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This manual is a draft. Its contents represent the current state of development of the 3 specification
and some details may change before the final specification is released. However, it is envisaged that these
changes will be to the manual and not to the language itself. This copy is supplied for information purposes
only and it is not to be used for commercial purposes. INMOS assumes no responsibility for its use nor for
any infringement of patents or other rights of third parties resulting from its use. No licence is granted under
any patents, trademarks or other rights of INMOS.

INMOS, IMS and are registered trademarks of INMOS Limited.

We solicit comments on the clarity and consistency of the manual. In particular, observations in the following
areas are welcomed:

typographical errors;

inconsistency with current 2 implementations;

clarification of descriptions;

better examples;

errors or omissions in the index.
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A few words about the language.
A few words about the book.
Describes the modified BNF used in syntax, and details pro-
gram format and annotation.

Describes the basic building blocks of programs.
Describes how smaller processes may be combined into larger pro-
cesses to make programs.
Describes data types of integers, bytes, booleans, reals and arrays,
detailing literals and tables.
Describes how to declare variables and values.
Describes record and union types.
Describes channel types, detailing the declaration of channels, channel
protocol, and the definition of channel protocol.
Describes how to pass parameters to a procedure whose body is ex-
ecuted in a different process from the calling process.
Describes how channels can be used by more than one process
concurrently.
Describes timer types, detailing the declaration of timers, timer input,
and delayed input.
Describes expressions in , arithmetic and other operators, type
conversions .
Describes the method of giving names to processes.
Describes value processes, and the method of giving a name to value
processes.
Describes how to structure processes and build infrastructures around
processes.
Describes how to structure program and reuse definitions in many dif-
ferent applications.
Describes how to use libraries from another application.
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The programming language is designed to express concurrent algorithms and their implementation
on a network of processing components.

The serves to provide a single reference, and definition of the language .
The manual describes each aspect of the language, starting with the most primitive components of an
program, and moving on to cover the whole language in detail. The manual is addressed to the wider audi-
ence, including not only the computer scientist, software engineer and programmer, but also the electronics
engineer and system designer.

Programming in is easy. enables an application to be described as a collection of ,
where each process executes concurrently, and communicates with other processes through . Each
process in such an application describes the behaviour of a particular aspect of the implementation, and
each channel describes the connection between each of the processes. This approach has two important
consequences. Firstly, it gives the program a clearly defined and simple structure. Secondly, it allows the
application to exploit the performance of a system which consists of many parts.

Concurrency and communication are the prime concepts of the model. captures the hier-
archical structure of a system by allowing an interconnected set of processes to be regarded as a unified,
single process. At any level of detail, the programmer is only concerned with a small, manageable set of
processes.

is an ideal introduction to a number of key methodologies in modern computer science.
programs can provide a degree of security unknown in conventional programming languages such as C,
FORTRAN or Pascal. simplifies the task of program verification, by allowing application of mathe-
matical proof techniques to prove the correctness of programs. Transformations, which convert a process
from one form to a directly equivalent form, can be applied to the source of an program to improve its
efficiency in any particular environment. makes an ideal language for specification and behavioural
description. programs are easily configured onto the hardware of a system or indeed, may specify
the hardware of a system.

The founding principle of is a minimalist approach which avoids unnecessary duplication of language
mechanism, and is named after the 14th century philosopher William of Occam who proposed that invented
entities should not be duplicated beyond necessity. This proposition has become known as “Occam’s razor”.

The programming language arises from the concepts founded by David May in EPL (Experimental
Programming Language) and Tony Hoare in CSP (Communicating Sequential Processes). Since its concep-
tion in 1982 has been, and continues to be under development at INMOS Limited, in the United
Kingdom, under the direction of David May. The support for large programs provided by 3 is based
on principles found in many current programming languages which have been refined at INMOS by Geoff
Barrett. The development of the INMOS transputer, a device which places a microcomputer on a single
chip, has been closely related to , its design and implementation. The transputer reflects the
architectural model, and may be considered an machine. is the language of the transputer
and as such, when used to program a single transputer or a network of transputers, provides the equivalent
efficiency to programming a conventional computer at assembler level. However, this manual does not make
any assumptions about the hardware implementation of the language or the target system.

is a trademark of the INMOS group of companies.
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This manual describes the programming language 3. 3 is an extension of 2 with new
constructs to support medium and large programs. In particular, 3 has mechanisms for the definition
of new data types, and for the construction of modules and libraries. The extensions also include constructs
which allow an efficient implementation of shared channels.

This manual was completed during 1991 and 1992 as a part of the final development of 3 at the
INMOS Microcomputer Centre, Bristol, UK.

This book is designed primarily to be used as a reference text for the programming language .
However, the manual should also serve as an introduction to the language for someone with a reasonable
understanding of programming languages. The primitive aspects of the language are presented at the start
of the manual, with as few forward references as possible. It is therefore possible to read the manual from
cover to cover, giving the reader an insight into the language as a whole. The manual is cross referenced
throughout, and a full index and glossary of terms are provided at the end of the manual.

Keywords and example program fragments appear in a throughout, for example:

Words which appear in indicate a syntactic object, but may also serve to emphasise a need to cross
reference and encourage referral to the index. Mathematical symbols and names referring to a mathematical
values use a .

Figures are used in a number of places to illustrate examples, they use the following conventions: an arrowed
line represents a , a round cornered box represents a (referred to here as a ),
a lighter coloured process box combines a number of smaller processes. The conventions are illustrated in
figure 0.1.
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1

The syntax of programs is described in a modified Backus-Naur Form (BNF). As an example, the
following shows the syntax of , discussed on page 5:

This means “An assignment is a followed by the symbol , followed by an ”. A vertical
bar ( ) means “or”, so for example:

is the same as

The meaning of this syntax is “An action is an , an , or an ”.

The written structure of programs is specified by the syntax. Each statement in an program
normally occupies a single line, and the indentation of each statement forms an intrinsic part of the syntax of
the language. The following example shows the syntax for discussed on page 9:

The syntax here means “A sequence is the keyword followed by zero or more processes, each on a
separate line, and indented two spaces beyond ”. Curly brackets and are used to indicate the number
of times some syntactic object occurs. means, “zero or more processes, each on a separate
line”. Similarly, , means “A list of zero or more expressions, separated by commas”, and

, means “A list of one or more expressions, separated by commas”.

A complete summary of the syntax of the language is given at the end of the main body of the manual (starting
on page 119).

A long statement may be broken immediately after one of the following:

an operator i.e.
a comma
a semi-colon
assignment
the keyword , or

A statement can be broken over several lines providing the continuation is indented at least as much as the
first line of the statement.

As the format of programs is significant, there are a number of rules concerning how programs are
annotated. A comment is introduced by a double dash symbol ( ), and extends to the end of the line.

occam

occam occam

occam

occam

Syntax and program format

� �

� �
� �

� �
� �

assignment

assignment variable expression

variable expression

action assignment
input
output

action assignment
action input
action output

assignment input output

sequence

sequence
process

process
expression

expression

Syntactic notation

Continuation lines

The annotation of programs

�

�

�
�
�

�

:=

:=
|

|
|

SEQ

SEQ
SEQ

,
,

+, -, *, / etc..
,
;
:=
IS FROM FOR

--
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Consider the following sequence:

Comments may not be indented less than the following statement.

Names used in programs must begin with an alphabetic character. Names consist of a sequence of
alphanumeric characters and dots. There is no length restriction. is sensitive to the case of names,
i.e. is considered different from . With the exception of the names of channel protocols, names
in the examples presented in this manual are all lower case. However, the following are all valid names in

:

All keywords are upper case (e.g. ). All keywords are reserved, and thus may not be used by the
programmer. A full list of the keywords appear on page 144. The names of library routines are given in the
appendix starting on page 148.

occam

occam
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Names and keywords used in programs

SEQ
-- This example illustrates the use of comments
-- A comment may not be indented less than

-- the following statement
...
SEQ -- A sequence

...

Say say

PACKETS
vector6
LinkOut
NOT.A.NUMBER
transputer
terminal.in
terminalOut

SEQ
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1

programs are built from processes. The simplest process in an program is an . An
action is either an , an or an . Consider the following example:

This simple example is an , which assigns the value of the expression to the variable .
The syntax of an assignment is:

The on the left of the assignment symbol ( ) is assigned the value of the on the right
of the symbol. The value of the expression must be of the same as the variable to which it is to be
assigned, otherwise the assignment is not valid.

Variables are discussed on page 29, data types are discussed on page 23, and expressions on page 67.

A multiple assignment assigns values to several variables, as illustrated in the following example:

This assignment assigns the values of , and to the variables , and respectively. The
expressions on the right of the assignment are evaluated, and the assignments are then performed in parallel.
Consider the following example:

The effect of this multiple assignment is to swap the values of the variables and .

The syntax of multiple assignment extends the syntax for assignment:

A list of expressions appearing to the right of the assignment symbol ( ) is evaluated in parallel, and then
each value is assigned (in parallel) to the corresponding variable of the list to the left of the symbol. The
rules which govern the names used in a multiple assignment therefore follow from those for names used in
parallel constructions (see page 16). Practically, this means that no name may appear twice on the left side
of a multiple assignment, as the name of a variable or as the name of a variable and the name of a subscript
expression which selects a component from an array (data type arrays are explained in section 3.2 which
starts on page 26).

The expression on the right of the assignment symbol ( ) may be a function. A multiple result function can
be an expression list in a multiple assignment. Functions are discussed in chapter 12 starting on page 81.

Communication is an essential part of programming. Values are passed between concurrent pro-
cesses by communication on . Each channel provides unbuffered, unidirectional point-to-point com-
munication between two concurrent processes. The format and of communication on a channel is

occam occam

occam

1 Primitive processes

� �

� �

action
assignment input output

assignment

assignment variable expression

variable expression
data type

assignment variable.list expression.list
variable.list variable

expression.list expression

channels
type

1.1 Assignment

1.2 Communication

�

�
�

�

x := y + 2

y + 2 x

:=

:=

a, b, c := x, y + 1, z + 2

x y + 1 z + 2 a b c

x, y := y, x

x y

:=
,

,

:=

:=
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specified by a given in the of a channel. Channel protocols are discussed in
chapter 6, which starts on page 46, and channel declarations are discussed in the same chapter on page 45.

Two exist in which perform communication on a channel. They are: and .

An receives a value from a and assigns the received value to a . Consider the following
example:

This simple example receives a value from the channel named and assigns the value to the
variable . The input waits until a value is received.

The syntax of an input is:

An input receives a value from the channel on the left of the input symbol ( ), and assigns that value to
the variable on the right of the symbol. The value input must be of the same as the variable to
which it is assigned, otherwise the input is not valid. Variables are discussed on page 29, and data types are
discussed on page 23.

An transmits the value of an to a . Consider the following example:

This simple example transmits the value of the variable to the channel named . The output
waits until the value has been received by a corresponding input.

The syntax of an output is:

An output transmits the value of the expression on the right of the output symbol ( ) to the channel named
on the left of the symbol.

Variables are discussed on page 29 and expressions on page 67.

The primitive process starts, performs no action and terminates.

The primitive process starts, performs no action and never terminates.

To explain how behaves, consider the following :

occam

channel protocol declaration

actions input output

input channel variable

input channel variable

data type

output expression channel

output channel expression

sequence

1 Primitive processes

1.2.1 Input

1.2.2 Output

1.3 and

�

�

keyboard ? char

keyboard
char

?

?

screen ! char

char screen

!

!

SKIP

STOP

SKIP

SEQ
keyboard ? char
SKIP
screen ! char

SKIP STOP
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This sequence executes the input , then executes , which performs no action. The
sequence continues, and the output is executed. The behaviour of is illustrated by
the following sequence:

This sequence performs the input before, then executes , which starts but does not
terminate and so does not allow the sequence to continue. The output is never executed.

The primitive processes are assignments, inputs, outputs, and :occam

process assignment
input
output

1 Primitive processes

1.4 Summary

�

keyboard ? char SKIP
screen ! char STOP

SEQ
keyboard ? char
STOP
screen ! char

keyboard ? char STOP
screen ! char

SKIP STOP

|
|
| SKIP
| STOP
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programs are built from processes. Primitive processes are described in the previous chapter. Larger
processes are built by combining smaller processes in a . A construction builds a process of one
of the following kind:

sequence
conditional
selection
loop

parallel
alternation

A sequential process is built by combining processes in a sequence, conditional or selection construction.
A loop is built by combining processes in a loop. Concurrent processes are built with parallel and
alternation constructions, and communicate using channels, inputs and outputs.

The constructions , , and can all be . A replicated construction the
constructed , or a specified number of times. Details of replication applied to each
of these constructions is given in the following sections.

A sequence combines processes into a construction in which one process follows another. Consider the
following example:

This process combines two actions which are performed sequentially. The input receives
a value which is assigned to the variable , then the following output is performed.

Programs are built by constructing larger processes from smaller ones. Thus a construction may contain
other constructions, as shown in the following example:

This simple example combines five actions, and suggests how embedded sequences may be used to show
the hierarchical structure of a program. Embedding constructions of the same kind has no effect on the
behaviour of the process. This example is equivalent to the following:

occam

2 Combining processes

construction

replicated replicates
process choice alternative

2.1 Sequence

SEQ
IF
CASE
WHILE

PAR
ALT

WHILE

SEQ IF PAR ALT

SEQ
keyboard ? char
screen ! char

keyboard ? char
char screen ! char

SEQ
SEQ

screen ! ’?’
keyboard ? char

SEQ
screen ! char
screen ! cr
screen ! lf

SEQ
screen ! ’?’
keyboard ? char
screen ! char
screen ! cr
screen ! lf
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The syntax for a sequence is:

The keyword is followed by zero or more processes at an indentation of two spaces.

A sequence can be to produce a number of similar processes which are performed in sequence,
and behave like a conventional counted loop. Consider the following:

This process performs the output the number of times specified by the value
of . The initial value of the is specified by a base value (in this case 0). In the above
sequence the value of for the first output is 0, and for each successive output performed the value of the
index is an increment of its previous value. If has the value 2, the example can be expanded
to show the effect of the replication as follows:

Consider the following example in which the base value is 14:

This example may also be expanded to show the value of the index for each replication, as follows:

This example uses an ; arrays (page 26) are explained later in the manual. Arrays may also be
communicated in a single output (see page 47).

The syntax for a replicated sequence extends the syntax for sequences:

The keyword and a replicator are followed by a process which is indented two spaces. The replicator
appears to the right of the keyword . The replicator specifies a name for the index ( the name does
not need to be declared elsewhere). The value of the index for the first replication is the value of the
expression, and the number of times the process is replicated is the value of the expression at the
start of the sequence.

The index may be used in expressions but cannot be assigned to by an input or assignment. The index has a
value of . The base and count expressions must also be of data type . Data types (page 23) are
explained later in the the manual. A negative value count expression is . See appendix I, page 118 for
an explanation of how behave. If the value of the count expression is zero, the replicated
sequence behaves like the primitive process (page 6).

� �sequence
process

replicated

index

array

sequence replicator
process

replicator name base count
base expression
count expression

ie
base

count

type
invalid

invalid processes

2 Combining processes

2.1.1 Replicated sequence

�

�

�
�
�

SEQ

SEQ

SEQ i = 0 FOR array.size
stream ! data.array[i]

stream ! data.array[i]
array.size i

i
array.size

SEQ
stream ! data.array[0]
stream ! data.array[1]

SEQ i = 14 FOR 2
stream ! data.array[i]

SEQ
stream ! data.array[14]
stream ! data.array[15]

SEQ

= FOR

SEQ
SEQ

INT INT

SKIP
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A conditional combines a number of processes each of which is guarded by a boolean expression. The
conditional evaluates each boolean expression in sequence; if a boolean expression is found to be true the
associated process is performed, and the conditional terminates. If none of the boolean expressions are true
the conditional behaves like the primitive process (page 6), for example:

Consider this example in detail: if is true, the associated process is performed, however
if the expression is false, the next boolean expression is evaluated. If is true, then
the associated process is performed. In this example, one of the boolean expressions must be true.
However, consider the next example:

This conditional has a single component. If the expression is false then the conditional will behave
like the primitive process (page 6). It is often convenient to use a form of conditional where the final
choice is guaranteed to be performed, as illustrated by the following example:

The expressions and will each be either true or false. The final expression uses the boolean
constant which is always true, and acts as a catch-all which causes the associated process to be
performed if none of the previous boolean expressions are true. In this context may be read as
“otherwise”.

The syntax for a conditional is:

The keyword is followed by zero or more choices, indented two spaces. A choice is either a
choice or another conditional. A guarded choice is a boolean expression followed by a process, indented two
spaces.

A choice which is itself a conditional has the same behaviour if “flattened out” in a similar way to the embedded
sequences shown earlier (page 9). Consider the following example:

� �conditional
choice

choice guarded.choice conditional
guarded.choice boolean

process
boolean expression

guarded

2 Combining processes

2.2 Conditional

�

�
�

�

STOP

IF
x < y

x := x + 1
x >= y

SKIP

x < y x := x + 1
x < y x >= y x >= y

SKIP

IF
x < y

x := x + 1

x < y
STOP

IF
x > y

order := gt
x < y

order := lt
TRUE

order := eq

x > y x < y
TRUE

TRUE

IF

|

IF

IF
IF

x > y
x := x + 1

TRUE
SKIP
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This has the same effect as:

Boolean expressions (page 71) are discussed later in the manual.

A conditional may also be replicated, just as a sequence may (page 10). A replicated conditional constructs
a number of similar choices. The following example compares the two strings and :

The first choice in this example is a replicated conditional. This has created a number of similar choices each
guarded by a boolean expression comparing a component of the array and the array . The
replication may be expanded to show its meaning. If has a constant value 2, this example has the
same effect as:

The syntax for the replicated conditional is:

The keyword and a replicator are followed by a choice which is indented two spaces. The replicator
appears to the right of the keyword . The replicator specifies a name for the index. The value of the index
for the first replication is the value of the expression, and the number of times the choice is replicated
is the value of the expression.

The index may be used in expressions but cannot be assigned to by an input or assignment. The index is of
. The data type of the base and the count expressions must also be of type . Data types

(page 23) are explained later in the the manual. A negative value count expression is . See appendix I,
page 118 for an explanation of how behave. If the value of the count expression is zero,
the replicated conditional behaves like a conditional with no true conditions.

