal-
ability oncethe database machine hasbeeninstalled. The system needsinitially to be set up with
just one of the four quadrants and even that does not need to be fully populated. Thereafter the

initial quadrant can be fully populated and subsequent quadrantsfilled as necessary. If only one
quadrant is used then there is no need for the 8 central C104s.

9.4 Data Storage

Of crucial importance to any database machine is the provision of a high bandwidth, large vol-
ume, fault tolerant data storage sub—system. We chose to make the same design decision aswas
donein IDIOMS, namely that an operating system isnot used to control the data storage because
the file system is usually inappropriate for database operation. We therefore chose to store the
data directly on the disc storage and use a Data Storage Description Language to specify the
placement of thedata[7]. Thisthen permitsgreater and moreflexible control of the database ma-
chine. Furthermore, thedatadictionary processcan utilizetheinformation to makequery proces-
sing more efficient.

In this design we propose to obtain fault tolerance by simply maintaining several copies of the
datain atriple modular redundancy scheme. Thisis sometimes known as disc mirroring. We
shall obtain high bandwidth by providing alarge number of link connections to the disc subsys-
tem. In some ways the design is similar to the many RAID (Redundant Array of Inexpensive
Discs) productswhich are currently being marketed, except that we have chosen not to distribute
thebitsof aword over many discs. Thedesignwhichisgiven presumesthat adirect link interface
tothediscunitisprovided. Currently, of course, thisisnot the case, but the design gives compel -
ling reasons why this should be done.

However before we can present the design afew basic facts about disc accessing are required.

Disc manufacturers always quote a disc transfer speed which assumes that the read head is cor-
rectly located on the desired block beforethetransfer takesplace. They aso quote seek and laten-
cy figureswhich indicate the time taken to move the head to the correct track and to wait for the
desired sector to rotate under the head. Thefigurethey don’t quoteisthe effect of thesetimeson
overal performance. In experiments we have undertaken which are confirmed in another re-
port[8] it was shown that an effective rate of about 0.5Mbyte/sec could be achieved from a
SCSI-1 disc which had arated performance of 3 Mbytes/sec. Thiswasthe figurefor sequential

access. Theactual ratefor random readswasof theorder of 0.1 Mbytes/sec. Faster disctechnolo-
gy may improvethisoverall performance but the accessrateis still going to be substantially less
than the figure quoted by disc manufacturers. The way that disc manufacturers overcome this
performance is by constructing disc strings, that is having a number of discs on the same bus,

hencethe SCSI bus system which permits upto seven discson the bus. It has been found that the
optimum number of discsto haveon aSCSI—1 busisfour[9]. Thisfigurematchesthe0.5Mbytes/
sec and the rated performance of SCSI-1 of 2 Mbytes/sec, for sequential access. In order to
achieve good performancein adisc array it isusually suggested that consecutive datablocks are
placed on separate drives so that the seek and latency time can be overlapped. Thisworkswell if
most of the accesses are sequentia as happensfor filesin traditional operating system environ-
ments. However in adatabase system thisisnot the case and thereisthuslittle likelihood of dis-
tributing disc blocks over drives having abeneficial effect. If such disc block striping wereto be
undertaken it would be best to do thisover astring of drives connected to asingle control proces-
sor. Figure 9.3 shows the structure of a simple disc sub—unit comprising 31 drives.

Discs other processors

@/_, in the disc sub-system
O/— | System Data

C104 T9000 :
Connection
@

Figure 9.3 Disc sub-unit

The sub—unit chooses to have only one disc per connection to the C104. It is presumed that the
disc drive contains an interface compatible with a T9000 link. In the short term this could be
achieved by useof astandard disc with extrainterfacecircuitry. Thenumber of discsconnectedto
asingle T9000 link is justified because the bandwidth of a T9000 link is 17.48 Mbytes/sec bi—
directionally. Thiscapacity divided by the actual disc performance of 0.5Mbytes/sec result in up
to 34 discs being reasonable. This sub—unit of itself has no fault tolerance and is not scalable.
These aspects are achieved by making the sub—unit acomponent of acomplete disc sub—system,
as shown in figure 9.4.