A selection combines a number of , one of which is selected by matching the value of a
with the value of a constant expression (called a ) associated with the option. Consider the

or

conditional replicator
choice

replicator name base count
base expression
count expression

base
count

data type
invalid

invalid processes

options selector
case expression

2 Combining processes

2.2.1 Replicated conditional

2.3 Selection

�

�
�
�

IF
x > y

x := x + 1
TRUE

SKIP

string object

IF
IF i = 1 FOR length

string[i] <> object[i]
found := FALSE

TRUE
found := TRUE

string object
length

IF
IF

string[1] <> object[1]
found := FALSE

string[2] <> object[2]
found := FALSE

TRUE
found := TRUE

IF
string[1] <> object[1]

found := FALSE
string[2] <> object[2]

found := FALSE
TRUE

found := TRUE

IF

= FOR

IF
IF

INT INT
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following example:

In this example the value of is compared to the value of the case expressions and . If
has a value equal to then is performed, if has a value equal to

then is performed, however if no match is found, the selection behaves like the primitive
process (page 6). Several case expressions may be associated with a single option, for example:

If has the value , , , , or , then the variable is assigned the value ,
otherwise the selection behaves like the primitive process . Here it is useful to use a special form of
selection where one of the is guaranteed to be performed, as illustrated below:

The process associated with in a selection will be performed if none of the case expressions match the
selector.

The syntax for a selection is:

The keyword is followed by an expression and then by zero or more , indented two spaces.
The expression must have type , or an integer type. An option starts with either a list of case
expressions or the keyword . This is followed by a process, indented two spaces. All case expressions
used in a selection must have distinct constant values (that is, each must be a different value from the other
expressions used). The selector and the case expressions must be the same data type, which may be either
an integer or a byte data type. A selection can have only one option.

Constant expressions may be given a name in an (page 36). Data types (page 23) and expres-
sions (page 67) are also discussed later.

A loop repeats a process while an associated is true. Consider the following example:

� �
� �

options

selection selector
option

option case.expression
process

process
selector expression
case.expression expression

options

abbreviation

boolean expression

2 Combining processes

2.4 Loop

�

�

�
�

CASE direction
up

x := x + 1
down

x := x - 1

direction up down
direction up x := x + 1 direction
down x := x - 1

STOP

CASE letter
’a’, ’e’, ’i’, ’o’, ’u’
vowel := TRUE

letter ’a’ ’e’ ’i’ ’o’ ’u’ vowel TRUE
STOP

CASE letter
’a’, ’e’, ’i’, ’o’, ’u’
vowel := TRUE

ELSE
vowel := FALSE

ELSE

CASE

,

| ELSE

CASE
BOOL BYTE

ELSE

ELSE

WHILE buffer <> eof
SEQ

in ? buffer
out ! buffer
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This loop repeatedly copies a value from the channel to the channel . The copying continues while
the boolean expression is true. The sequence is not performed if the boolean expression
is initially false.

To further illustrate how processes combine, consider the following process:

This example searches the array for a character ( ). Note how the process is built from primitive
processes and constructions. In fact it is simpler and easier to write this example using a replicated conditional
(page 12) as follows:

The syntax for a loop is:

The keyword and a boolean expression are followed by a process which is indented two spaces. The
boolean expression appears to the right of the keyword .

The parallel is one of the most useful constructs of the language. A parallel combines a number of
processes which are performed concurrently. Consider the following example:

This parallel combines three named processes (known as procedures, page 75), which are performed to-
gether. They start together and terminate when all three processes have terminated. The editor and keyboard

occam

loop boolean
process

boolean expression

2 Combining processes

2.5 Parallel

�

�

in out
buffer <> eof

SEQ
-- initialise variables
pointer := 0
finished := FALSE
found := FALSE
-- search until found or end of string
WHILE NOT finished

IF
string[pointer] <> char

IF
pointer < end.of.string

pointer := pointer + 1
pointer = end.of.string

finished := TRUE
string[pointer] = char

SEQ
found := TRUE
finished := TRUE

string char

IF
IF i = 0 FOR string.size

string[i] = char
found := TRUE

TRUE
found := FALSE

WHILE

WHILE
WHILE

PAR
editor (term.in, term.out)
keyboard (term.in)
screen (term.out)
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Figure 2.1 Communicating concurrent processes

process communicate using channel , the screen and editor communicate using channel .

Values are passed between concurrent processes by communication on (page 45) using input
and output (page 6). Each channel provides unbuffered unidirectional point-to-point communication between
two concurrent processes. Figure 2.1 illustrates the channels connecting the three processes in the above
example.

The example above shows the parallel being used to tie together the major components of a system. However,
a parallel may also be used simply to allow communication and computation to proceed together, as in the
following example:

The parallel in this example inputs the next value to be processed from one channel while the last value is
being processed and output on another.

The syntax of a parallel is similar to that of a sequence:

The keyword is followed by zero or more processes at an indentation of two spaces.

Parallels may be nested to form the hierarchical structure of a program. The behaviour of the following
process is the same as the earlier example:

Writing a parallel like this helps later in program development when a program must be to its
environment (when its processes are allocated to physical devices).

A parallel construction which specifies a priority of execution on a single processing device able to perform
several tasks ( a multi-tasking processor) is described in appendix A.2.1, page 105.

� �

channels

parallel
process

configured

ie

2 Combining processes

�

term.in term.out

WHILE next <> eof
SEQ

x := next
PAR

in ? next
out ! x * x

PAR

PAR

PAR
editor (term.in, term.out)
PAR

keyboard (term.in)
screen (term.out)
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Parallel processes which share channels and variables are subtly dependent on the way in which parallel
composition is implemented. For instance, a variable which is written by one process and read by another
depends upon the scheduling of the processes to ensure that the variable is written before it is read. The
scheduling can be affected by events outside the control of the processes and differs between implemen-
tations. This means that errors in the program can become apparent on rare occasions and are therefore
difficult to repeat. Chapter 8 describes sharing constructs. Variables and channels in parallels are subject to
disjointness rules which prevent them from being accidentally shared between processes.

Variables which are assigned by input or assignment in one of the processes of a parallel may not be used in
expressions or for assignment by any other process in the parallel. A variable may appear in expressions in
any number of components of a parallel so long as it is not assigned in any parallel component. The following
process, for example, is INVALID:

This process is invalid because it assigns to the variable in the assignment in the first
component of the parallel and also in the input in the second component.

A channel which is used for input (respec output) in one component of a parallel may not be used for input
(respec output) in any other component of the parallel. The following process, for example, is INVALID:

This process is invalid because it uses the channel for output in more than one parallel component.

A check list of the usage rules which apply to parallel processes is given in appendix H.

A parallel can be replicated, in the same way as sequences and conditionals described earlier. A replicated
parallel constructs a number of similar concurrent processes, as shown in the following example:

This replication performs the four outputs concurrently, and is equivalent to

Now consider the following example:

2 Combining processes

2.5.1 Parallel disjointness

2.5.2 Replicated parallel

PAR -- this parallel is INVALID!
SEQ

mice := 42 -- the variable mice is assigned
c ! 42

c ? mice -- in more than one parallel component

mice mice := 42
c ? mice

PAR -- this parallel is INVALID!
c ! 0 -- the channel c is used for output
SEQ

c ? x
c ? y

c ! 1 -- in more than one parallel component

c

PAR i = 3 FOR 4
user[i] ! message

PAR
user[3] ! message
user[4] ! message
user[5] ! message
user[6] ! message

PAR
farmer ()
PAR i = 0 FOR 4

worker (i)
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(1)

worker 
(2)

worker 
(3)

PAR i = 0 FOR 4

farmer
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Figure 2.2 A farm of parallel processes

The replicated parallel in this example starts 4 processes, each a copy of the procedure , and
terminates when all four processes are finished. Figure 2.2 shows the structure of this process, which is
elaborated upon in the following section. Unlike sequence and conditional replications, the value (here
4) must be constant. The procedure takes a single (page 75), for each (page 75)
of the procedure the value of the index is passed. Expanding the replication shows that the above example
is equivalent to the following:

The syntax of a replicated parallel is similar to that of the replicated sequence shown earlier in the manual:

The keyword and a replicator are followed by a process, indented two spaces. The replicator appears
to the right of the keyword . The replicator specifies a name for the index. The value of the index for the
first replication is the value of the base expression, and the number of times the process is replicated is the
value of the count expression.

The index may be used in expressions but cannot be assigned to by an input or assignment. A negative value
count expression is (see appendix I, page 118 for an explanation of how behave).
If the value of the count expression is zero, the parallel replication behaves like the primitive process
(page 6). The base and count expressions of a replicated must be constant values.

The index has a value of . The data type of the base and the count expressions must also be of
type . Data types (page 23) are explained later in the manual.

count
parameter instance

parallel replicator
process

replicator name base count
base expression
count expression

invalid invalid processes

type

2 Combining processes

�

�
�
�

worker

worker
i

PAR
farmer ()
PAR

worker (0)
worker (1)
worker (2)
worker (3)

PAR

= FOR

PAR
PAR

SKIP
PAR

INT
INT
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stream!packet
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An alternation combines a number of processes guarded by inputs. The alternation performs the process
associated with a guard which is ready. Consider the following example:

The effect of this example is to merge the input from the two channels named and , on to the
channel . The alternation (illustrated in figure 2.3) receives an input from either channel or
channel . A ready input is selected, and the associated process is performed. Consider this example
in detail. If the channel is ready, and the channel right is not ready, then the input is
selected. If the channel is ready, and the channel left is not ready, then the input
is selected. If neither channel is ready then the alternation waits until an input becomes ready. If both inputs
are ready, only one of the inputs and its associated process are performed.

Figure 2.3 Merging the flow of data

A boolean expression may be included in an alternation to selectively exclude inputs from being considered
ready, as shown in the following example:

This alternation places the (page 29) before the second input. If
is true, the input is included for consideration by the alternation. If is false,

boolean variable

2 Combining processes

2.6 Alternation

ALT
left ? packet

stream ! packet
right ? packet

stream ! packet

left right
stream left
right

left left ? packet
right right ? packet

ALT
left.enabled & left ? packet

stream ! packet
right ? packet

stream ! packet

left.enabled
left.enabled left.enabled
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the input is excluded. To clarify this behaviour, consider the following example:

Figure 2.4 Regulating the flow of data

This is an example (part of the farmer process first illustrated in figure 2.2 and fully illustrated in figure 2.4)
of a process which regulates the flow of work into a processor . A processor farm can be thought of as
a number of machines ( ), microcomputers perhaps, each able to perform some task and
output a result. The above example controls the amount of work (as packets of data) given to a farm which
consists of a network of worker processes. Work may be received by the input , and is
only considered if a member of the farm is idle ( ). As a packet of work is sent to the farm,
the counter is decremented to indicate the number of worker processes which are idle. The worker
processes are sent work on the channel (see figure 2.2), and the variable is decremented
to keep a count of the idle machines in the farm. If a worker is busy, the work packet is passed on until a
non-busy worker is found.

The syntax for alternation is:

� �

farm
worker processes

ie

alternation
alternative

alternative guarded.alternative alternation
guarded.alternative guard

process
guard input

boolean input
boolean

2 Combining processes

�

�
�

�

-- Regulator:
-- regulate flow of work into a networked farm
SEQ

idle := processors
WHILE running

ALT
from.workers ? result

SEQ
from.farm ! result
idle := idle + 1

(idle >= 1) & to.farm ? packet
SEQ

to.workers ! packet
idle := idle - 1

to.farm ? packet
(idle >= 1)

idle
to.workers idle

ALT

|

| &
| & SKIP
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The keyword is followed by zero or more , indented two spaces. An alternative is either a
alternative or another alternation. A guarded alternative is an input, or a boolean expression to the

left of an ampersand ( ) with an input or on the right. can take the place of an input in a guard
which includes a boolean expression, as shown in the following example:

If the boolean is true then is treated as though it where a ready input, and may be selected
immediately. If the input is also ready, only one of the processes is performed, which process
will be performed is undefined.

Alternation with priority selection is explained in appendix A.2.1, page 106. explained on
page 64 will delay before they become ready, and may be used in guards wherever an input may be used.

Inputs (page 6) and (page 6) are discussed in chapter 1. Expressions (page 67) are discussed later in
the manual. Details of boolean expressions are given on page 71.

An alternation can be replicated in the same way as sequences, conditionals and parallels described earlier
in the manual. A replicated alternation constructs a number of similar alternatives. The alternation performs
a single process which is associated with a ready guard. Consider the following example:

This example presents an alternate version of the process discussed in the previous section and is
illustrated in figure 2.5. This version also regulates the flow of work into the farm, but does so by maintaining an
array of booleans ( ) which indicate when a worker is busy. This version of the farmer process
is most suitable where several worker processes in the farm are able to input directly from the process. Work
packets are input on the channel and distributed to an array of worker processes. The completed
result is returned to the farmer process via the channel . Consider first the upper half of
this alternation. Each alternative is guarded by a boolean (which has the value true if
the worker process is idle), and an input which inputs packets of work. A selected
component of this replication will, after completing the input of a packet, perform the output

( pass work to an idle worker process), and then set the boolean to false,
indicating the worker is no longer idle.

The replication may be expanded to show its meaning. For instance, if the value of
is , the second alternation expands to:

alternatives
guarded

Delayed inputs

ie

2 Combining processes

2.6.1 Replicated alternation

ALT

& SKIP SKIP

ALT
in ? data

out ! data
monday & SKIP

out ! no.data

monday SKIP
in ? data

SKIP

ALT
ALT i = 0 FOR number.of.workers

free.worker[i] & to.farm ? packet
SEQ

to.worker[i] ! packet
free.worker[i] := FALSE

ALT i = 0 FOR number.of.workers
from.worker[i] ? result

SEQ
from.farm ! result
free.worker[i] := TRUE

farmer

free.worker

to.farm
from.worker
free.worker[i]

to.farm ? packet
to.worker[i]

! packet free.worker[i]

number.of.workers
2

ALT
from.worker[0] ? result

SEQ
...

from.worker[1] ? result
SEQ

...
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ALT i = 0 FOR 2

ALT i = 0 FOR 2

ALT

F F F W

WWW

Workers might be 
farmers too ...

from.farm

to.farm

to.worker[0]

to.worker[1]

from.worker[0]

from.worker[1]

free.worker[0]

free.worker[1]

F W

W

W
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Figure 2.5 A tree structured farm of parallel processes

Now consider the lower half of this example, which handles the results returning from worker processes. Each
component of the replication is guarded by an input which receives results
from a worker process. A selected component of this replication will, after completing the input from the
worker process, perform the output ( pass the result back to the process which
sent the work), and reset the boolean to true to indicate the worker is now idle.

A number of these farmer processes in parallel can form a tree of worker processes (see figure 2.5), enabling
large and effective farms to be built.

If has the value 2, the example has the same effect as:

As for the earlier descriptions of replication, the value of the index for the first replication is the value of the
base expression, and the number of replications is the value of the count expression. The syntax for the

ie

2 Combining processes

from.worker[i] ? result

from.farm ! result
free.worker

number.of.workers

ALT
ALT

free.worker[0] & to.farm ? packet
SEQ

to.worker[0] ! packet
free.worker[0] := FALSE

free.worker[1] & to.farm ? packet
SEQ

to.worker[1] ! packet
free.worker[1] := FALSE

ALT
from.worker[0] ? result

SEQ
from.farm ! result
free.worker[0] := TRUE

from.worker[1] ? result
SEQ

from.farm ! result
free.worker[1] := TRUE
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replicated alternation is:

The keyword and a replicator are followed by an alternative which is indented two spaces. The replicator
appears to the right of the keyword . The replicator specifies a name for the index.

The index may be used in expressions but cannot be assigned to by an input or assignment. A negative value
count expression is . See appendix I, page 118 for an explanation of how behave. If
the value of the count expression is zero, the replicated alternation behaves like the primitive process
(page 6).

The index has a value of . The data type of the base and the count expressions must also be
an integer of type . Data types (page 23) are explained later in the manual.

This chapter has shown how processes can be constructed from a sequence of processes; from a conditional
choice between processes; by selection of a process according to a value; by repeated execution of a process
in a loop; by execution of a number of processes in parallel; and by selection between process according to
alternative communications:

alternation replicator
alternative

replicator name base count
base expression
count expression

invalid invalid processes

data type

process sequence
conditional
selection
loop
parallel
alternation

2 Combining processes

2.7 Summary

�

�
�
�

�

ALT

= FOR

ALT
ALT

STOP

INT
INT

|
|
|
|
|
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63 63

( 127)

126

( 1023)

1022

programs act upon , and . A variable has a value, and may be assigned a
value in an or . Channels communicate values. Timers produce a value which represents
the time.

This chapter describes the of values and literal representations of known values. Variables are
discussed on page 29, channels are discussed on pages 45 and 55 and timers are discussed on page 63.

Values are classified by their . A data type determines the set of values that may be taken by
objects of that type.

These are the primitive data types available in :

Boolean values true and false.
Integer values from 0 to 255.
Signed integer values represented in twos complement form using the word size most effi-
ciently provided by the implementation.
Signed integer values in the range 32768 to 32767, represented in twos complement form
using 16 bits.

Signed integer values in the range 2 to (2 1), represented in twos complement form
using 32 bits.

Signed integer values in the range 2 to (2 1), represented in twos complement form
using 64 bits.
Floating point numbers stored using a sign bit, 8 bit exponent and 23 bit fraction in ANSI/IEEE
Standard 754-1985 representation. The value is positive if the sign bit is 0, negative if the
sign bit is 1. The magnitude of the value is:

(2 ) 1 if 0 and 255
(2 ) 0 if = 0 and = 0
0 if = 0 and = 0

Floating point numbers stored using a sign bit, 11 bit exponent and 52 bit fraction in ANSI/IEEE
Standard 754-1985 representation. The value is positive if the sign bit is 0, negative if the
sign bit is 1. The magnitude of the value is:

(2 ) 1 if 0 and 2047
(2 ) 0 if = 0 and = 0
0 if = 0 and = 0

As the above list shows, all signed integer values are represented in twos complement form using the number
of bits indicated by the type. All real values are represented according to the representation specified by the
ANSI/IEEE standard 754-1985, for binary floating-point arithmetic.