IT—% !T_! Control :
Connections

(s Data
[o_ LL]
(-, B J —
(-] System
S
O J
Disc sub-unit - |) Connections

<O _l_l
(-, _/

Figure 9.4 A complete disc sub—system

Each of the disc sub—unitshas one connection which connectsit to the external environment. The
other two connections are taken to a pair of C104s which provide connection between the sub—
units. The two T9000's (T) which are also connected to the C104s are used to provide a fault
tolerant repository of information about the data stored on the disc sub—system. The complete
disc sub—system can comprise amaximum of 30 sub—units, though of course, it does not haveto
befully populatedinitialy. Assuming afully populated system we can construct adisc sub-sys-
tem which holdsfrom 18Gbytes using 20 Mbyte capacity drivesto 2325 Gbytesusing 2.5 Ghyte
capacity drives. In both cases, the bandwidth available is 524 Mbytes/second. Asdisc perfor-
manceimprovesit will be necessary to reducethe number of discsconnected tothe C104 sothat it
matches the available link bandwidth. It should be noted that the capacity of the system will be
reduced to one-third if atriple modular redundancy strategy is adopted.

Fault tolerance can be achieved by ensuring that every time dataiswritten to the system two co-
piesare sent viathe sub—unit controlling transputer and the C104sto two other sub—units, wherea

copy of thedataiskept. Thuswe can be guaranteed that within onetransfer timethrough aC104
datawill havearrived at two other sub—unitswherethedatacan bereplicated. Atthat pointit may
be necessary to wait to confirm the satisfactory writing of the datato all of the sub—units. A well
understood two—phase commit protocol could be used to ensure system integrity. Read perfor-
mance can be substantially improved becausethere are now three copiesof thedata. Eventhough
aread request may be directed to aspecified system connection link, thereis no differenceif the
actual read is sent to adifferent sub—unit if one of the sub—units happensto be overloaded. The
design could be criticized because thereisonly onelink between the system connection and each
disc. Theeffect of thisweaknessishowever reduced because we have three copies of each data
block, each on different disc units each having their own primary system connection. It isthus
vital that we have aflexibleinterconnection strategy between the disc sub—system and the rest of
the database machine.

9.5 A DiscInterconnection Strategy

Figure 9.5 shows the connection between the disc sub—system and the rest of the architecture
when attached to anindirect network generated by 48 C104s, which permits512 terminal connec-
tions.

16
0 s
16 1
: 0
) S K3 3l
Disc 15 :
Sub-system .
: 1
TI : 15
—\ ;|
0
Tl 1 16
(31 1y
15
T‘I —/

Figure 9.5 Disc sub-system interconnection

Each of the T1 processorsin figure 9.5 provide ageneric Table Interface processto the disc sub—
system. Thedisc sub—system issimply connected to the routing chipsonelink per terminal con-
nection. Thisinterconnection strategy permits the use of generic table handlers rather than the
dedicated onesintheoriginal IDIOMSdesign. Thusthetable partitioning that wasexplicitinthe
IDIOM Sdesign hasbecomeimplicit inthe T9000 based design. Thetableisallocated tothedisc
sub—system in such away that the separate parts can be accessed in parallel by multiple Tl pro-
cesses. TheTI processwill usually have to manipulate theindex that is used to accessthe part of
the table that has been allocated to the particular Tl process. A given query may not access the
whole table and therefore only the required number of TI processes will have to be allocated to
satisfy the table handling requirements of the query.

We now investigate how the remaining links on the TI process can be used given that the disc
sub—systemandthe T1 processesare onthesameinterconnection layer. First, wepresumethat the

interconnection layers are replicated so that the transputers holding the TI process can be con-
nected to other layersremembering that the disc sub—systemisonly connected to onelayer. Thus
wewould end up with four layersof interconnection. We now haveto allocate processesto these
layers. It isnot necessary in the connection system shown in figure 9.5 to consider locality of
reference because all processorsare equidistant from each other. 1ntheinterconnection architec-
tureshowninfigure 9.2 it would be necessary to consider which processes do communicate with
each other so that those which communicate frequently arein apart of the network wherethereis
athreelevel communication structurerather than oneinvolving fivelevels. Inthefollowing sec-
tionsweshall discussthe connectionsthat haveto be made between the processesthat make up the
database machine.

9.6 Relational Processing

Figure 9.6 showstheway in which the IDIOM Srelational engineswere constructed using three
T8 transputers. Thisstructurewas required becauseit was necessary to provide somelocal buff-
ering of data between the Storage Engine processors, which were sending data to the Relational
Engine over the communication structure.

Buffer Buffer

Join

Figure 9.6 IDIOMS style relational engine

Thisdesignthenimposed some softwaredifficultiesbecausethe synchronization which normally
occursbetween occam processesislost when that communi cation takes place between processes
which are not on adjacent processors. Thisloss of synchronization can be overcome by having
each message acknowledged by a special message which is sent from the buffer process to the
storage engine which has sent the data. This extra communication results in a reduction in
throughput becausethe sending processhastowait until it receivesan acknowledgement beforeit
can send the next block of data. The omission of the acknowledgement means that the buffer
process hasto be able to send messagesto the storage engine, in sufficient time, so that dataisnot
sent to the buffer process which cannot be stored in it.

This problem does not occur with the T9000/C104 solution because the hardware alows pro-
cessesto communicate with each other directly. Thusthe completerelational processor architec-
ture can be implemented on a single transputer with the same process structure. However, the
buffer process does not need to send wait messages to the sending process, it just does not input
any more datawhen it becomes full, thus the sending process becomes blocked trying to output
data. Provided the processeshave been correctly constructed this causesno problem. Thebuffer

processes are still required because it makes relational processing more efficient when a nested
loopsjoin hasto be undertaken (every row of one table is compared with every row of asecond
table).

A general relational process can therefore be allocated to any one of the transputersin the archi-
tecture. In order to undertake the required processing the relational processor will need to bein-
formed of the structure of thetablesto bejoined and the type of join processing to be undertaken.
In addition, therelational processor will need to be told where the output from therelational pro-
cessingistobesent. Thisaspect of resourceallocation and control of processingwill bediscussed
in section 11.

9.7 Referential Integrity Processing

Figure 9.7 shows a typical situation that occurs in relational databases involving a many—to—
many relationship between customers and their accounts. A many—to—many relationship cannot
be directly represented so an intermediate linker tableisintroduced which implementstwo one—
to—many relationships. Theprimary key of the Accountstableisthe column A which containsthe
account number. The primary key of the Customer tableisthe column C which containsthe cus-
tomer identification number. The primary key of Account—Customer is acompound key com-
prising A and C, that isthe combination of A and Cisuniquewhereasindividual valuesof A andC
may bereplicated. A fuller descriptioncanbefoundin[12]. A corollary of thisstructureisthatin
order to send lettersto account holdersit is necessary to join Accountsto Account—Customer on
the common column A and then to join the result to Customer on the common column C.

Account-

Accounts Customer Customer
A A C C

: Primary Key Check - PK Cheg¢k

D>
Delete or Update :
Foreign Key Check FK] Check :
>
' Insert and Update :

Figure 9.7 Foreign key, primary key relationships

Figure 9.7 shows the checks which have to be undertaken when undertaking insert, update and
del ete operations upon a database in which referential integrity processing has been specified.
Thus, if it is desired to delete arow from either the Accounts or Customer tables, then it isfirst
necessary to check that no row in the table Account—Customer has the same key value as that
whichisabout to be deleted. That isthevalue of the column A or C respectively must have been
deleted from Account_Customer beforeit isdeleted from Accounts or Customer. Similarly, if a
valueof theprimary key of AccountsA, isupdated, then acheck hasto be madein Account—Cus-
tomer to ensure that there are no rows which have the old value of A remaining.