Objects which have values in have one of the following forms:

Literals Textual representation of known values
Constants Symbolic names which have a constant value
Variables Symbolic names which have a value, and may be assigned to by input or assignment
Index Replication index value

occam

occam

occam

3 Basic data types
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variables channels timers
assignment input

data type

data type

3.1 Primitive data types

BOOL
BYTE
INT

INT16

INT32

INT64

REAL32

REAL64
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A literal is a known value ( , , , , .). A variable has a value of a specified type, and may
be assigned a new value by an input or assignment. Names with a constant value are specified by an

(page 36). (page 67) and (page 81) also have a data type and value.
The name specified as the index of a replication has a different value for each component of the replication.

The syntax of primitive data types is:

An accepted limitation in the use of floating point representations of real values is that only a finite set of
all possible real values can be represented, thus any real value will be rounded to produce a result which
is the nearest value that can be represented by the type. For example, where the type is , the next
representable value after 1 0 is the value 1 000000119209 (to the nearest 12 digits past the decimal point),
any value lying between 1 0 and this value cannot be exactly represented using the representation of type

. Thus, values which do lie between 1 0 and 1 00000019209 which are of type must be
to one of these values.

The rounding of real numbers occurs in arithmetic expression evaluation (page 67), in explicit
(page 73), and also when literals are converted to the IEEE representation. An explanation of the IEEE
rounding modes, is given in the appendix (page 112).

A literal is a textual representation of a known value, and has a data type. For example, the following are all
valid literals:

an integer literal in decimal
an integer literal in hexadecimal
a byte literal
a string literal
a boolean literal

A number ( ) representing a decimal value, or a hexadecimal value introduced by the hash symbol ( ),
is an integer of type . A character enclosed within a pair of quotation marks ( ) has a value of type

. A string is an array of bytes, thus the string is an array of type .

Literal values of other types may be expressed by decorating the textual representation of the value with the
type, for example:

a byte value
an integer value
an integer value with 64 bit representation
a 32 bit floating point value
a 64 bit floating point value
a 64 bit floating point value
a 64 bit floating point value
a 32 bit floating point value


 





 


&c

abbreviation Expressions functions

data.type

rounded

type conversions

eg
eg

3 Basic data types

Rounding of real values

3.1.1 Literals

�

1 2 ’H’ "Hello"

BOOL
| BYTE
| INT
| INT16
| INT32
| INT64
| REAL32
| REAL64

REAL32

REAL32 REAL32

42
#2A
’T’
"zen"
TRUE

42 #
INT ’z’

BYTE "zen" [3]BYTE

42(BYTE)
’T’(INT)
42(INT64)
42.0(REAL32)
386.54(REAL64)
587.0E-20(REAL64)
+1.0E+123(REAL64)
16777217.0(REAL32)
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All real number literals must be explicitly decorated with their type in parentheses after the real number
unless the rules in section F allow the decoration to be omitted. A literal of type or will
be rounded (page 24) when the value is converted into the representation of the type. The effect of this
rounding can be seen particularly in the last example shown here. The value 16777216 0 is 2 and can be
represented precisely in the representation of 32 bit real numbers with a fraction of 23 bits. However, the
value 16777217 0 is (2 +1) and cannot be represented precisely in this representation, and will round to the
value 16777216 0. The nearest unique value of a conversion of a literal of type can be determined
from the first 9 significant digits, and from the first 17 significant digits of a literal of type . The routines
which perform these conversions will use all the digits given in a literal, but further digits will have no affect
on the value, for example:

has a nearest representable value of 54321766400 0
also has a nearest representable value of 54321766400 0

An explanation of the IEEE rounding is given in the appendix (page 112).

The syntax for literals is:

All characters are coded according to their ASCII code. The character , for example, has a value 65, and
so on. A table of the ASCII character set is given in the appendix (appendix L, page 146). A character
enclosed in a pair of quotes ( ) is a byte value, unless explicitly stated otherwise by placing a type in
parentheses to the right of the enclosing quotes.

Strings are a sequence of characters enclosed by double quotes ( ). The type of a string is an
array of type . Each component of the array is the ASCII value of the corresponding character in the
string. Special character sequences allow control values such as Tabulation and Carriage Return values to be
included in strings. Full details of the character set and special characters are given in the appendix
(page 146).

A string may be broken over several lines by terminating broken lines with an asterisk, and starting the
continuation on the following line with another asterisk. The indentation of the continuation should be no less
than the current indentation, as illustrated in the following example:

The literals and represent the boolean values true and false respectively.

occam














literal integer
byte
integer decoration
byte decoration
real decoration
string

decoration data.type
integer digits hex.digits
byte character
real digits digits digits digits exponent
exponent digits digits
digit
hex.digit digit

eg

eg

3 Basic data types

�

�
�
�
�
�
�
�

REAL32 REAL64

REAL32
REAL64

54321765439.54(REAL32)
54321765400.00(REAL32)

|
| ( )
| ( )
| ( )
|
| TRUE | FALSE

| #
’ ’

. | . E
+ | -
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

| A | B | C | D | E | F

A

’T’

"zen"
BYTE

occam := "Beware the jabberwock my son, the jaws that bite, the*
* claws that catch, beware the jubjub bird, and shun the*
* frumious bandersnatch."

TRUE FALSE
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An array has a number of consecutively numbered components of the same type. Arrays of channels and
timers are discussed in chapters 6, 7 and 9. Primitive data types have already been discussed in some detail.
Non-primitive data types include . An example of an array type is:

Arrays of this type have components each of type . The components are numbered 0, 1, 2, 3, 4. Arrays
may have further dimensions specified by simply adding the size of the dimension, enclosed in square
brackets, to the type. The following is an array type with two dimensions:

An array of this type has four components each of type . Equally, an array of type
is an array with three components of type , and so on. In this way, arrays with any number of
dimensions may be constructed.

In theory there is no limit to the number of dimensions an array type may have. In practice however, arrays
of data type require memory, and therein lies the limit. Here are some more array types:

a byte array with components
a three dimensional array of real numbers
an array with boolean components.

The size of each dimension in an array declaration must be specified by a value of type , and be a value
greater than or equal to zero. Two arrays of data type are considered to have the same type if they have the
same number and type of components. An array may be assigned to by input or assignment. An input or
assignment to an array is valid only if the value to be assigned is of the same type as the array.

The syntax for data type arrays is:

The syntax for array types shows that any type can be preceded by a value (of type ) in square brackets,
that value specifying the number of components of the type. Primitive and non-primitive types are collectively
called . The syntax is defined recursively, and this allows the syntax to cater for multidimensional
arrays, as illustrated in the examples above.

A table constructs an array of values from a number of expressions which must yield values of the same data
type. The value of each component of the array is the value of the corresponding expression. Consider the
following example:

This example constructs an array with three components, each of type . Here are some more examples:

a table of three bytes (equivalent to )
a table of three values
a table of with two component values
a table with a single component
a table of two integers

If the variables , and are of type , then the table is an expression whose type is
. is an expression whose type is , and so on.

array types

data.type expression data.type

basic types

3 Basic data types

3.2.1 Tables

3.2 Arrays

�

[5]INT

INT

[4][5]INT

[5]INT [3][4][5]INT
[4][5]INT

[n]BYTE n
[3][3][3]REAL32
[50]BOOL

INT

[ ]

INT

[1, 2, 3]

INT

[’a’, ’b’, ’c’] "abc"
[x, y, z]
[x * y, x + 4]
[(a * b) + c]
[6(INT64), 8888(INT64)] INT64

a b c INT [(a * b) + c]
[1]INT [’a’, ’b’, ’c’] [3]BYTE
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Tables are the literal representation of array values, their syntax is:

A table is one or more expressions of the same data type, separated by commas, and enclosed in square
brackets. Line breaks are permitted after a comma.

A replicated table constructs a number of similar expressions as shown on the following example:

This constructs the sequence of squares below:

The syntax of a replicated table is:

Like the replicated parallel, the of a replicated table ( in the example above) must be constant. Line
breaks are permitted after the colon.

� �
literal expression

literal replicator expression

count

3 Basic data types

3.2.2 Replicated tables

�

�

[ , ]

[VAL i = 4 FOR 10 : i*i]

[16,25,36,49,64,81,100,121,144,169]

[VAL : ]

10
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programs act upon , and . A variable has a value, and may be assigned a
value in an or . Channels communicate values. Timers produce a value which represents
the time.

This chapter describes variables, the declaration of names for variables and values and their scope.

Channels (pages 45 and 55) and timers (page 63) are discussed elsewhere in the manual.

The declaration of a variable declares the data type and name of the variable. Consider the following example:

This declaration introduces an integer variable of type , and identifies the variable with the name . The
variable is not initialised, and therefore the value of the variable is unspecified until assigned to by an input
or assignment. An assignment or input to a variable is valid only if the value to be assigned is the same data
type as the variable. Here is a sequence of variable declarations:

The syntax for a data declaration is :

A variable declaration consists of the data type, and a name to identify the variable. The declaration appears
on a single line, and is terminated by a colon. Where a number of variables of the same type need to be
declared, permits a single declaration for several names, as shown in the following example:

The type of the declaration is determined, and then the declarations are performed. This declaration is
equivalent to the following sequence of declarations:

The variable names specified in a multiple declaration are separated by commas. A line break is permitted
after a comma. Here are a few more multiple declarations:

The declaration of an array follows the same form as other declarations, for example:

This declaration introduces an integer array with five components.

occam

occam

4 Variables and values

� �

variables channels timers
assignment input

declaration data.type name

4.1 Declaring a variable

�

INT n :

INT n

BOOL flag :
BYTE char :
INT64 big :
REAL32 x :

, :

REAL64 a, b, c :

REAL64 a :
REAL64 b :
REAL64 c :

BOOL flag, switch :
INT16 i, j, k :
REAL64 x, y :
INT64 chains,

more.chains :

[5]INT x :

x
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The declaration of an array with multiple dimensions is similar to other declarations, as shown in the following
example:

Here are a few more examples of array declarations:

Several arrays of the same type can be declared together, for example:

The type of the declarations is determined, and then the declarations are made. This is especially important
in the declaration of arrays. Consider the following rather silly declaration:

This declaration introduces two new array variables, and . The size of the arrays is deter-
mined by the value , which is evaluated before the declarations are made and therefore refers to some
name already in scope when the declaration is made.

The declaration of an array also introduces the components and segments of the array. Subscripted names
select a component of an array. Suppose is declared as follows:

Consider these examples:

the first component of a dimension of , of type .
the first component of another dimension of , of type .

A subscript appears in square brackets after the name of an array. The component selected has one
dimension less than its type for each subscript. Subscripts must be an expression of integer type . A
subscript is valid only if the value of the expression is within the bounds of the array, and so a negative value
subscript is always invalid. That is, the value of a subscript must be in the range 0 to ( 1), where is the
number of components in the array.

The syntax of components is:

The simplest subscripted variable is a name followed by a single subscript in square brackets to the right of
the name. This is itself a variable and may also be followed by a subscript in square brackets, and so on,
limited by the number of dimensions in the array.

� ��

variable variable expression

4 Variables and values

4.2 Array components and segments

�

[4][5]INT x :

[4]BOOL flag :
[5]INT v1, v2 :
[xsize][ysize]REAL64 matrix :
[3][3][3]INT16 cube :

[users]INT id, privilege :

[forms]INT forms, teachers :

forms teachers
forms

data

[8][9][10]REAL32 data :

data[0] data [9][10]REAL32
data[3][0] data [10]REAL32

INT

[ ]
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A segment of an array is itself an array. The segment has zero or more components, as shown in the
following examples:

the first components of ,
of type .
six components of the array from ,
of type .
an “empty” segment,
of type .

A segment of an array has the same number of dimensions as the array.

Short forms of segment may be used if the segment starts at the first component of the array or finishes with
the last component. The segment denotes the first components of the array . It is
equivalent to . The segment denotes the components of
starting with and continuing to the end of the array. It is equivalent to .

The syntax of segments is:

The syntax is defined recursively, and shows how more complex variables can be built. A segment begins
with a square bracket, followed on the right by a variable and the keyword . This is followed by a
subscript, which must be an integer of type , indicating the first component of the segment, this in turn
is followed by the keyword and a count, which is a value of type which specifies the number of
components in the segment.

Line breaks are permitted immediately after the keyword and the keyword . The segment is valid
only if the value of the count is not negative, and does not violate the bounds of the array. That is, the value
must be in the range 0 to (( + ) 1). Here is another example to consider:

This complex looking segment selects the first five components of a variable which is itself a segment, it is
in fact equivalent to provided 5. Segments may also be subscripted, for example:

The subscript in this example selects component number 3 from the segment which starts at and
continues to the last component of .

An assignment to a variable selected by a subscript is an assignment to that component of the array, and
has no effect on any other component in the array. Consider the following example:

The effect of an assignment to an array or a segment of an array, is to assign to each component the value
of the corresponding component of the expression. Assignment to a segment of a variable which is an array,
is not valid if a component of the expression is also a component of the array to which it is to be assigned.
Thus, the following assignment is not valid:

Both these segments share the component , but in different positions so that the meaning could depend
on the order in which an implementation causes the component assignments to be performed. However an

������� � � � � 
 � ��� ��
 �

�

variable variable base count
variable count
variable base

4 Variables and values

�

[data FROM 0 FOR n] n data
[n][9][10]REAL32

[data FROM n FOR 6] data n
[6][9][10]REAL32

[data FROM 1 FOR 0]
[0][9][10]REAL32

[data FOR n] n data
[data FROM 0 FOR n] [data FROM 4] data
data[4] [data FROM 4 FOR 4]

[ FROM FOR ]
| [ FOR ]
| [ FROM ]

FROM
INT

FOR INT

FROM FOR

[[c FROM j FOR i] FROM 0 FOR 5]

[c FROM j FOR 5] i

[x FROM n][3]

x[n]
x

x[3] := 42

[x FROM 6 FOR 6] := [x FROM 8 FOR 6] -- INVALID!

x[8]
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assignment which assigns a segment of an array to itself is not invalid as it must always be implemented to
have no effect whatsoever.

The combined effect of an input and output on a channel of an array or a segment of an array is equivalent
to an assignment from the outputting process to the inputting process. Consider the following example:

This is a valid assignment, and has the same effect as the following:

Also consider the following assignment of to , where both are arrays of type :

This assignment assigns each component of the array to each respective component of the array , and
has the same effect as the following communication:

Assignment is discussed earlier on page 5, input and output are also described earlier on page 6. See the
appendix (page 118) to discover how invalid processes behave.

The previous sections described how to declare a variable and where the variable may be used. This section
describes how to declare a variable with an initial value. Consider the example:

This declaration introduces a new variable whose initial value is . The initial value and the
type are determined and then the declaration is made.

If the variable is not used in the expression , then the process

is equivalent to

The syntax of initialised declarations is:

The previous section explained the declaration of names for variables. This section explains the scope of a
name, or the region of the program in which the name is valid.

declaration data.type name expression

4 Variables and values

4.3 Initialised declaration

4.4 Scope

�

[x FOR 10] := [y FOR 10]

PAR
c ! [y FOR 10]
c ? [x FOR 10]

v1 v2 [12]INT

v1 := v2

v2 v1

PAR
c ! v1
c ? v2

INITIAL REAL32 y IS (m * x) + c :

y (m * x) + c

x e

INITIAL INT x IS e :
P

INT x :
SEQ

x := e
P

INITIAL IS :
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The declaration of all names is terminated by a colon in , for instance:

Later chapters of the manual show how to declare other sorts of name, for instance:

All of these declarations are terminated by a colon.

The scope of a name is illustrated by the level of program indentation. The scope of a name starts on the
line following the colon which terminates its declaration. The scope includes any other declaration which may
immediately follow at the same level of indentation, and encompasses all greater levels of indentation in the
program. The illustrated scope concludes when the level of indentation returns to the same or lesser level,
as the following example shows :

This example increments if it is less than the value specified by . The scope associated with the
variable in this example begins at the declaration of earlier in the program. The association of a name
with any particular scope is either , that is, it is specified at the start of the scope under consideration,
or the name is of local association. That is, the name is specified at an outer level of scope (as for in
the above example) which includes the scope under consideration. If a specification is made which uses an
existing name then the new meaning supersedes the old meaning for the duration of the scope of the new
specification, as illustrated by the following example:

The second declaration of in the above example, has the effect of “hiding” the earlier use of the name for
the duration of its scope. All names within a scope in are distinct. That is, a name may only have
one meaning within any scope.

Consider the following declaration:

Because the scope of the new name does not begin until after the colon, the value of which is used to
initialise the new variable is the value of the name which is already in scope before the declaration.

occam

occam

local
free

4 Variables and values

INT x :

CHAN OF BYTE c :

PROC add.to (INT x, y)
x := x+y

:

SEQ
INT max : -- specify max
INT min : -- scope of max -- specify min
SEQ -- -- scope of min

c ? max -- --
c ? min -- --
IF -- --

p < max -- --
p := p + 1 -- --

p = max -- --
p := min -- --

SEQ
...

p max
p p

p

INT x : -- integer variable x
SEQ -- scope

dm ? x --
ALT --

REAL32 x : -- real x hides integer variable x
rs ? x -- scope

... --
dm ? y --
... --

... --

x x

INITIAL INT x IS x+1 :

x x
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The following syntax specifies at which point in a program a declaration, abbreviation, or definition may occur,
and the scope associated with each:

Names of keywords may not be used in specifications. A specification is a declaration, an abbreviation ( a
variable abbreviation, page 34) or a definition ( a protocol definition, page 46). A specification may appear
before a process, choice, option, alternative, variant, or valof (See page 81). The region of the
program in which a specified name is valid includes any other specification that may immediately follow at
the same level of indentation, and the corresponding process, choice, option, alternative, variant or valof.