Whenever arow isinserted into Account—Customer acheck hasto be madein both Accountsand
Customer that arow withthesamevaluefor A and C already exist. Thisisknownasaforeignkey
check. Similarly, if arow inthe Account_Customer tableisupdated aforeign key check hasto be
carried out to ensure that the new values already exist in the referenced tables.

It isobvious from the foregoing description that much processing isinvolved in the checking of
referential constraints especially in systems which involve much updating of data. It isfor this
reason that many existing database applications execute without referential processing enabled
becausethe processing overheadistoo great. Figure 9.8 showshow two co—operating processors
can be used to implement areferential co— processing system.

Table Updates Referential
Interface Co-processor
I
I
Table Access Referential Access

Figure 9.8 Referential co—processor architecture

Thereferential co—processor containsacopy, sometimesknown asaconcrete view, of the prima-
ry key column(s) of atable partition. This means that a particular referential co— processor is
dedicated to aparticular tablepartition and isnot ageneral processor which canbeallocated onan
as needed basisliketableinterface processors. Thereferential co— processor can be accessed by
any number of tableinterface processors because the accessisread only asan existence check is
being undertaken to check whether or not avalue already existsinthereferential co—processor. If
atableinterface process modifiesthe primary key of atable then those changes have to be com-
municated to the appropriate referential co—processors. This modification has to be done exclu-
sively so that update anomalies cannot occur between table interface and referential co—proces-
sors. Thereferential coprocessor isjust aterminal transputer intheinterconnect injust thesame
way as atable interface processor is connected. The only difference is that the referential co—
processor undertakes the referential processing for a particular table partition. Thus, when a
query isparsed that will invoke referential processing, accessto the required referential co—ro-
cessors will have to be granted.

The main advantage of thisarchitectureisthat the bulk of referential processing doesnot require
accessto the complete table, just to the columns which are referenced by other tables. Itisthus
sensibleto providethis capability asadedicated resource. Thebulk of table accessesare, infact,
to read datafrom the tablein response to queries, which need no referential processing. Thedis-
advantageisthat thedatainthereferential co—processor hastobeuptodatewithall changesmade
to the database. Thisisclosely linked with concurrency management which is discussed in the
next section.

9.8 Concurrency Management

Figure 9.9 shows the architecture of the concurrency management system. Each Table Interface
processor isaterminal processor intheinterconnect structure asarethe Transaction Manager pro-
cessors (TM). The TM processors support one or more TM processes, though we shall assume
thisisjust onefor ease of explanation. There haveto beasmany TM processes asthere are per-
mitted concurrent transactions because we wish to ensurethat the processing of onetransactionis
not disturbed by the processing of the other transactions which are running concurrently.

A transaction isasequence of querieswhich asingle user issuesasan atomic pieceof work. That
IS, either thewhol etransaction issuccessful and all modificationsto the database are savedinthe
database, or thetransaction failsand thus has no effect on the database whatsoever. A transaction
may fail because arow from atable required by one transaction has already been allocated to a
different concurrent transaction. It isarequirement of database management systems that they
exhibit the principle of serializability. This principle ensuresthat the effect of anumber of con-
current transactionsisthe samewhen executed concurrently asif they had been executed oneafter
the other. In addition the effect of one transaction cannot be seen by other transactions until the
transaction comes to an end and commits the changes to the database.

Thedesign of thisconcurrency management system presumesthat i nterference between transac-
tionsislow, whichisreasonablefor commercial style applications. For CAD/CAM applications
thismay not bejustified and adifferent approach woul d be required because the nature of transac-
tionsisdifferent, in particular, they tend to be much longer, which increasesthelikelihood of in-
terference between transactions.

Each tableisdivided into anumber of partitionsto increase the parallel accessto thetable and to
reduce the possibility of transactionsinterfering with each other. Each partition hasitsown, spe-
cific, Partition Manager process allocated to a dedicated processor which is connected to the in-
terconnect in the same way as any other terminal processor. This process records which rows of
thetable partition have been allocated towhich transaction. A Tablelnterfaceprocessdetermines
whether or not it wishesto have accessto arow. If it doesrequire accessto arow it sendsames-
sagetothe Partition M anager associated with thetabl e partition which the Table Interface process
Isaccessing. Atany onetimemany Tablelnterface processes may be accessing the same partition
of atable. Wehaveto ensurethat theserequeststo accessarow arereceivedinastrict order. This
can be simply achieved by using the Resource Channel mechanism provided by the T9000. This
mechanism allowsmany processesto shareasinglechannel whichthey canonly accessoncetheir
claim onthat channel hasbeen granted. Thishasadirect correspondence with the shared channel
concept inoccam3[10,11]. Figure 9.9 showstheindividual shared channelswith each TableIn-
terface process having accessto al the shared channel s (indicated by thebold lines). Thereareas
many shared Partition Control Channels as there are partitions in the database.

Partition Partition Partition
Manager Manager Manager
Partition
I I —— N T — 1T Control
Channels
Table Table Table Table
Interface Interface Interface Interface
Lock
-ttt — — — — — Control
| Channels
Global Global
Lock Lock
Manager Manager
Rollback Rollback
Manager Manager
Transaction Manager Transaction Manager
Rollback
Rollback Control Channel Controller

Figure 9.9 Concurrency management architecture

Inaddition, each Tablelnterface processhastoindicateto one Transaction Manager process, with
whichitisassociated, that it has gained accessto arow of atablepartition. If aTransaction Inter-
face process attempts to access arow that has already been allocated to another transaction then
the transaction becomes blocked and has to send a blocked message to its Transaction Manager.
Yet again this mechanism hasto ensure that access to the Transaction Manager is controlled and
this can be ssmply achieved by the use of aresource channel. There are as many Lock Control
Channelsasthereare Transaction Manager processes. Each Tablelnterface processcan accessall
the Lock Control Channels.

The Partition Manager maintains arecord of which rows of the associated table partition have
been allocated to which transaction. The Transaction Manager maintains arecord of thoserows
of table partitionsthat have been allocated to the particular transaction. Inaddition, the Transac-
tion Manager needs to know with which other transactionsit could interfere, so that it can deter-
mine if transaction deadlock has occurred. Two or more transactions are said to interfere with
each other if they both access at |east one table partition in common. Inthiscaseit possible that
one transaction has aready gained access to arow which the other transactionsrequire. Inthis
case the second transaction is made to wait until thefirst transaction commitsitswork. Transac-
tion deadlock occurs when the transaction which is not blocked attempts to access arow which
had been allocated previously to the other, now blocked, transaction. Neither transaction can
make any progress because they are both waiting for each other to finish, which isimpossible.
Thisisjust asimpledeadlock; far more complex situations can happeninreality with many more
transactions.

The traditional solution, adopted by most existing database management system implementa-
tionsisto store all the lock information in a single data structure which allows the detection of
such deadlock cycles. Necessarily, the accessto this data structure, which is expensive to main-
tain becomesabottleneck inthe system. Intheapproach outlined abovetheamount of datathat is
saved for the normal situation, where no transaction blocking or deadlock occursis very light-
weight. It simply involvesthe communication of two sets of valuesfrom the Tabl e Interface pro-
cess, one set to the Partition Manager and the other to the Transaction Manager. In the normal
case when the transaction completes successfully all the data structures (which are just smple
lists of values containing no internal structure) will be emptied so that the memory space can be
re-used for the next query.

If atransaction becomesblocked it hasto determinewhether or not adeadlock hasoccurred. This
can be achieved by the Transaction Manager sending messages to other Transaction Managers
withwhichitisknownthat thetransactioninterferes. If itispossibleto construct acycleamongst
blocked transactionsthenitisknown that deadl ock has occurred and one of thetransactionshasto
berolled back. Thecycleiscreated by following through each of the Transaction Manager pro-
cessorslooking at therow for which they arewaiting. A cycleoccurswhenitispossibletoreturn
to the originating blocked transaction. A Transaction Manager can be informed whichrow itis
waiting for and which transaction has accessed that row because that information isavailablein
the Partition Manager. The decision as to which transaction to roll back is the function of the
Rollback Control process. The system has been organized so that only one transaction can be
rolled back at one time, hence the use of aresource channel between the Rollback Manager pro-
cesses and the Rollback Controller processor, which is accessed by means of the shared channel
Rollback Control.