A variable abbreviation specifies a new name for a variable. Consider

This abbreviation specifies the name as the new name for . Also, consider the following example:

This abbreviation specifies the name for a component of the array . All subscript expressions
used in an abbreviation must be valid. The type of the abbreviated variable must be the same as the data type
specified, so in this example, has to be an array of . Other components of the array may
be used only in abbreviations within the scope (page 32) of , but they must not include the component

. Here are some more examples of abbreviations:

specifies a new name for
specifies a name for a component of the array
specifies a name for a segment of

An abbreviation simply provides a name to identify an existing variable. The name in the above example
identifies the existing variable . In the scope of the abbreviation, is an assignment to the original
variable . A variable used in a subscript to select a component or components of an array may not be
assigned to within the of the abbreviation. For example, no assignment or input can be made to
within the scope of . As a result the abbreviation always refers to the same variable throughout its scope.
This allows various optimisations to be provided, such as evaluating any expression within the abbreviated
variable only once. The original variable may not be used within the scope of the abbreviation . Where
the abbreviation is of a component of an array no other reference may be made to any other part of that

process specification
process

choice specification
choice

option specification
option

alternative specification
alternative

variant specification
variant

valof specification
valof

specification declaration
abbreviation
definition

eg
eg

functions

scope

4 Variables and values

4.5 Abbreviation of variables

�

�

�

�

�

�
�

|
|

INT n IS m :

n m

INT user IS lines[8] :

user lines

lines INT lines
user

lines[8]

x IS y : x y
INT c IS a[i] : a
[]REAL32 s IS [a FROM 8 FOR n] : a

c
a[i] c := e

a[i]
i

c

a[i] c
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array, except in a further abbreviation. Consider the following example:

Also consider the following example:

The assignment in the above example is invalid as is used to select components of the array in an
abbreviation within the scope of the assignment. This is how the above should be written:

It is important to ensure that all the components of an array remain identified by a single name within any
given . Identification of any component of an array by more than one name constitutes an invalid usage
of the component, and it is especially important to be aware of this of when abbreviating components of an
array. Once any component of an array is abbreviated then reference to other components of the array must
be made by further abbreviation. Checks are made to ensure that two abbreviations which identify segments
from the same array do not overlap. Further discussion on abbreviation is given in the chapter on procedures
(page 75).

The syntax for abbreviations of variables is:

The abbreviation of a variable begins with an optional specifier. The name specified appears to the right of
the optional specifier followed by the keyword , the abbreviated variable appears to the right of the keyword

. The line on which the abbreviation occurs may be broken after the keyword or at some valid point in
the variable. The type of the variable must be the same as the data type specified.

The specifier can usually be omitted from the abbreviation, as the type can be inferred from the type of
the variable. A specifier simply defines the abbreviation as being an array with components of the
specified type.

scope

abbreviation specifier name variable
name variable

specifier data.type
specifier
expression specifier

type

4 Variables and values

�

�

[60][72]INT page :
...

first.line IS page[0] :
last.line IS page[59] :
SEQ

first.line := last.line
last.line := page[58] -- This assignment is INVALID!
...
next.to.last.line IS page[58] : -- This abbreviation is valid
last.line := next.to.last.line -- and so too, this assignment
...

WHILE i < limit
this.line IS page[i] :
next.line IS page[i+1] :
SEQ

this.line := next.line
...
i := i + 1 -- this assignment is INVALID!

i page

WHILE i < limit
SEQ

this.line IS page[i] :
next.line IS page[i+1] :
SEQ

this.line := next.line
...

i := i + 1

IS :
| IS :

| []
| [ ]

IS
IS IS

[]
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The last section described variable abbreviations. This section describes abbreviations of values. Consider
the example:

This abbreviation specifies the name for the value 7. Here are some more abbreviations for
values:

specifies a name for the current value of an expression
specifies a name for the current value of the variable

specifies a name for a table of values

The abbreviated value must be a valid expression, that is, it must not overflow, and all subscripts must be in
range. Variables used in an abbreviated expression may not be assigned to by an input or assignment within
the (page 32, the region of a program where a name is valid) of the abbreviation. This ensures that
the value of the expression remains constant for the scope of the abbreviation. For example, in the following
abbreviation

no assignment or input may be made to , , or within the scope of of this abbreviation. The effect of
the abbreviation is the same as each instance of being replaced by the abbreviated value. Similarly for the
following abbreviation of the value

no assignment or input may be made to , or within the scope of . The effect of
the abbreviation is the same as each instance of being replaced by the abbreviated value, thus

is equivalent to

The syntax for abbreviations of values is:

The abbreviation of a value begins with the keyword . An optional specifier (which specifies the data type
of the abbreviation) appears to the right of , followed by the name, and the keyword . The abbreviated
value appears to the right of the keyword . Line breaks are permitted after the keyword . The type of
the value must be compatible with the specifier. The specifier can usually be omitted from the abbreviation,
as the type can be inferred from the type of the value.

This section shows how to define a value for a variable from the result of a process. Consider

scope

abbreviation specifier name expression
name expression

4 Variables and values

4.6 Abbreviation of values

4.7 Result abbreviation

�

VAL INT days.in.week IS 7 :

days.in.week

VAL REAL32 y IS (m * x) + c :
VAL INT n IS m : m
VAL []BYTE vowels IS
[’a’, ’e’, ’i’, ’o’, ’u’] :

VAL REAL32 y IS (m * x) + c :

m x c y
y

[screen FROM line FOR length]

VAL []INT scan IS [screen FROM line FOR length] :

screen line length scan
scan

VAL []INT scan IS [screen FROM line FOR length] :
SEQ

row := scan
...

SEQ
row := [screen FROM line FOR length]
VAL []INT scan IS [screen FROM line FOR length] :
...

VAL IS :
| VAL IS :

VAL
VAL IS
IS IS

RESULT REAL32 y IS x :
P
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This introduces a new variable whose final value after execution of the process P will be assigned to .
The process is equivalent to

The syntax of result abbreviations is:

In order to ensure that result abbreviations can be implemented in the same way as variable abbreviations,
the rules of variable abbreviation apply to result abbreviation.

Abbreviations may be used to decompose an array into a number of disjoint parts, so that each part may
have a unique name in all or several processes in parallel. Components of each disjoint part may then be
selected by a variable subscript (a subscript whose value is dependent on a procedure parameter, a variable,
or a replicator index whose base or count is not a constant value), for example:

This example divides the array into two parts, and provides a name for those parts in each of the two
parallel processes. These parts may then be selected by using variable subscripts.

�

abbreviation specifier name variable
name variable

4 Variables and values

4.8 Disjoint arrays in parallels

�

y x

REAL32 y:
SEQ

P
x := y

RESULT IS :
| RESULT IS :

frame1 IS [page FROM 0 FOR 512] :
frame2 IS [page FROM 512 FOR 512] :
PAR

INT i :
SEQ

...
c1 ? frame1[i]
...

INT j :
SEQ

...
c2 ? frame2[j]
...

page
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Previous chapters have described the basic data types and variables of those types. This chapter describes
how to create new types and how to define new structures for those types.

This section describes how to create new types which have the same values as existing data types.

Consider the definition

This creates a new type called with the same as the type . Literals of the new
type are denoted in just the same way as literals of the type except that they are decorated with the
name of the new type. For example:

The rules for rounding literals of the new type are just the same as those for so that the nearest
representable value of this literal is 54321766400 0.

This new type definition might be used in a context in which many different sorts of variable all have the same
primitive type representation. For instance, by defining a type and an type, the type checking
system can be used to ensure that a length is not assigned to an area, or that an area is not passed to a
procedure where a length is expected.

Variables of the new type are declared in just the same way as variables of any of the primitive types. For
instance:

The syntax of named types is:

The data type which is defined may be referred to by its name. Modules (chapter 13) introduce indirect
ways of referencing a data type. Two named data types are only equal when their references are equal. For
example, in:

the types of and are the same, but the type of is different. In:

the types of and are different because, although the representation of the name of each type is the same,
the two declarations introduce different names.

The previous sections have shown how to use the data types which are built in to the language. This section
shows how record data types may be defined.

5 Structured data types




structure

definition name data.type
data.type name

5.1 Named data types

5.2 Record data types

�
�

DATA TYPE LENGTH IS REAL32 :

LENGTH REAL32
REAL32

54321765439.54(LENGTH)

REAL32

LENGTH AREA

LENGTH height, width :

DATA TYPE IS :

DATA TYPE AREA IS REAL32 :
AREA a, b :
REAL32 c :

a b c

DATA TYPE AREA IS REAL32 :
AREA a :
DATA TYPE AREA IS REAL32 :
AREA b :

a b

DRAFT --- March 31, 1992



1

40

A record has a number of fields, each of which are data types. Records are used to gather together com-
ponents of data which make a logical unit. For instance, the real and imaginary components of a complex
number form a logical unit:

This definition creates a new type named . It is a record type with two fields and .

Variables of the type are declared in the same way as variables of any other named type.
Consider:

This declaration introduces a variable, , of type . This variable may be assigned and commu-
nicated in the same way as a variable of primitive type. The components and may be
used like ordinary variables in assignments and communications.

The syntax of record types is:

The same field name may be used in the definition of more than one type. Consider

In this example, both kettles and heaters have a power field. The field refers to the second field
of the record and refers to the first field of .

A literal representation of a record gives values for each field and the name of the type. Consider:

This is a literal with data type (defined above). The value of the field is
and the value of the field is .

The syntax of a record type literal is:

The expressions in a record literal must have the type of the corresponding field in the type definition. For
instance, a record literal of type must have three expressions, the first of these expressions must
have type and the second two must have type .

� � � �

� �

definition name
structured.type

structured.type
data.type field.name

field.name name

literal expression decoration

5 Structured data types

Record literals

�

�

�

�

DATA TYPE COMPLEX32
RECORD

REAL32 real :
REAL32 imag :

:

COMPLEX32 real imag

COMPLEX32

COMPLEX32 z :

z COMPLEX32
z[real] z[imag]

DATA TYPE

:
RECORD

, :

DATA TYPE KETTLE
RECORD

REAL32 capacity, power :
:
DATA TYPE HEATER

RECORD
REAL32 power :
REAL64 height, width :

:
KETTLE k :
HEATER h :

k[power]
k h[power] h

[0.0(REAL32),1.0(REAL32)](COMPLEX32)

COMPLEX32 real 0.0(REAL32)
imag 1.0(REAL32)

[ , ]( )

HEATER
REAL32 REAL64

DRAFT --- March 31, 1992



1

41

There is one record type which has a special representation. That is the record type with no fields. The type
is called and its definition is:

There is only one value of this type, namely .

The syntax of empty records is:

This value is useful to communicate along a channel when synchronisation is required without communication
of data.

The previous section described data types whose values all have the same format. This section describes
data types whose values may have one of a number of different formats.

Consider the data type definitions:

This defines three data types. The data types and are the of the type .
Values of the type may have either of the types specified by the subtypes.

Variables of union types are declared in the usual way, for instance:

The syntax of union types is:

A literal representation of a union value gives a value from one of the subtypes, the name of the subtype tag
and the name of the union type. For instance:

The syntax of union literals extends the syntax of literals:

� � � �

data.type
literal

subtypes

structured.type
data.type name

literal name expression decoration

5 Structured data types

The empty record

Union literals

5.3 Union data types

�
�

�

�

NONE

DATA TYPE NONE
RECORD

:

[](NONE)

NONE
[](NONE)

DATA TYPE CARTESIAN
RECORD

REAL32 real, imag :
:
DATA TYPE POLAR

RECORD
REAL32 mod, arg :

:
DATA TYPE COMPLEX

UNION
CARTESIAN c :
POLAR p:

:

CARTESIAN POLAR COMPLEX
COMPLEX

COMPLEX x :

UNION
, :

(c :- [0.0(REAL32), 1.0(REAL32)](CARTESIAN))(COMPLEX)

( :- ) ( )
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A variable may be converted into a variable of a subtype of a union. Consider the process:

This assignment calculates the real component of the variable and assigns it to the field of the
variable . This process is INVALID if the current type of is not or if the current

type of is not .

The syntax of subtype conversion is:

The subtype to which a variable belongs is determined using a subtype discrimination process:

This process determines the current type of the variable and behaves like the appropriate process.

The syntax of subtype discrimination is:

It is possible that the name of a subtype is used again during the scope of a union. For instance:

Although the data type is still in scope after these definitions, the subtype is not. New
variables which are declared to be of type will be records with two integer fields. However, it is
still possible to declare variables of the type , to express literals of subtype

� �

variable variable name
expression expression name

process expression
discriminant

discriminant name
process

5 Structured data types

5.3.1 Subtype conversion

5.3.2 Subtype discrimination

5.3.3 Scope of subtype names

�
�

�

�

w[c][real] := z[p][mod] * COS (z[p][arg])

POLAR z real
CARTESIAN w w CARTESIAN

z POLAR

[ ]
[ ]

CASETAG z
p

w[c][real] := z[p][mod] * COS (z[p][arg])
c

w[c][real] := z[c][real]

z

CASETAG

DATA TYPE COMPLEX
UNION

CARTESIAN c :
POLAR p :

:
DATA TYPE CARTESIAN

RECORD
INT x, y :

:

COMPLEX CARTESIAN
CARTESIAN
COMPLEX COMPLEX CARTESIAN
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and to analyse expressions using a process. Consider the program:

In the assignment to , the name is interpreted as a subtype of and therefore the
literal of that type has two fields. In the assignment to , refers to the most recently
declared type of that name.

5 Structured data types

COMPLEX CASETAG

DATA TYPE COMPLEX
UNION

CARTESIAN c :
POLAR p :

:
DATA TYPE CARTESIAN

RECORD
INT x, y :

:
COMPLEX z :
CARTESIAN orig :
SEQ

z := (c :- [1.0(REAL32),0.0(REAL32)](CARTESIAN))(COMPLEX)
orig := [0,0](CARTESIAN)

z CARTESIAN COMPLEX
REAL32 orig CARTESIAN
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programs act upon , and . A variable has a value, and may be assigned a
value in an or . Channels communicate values. Timers produce a value which represents
the time.

This chapter describes communication channels, the declaration of communication channels, the specification
of the format and data type of communications, and the declaration of a record of channels.

Variables (page 23), call channels (page 55) and timers (page 63) are discussed elsewhere in the manual.

Communication channels provide unbuffered, unidirectional point-to-point communication of values between
two concurrent processes. The format and type of values passed on a channel is specified by the channel

. The name and protocol of a channel are specified in a channel declaration.

The type of a channel is:

A channel is declared in just the same way as variables are declared. Consider the following example:

This declaration introduces a channel named with a protocol of type . The protocol in this
example specifies that each communication on this channel must be a value of type . An output on this
channel could be:

Several channels with the same protocol can be declared together, for example:

The type of the declarations is determined, and then the declarations are made.

The syntax of channel declarations is:

Arrays of channels can be declared in the same way as arrays of variables (see page 29). The following, for
example, declares an array of channels:

This declaration introduces an array of four channels.

Multidimensional arrays of channels are built in the same way as multidimensional arrays of variables, for
example:

occam

6 Channels

� �

variables channels timers
assignment input

protocol

channel.type protocol

declaration channel.type name

6.1 Channel type

6.2 Declaring a channel

6.3 Arrays of channels

�

�

CHAN OF

CHAN OF BYTE screen :

screen BYTE
BYTE

screen ! ’H’

CHAN OF BYTE screen, keyboard :

, :

[4]CHAN OF BYTE screens :

screens

[5][5]CHAN OF PACKETS node :
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There is a subtle semantic distinction to be made between an array of data type and arrays of channels. An
array of variables is itself a variable (it may be assigned to by assignment or input), however, an array of
channels is not itself a channel (that is, only single components of the array may be used in input/output) but
a means of referencing a number of distinct channels identified by consecutive subscripts.

Several arrays of the same type can be declared together. Consider the following example:

The type of the declarations is determined, and then the declarations are made.

The syntax of channel types is extended with:

Components and segments of channel arrays are denoted in just the same way as components and segments
of variable arrays. Unlike arrays of variables, arrays of channels may be specified by tables.

Subscripted names select a component of an array. Suppose is declared as follows:

Consider the example:

the tenth component of the array , of type .

A segment of an array is itself an array. The segment has zero or more components, as shown in the
following examples:

the tenth component of the array ,
of type .
the tenth, eleventh and twelfth components of the array ,
of type .

A segment of an array has the same number of dimensions as the array.

The syntax is:

A channel communicates values between two concurrent processes. The format and data type of these
values is specified by the channel protocol. The channel protocol is specified when the channel is declared.
Each input and output must be compatible with the protocol of the channel used. Channel protocols enable
the compiler to check the usage of channels.

� �

channel.type expression channel.type

channel name
channel expression

channel base count
channel base
channel count

channel
replicator channel

6 Channels

6.3.1 Channel array components and segments

6.4 Channel protocol

�

�

[users]CHAN OF BYTE screen, keyboard :

[ ]

user.in

[12]CHAN OF MESSAGES user.in :

user.in[9] user.in CHAN OF MESSAGES

[user.in FROM 9 FOR 1] user.in
[1]CHAN OF MESSAGES

[user.in FROM 9 FOR 3] user.in
[3]CHAN OF MESSAGES

| [ ]
| [ FROM FOR ]
| [ FROM ]
| [ FOR ]
| [ , ]
| [CHAN : ]
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In 2, the count was input first and the parallel assignment rules did not apply. Some 2 programs are invalidated
by the new rule.

47

The simplest protocols consist of a data type. An example of a channel with a byte protocol has already been
given. A protocol with an array type can be declared in the same way, for example:

This declaration introduces a channel with a byte array protocol which is identified by the name .
The protocol of this channel specifies that the channel is able to pass byte arrays with components. For
example, consider this output:

It is often desirable to have a channel that will pass arrays of values, where the number of components in
the array is not known until the output occurs. A special protocol, called a protocol, enables
this kind of array communication by passing a length and that number of components from the array. A
declaration for such a channel looks like this:

This declaration introduces a channel which passes an integer value and that number of components from
the array. An output on this channel will look like this:

This has the effect of outputting the integer and the string ; the first characters
of the array. The associated input could look like this:

This input receives an integer value ( in this example), which is assigned to the variable , and that
number of components, which are assigned to the first components of the array . The assignments
to and happen in parallel and therefore the same rules apply as for parallel assignment. That
is, the name may not appear free in and . The input is invalid if the number of
components in is less than the value input to .

All the above protocols are called , their syntax is:

This syntax has extended the syntax for and (see page 6). A simple protocol is either a data
type or a counted array as described above, and is specified by the data type of the count (which may be
either an integer or byte), followed by a double colon, square brackets ( ), and the specifier indicating
the type of the components.

A protocol can be given a name in a , as shown in the following example:

occam occam

counted array

vice versa

simple protocols

simple.protocol data.type
data.type data.type

input channel input.item
input.item variable

variable variable
output channel output.item
output.item expression

expression expression
protocol simple.protocol

input output

protocol definition

6 Channels

6.4.1 Simple protocols

6.4.2 Naming a protocol

�

�
�

�
�

�

CHAN OF [36]BYTE message :

message
36

message ! "The vorpal blade went snicker-snack."

CHAN OF INT::[]BYTE message :

message ! 16::"The vorpal blade went snicker-snack."