9.9 Complex Data Types

It is becoming more important that database systems are able to support data types other than
those traditionally supported by existing database management systems. Usually such systems
areonly capable of supportinginteger, real, character and bool ean datatypes. Somesystemshave
supported date and time datatypesbut ininconsistent ways. Some systemshavealso provided an
unstructured databl ock into which auser can placeabit string of somelength, whichtheuser then
mani pul ates as necessary.

The T9000/ C104 combination in conjunction with the occam3 provides asimple means of im-
plementing complex data types through two mechanisms entitled remote call channels and li-
brary. A library alows a datatype definition to be created with afunctional interface to permit
mani pulation of structures passed to it using either ordinary channels or remote call channels. A
library can be accessed by any number of concurrent user processes because it maintains no state
information between callsto the library. A remote call permits the passing of parametersto a
procedure using two implicit channels, one to send the parameters and the other to receive the
results. Itissimilar in concept to the remote procedure call mechanism provided in some operat-
ing system implementations.

We can therefore construct asysteminwhich oneor more processorscontainthecodefor alibrary
which implementsaparticular complex datatype. Thislibrary can then be accessed either using
explicit channels or more likely by using remote call channels. Thelibrary is actually accessed
using aresource channel which permits many user processes to access a single server process.
The bottleneck of having asingle processor to deal with agiven library can be simply overcome
by having many processors containing the same code and by using someform of resource sharing
strategy. Resource channels can be passed as parameters so that adirect connection can be easily
made by referring to asingleprocesswhich allocatestheresource. Thecomplex datatype proces-
sors are connected to the interconnect in the same way as any other terminal processor but once
allocated are only able to process messages for a particular data type.

9.10 Recovery

Inthel DIOM Senvironment recovery was undertaken at two different levels. Thefirst dealt with
recovery from storage mediafailure. Thiswasachieved by simple disc mirroring. Inthe archi-
tecture described in this paper that aspect of recovery isdealt with by the disc sub—system using
Triple Modular Redundancy and so can be ignored. The second type concerned recovery from
transaction failure which occurswhen thereis some failure in the on-ine transaction processing
support infrastructure. Typically this occurs when there is a communication system failure. A
transaction arrives at the computer system from aremote location, such as an Automatic Teller
M achine, using acommunications mechanism. If the communications mediafailsbeforethere-
sults of the transaction can be returned to the originating point, then the effect of the transaction
hasto be undone. Thereareanumber of techniqueswhich can be used to overcomethis problem
e.g. beforeimages, shadow copies and transaction logs[12], which all require the saving of in-
formation on a stable storage media such as disc during the course of transaction processing.
From the saved information it is possible to undo the effect of a particular transaction without
having to re-instate the whole database. The architecture proposed in this paper can use these
same techniques. Simply, a separate disc sub—system can be used to store transaction recovery
information, automatically providing mediafailurerecovery. A set of processorscan beprovided
which can undertake the necessary processing to undo the effect of an incomplete transaction

9.11 Resource Allocation and Scalability

9.11.1 Resource Allocation

The IDIOMS architecture relied upon a single Data Dictionary / Parser processor which parsed
incoming queries and allocated resources as necessary. As such it could become a bottleneck if
the system was subject to alarge number of small queries. The parsing of queriesdoesnot needto
be restricted to asingle processor. The parsing process entails the decomposition of aquery into
its component parts which can be allocated to separate processors for each query. A number of
different processing strategies can then beidentified which will depend upon the number of pro-
cessorsthat areactually availablewhenthe query isresourced. Thegeneration of these strategies
can be undertaken without knowing what actual resourcesareavailable. Inadditionthestrategies
can be eval uated against each other to determine the most cost effective against some system de-
fined cost function.