16 "The vorpal blade" 16

message ? len::buffer

16 len
buffer

len buffer
len buffer
buffer len

| ::[]
?

| ::
!

| ::

::[]

PROTOCOL CHAR IS BYTE :
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A channel can now be declared with the protocol , for example:

A protocol definition must be used if more complex protocols, like the described in the
following section are required. The syntax for protocol definition is:

A protocol definition defines a name for the simple protocol or sequential protocol (described in the following
section) which appears to the right of the keyword . A protocol definition appears on a single line, and is
terminated by a colon. The line may be broken after the keyword or after a semi-colon in a sequential
protocol.

Simple protocols have been discussed earlier. Sequential protocols specify a protocol for communication
which consists of a sequence of simple protocols. Consider the following example:

Channels declared with this protocol ( ) pass pairs of values. An input or output on a
channel with sequential protocol is a sequence of distinct inputs or outputs. An input on a channel with the
above protocol is shown below:

Each value is input in sequence and assigned to each variable in turn. Here are some more examples of
sequential protocol definitions:

Declarations of channels with these protocols would look like this:

The syntax of sequential protocols is:

A sequential protocol is one or more simple protocols separated by semi-colons. The communication on a
channel with a sequential protocol is valid provided the type of each item input or output is compatible with
the corresponding component of the protocol.

� �
� �
� �

sequential protocol

definition name simple.protocol
name sequential.protocol

protocol name

sequential.protocol simple.protocol
input channel input.item
output channel output.item

6 Channels

6.4.3 Sequential protocol

�

�

�
�
�

CHAR

CHAN OF CHAR screen :

PROTOCOL IS :
| PROTOCOL IS :

IS
IS

PROTOCOL COMPLEX IS REAL64; REAL64 :

CHAN OF COMPLEX

COMPLEX

items ? real.part; imaginary.part

PROTOCOL DIR.ENTRY IS INT16; [14]BYTE :
PROTOCOL INODE IS INT16;INT16;INT32;INT32;INT16;[7]INT16;INT16;INT16 :
PROTOCOL LINE IS INT16::[]BYTE :

CHAN OF DIR.ENTRY directory :
CHAN OF INODE sys :
CHAN OF LINE blocks :

;
? ;
! ;
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It is often convenient to use a single channel to communicate messages with different formats. A
specifies a number of possible formats for communication on a single channel. Consider the following

example:

This example defines a variant protocol named . combines a number of , each of which may
identify a sequential protocol. The variant protocol defined here has six variants.

A channel declared with this protocol would look like this:

A communication on this channel first sends a tag to inform the receiving process of the format for the rest
of the communication. So, for example

first sends the tag followed by a value ( ). Consider the output:

This output sends only the tag and according to the above variant protocol definition requires no further
output.

The syntax for a variant protocol and the associated output is:

In a definition of a variant protocol the name which identifies the protocol appears to the right of the keyword
, this is followed at an indentation of two spaces by the keyword , which in turn is followed

at a further indentation of two spaces by a number of tagged protocols. The definition of a variant protocol
is terminated by a colon, which appears on a line by itself, at the same level of indentation as the of
the keyword . A tagged protocol is either a tag by itself or a tag followed by a semi-colon, and
sequential protocol.

An output on a channel of variant protocol is a tag by itself or a tag followed by a number of output items
separated by semi-colons. The output is valid only if the tag and the associated output items are compatible
with one of the tagged protocols specified in the definition.

So far only output on a channel with variant protocol has been shown. A special form of input is required
(called ) to provide for input on channels with a variant protocol. The previous example is suggestive

� �

� �

variant
protocol

tags

definition name

tagged.protocol

tagged.protocol tag
tag sequential.protocol

tag name
output channel tag

channel tag output.item

case input

6 Channels

6.4.4 Variant protocol

Input on a channel with variant protocol

�

�

�
�

PROTOCOL FILES
CASE

request; BYTE
filename; [14]BYTE
word; INT16
record; INT32; INT16::[]BYTE
error; INT16; BYTE::[]BYTE
halt

:

FILES CASE

CHAN OF FILES to.dfs :

to.dfs ! request; get.record

request BYTE get.record

to.dfs ! halt

halt

PROTOCOL
CASE

:

| ;

!
| ! ; ;

PROTOCOL CASE

P
PROTOCOL
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of a with a , and is a reminder that channels are unidirectional. So, for a user
process to “listen to” the other side of this conversation, another channel must be declared, as shown below:

This example declares another channel with the protocol . The process which outputs
, might reasonably expect to receive a reply on a channel with this protocol. Consider a more

complete example of this conversation:

Illustrated in the above example is a case input on the channel . This accepts a variant input with
either the tag or the tag , any other tag would be invalid and the input would behave like the
primitive process .

A special form of case input simply receives a tag from the channel named on the left of the case input
symbol ( ), and then compares the tag for equality with the tag of the tagged list which appears to the
right of the symbol. A tag is input, then if the tags match the process next inputs the remainder of the tagged
list, if the tags do not match the process next behaves like the primitive process , for example:

This process inputs a tag, if the tag is the input is completed, and a value assigned to the variable
. Otherwise, no further input is performed, and the input behaves like the primitive process

(page 6). A case input is valid only if the tagged lists are compatible with one of the tagged protocols
specified in the definition.

Consider the following:

In this example the input will behave like the primitive process as the tags do
not match. The associated output will also behave like , for although the output of the tag
succeeds, the output does not. In this example the procedures and will not
be performed. Also consider the following:

Each communication of a sequential protocol, or of a tagged sequential protocol is in fact a sequence of sep-
arate communications. So, in the above example, the input

conversation disc filing system

6 Channels

CHAN OF FILES from.dfs :

FILES request;
get.record

SEQ
to.dfs ! request; get.record
from.dfs ? CASE

record; rnumber; rlen::buffer
... do whatever

error; enumber; elen::buffer
... handle error

from.dfs
record error

STOP

? CASE

STOP

from.dfs ? CASE filename; name.buffer

filename
name.buffer
STOP

PROTOCOL COMMS
CASE

packet;INT::[]BYTE
sync

:
CHAN OF COMMS route :
PAR

SEQ
route ! packet; 11::"Hello world"
R ()

SEQ
route ? CASE sync
S ()

route ? CASE sync STOP
STOP packet

11::"Hello world" R() S()

PAR
SEQ

route ! sync
P ()

SEQ
route ? CASE packet; length::message
Q ()

route ? CASE packet; length::message
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will behave like the primitive process because the tags do not match. However, the associated output
will succeed as the output of the tag has completed, and the variant requires no further

output. Thus, the (page 75) will be performed, and the procedure will not be performed.

The syntax for case input is:

A case input receives a tag from the channel named on the left of the case input symbol ( ), and then
the tag is used to select one of the variants. These appear on the following lines, indented by two spaces. A
tag is input, then if a variant with that tag is present the process next inputs the remainder of the tagged list,
and an associated process, indented a further two spaces, is performed. If no variant with that tag is found
the process next behaves like the primitive process .

A case input may consist of a tagged list only, as shown in the earlier examples.

A case input may also be used as an input in an alternation (chapter 2, page 18). Consider the following
example:

This alternation accepts input from either of the two channels ( and ). These inputs
are explained in the previous section. This alternation could have included a mix of case inputs, and the
alternatives described on page 18. The syntax for case inputs in an alternative is:

A case input as an alternative is either a case input with variants as described in the earlier syntax, or such
a case input preceded by a boolean guard and an ampersand ( ) to the left of the channel name. The case
input is not considered by the alternation if the boolean guard is false.

� �

� �

� �

� �

procedure

case.input channel
variant

variant tagged.list
process

specification
variant

tagged.list tag
tag input.item

process case.input
input channel tagged.list

alternative channel
variant

boolean channel
variant

6 Channels

Variants in alternatives

�

�

�

�
�

�

STOP
route ! sync

P() Q()

? CASE

|

| ; ;

? CASE

? CASE

STOP

ALT
from.dfs ? CASE

request; query
... do query

error; enumber; elen::buffer
... handle dfs error

record; rnumber; rlen::buffer
... accept record

from.network ? CASE
request; query

... do query
error; enumber; elen::buffer

... handle network error
record; rnumber; rlen::buffer

... accept record

from.dfs from.network

? CASE

| & ? CASE

&
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It is possible for the name a variant protocol tag to be used again during the scope of the protocol. For
instance:

However, it is still possible to use the name to denote a tag of the protocol in outputs and
inputs on channels with protocol . Consider the following, rather silly, program:

The name is used to denote the variant tag in both the input and the output. The name is also used
to specify the destination of the input.

A single channel may only communicate values in one direction. Often the communication between processes
is achieved over a number of channels in both directions which are more conveniently thought of as a group.
The group structure can be defined by a record of channels. The structure of the record is declared in a
channel type declaration as for instance:

This declaration introduces a channel type which is a record of two channels, one named and
the other . A record of this type is declared as in the following example:

Components of the record are accessed by subscription in just the same way as components of a data record
are. For instance, the record might be used in the following way:

6 Channels

Scope of tag names

6.5 Records of channels

PROTOCOL COMMS
CASE

packet;INT::[]BYTE
sync

:
[4]BYTE packet :

packet COMMS
CASE COMMS

PROTOCOL COMMS
CASE

packet;INT::[]BYTE
sync

:
[4]BYTE packet :
CHAN OF COMMS c :
INT len :
PAR

c ! packet; 3::"xyz"
c ? CASE packet; len::packet

packet

CHAN TYPE RPC
RECORD

CHAN OF REAL32 param, result:
:

RPC param
result

RPC sine:

sine

PAR
REAL32 x:
SEQ

sine[param] ? x
sine[result] ! SIN (x)

SEQ
sine[param] ! 46.2(REAL32)
sine[result] ? y
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The syntax of the channel record declaration is

Only channels may be declared as fields of a channel record.

Channel abbreviations are similar to variable abbreviations (see page 34). A channel abbreviation specifies
a new name for a channel, channel array or record of channels. Consider

This introduces the name as the new name for .

The syntax of channel abbreviation is:

The specifier may be omitted whenever the type of the abbreviation can be inferred from the type of the
channel. Channel abbreviations are subject to the same usage restrictions as variable abbreviations. These
are summarised in appendix H.

� �

definition name

declaration

channel.type name

abbreviation specifier name channel
name channel

specifier channel.type
specifier

expression specifier

6 Channels

6.6 Abbreviation of channels

�

�

�

�

CHAN TYPE
RECORD

:

CHAN OF INT user IS lines[8] :

user lines[8]

IS :
| IS :

| []
| [ ]

DRAFT --- March 31, 1992



54 6 Channels

DRAFT --- March 31, 1992



programs act upon , and . A variable has a value, and may be assigned a
value in an or . Channels communicate values. Timers produce a value which represents
the time.

This chapter describes remote call channels, the declaration of remote call channels, and the specification of
the parameter list of a call.

Variables (page 23), communication channels (page 45) and timers (page 63) are discussed elsewhere in
the manual.

Remote call channels provide the ability to pass parameters from one process to a procedure which is
executed by another process, in much the same way as the traditional low level system call. The format of
the parameters is specified by a in the declaration of the call channel. The call channel
provides a point-to-point connection.

A call channel is declared with its name and formal parameter list. Consider:

The effect of this is to declare a remote call channel named which takes two parameters: the first is
a variable of type and the second is a value of the same type.

A call is made along a call channel by supplying a list of actual parameters. For instance:

The actual parameters specified in the call are passed to a procedure body which is defined by an accept
process, for example:

This process will accept a call on the channel. On acceptance, the process increments its count of
the number of calls accepted and assigns to the parameter. If the channel is called with
parameters and and it is accepted by this process, the variable will
contain the result of on termination of the call.

The declaration of a call channel specifies the name of the channel and its formal parameter list as in the
example of above. The of a call correspond to the initialising declaration and
the variable, value and result abbreviations described in chapter 4. The different parameter types specify
different ways in which a parameter may be passed from a call process to an accept process and also specify
different ways in which the parameter may be used within the accept process.

In the declaration of , the parameter is specified to be a value. This means that the value of the
actual parameter corresponding to is passed to the accept process. The name cannot be assigned within
the body of the call.

The first parameter of the channel is specified to be a result parameter. This means that the final
value of the variable is passed back on termination of the call. The name may be used like
any other variable in the accept process.

The value of an initial parameter is passed from the call process to the accept process at the beginning of
the call just like a value parameter. However, unlike a value parameter, the name of an initial parameter may
be used in the body of the accept process in the same way as any other variable.

occam

7 Remote call channels
variables channels timers

assignment input

formal parameter list

formal parameters

7.1 Declaring a call channel

CALL cosine (RESULT REAL32 result, VAL REAL32 x) :

cosine
REAL32

cosine (cos.pi, 3.14159(REAL32))

ACCEPT cosine (RESULT REAL32 result, VAL REAL32 x)
SEQ

calls := calls+1
result := COS (x)

cosine
result cosine

cos.pi 3.14159(REAL32) cos.pi
COS(3.14159(REAL32))

cosine

cosine x
x x

cosine
result result
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A simple variable parameter is passed from call to accept at the beginning of a call and passed back again
on termination. The parameter name may be used like any other variable in the body of the accept process.

The syntax of call formals is:

Arrays of call channels are declared in the usual way by preceding the declaration with the size of the array
in square brackets:

The syntax of a call declaration is:

A call channel is used to make calls and accept calls as in the example above. Call channels provide
a point-to-point connection between processes and so no more than one concurrent process may use a call
channel for call or accepting.

A call is made on a call channel by providing a list of actual parameters, for example:

An actual parameter is either a variable or an expression. Actual parameters must be compatible with the
specification given in the formal parameter list of the call. This means that only variables are permitted where
a variable or result parameter is specified and that the type of the actual parameter must match the type
specified by the formal parameter.

The syntax of a call is:

A call is accepted by specifying the name of the call channel and repeating its formal parameter list and then
giving a process to be executed on acceptance of the call as in the following example:

� �
� �

� �
� �

� �

� �

� �

call.formal data.type name
data.type name

data.type name
data.type name

declaration call.type name call.formal
call.type

expression call.type

process call.channel call.actual
call.channel name

call.channel expression
call.channel

replicator call.channel
call.channel base count
call.channel base
call.channel count

call.actual expression
variable

7 Remote call channels

7.2 Using a call channel

�

�
�

�
�

�

,
| INITIAL ,
| RESULT ,
| VAL ,

[10]CALL cosine (RESULT REAL32 result, VAL REAL32 x) :

( , ) :
CALL

| [ ]

cosine

cosine(cos.pi,3.14159(REAL32))

( , )

| [ ]
| [ , ]
| [CALL : ]
| [ FROM FOR ]
| [ FROM ]
| [ FOR ]

|

ACCEPT cosine (RESULT REAL32 result, VAL REAL32 x)
SEQ

calls := calls+1
result := COS (x)
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The list of call formals must match the list in the specification of the call exactly; the names of the parameters
must be the same. There may be several accept processes for the same call channel, and they may have
different effects. For instance, the process below might sequentially follow the process above:

The syntax of the accept process is:

Remote call channels can be implemented using two communication channels. The first channel is used to
communicate the value parameters and the initial values of the variables at the beginning of the call; and the
other is used to communicate back the final values of the variable parameters and the result parameters. For
instance, the processes above can be modelled by:

Notice that the call process and the accept process synchronise both at the beginning and the end of the call.

A process may use the acceptance of a call as a guard in an alternation. For instance:

The guard becomes ready as soon as a process makes a call on the channel. In this example, the increment
of the variable is performed in the body of the alternative after the final synchronisation of the call
process with the accept process.

The syntax of accept process guards is:

� �

� �

� �

process call.channel call.formal
process

guard call.channel call.formal
process

boolean call.channel call.formal
process

7 Remote call channels

7.3 Call channels in alternations

�

�

ACCEPT cosine (RESULT REAL32 result, VAL REAL32 x)
result := 0.0(REAL32)

ACCEPT ( , )

CHAN TYPE CALL.CHAN -- call declaration
RECORD

CHAN OF REAL32 params:
CHAN OF REAL32 results:

:
CALL.CHAN cosine.rpc:

SEQ -- call process
cosine.rpc[params] ! 3.14159(REAL32)
cosine.rpc[results] ? cos.pi

REAL32 result, x: -- accept process
SEQ

cosine.rpc[params] ? x
calls := calls+1
result := COS (x)
cosine.rpc[results] ! result

ALT
ACCEPT cosine (RESULT REAL32 result, VAL REAL32 x)

result := COS (x)
calls := calls+1

halt ? TRUE
STOP

calls

ACCEPT ( , )

| & ACCEPT ( , )
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A call channel abbreviation specifies a new name for a call channel or an array of call channels. Consider

This abbreviation specifies a new name for . Notice that the names of the formal parameters
have changed but otherwise the formal parameter list is just the same as that of .

The syntax for call channel abbreviation is:

If the formal parameter list of the call is not specified in the abbreviation, then the formal parameter list of the
call channel which is abbreviated is assumed.

abbreviation specifier call.header call.channel
name call.channel

specifier call.type
specifier

expression specifier

7 Remote call channels

7.4 Call channel abbreviation

�

�

CALL cosine.4 (RESULT REAL32 cos.x, VAL REAL32 x) IS cosine[4] :

cosine[4]
cosine

IS :
| IS :

| []
| [ ]
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programs act upon , and . A variable has a value, and may be assigned a
value in an or . Channels communicate values. Timers produce a value which represents
the time.

Communication channels (page 45) and call channels (page 55) provide point-to-point connections between
processes. This chapter describes shared channels which provide connections between a single process
and an arbitrary number of other processes.

A shared communication channel is declared similarly to an ordinary channel except that the declaration is
preceded by the key word . Consider:

This introduces a call channel which may be shared between many processes.

The use of a shared call channel is just the same as the use of an unshared call channel. Processes make
calls on the shared end of the channel and a single process accepts the calls. The accepting process may
not accept more than one call at once on any channel.

The type of a shared call channel is:

Communication channels are not shared singly but as a record. A type of channel records is declared as
follows:

Shared records of channels are declared using the keyword :

A process which wishes to use the shared ends of a channel record must first claim it. Consider:

This process claims the channel record , outputs a parameter along the component and then
inputs the result from the component . The shared end of the record may not be used outside a claim
process.

The process which has access to the non-shared end of the record must first grant the record to a claim
process. Consider

occam

8 Sharing

�

variables channels timers
assignment input

shared.call
expression shared.call

declaration shared.call name formal

8.1 Sharing call channels

8.2 Shared communication channels

�

�

SHARED

SHARED CALL cosine (RESULT REAL32 result, VAL REAL32 x):

cosine

SHARED CALL
| [ ]

( , ) :

CHAN TYPE RPC
RECORD

CHAN OF REAL32 param, result:
:

SHARED

SHARED RPC sine :

CLAIM sine
SEQ

sine[param] ! 3.14159(REAL32)
sine[result] ? x

sine param
result

GRANT sine
REAL32 y:
SEQ

sine[param] ? y
sine[result] ! SIN (y)
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This process grants the record to one of the claiming processes, inputs from the parameter channel, outputs
along the result channel and then terminates the grant. The granting action synchronises with the claiming
action of the claim process and the termination of the grant process synchronises with the termination of
the claim process. The cooperation of both parties in these actions ensures that there can be no confusion
caused by the channel being released when one party is not expecting it. Since no more than one process
may grant a channel at once, a successful claim process has exclusive use of the channel for the duration
of the claim.

The syntax of shared channel records is:

The syntax of the claim and grant is:

Shared channels and process scheduling can conspire to give the most subtle deadlocks in concurrent
languages. Consider the following process, which the restrictions below make INVALID:

The channel records and are granted by processes which run concurrently with a pair of processes
which attempt to claim them in different orders. If one of the claiming processes should claim both channel
records before the other process has claimed either, then the whole composition will terminated successfully.
However, should each process succeed in its first claim, then the whole process will deadlock because each
of the claiming processes is waiting for the other process to release the channel record which it has claimed.

The probability of a deadlock like this occurring is very small because it requires a very precise interaction
with the scheduler. Errors caused by the presence of this sort of deadlock are therefore difficult to repeat
and detect. The restriction which is imposed prevents the programming of these subtle deadlocks.

A claim process is only allowed to affect its environment by assignment to its own variables or communication
along the channels of the shared record. The claim process may not communicate with its environment
along any other channels and may not claim any other shared record. This prevents a claim process from
synchronising with anything other than the granting process during the period of the claim. Similar restrictions
apply to the bodies of procedures called from the claim process.

� �

definition name

declaration

shared.channels name
expression shared.channels

declaration shared.channels name

process channel
process

channel
process

8 Sharing

8.2.1 Restrictions on the body of a claim

�

�

�

�

CHAN TYPE
RECORD

:
SHARED

| [ ]
:

CLAIM

| GRANT

PAR
CLAIM a

CLAIM b
SKIP

CLAIM b
CLAIM a

SKIP

a b
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The call and accept mechanism may be modelled by a shared record pair

so that the call

is modelled by:

In this way, the call on the shared channel is equivalent to a claim on the channel, followed by communicating
the parameters and releasing the channel. The accept process is modelled by a grant so that

may be implemented by

This shows how the accept of the shared channel is equivalent to granting the channel, copying in the
parameters, executing the body of the accept and copying the parameters back out again.

Grant processes and accept processes may be used as guards of alternations. The syntax for accept
processes is exactly the same as that for the unshared case. Consider the alternation:

8 Sharing

8.3 Modelling shared call channels with shared channel records

8.4 Shared channels in alternations

CHAN TYPE CALL.CHANS
RECORD

CHAN OF REAL32 params:
CHAN OF REAL32 results:

:
SHARED CALL.CHANS cosine.rpc:

cosine (cos.4, 4.0(REAL32))

CLAIM cosine.rpc
SEQ

cosine.rpc[params] ! 4.0(REAL32)
cosine.rpc[results] ? cos.4

ACCEPT cosine (RESULT REAL32 result, VAL REAL32 x)
result := COS (x)

GRANT cosine.rpc
REAL32 result, x:
SEQ

cosine.rpc[params] ? x
result := COS (x)
cosine.rpc[results] ! result

ALT
GRANT cosine.rpc

SEQ
cosine.rpc[params] ? x
result := COS (x)
cosine.rpc[results] ! result

SKIP
ACCEPT cosine (RESULT REAL32 result, VAL REAL32 x)

result := COS (x)
SKIP

NONE n :
halt ? n

STOP
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The syntax of guards is extended as follows:

guard channel
process

boolean channel
process

8 Sharing

� GRANT

| & GRANT
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programs act upon , and . A variable has a value, and may be assigned a
value in an or . Channels communicate values. Timers produce a value which represents
the time.

This chapter describes timers, the declaration of timers, and access to them.

Channels are discussed on pages 45 and 55 and variables are discussed on page 23.

A timer provides a clock which can be accessed by any number of concurrent processes.

The type of a timer is:

Timer arrays have type similar to other arrays, for example:

The syntax of timer array types is:

A timer is declared in a manner similar to channels and variables. Consider the following example:

This declaration introduces a timer which is identified by the name . Several timers may be declared
together, for example:

The type of the declarations is determined, and then the declarations are made. Timer arrays are declared
in just the same way as other arrays, for example:

Components and segments of timer arrays are denoted in just the same way as components and segments
of variable arrays (page 30) and channel arrays (page 46).

The syntax of timer declarations is:

occam

9 Timers

� �

variables channels timers
assignment input

timer.type

timer.type expression timer.type

declaration timer.type name
timer name

timer expression
timer base count
timer base
timer count

9.1 Timer type

9.2 Declaring a timer

�

�

�
�

TIMER

[10]TIMER

[ ]

TIMER clock :

clock

TIMER clockA, clockB :

[10]TIMER clocks:

, :

| [ ]
| [ FROM FOR ]
| [ FROM ]
| [ FOR ]
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A value input from a timer provides an integer value of type representing the time. The value is derived
from a clock, which changes by an increment at regular intervals. The value of the clock is cyclic ( when
the value reaches the most positive integer value, an increment results in the most negative integer value).
The special operator can be used to compare times even though the value may have crossed from
most positive to most negative, just as one o’clock may be considered later than eleven o’clock . If

and are successive inputs from the same timer, then the expression is true if is
later than . This behaviour is only sensible if the second value ( ) is input within one cycle of the timer.

is also explained in the chapter on expressions (page 67).

The rate at which a timer is incremented is implementation dependent.

Timers are accessed by special forms of called , which are similar to channel inputs, for
example:

This example inputs a value from the timer and assigns the value to the variable . Unlike channels,
inputs from the same timer may appear in any number of components of a parallel.

Another special input (called a ) specifies a time, after which the input terminates, for example:

This input waits until the value of the timer is later than the value of . In other words, if is the value
of the timer , then the input will wait until is true. The value of is unchanged.

More usefully perhaps, a delay can be caused by this sequence:

This sequence inputs a value representing the current time and assigns it to the variable . The following
delayed input waits until the value input from is later than the value of .
(page 70) is a .

The syntax for timer inputs is:

A timer input receives a value from the timer named on the left of the input symbol ( ), and assigns that value
to the variable named on the right of the symbol. A delayed input waits until the value of the timer named on
the left of the input symbol ( ) is later than the value of the expression on the right of the keyword .

ie

pm am

input timer inputs

delayed input

modulo operator

input timer.input
delayed.input

timer.input timer variable
delayed.input timer expression

9 Timers

9.3 Timer input

�

�
�

INT

AFTER

t1 t2 t1 AFTER t2 t1
t2 t2

AFTER

clock ? t

clock t

clock ? AFTER t

clock t c
clock (c AFTER t) t

SEQ
clock ? now
clock ? AFTER now PLUS delay

now
clock now PLUS delay PLUS

|
?
? AFTER

?

? AFTER
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Timer inputs and delayed inputs may be used as guards in alternations. This gives a simple way in which to
program time outs. Consider the process:

In this example, the process sends a request to a server and notes the time at which the request was sent.
When the process is ready to receive the reply, it waits alternatively for the server to become ready with the
reply or for the time out period to pass. If the server has not become ready to reply before the end of the
time out period, then the process will execute the branch of the alternation associated with the delayed input.
Notice that the time out period starts from the time of the request, not from the beginning of the alternation.

Timers may be abbreviated in just the same way as variables (page 34) and channels (page 53). The same
rules, summarised in appendix H, apply to abbreviated timer names as apply to abbreviated variable or
channel names.

The syntax of timer abbreviation is

abbreviation specifier name timer
name timer

specifier timer.type
specifier

expression specifier

9 Timers

9.4 Timers in alternations

9.5 Timer abbreviation

�

�

SEQ
to.server ! request
time ? request.time
...
ALT

from.server ? reply
... the server has replied in time

time ? AFTER request.time PLUS time.out
... the server has missed the deadline

IS :
| IS :

| []
| [ ]
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This chapter is about , and describes the range of provided by . The chapter
also describes and .

An expression is evaluated and produces a result. The result of an expression has a value and a data
type. The simplest expressions are literals and variables. More complex expressions are constructed from

, operators and . An operand is a (page 29), a literal, a table, or another
expression enclosed in parentheses. An operator performs an operation, for example an addition, upon its
operand(s). The following are all valid expressions:

a literal value
a variable
multiplication of two literal operands
multiplication of two variable operands
a boolean expression

An expression may itself be an operand in an expression. In this way larger expressions are built, as shown
in the following examples:

subtract from the result of
multiply the results of the expressions and

There is no operator precedence as the hierarchical structure of a large expression is clearly defined by
parentheses. With the exception of shift operations, where the number of bits shifted is indicated by a value
of type , the data type of the two operands in a dyadic expression must be of the same type. In an
assignment the value of the expression must be of the same data type as the variable to which it is to be
assigned. Consider in detail the following example:

Each of the components of this expression ( , , and ) must be of the same data type. The result of an
expression is of the same type as its operand(s). The expression in this example - - has two
operators. The parentheses indicate that the expression is an operand of the operator , and thus
must be evaluated before the operation can be performed.

The syntax for expressions is:

Tables, operators and conversions are detailed in the following sections. Variables (page 29) and literals
(page 24) have been explained earlier.

A table constructs an array of values from a number of expressions which must yield values of the same data
type. The value of each component of the array is the value of the corresponding expression. Consider the
following example:

occam

10 Expressions
expressions operators

data type conversions tables

operands parentheses variable

expression monadic.operator operand
operand dyadic.operator operand
conversion
operand

operand variable
literal
table

expression

10.1 Tables

�

�

5(INT64)
x
6 * 4
x * y
NOT TRUE

(1 + 2) - 1 1 (1 + 2)
(x * y) * (w * z) (x * y) (w * z)

INT

y := (m * x) + c

y m x c
(m * x) + c

(m * x) +
+

|
|
|

|
|
| ( )

[1, 2, 3]
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This example constructs an array with three components, each of type . Here are some more examples:

a table of three bytes (equivalent to )
a table of three values
a table of with two component values
a table with a single component
a table of two integers

If the variables , and are of type , then the table is an expression whose type is
. is an expression whose type is , and so on.

The syntax for tables is:

—index,@ A table is one or more expressions of the same data type, separated by commas, and enclosed
in square brackets. Line breaks are permitted after a comma. The meanings of and are
given earlier in the description of variables (page 29).

An operation evaluates its operand(s) and produces a result. The result of an operation has a value and a
data type.

addition
subtraction
multiplication
division
remainder
remainder
modulo addition
modulo subtraction
modulo multiplication
most negative
most positive
bitwise and
bitwise or
bitwise exclusive or

bitwise not
shift right
shift left
boolean and
boolean or
boolean not
equal
not equal
less than
greater than
less than or equal
greater than or equal
later than
array size

The arithmetic operators are:

addition
subtraction
multiplication
division
remainder

� �table table subscript
expression

table subscript count
table subscript
table count

subscript count

10 Expressions

10.2.1 Arithmetic operators

10.2 Operations

�

INT

[’a’, ’b’, ’c’] "abc"
[x, y, z]
[x * y, x + 4]
[(a * b) + c]
[6(INT64), 8888(INT64)] INT64

a b c INT [(a * b) + c]
[1]INT [’a’, ’b’, ’c’] [3]BYTE

[ ]
| [ , ]
| [ FROM FOR ]
| [ FROM ]
| [ FOR ]

,

+
-
*
/
REM
\
PLUS
MINUS
TIMES
MOSTNEG
MOSTPOS
/\ BITAND
\/ BITOR
><

~ BITNOT
>>
<<
AND
OR
NOT
=
<>
<
>
<=
>=
AFTER
SIZE

+
-
*
/
REM
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Arithmetic operators perform an arithmetic operation upon operands of the same integer or real data type
(not on bytes or booleans), for example:

produces a value of 42
produces a value of 42
produces a value of 42
produces a value of 42
produces a value of 2

The final example in this list may also be written: . The symbols and both signify the
remainder operation. A remainder operation produces a value which is the remainder of the division of the
two operands. The sign of a remainder operation is the sign of the left hand expression (except where the
result is zero) regardless of the sign of the right hand value. The result of an integer division is rounded
toward zero ( truncated), for example:

produces a value of 1
produces a value of 1
produces a value of 2
produces a value of 1

The operator is also a monadic negation operator, which has the effect of negating the value of its operand,
for example:

has the value (0 )
minus 5

The result of an arithmetic operation produces a result of the same data type as the operands. An arithmetic
operation is not valid if the resulting value cannot be represented by the same data type as the operands, for
example where the result of a multiplication of two large integers produces a value which exceeds the range
of the type (arithmetic overflow). Division by zero is also treated as invalid.

Remainder operations on both integers and reals, obeys the following law:

(( ) ) + ( ) =

Here are some examples of real expressions, in which is a value of , and is a value of
:

produces a value of 42 0 of type
produces a value of 36 0 of type
produces a value of 117 0 of type
produces a value of 13 0 of type
produces a value of 0 0 of type

The result of a real arithmetic expression (which is considered to be infinitely precise) is rounded to the
nearest value which can be represented by the type. That is, the value will be adjusted, if necessary, to fit
into the representation of its type. The precision of an operation is that of the type of the operands.

It is possible for the result of a real remainder operation to be negative. Consider the following example:

The result of this expression is ( 0 5). If and are real values, the result of is ( ( )), where
is the result of dividing and rounded toward zero. Applying this to the above example, is 0 75 rounded
to the nearest integer (1), leaving : (1 5 (2 0 1) = ( 0 5).

Full details of IEEE rounding modes are given in the appendix (page 112).

� ��� � � � �
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ie

10 Expressions

Rounding the results of real operations

39 + 3
45 - 3
6 * 7
126 / 3
128 REM 3

128 \ 3 REM \

3 / 2
(-3) / 2
(-9) / 4
(-9) REM 4

-

- x x
- 5

REM

x 39.0(REAL32) y
3.0(REAL32)

x + y REAL32
x - y REAL32
x * y REAL32
x / y REAL32
x REM y REAL32

1.5(REAL32) REM 2.0(REAL32)

REM
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The modulo arithmetic operators are:

modulo addition
modulo subtraction
modulo multiplication

These modulo arithmetic operators perform an operation upon operands of the same integer data type (not
on reals, bytes or booleans). Whilst the effect of these operations is similar to the corresponding arithmetic
operations, no overflow checking takes place, and thus the values are cyclic. For example, adding one to
the most positive integer will produce a value equal to the most negative integer ( ( 1) =

), and subtracting one from the most negative integer will produce a value equal to the most
positive integer ( ( 1) = ). Consider these examples:

causes an arithmetic overflow.
produces the value 32768.
causes an arithmetic overflow.
produces the value 32767.
causes an arithmetic overflow.
produces the value 3392

is also a valid monadic operator.

The operator produces the most positive value of an integer type. The operator produces
the most negative value of an integer type. Consider the following examples:

has the value 32768
has the value 32767

The syntax for these operators is:

The keyword ( or ) appears to the left of a type.

Bitwise operators perform operations on the bit pattern of a value of integer type. The bitwise operators are:

bitwise and
bitwise or
bitwise exclusive or
bitwise not

Here are some example expressions using the bitwise operators. The results shown are true if the value of
is , and the value of is , and their type is :

produces a result
produces a result
produces a result
produces a result

���������	�	�

�
�����
�����

�
�	��������� �
�	�����	���

�

�

ie

ie

expression data.type
data.type

10 Expressions

10.2.2 Modulo arithmetic operators

INVALID!

INVALID!

INVALID!

10.2.3 and (integer range)

10.2.4 Bit operations

�

PLUS
MINUS
TIMES

PLUS

MINUS

32767(INT16) + 1(INT16)
32767(INT16) PLUS 1(INT16)
(-32768(INT16)) - 1(INT16)
(-32768(INT16)) MINUS 1(INT16)
20000(INT16) * 10(INT16)
20000(INT16) TIMES 10(INT16)

MINUS

MOSTPOS MOSTNEG

MOSTPOS MOSTNEG

MOSTNEG INT16
MOSTPOS INT16

MOSTPOS
| MOSTNEG

MOSTPOS MOSTNEG

/\ BITAND
\/ BITOR
><
~ BITNOT

pixel #1010 pattern #FFFF INT16

pixel /\ pattern #1010(INT16)
~ pixel #EFEF(INT16)
pixel \/ pattern #FFFF(INT16)
pixel >< pattern #EFEF(INT16)
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The operands of , and must both be of the same integer type. The following table illustrates how
each bit of the result is produced from the corresponding bits in the operand.

1 0 = 1 1 0 = 0 1 0 = 1
0 0 = 0 0 0 = 0 0 0 = 0
1 1 = 0 1 1 = 1 1 1 = 1
0 1 = 1 0 1 = 0 0 1 = 1

The bitwise not operator ( ) has a single operand which must be an integer type. Each bit of the result is the
inverse of the corresponding bit in the operand, as shown in the following table:

˜1 = 0
˜0 = 1

The result of a bitwise operation is of the same integer type as the operand(s). The keywords ,
and are equivalent to , , respectively, and are included especially for implementations which
have a restricted character set.

The shift operators perform a logical shift on the value of an integer type. The shift operators are:

shift right
shift left

The shift operators shift the bit pattern of a value of any integer type by a number of places determined by a
count value of type . For example, if the value of is , and of type :

produces a result
produces a result

The result is of the same integer type as . The bits vacated by the shift become zero, the bits shifted out of
the pattern are lost. The left shift operator shifts toward the most significant end of the pattern, the right shift
operator shifts toward the least significant end of the pattern.

Consider these further examples, where is a value of type :

produces the value
produces the value
produces the value 0
produces the value 0

A shift by a negative value, or by a value which exceeds the number of bits in the representation, is invalid.