Oncethe strategies have been identified, the actual resourcesrequired can be communicated to a
singleprocessor which knowswhat resourcesareavailable. 1f oneof the strategiescan beaccom-
modated then the resources can be allocated and the parser process can be sent information about
the resourcesit can use so that it can send appropriate messages to the processors which will en-
able query processing to begin. When aquery terminates amessage can be sent from one of the
processors to the single processor which holds resource availability information. 1f more than
one strategy can be resourced, then the resource all ocator processor can decide which strategy to
use. Theresourceallocator processor could contain constrai ntswhich haveto bemet in order that
aquery can bestarted. 1t may bethat at specific timesof theday it would not befeasibleto start a
query which consumes most of the processing resource. For example, in banking systemsit is
known that thereisapeak in transactions around lunch—time, hence it would be sensible to deny
access to alarge query which would use most of the processing resource just before midday.

Figure9.10 showsaprocessor structurewhichwill implement such aresourceallocation strategy.
We presume that queries arrive from the users into a User processor. The User processor then
accessesthe Resource Allocator process using the shared channel to determinewhich Parser pro-
cessto use. If none are availablethe User process will be made to wait until one becomes avail-
able. The query isthen sent to the indicated Parser process. It should be noted that all User pro-

cesses are connected to all Parser processes. The Parser process then decomposes the query and
determines the different strategies which are possible. The Parser process then accessesthe Re-
sourceAllocator processusing the shared channel Resource Request, which ensuresthat only one
request for resourcesisdealt with at onetimeand thusit isnot possiblefor the sameresourceto be
allocated to more than one query. The Parser process will send information to the allocated re-
sources, using channels not shown in the diagram, indicating the processing to be undertaken.
Generally resultswill bereturned to the User processfrom the Relational processors (R), henceit
isnecessary to connect all theR processorsto all the User processors. Whenthequery iscomplete
the User processwill send amessage using the shared channel which accessesthe Resource Allo-
cator process to indicate that the resources used by the query are no longer required and can be
allocated to another query.

Parser Request / Resource Release

User[N Parser

= \ Process Resourse
= > |~ Allocator]

XUSGI\ Process
] Parser
3R \\
— Process

~Userl—

// Resource
— / Request
3R

User Processes

Figure 9.10 Resource allocation processor structure

9.11.2 Scalability

The system described in this paper is scalable in the two ways identified previoudly. First, the
installed size of asystem can be matched with theinitial system requirements. In comingtothis
initial size the system designer must be aware of the likely increasesin storage and performance
that will ensue. For example, it is not uncommon for system to double in storage requirements
over thefirst two yearswith aconsequent increasein processing requirements. Thusitisvital that
the system interconnect is designed so that the perceived increases can be accommodated. Itis
thus not sensibleto build an interconnect that islimited to 512 terminal connection pointsif it can
be anticipated that more will be needed in the future.

Secondly, the system can be scaled after installation by simply adding further resources. These
resources can be added wherever they are required within the functional componentsin the ma-
chine becausethereisauniforminterconnect mechanismwith aknown cost. Theonly constraint
would be in the five-evel indirect structure, shown in figure 9.2, where it may be preferable to
add somefacilitieswithin athree-level interconnect regimeto ensure the required performance.
In adding extraresourcesthe only part which hasto be changed is the resource allocator process
discussed previously. Each component in the architecturethat hasbeen described isessentially a
generic component, even if in useit is made specific to a particular task, such asthe referential

co—processors. Thismeansthat no new software hasto be constructed. Thustheimplementation
of the system as a highly parallel system has afforded an easy mechanism for scalability.

A key factor in the operation of the database machine will be the collection of statistics so that
optimal datastorage canbeachieved. A vital component of the collection of statisticsisthemoni-
toring of the changes in queries with time as the use of the database develops. We have already
started work on such an automated system[13].