The boolean operators combine operands of boolean type, and produce a boolean result. The boolean
operators are:

boolean and
boolean or
boolean not

� � � �
� � � �
� � � �
� � � �

� �
� �
� �
� �

10 Expressions

10.2.5 Shift operations

10.2.6 Boolean operations

/\ \/ ><

~

BITAND BITOR
BITNOT /\ \/ ~

>>
<<

INT n #FFFF INT16

n << 4 #FFF0(INT16)
n >> 4 #0FFF(INT16)

n

n INT32

n << 0 n
n >> 0 n
n >> 32
n << 32

AND
OR
NOT

DRAFT --- March 31, 1992



72

The following table shows the results for each operation:

= = =
= = =
= =
= =

The operand to the left of a boolean operator is evaluated, and if the result of the operation can be determined
evaluation ceases. This differs from the behaviour of other expressions. Consider the following example:

Note that parentheses may be omitted between expressions containing adjacent or operators. The
evaluation of the boolean expression ceases if the expression

is false, the evaluation of the expression does not take place. If the result is true,
the expression to the right of is not evaluated. The rule is that
evaluation of a boolean expression will cease if the operand to the left of is false, or if the operand to
the left of is true.

The relational operators perform a comparison of their operands, and produce a boolean result. The relational
operators are:

equal
not equal
less than
greater than
less than or equal
greater than or equal

Here are examples of relational expressions using and . In these examples the operands, and , can
be any primitive data type:

is true if the value of is equal to the value of
the result is false otherwise
is true if the value of is not equal to the value of
the result is false otherwise

The following are examples using the other relational operators. In these examples the operands, and ,
can be an integer, byte or real type, but may not be a boolean:

is true if the value of is less than the value of
the result is false otherwise
is true if the value of is greater than the value of
the result is false otherwise
is true if the value of is less than or equal to the value of
the result is false otherwise
is true if the value of is greater than or equal the value of
the result is false otherwise
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10 Expressions

10.2.7 Relational operations

AND OR NOT
AND OR NOT
AND OR
AND OR

IF
((ch >= ’a’) AND (ch <= ’z’)) OR ((ch >= ’A’) AND (ch <= ’Z’))

...
(ch = cr) OR (ch = down) OR (ch = up)
...

((ch = escape) AND shift)) OR ((ch = escape) AND control))
...

AND OR
((ch >= ’a’) AND (ch <= ’z’)) (ch

>= ’a’) (ch <= ’z’)
((ch >= ’A’) AND (ch <= ’Z’)) OR

AND
OR

=
<>
<
>
<=
>=

= <> x y

x = y x y

x <> y x y

x y

x < y x y

x > y x y

x <= y x y

x >= y x y
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The special modulo operator performs a comparison operation, and returns a boolean result, for
example:

This expression is true if is later in a cyclic sequence than , just as one o’clock can be considered
later than eleven o’clock . The first operand is considered the starting point on a “clock face” of integer
values. If the shortest route to the value of the second operator is clockwise, then the value is later than the
first operand and the result of the expression is true. If the shortest route to the value of the second operand
is anticlockwise, then the value of the second operand is earlier, and the result of the expression is false.

( ) produces the same value as ( ) 0.

The special operator has a single operand of array type, and produces an integer value of type ,
equal to the number of components in the array. For example, if is an array of type , then:

produces the value 8

If is of type , then:

produces the value 8
produces the value 4

With the exception of logical shifts (where the number of bits to shift must be of type ), the types of
the operands in an expression must be of the same type. Operands may explicitly have their data type
converted. A data type conversion permits a value of a primitive data type (not array types) to be converted
to a numerically similar value of another primitive data type. A data type conversion produces the value of
its operand as a value of the specified data type, for example:

The value of in this example is converted to a value of type . Note that is a literal
value of type , whereas is a data type conversion of the value of .

The syntax for data type conversions is:

The type must be a primitive data type, and appears to the left of the operand. A data type conversion which
includes the keyword as described by the syntax, produces a value rounded to the nearest value of
the specified type. Where two values are equally near, the value is rounded toward the nearest even number.
A data type conversion which includes the keyword as described by the syntax, produces a value
truncated (rounded toward zero) to a value of the specified type.

A conversion between any of the integer types, and conversions between those types and type , is valid
only if the value produced is within the range of the receiving type. Byte and integer values may be converted
to boolean values if their value is one or zero. The boolean value is true if the value is one, and false if the
value is zero. That is:

evaluates to
evaluates to
evaluates to 1
evaluates to 0

� � � � �

pm
am

conversion data.type operand
data.type operand
data.type operand

10 Expressions

(later than)

10.2.8 (number of components in an array)

10.3 Data type conversion

�

AFTER

AFTER

(a AFTER b)

a b

AFTER MINUS

SIZE

SIZE INT
a [8]INT

SIZE a

a [8][4]INT

SIZE a
SIZE a[1]

INT

j := (k * 4.5(REAL64)) * (REAL64 n)

n REAL64 4.5(REAL64)
REAL64 (REAL64 n) n

| ROUND
| TRUNC

ROUND

TRUNC

BYTE

BOOL 1 TRUE
BOOL 0 FALSE
INT TRUE
INT FALSE
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Conversions from integer values to real values, and vice versa, must specify whether the result is to be
rounded or truncated. A value of type can be extended to an exact value of type . Values of
type can be converted to values of type , providing the value is in the range of the
type. The conversion must specify if the value is to be rounded or truncated. Consider these examples,
where , and are integers of type , and has a value 255 and has a value 3:

produces a byte value 255
produces a value 255 0
produces a value 255 0
produces a value 765 0
produces a value 765 0

Conversions may be applied to operands of the same type, but will have no effect. The truncation and
rounding of integer types to real types occurs where the integer cannot be exactly represented as a value of
the real type. Consider the following example:

The value in this example has been chosen specifically to illustrate the behaviour of explicitly rounding an
integer value which cannot be directly represented in the floating point representation of . The value
of after this sequence is 33554436 0, and the value of is 33554432 0. For , the two least significant bits
of the integer representation have been lost (they had held the value 3). For the value of those bits has
been rounded to the next nearest representable value. Further detail of rounding is given in the appendix on
page 112.

Conversion of real values to integers has the effect illustrated by the following examples:

produces a value of 1
produces a value of 0
produces a value of 0
produces a value of 0

Consider these examples, where , and are type , has a value 3 5, has a value 2 5.:

produces the value 2, truncated
produces the value 2, rounded (even)
produces the value 4, rounded (even)
produces the value 1
produces the value 40
produces the value 3 5

A full explanation of the IEEE rounding modes is given in the appendix (page 112).











 



 





10 Expressions

REAL32 REAL64
REAL64 REAL32 REAL32

n m INT64 n m

BYTE n
REAL32 ROUND n REAL32
REAL64 TRUNC n REAL64
REAL64 ROUND(n * m) REAL64
(REAL64 ROUND n) * (REAL64 ROUND m) REAL64

SEQ
i := 33554435 (INT32) -- hex #2000003
a := REAL32 ROUND i
b := REAL32 TRUNC i

REAL32
a b b

a

INT32 ROUND 0.75(REAL32)
INT32 ROUND 0.25(REAL32)
INT32 TRUNC 0.75(REAL32)
INT32 TRUNC 0.25(REAL32)

x y REAL32 x y

INT16 TRUNC y y
INT16 ROUND y y
INT32 ROUND x x
INT16 TRUNC (x / y)
(INT ROUND x) * 10
REAL64 x
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This chapter describes in . A procedure definition in defines a name for a process.
Consider the following example:

This example defines as the name for the process, . of a
procedure are specified in parentheses after the procedure name. In this example, is a formal parameter,
and is of type . The procedure may be used as shown in the following example:

A formal parameter is an of the used in an of a procedure or a variable
which is initialised with a value given as an actual parameter. An of a procedure has the same effect
as the substitution of the process named in the procedure’s definition. This instance of can be
expanded to show its effect:

which is equivalent to

Here is a further example:

This procedure takes a channel ( ) and an array ( ) as parameters, and outputs the components
of the array to the channel. An instance of the procedure looks like this:

Again, this instance can be expanded to show the effect:

occam occam

11 Procedures
procedures

Formal parameters

abbreviation actual parameter instance
instance

PROC increment (INT x)
x := x + 1

:

increment x := x + 1
x

INT increment

INT y :
SEQ

...
increment (y)
...

increment

INT y :
SEQ

...
x IS y :
x := x + 1
...

INT y :
SEQ

...
y := y + 1
...

PROC writes (CHAN OF BYTE stream, VAL []BYTE string)
SEQ i = 0 FOR SIZE string

stream ! string[i]
:

stream string

SEQ
...
writes (screen, "Hello world")
...

SEQ
...
CHAN OF BYTE stream IS screen :
VAL []BYTE string IS "Hello world" :
SEQ i = 0 FOR SIZE string

stream ! string[i]
...
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A name which is in the body of the procedure is statically bound to the name used in the procedure
definition, for example:

The free variable , in scope when the procedure was defined, is to the occurrence
of the name in the procedure . The rules of ensure that distinct names identify distinct
objects. The second declaration of a variable with the name introduces a distinct new name. This
means that in the example, the scope and binding of the variables can be seen more clearly by making
systematic changes of name. Once this is done, the example is equivalent to:

In this transformation of the earlier example, it can be seen that the variable used in the instance of
is the variable named declared before the procedure definition of , and not the second
variable declared with the same name.

The rules for abbreviations lead to restrictions on the actual parameters which may be used in procedure
instances. Consider the procedure:

And now consider the following equivalences of instances that may appear in the scope of the procedure:

is equivalent to:

is equivalent to:

is equivalent to:
which is

is equivalent to:
which is

occam

free

bound

11 Procedures

INVALID!

INVALID!

INT step :
SEQ

step := 39
PROC next.item (INT next, VAL INT present)
next := present + step

:
INT g, step :
SEQ

step := 7
next.item (g, 3)
... -- at this point the value of g is 42

step next.item
next.item

step

INT step :
SEQ

step := 39
INT g, curb : -- name changed
SEQ

curb := 7
next IS g : -- expand instance of next.item
VAL present IS 3 :
next := present + step
... -- at this point the value of g is 42

next.item
step next.item

INT x, y, step :
PROC next.item (INT next, VAL INT present)
next := present + step

:

next.item (x, y) INT next IS x :
VAL INT present IS y :
next := present + step

next.item (x, step) INT next IS x :
VAL INT present IS step :
next := present + step

next.item (step, x) INT next IS step :
VAL INT present IS x :
next := present + step

next.item (x, x) INT next IS x :
VAL INT present IS x :
next := present + step
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Here it can be seen how the meaning of each procedure parameter is defined in terms of an abbreviation,
the ordering of parameters corresponds to a sequence of abbreviations. is in-
valid because the variable is used in the expression , after it has been
abbreviated, and the example is invalid as has already been used in the previous
abbreviation of the variable (and the rules state [see appendix H] that a variable used in such an abbrevia-
tion may not be used within the associated scope). Notice also the effect with the order of parameters used
in changed:

With this re-ordering, is still invalid, although now for a different reason, as follows:

is equivalent to:
which is

is invalid here as there is an assignment to (via ) within the scope of the first
abbreviation. Now consider the following example:

This procedure should leave the value of the variable used as the actual parameter for , unchanged, as the
following expansion shows:

is equivalent to:

and by substitution

The value of after this instance is , as might be expected. However, the following instance is invalid,
which is just as well, as the effect is non-intuitive:

is equivalent to:
which is

and by substitution
a non-intuitive effect!

The value of after this instance, if it were valid, would be 0, which is counter intuitive. The following example

11 Procedures

INVALID!

INVALID!

next.item (step, x)
step next := present + step

next.item (x, x) x
x

next.item

INT x, y, step :
PROC next.item (VAL INT present, INT next)

next := present + step
:

next.item (x, x)

next.item (x, x) VAL INT present IS x :
INT next IS x :
next := present + step

next.item (x, x) x next

PROC nonsense (INT x, VAL INT y)
SEQ

x := x + y
x := x - y

:

x

nonsense (n, 3) INT x IS n :
VAL INT y IS 3 :
SEQ

x := x + y
x := x - y

SEQ
n := n + 3
n := n - 3

n n

nonsense (n, n) INT x IS n :
VAL INT y IS n :
SEQ

x := x + y
x := x - y

SEQ
n := n + n
n := n - n

n

DRAFT --- March 31, 1992



0

1

1

1

1

0

78

highlights the problem further.

is equivalent to:
which is

and by substitution
a non-intuitive effect!

If this instance were valid, the value of after the instance of would be difficult to predict, as
in each of the assignments will probably reference a different component of , as the value of the
subscript may be changed by the first assignment.

The syntax for a procedure definition is:

The keyword , the name of the procedure, and a formal parameter list enclosed in parentheses is
followed by a process, indented two spaces, which is the body of the procedure. The procedure definition is
terminated by a colon which appears on a new line at the same indentation level as the start of the definition.
Because an initial parameter requires a local variable within the procedure, its type must be given exactly, it
may not be specified.

The syntax for procedure instance is:

An instance of a procedure is the procedure name followed by a list of zero or more actual parameters in
parentheses. An actual parameter is a variable, channel, call channel, timer or expression. The list of actual
parameters must correspond directly to the list of formal parameters used in the definition of the procedure.
The actual parameter list must have the same number of entries, each of which must be compatible with the
kind ( or non- ) and type of the corresponding formal parameter. In a program in which all names
are distinct, an instance of a procedure behaves like the substitution of the procedure body. Notice that all
programs can be expressed in a form in which all names are made distinct by systematic changes of name.
Procedures in are not recursive. A channel parameter or free channel may only be used for input or
output (not both) in the procedure.

An instance of a procedure defined with zero parameters must be followed by empty parentheses. Where a
number of parameters of the same type appear in the parameter list, a single specifier may specify several
names. For example:

occam

� �

� �
� �

� �
� �

� �

definition name formal
process

formal specifier name
specifier name

specifier name
data.type name

instance name actual
actual variable

channel
call.channel
timer
expression

process instance

11 Procedures

INVALID!

�

�

�
�

�

nonsense (i, v[i]) INT x IS i :
VAL INT y IS v[i] :
SEQ

x := x + y
x := x - y

SEQ
i := i + v[i]
i := i - v[i]

i nonsense
v[i] v

i

PROC ( , )

:
,

| VAL ,
| RESULT ,
| INITIAL ,

PROC

( , )

|
|
|
|

VAL VAL

PROC snark (VAL INT butcher, beaver, REAL64 boojum, jubjub)
...

:
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This example, is equivalent to:

11 Procedures

PROC snark (VAL INT butcher, VAL INT beaver,
REAL64 boojum, REAL64 jubjub)

...
:
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The previous chapter discusses named processes (called ). This chapter describes in
. A function defines a name for a special kind of process, called a . A value process

produces a result of data type, and may appear in expressions. Value processes may also produce more
than one result, which may be assigned in a multiple assignment. functions are side effect free, as
they are forbidden to communicate or assign to free variables. This helps to ensure that programs are clear
and easy to maintain.

A value process performs an enclosed process and produces a result. Consider the following example:

In the example shown here, the value process produces the sum of the array , and is equivalent to

[ ]

The syntax of value processes is:

More commonly the value process is the body of a function definition, as illustrated in the following example:

This function definition defines the name for the associated value process. The type of the result is
, specified by . Just as the behaviour of procedures is defined by the substitution of the

procedure body, functions behave like the substitution of the function body. It follows that the example which
starts this chapter is an expansion of the following:

occam

occam

12 Functions
procedures functions

value process

value.process
process

expression.list
specification
value.process

operand value.process

expression.list value.process

�

�

�

total := subtotal + (INT sum :
VALOF

SEQ
sum := 0
SEQ i = 0 FOR SIZE v

sum := sum + v[i]
RESULT sum

)

v

SIZE v

i 0

v i

VALOF

RESULT
|

(
)
(
)

INT FUNCTION sum (VAL []INT values)
INT accumulator :
VALOF

SEQ
accumulator := 0
SEQ i = 0 FOR SIZE values

accumulator := accumulator + values[i]
RESULT accumulator

:

sum
INT INT FUNCTION

total := subtotal + sum (n)

�
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A function definition may also define a name for an expression list, so that simple, single line functions can
be defined in the following fashion:

Each of these functions returns a single boolean result. The definition of the function is equivalent
to the following:

A number of rules apply to functions to ensure they are side effect free. As for procedures, the correspondence
between the formal and actual parameters of a function is defined in terms of , and follows the
associated scope rules. However, an argument of a function may only be a value parameter or an initial
parameter. Only initial parameters and variables declared within the body of a value process or function may
be assigned to and communications may only occur along channels which are declared within the body of
the value process or function.

Any procedure used within a function must also be side effect free. A name which is free within the value
process (Scope, page 32) can be used only in expressions within the value process or function body, they
may not be assigned to by input or assignment. Consider the following:

Functions may also have initial parameters which are used for giving the initial values of a calculation.
Consider the function:

This function copies the values of its parameters and uses them as variables in the calculation of its result.

A value process may produce more than one result, which may then be assigned using a multiple assignment.

abbreviations

12 Functions

BOOL FUNCTION lowercase (VAL BYTE ch) IS (ch >= ’a’) AND (ch <= ’z’) :
BOOL FUNCTION uppercase (VAL BYTE ch) IS (ch >= ’A’) AND (ch <= ’Z’) :
BOOL FUNCTION ischar (VAL BYTE ch) IS uppercase (ch) OR lowercase (ch) :

ischar

BOOL FUNCTION ischar (VAL BYTE ch)
VALOF

SKIP
RESULT uppercase (ch) OR lowercase (ch)

:

INT FUNCTION read.top.of.stack () IS stack[stack.pointer] :
BOOL FUNCTION empty () IS stack.pointer = 0 :

INT FUNCTION exponent (INITIAL INT x, y)
INITIAL INT k IS 1:
VALOF

WHILE y <> 0
IF

(y\2) = 0
x, y := x*x, y/2

(y\2) <> 0
k, y := k*x, y-1

RESULT k
:
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Consider the following example:

This value process searches the byte array for the character . The result is produced from the
expression list which follows , and is then assigned to , and . This value process can
be given a name in a function definition, as follows:

This example finds the position of in the string . After the multiple assignment in this example,
the value of will be , and the value of will be . Single line functions with multiple results
may also be defined:

This function produces the division and remainder of and . If an error occurs within a function or value
process, it will behave like the primitive process . This behaviour is equivalent to the behaviour of
a mathematical overflow in an arithmetic expression (see page 118 for details of the behaviour of invalid

12 Functions

point, found := (VAL BYTE char IS ’g’ :
VAL []BYTE string IS message :
BOOL ok :
INT ptr :
VALOF

IF
IF i = 0 FOR SIZE string

string[i] = char
SEQ

ok := TRUE
ptr := i

TRUE
SEQ

ok := FALSE
ptr := -1

RESULT ptr, ok
)

string ’g’
RESULT point found

INT, BOOL FUNCTION instr (VAL BYTE char, VAL []BYTE string)
BOOL ok :
INT ptr :
VALOF

IF
IF i = 0 FOR SIZE string

string[i] = char
SEQ

ok := TRUE
ptr := i

TRUE
SEQ

ok := FALSE
ptr := -1

RESULT ptr, ok
:
VAL message IS "Twas brillig and the slithy toves" :
INT point :
BOOL found :
SEQ

point, found := instr (’g’, message)
...