9.12 Conclusions

This paper has presented the outlinefor the design of ahighly parallel database machinewhichis
solely dedicated to that single task. The use of a general purpose processor has been avoided
thereby ensuring that the design has had to make few compromises concerning the implementa-
tion. The advantage bestowed by the T9000/C104 combination isthat we can design each indi-
vidual software component as a stand—al one entity which makesthe system inherently scalable.
A further advantage of the use of these hardware componentsisthat the resulting interconnect is
uniform in the latency that it imposes upon the system thus the system designer does not haveto
take any special precautionsto place closely coupled processes on adjoining processors. Thepa-
per has also shown how it ispossibleto build ahighly parallel disc sub—system. Itisasubject for
further research to best determine how datashould be allocated in such asystemin order to maxi-
mize parallel access to the data stored in the disc sub—system. Undoubtedly, the use of a Data
Storage Description Language[14], such as that developed for the IDIOMS project will be re-
quired.

Acknowledgements

Theideasexpressedin thischapter arethose of the author but necessarily they result from discus-
sionswith alarge number of people and are also due to interaction with real users of large com-
mercial database systems. The author isindebted to the discussions held with Bill Edisbury and
Keith Bagnall of TSB Bank plc and Bob Catt, Alan Sparkesand John Guast of DataSciencesL td.
The co-workerswithin the University of Sheffieldinclude; Siobhan North, Dave Walter , Romo-
la Guiton, Roger England, Paul Thompson, Sammy Waithe, Mike Unwalla, Niall McCarrall,
Paul Murray and Richard Oates. Thework discussed inthis paper hasbeen supportedin part with
fundsfrom the UK Science and Engineering Research Council (through CASE Awards) and the
UK Department of Trade and Industry.

References

1 RJ Oates and M Kerridge, Adding Fault Tolerance to a Transputer—based Parallel
Database Machine, in Transputing ' 91, PH Welch et al (eds), |0S Press, Amsterdam
1991.

2. RJ Oates and JM Kerridge, Improving the Fault Tolerance of the Recovery Ring, in

Transputer Applications’91, T Duranni et al (eds), 10S Press, Amsterdam, 1991.

3. JM Kerridge, The Design of the IDIOMSParallel Database Machine, in Aspects of
Databases, M S Jackson and AE Robinson (eds), Butterworth—Heinemann, 1991.

4. R England et al, The Performance of the IDIOMS Parallel Database Machine, in
Parallel Computing and Transputer Applications, M Valero et a (eds), |0S Press,
Amsterdam, 1992.

5. JM Kerridge, IDIOMS. A Multi-transputer Database Machine, in Emerging Trends
in Database and K nowl edge—base M achines, M Abdelguerfi and SH Lavington (eds),
to be published by IEEE Computer Science Press, 1993

10.
11.

12.

13.

14.

JM Kerridge, Transputer Topologies for Data Management, in Commercial Parallel
Processing and Data Management, P Valduriez (ed), Chapman and Hall, 1992.

IM Kerridge, SD North, M Unwallaand R Guiton, Table Placement in a Large
Massively Parallel Database Machine, submitted for publication.

AE Eberle, AGemof aDisc Drive, Digital Review, Cahners—Ziff Publishing, January
14 1991,

V Avaghade, A Degwekar and D Rande, BFS— A High Performance Back—end File
System, in Advanced Computing, VP Bhatkar et a (eds), Tata McGraw Hill, 1991.

G Barrett, occam3 Reference Manual Draft (31/3/92), Inmos Ltd, 1992

IM Kerridge, Using occam3 to Build Large Parallel Systems : Partl; occam3
Features, submitted for publication

R Elmasri and SB Navathe, Fundamentals of Database Systems, Addison—\Wesley,
1989.

M Unwallaand JM Kerridge, Control of a Large Massively Parallel Database
Machine Using SQL Catalogue Extensions and a DSDL in Preference to an
Operating System, in Advanced Database Systems, PMD Gray and RJ Lucas (eds),
Springer—Verlag, LNCS 618, 1992.

JM Kerridge et a, A Data Storage Description Language for Database Language
L, Sheffield University, Department of Computer Science, Internal Report,
CS-91-05, 1991.