’g’ message
point 11 found TRUE

INT, INT FUNCTION div.rem (VAL INT x, y) IS x / y, x REM y :

x y
STOP

DRAFT --- March 31, 1992



1 0

0

0

1 0

84

processes). Consider the behaviour of an instance of the following partial function:

This function will behave like the primitive process if is less than zero, or if an overflow occurs in
the evaluation of the factorial. In either case the behaviour is equivalent to the behaviour of any other invalid
expression (page 118).

The syntax for functions is:

A value process consists of zero or more specifications which precede the keyword , followed by a
process at an indentation of two spaces, and the keyword at the same indentation. The keyword

is followed by an expression list on the same line. The line may be broken after a comma, or at a
valid point in an expression. An operand of an expression may consist of a left parenthesis, a value process,
followed by a right parenthesis. The structured parentheses appear at the same indentation as each other,
and are equivalent to the left hand and right hand parentheses of a bracketed expression respectively. So,
where the value process produces a single result, the upper bracket may be preceded by an operator, or the
lower bracket may be followed by an operator.

The heading of a function definition consists of the keyword , preceded by the type(s) of the result(s)
produced by the function. The name of the function and a formal parameter list enclosed by parentheses
follows the keyword on the same line. This is followed by a value process, indented two spaces,
which forms the body of the function. The function definition is terminated by a colon which appears on a
new line at the same indentation level as the start of the definition. Alternatively, a function definition may
consist of the function heading followed by the keyword , an expression list, and a colon, on the same line.
The line may be broken after the keyword , a comma, or at a valid point in an expression.

An instance of a function defined to have zero parameters must be followed by empty parentheses. Where
a number of parameters of the same type appear in the parameter list, a single specifier may specify several
names. For example:

This example is equivalent to:

� � � �

� �
� �

� � � �

definition data.type name formal
function.body

function.body value.process

operand name expression
expression.list name expression

definition data.type name formal expression.list

12 Functions

�

�

�
�

�

INT FUNCTION factorial (VAL INT n)
INT product :
VALOF

SEQ
product := 1
SEQ i = 1 FOR n

product := product * i
RESULT product

STOP n

, FUNCTION ( , )

:

( , )
( , )

, FUNCTION ( , ) IS :

VALOF
RESULT

RESULT

FUNCTION

FUNCTION

IS
IS

INT FUNCTION alice (VAL REAL64 tweedle.dum, tweedle.dee,
INT cheshire.cat)

...
:

INT FUNCTION alice (VAL REAL64 tweedle.dum,
VAL REAL64 tweedle.dee,
INT cheshire.cat)

...
:
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There are two methods for structuring programs so that they can be easily changed and components
used again. These are the and the . This chapter describes modules. Libraries are described
in chapter 14.

Modules provide a mechanism for structuring processes. A module is like a black box with a number of
channels which can be used for communicating with the contents of the box. Inside the box there are
processes which service the channels. Because the user of the box cannot access the contents and can only
communicate with it through the channel interface, the contents can be changed and a new implementation
plugged into the user program with no alteration required to the rest of the program. Also because the user
has no access to the contents, the internal state of the box is protected from accidental interference.

This chapter describes the mechanisms which permit logically connected program components to be written
as a contiguous sequence of declarations. Once in this form, the sequence can be extracted into a

and multiple instances of it may be created in different parts of a program. The second part of the
chapter describes the mechanisms which achieve this.

Consider the process:

This example shows a two place buffer with input channel and output channel , along with a user
process. The channels and provide an to the buffer process. Furthermore, it would be
unusual to see such a buffer process written without the declaration of its channels. This conceptual unit can
be emphasised by declaring the buffer process as a :

This sequence of declarations may be used as the body of a so that many processes with similar
implementations may be declared:

Instances of the module type are declared as follows:

This gives the name to an instance of the channels and processes specified in the body of the
module type. The channels are referenced by subscription as for a record (here they are and

).

occam

13 Modules

module library

module
type

interface

resource

module type

CHAN OF INT in, out :
PAR

CHAN OF INT mid :
PAR

WHILE TRUE
INT x :
SEQ

in ? x
mid ! x

WHILE TRUE
INT y :
SEQ

mid ? y
out ! y

... user process

in out
in out

CHAN OF INT in, out :
RESOURCE

... buffer process
:
... user process

MODULE TYPE TWO.BUFFER ()
CHAN OF INT in, out :
RESOURCE

... buffer process
:

:

MODULE buffer IS INSTANCE TWO.BUFFER () :

buffer
buffer[in]

buffer[out]
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The scoping rules provide a restricted interface (the channels and ) to the internal state of
the buffer (the integers and and the channel ), the internal state has been protected from accidental
interference by the user process and it allows the details of the implementation to be changed. In this case,
the protection of the internal state is essential to the correct functioning of the buffer because if the variables

and were overwritten, then the buffer would output the wrong values.

The fact that the internal details of the implementation are hidden means that the buffer implementation above
may be replaced by the following implementation without affecting the functional behaviour of the program:

The only way in which to distinguish between this buffer process and the first buffer process is through its
timed behaviour and its space requirements.

We have just seen how a resource process can be used to structure a program so that logically connected
components of a program can be written as a contiguous sequence of declarations and then extracted as a
module. This section describes some more process structuring constructs.

occam

13 Modules

13.1 Process declarations

in out
x y mid

x y

MODULE TYPE NEW.TWO.BUFFER ()
CHAN OF INT in, out :
RESOURCE

INT x, y :
SEQ

in ? x
WHILE TRUE

SEQ
PAR

out ! x
in ? y

PAR
out ! y
in ? x

:
:
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Consider the sequence of declarations:

This provides a call channel interface to a disk block cache. The cache is initialised by input from the
channel into the local array . The module then repeatedly enables a number
of alternative guards and services and requests. When the scope of the module terminates, the
finalisation process is executed and causes the local array to be output along the channel .
The module then terminates.

Each of the process declarations can be described with existing constructs. A resource process is
executed in parallel with its scope so that the process:

is equivalent to

An initialisation process is executed before its scope so that the process:

is equivalent to

occam

13 Modules

CALL Get (RESULT BYTE c, VAL INT n) :
CALL Put (VAL INT n, VAL BYTE c) :
CALL Halt () :
[block.size]BYTE cache:
INITIAL

from.disk.block ? cache
:
FINAL

to.disk.block ! cache
:
RESOURCE

INITIAL BOOL going IS TRUE:
WHILE going

ALT
ACCEPT Get (RESULT BYTE c, VAL INT n)

c := cache[n]
SKIP

ACCEPT Put (VAL INT n, VAL BYTE c)
cache[n] := c
SKIP

ACCEPT Halt ()
going := FALSE
SKIP

:
FINAL

Halt ()
:

from.disk.block cache
Put Get

to.disk.block

RESOURCE
P

:
Q

PAR
P
Q

INITIAL
P

:
Q

SEQ
P
Q
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Similarly, the finalisation process is executed after its scope so that the process:

is equivalent to

The syntax of process declarations is:

Some processes are only active in response to user requests. Consider the cache process above. Its only
actions are to repeatedly enable the guards of the alternation, service the call channels and terminate when
its scope terminates. This sort of module is called a and has a special representation in .
Consider the following declarations:

These declarations have precisely the same effect as the previous cache implementation. A server process
repeatedly enables and services a set of accept guards until its scope terminates. Once its scope has
terminated, the server process terminates as soon as all of its branches have terminated.

occam

declaration
process

process

process

server

13 Modules

13.1.1 Automatic termination of processes

�

FINAL
P

:
Q

SEQ
Q
P

INITIAL

:
| FINAL

:
| RESOURCE

:

CALL Get (RESULT BYTE c, VAL INT n) :
CALL Put (VAL INT n, VAL BYTE c) :
[block.size]BYTE cache:
INITIAL

from.disk.block ? cache
:
FINAL

to.disk.block ! cache
:
SERVER

ACCEPT Get (RESULT BYTE c, VAL INT n)
c := cache[n]
SKIP

ACCEPT Put (VAL INT n, VAL BYTE c)
cache[n] := c
SKIP

:
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The accept guards of a server may themselves be guarded by boolean conditions as in the following example:

These declarations introduce a buffer module with a process which repeatedly enables an alternative with
two input guards with conditions which check whether the buffer is full or empty.

The syntax of servers is:

The rules governing the disjointness of variables and channels in process declarations can be deduced from
the equivalences with the process constructs. Because resource and server processes execute in parallel
with their scope, the following rules apply (see page 16 or appendix H for the disjointness rules of parallel
processes):

if a resource or server process assigns a variable, then its scope may not read or assign the variable.

if a resource or server process reads a variable, then its scope may not assign the variable.

if a resource or server process uses a channel for input, then its scope may not use that channel
for input.

if a resource or server process uses a channel for output, then its scope may not use that channel
for output.

In the example of the cache server above, the internal state (namely the array ) is in scope in the
user code. Although the user code cannot read or assign the state because of the usage rules, the declared
names might interfere with names previously in scope. The internal state of the server can be hidden using

� �

�

�

�

�

declaration
alternative

13 Modules

13.1.2 Disjointness of resource and server processes

13.2 Interfaces

�

CHAN OF BYTE in, out :
CHAN OF NONE out.request :
[size]BYTE buff :
INITIAL INT front IS 0 :
INITIAL INT back IS 0 :
INITIAL INT contents IS 0 :
SERVER

contents < size & c ? buff[back]
back, contents := (back+1)\size, contents+1

NONE n :
contents > 0 & out.request ? n
SEQ

out ! buff[front]
front, contents := (front+1)\size, contents-1

:

SERVER

:

cache
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an declaration. Consider the declaration:

This declares the call channels and as the interface to the server which implements the cache. The
interface channels are available both to the body of the interface declaration and to the user code. Names
which are brought into scope in the body of the declaration (in this example ) are not available to the
user code.

The syntax of interfaces is:

Only channels may be declared in the first part of an interface declaration. Any specification may appear in
the second part of the declaration.

The previous sections have shown how to structure processes so that a logical unit of the process can be
expressed as a contiguous sequence of declarations with a restricted interface. This section shows how to
define many named modules with similar implementations. Consider the definition:

This defines a type of two place buffer module named whose interface consists of the channels
and . Instances of the type are declared as in the following example:

This declaration has the effect of introducing two new channels, named and ,
and creating a parallel process as specified in the body of the type definition. The module type serves to
abstract the body of the module.

� �

� �

interface

declaration
declaration

specification

13 Modules

13.3 Module types

�

INTERFACE
CALL Get (RESULT BYTE c, VAL INT n) :
CALL Put (VAL INT n, VAL BYTE c) :

TO
[block.size]BYTE cache:
INITIAL

from.disk.block ? cache
:
FINAL

to.disk.block ! cache
:
SERVER

...
:

:
... user code

Put Get

cache

INTERFACE

TO

:

MODULE TYPE TWO.BUFFER ()
CHAN OF INT in, out :
RESOURCE

...
:

:

TWO.BUFFER
in out

MODULE buffer IS INSTANCE TWO.BUFFER () :

buffer[in] buffer[out]

DRAFT --- March 31, 1992



0

0

1

91

Module types may have parameters in just the same way as procedures may. Consider

This defines a cache type which may be instantiated with different disk block channels.

Arrays of modules may be declared as follows:

Each component of the array must present the same , although it does not have to be of the same
type. Consider the declaration:

where and are the modules defined on pages 85 and 86. This declaration
introduces the name for an array of two buffers with channels and in their interfaces.

Unlike data and channel declarations, the order of declarations in a module array is important. The declaration
of above is equivalent to:

The first component of the array is declared first and so on. This means that the first cache is the first to be
initialised. If the disk is only willing to initialise the third cache first, then the process in which the declaration
occurs will deadlock. Similarly, the finalisations occur in the reverse order of declaration so that it is the cache
with index which is written back first.

The syntax of module types is:
� �

� �

� �

�

interface

definition name formal
declarations

abbreviation module.specifier name module
module.specifier
module name

module expression
name actual

replicator module
module

module base count
module base
module count

channel module name
call.channel module name

13 Modules

�

�
�
�

�
�

MODULE TYPE CACHE (CHAN OF BYTE to.disk.block, from.disk.block)
INTERFACE

CALL Get (RESULT BYTE c, VAL INT n) :
CALL Put (VAL INT n, VAL BYTE c) :

TO
[block.size]BYTE cache :
INITIAL

from.disk.block ? cache
:
FINAL

to.disk.block ! cache
:
...

:
:

MODULE caches IS [INSTANCE i = 0 FOR 10 :
CACHE (to.disk.block[i],from.disk.block[i])] :

MODULE buffers IS [INSTANCE TWO.BUFFER (), INSTANCE NEW.TWO.BUFFER ()] :

TWO.BUFFER NEW.TWO.BUFFER
buffers in out

caches

MODULE caches[0] IS CACHE (to.disk.block[0],from.disk.block[0]) :
MODULE caches[1] IS CACHE (to.disk.block[1],from.disk.block[1]) :
...
MODULE caches[9] IS CACHE (to.disk.block[9],from.disk.block[9]) :

9

MODULE TYPE ( , )

:
IS :

MODULE

| [ ]
| INSTANCE ( , )
| [INSTANCE : ]
| [ , ]
| [ FROM FOR ]
| [ FROM ]
| [ FOR ]

[ ]
[ ]
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The declarations permitted within the body of a module type are restricted to channels, processes and
interfaces. Data declarations are not permitted within the body of a module type nor in the first part of an
interface.

It must always be possible to declare more than one instance of any module type. These instances may be
declared in parallel processes and so there are rules which govern the way in which variables and channels
may be used:

within a module type body, only variables which are declared within the body may be assigned.

within a module type body, only shared channels or channels which are declared within the body
may be used for communication.

Therefore, variables and channels which are global to the module type may not be referenced in an exclusive
way within the type body. Any global state which is altered in the type body must be accessed shared
channels. Consider the following example which maintains a count of the number of instances of a particular
module type which exist at any point:

Each instance of the module type will make calls along and . Instances
of the type may be declared in concurrent processes. If each instance assigned directly to the variable

, the variable separation rules would be violated.

The name of a module may be abbreviated in the same way as the name of a variable or a channel, for
example

The type of the name may be specified using an interface type. Consider:

�

�

via

13 Modules

13.3.1 Disjointness of instances of a module type

13.4 Module abbreviation and interface types

SHARED CALL begin.module () :
SHARED CALL end.module () :
INITIAL INT no.of.modules IS 0 :
SERVER

ACCEPT begin.module ()
no.of.modules := no.of.modules+1
SKIP

ACCEPT end.module ()
no.of.modules := no.of.modules-1
SKIP

...
:
MODULE TYPE counted.module ()
INITIAL

begin.module ()
:
FINAL

end.module ()
:
...

:

begin.module end.module

no.of.modules

MODULE my.block IS caches[4] :

INTERFACE TYPE BUFFER
CHAN OF INT in, out :

:
MODULE BUFFER my.buffer IS buffers[29] :
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This introduces the new name for the module . The abbreviation is only valid if
the interface of the abbreviated module name matches the interface type precisely.

Interface types may also be used in the declaration of modules. Consider

This declares the module with implementation and specifies that it must have
the interface type .

The syntax of module abbreviation and interface types is:

The rules restricting module abbreviation (summarised in appendix H) are the same as for other abbreviations.

In the same way as variable, channel, abbreviations define procedure parameters, module abbreviation
defines how to pass modules as procedure parameters.

Consider the procedure

This procedure puts the string in the buffer .

The previous sections showed how to define abbreviations for modules and how to pass modules as param-
eters. This section shows how to restrict the interface of a module. Consider the module:

� �definition name
declaration

interface.type name
module.specifier interface.type
formal interface.type
actual module

&c

13 Modules

13.4.1 Passing modules as parameters

13.4.2 Interface conversion

�

�
�
�
�

my.buffer buffers[29]

MODULE BUFFER key.board IS INSTANCE TWO.BUFFER () :

key.board TWO.BUFFER ()
BUFFER

INTERFACE TYPE

:

MODULE
MODULE

PROC output.string (VAL []BYTE s, MODULE BUFFER b)
SEQ i = 0 FOR SIZE s

b[in] ! s[i]
:

s b

MODULE TYPE COUNT.BUFFER ()
INTERFACE

CHAN OF INT in, out :
CALL count (RESULT INT n) :

TO
INITIAL INT how.many IS 0 :
SERVER

INT x :
in ? x

PAR
how.many := how.many+1
out ! x

ACCEPT count (RESULT INT n)
n := how.many
SKIP

:
:

:
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This module extends the functions provided by a one place buffer by providing a count of the number of
items which have passed through the buffer. The interface specification can be used to restrict the
interface of the buffer so that it can be passed to a procedure which expects a simple buffer. Consider the
abbreviation

This introduces as a new name for but with a restricted interface which
does not have access to the channel.

The syntax of interface conversions is:

A conversion is only valid when the interface of the module which is being converted contains the channels
specified by the interface specifier.

module interface.specifier module

13 Modules

�

BUFFER

MODULE BUFFER simple.buffer IS CONVERT(BUFFER) count.buffer :

simple.buffer count.buffer
count

CONVERT( )
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There are two methods for structuring programs so that they can be easily changed and components
used again. These are the and the . This chapter describes libraries. Modules are described
in chapter 13.

Libraries provide a mechanism for structuring programs. A library is a reusable unit of a program. It gathers
together definitions which implement a data type or a system service. These definitions may be used by any
number of concurrently running programs.

A data type is implemented by a library which exports a type definition and a number of values, functions and
procedures which operate on values and variables of the type. Users of the library declare local variables and
values of the type and operate on these with the exported functions and procedures. Because the functions
and procedures operate on local variables and values, they can be shared between any number of concurrent
users.

A system service is implemented by a library with internal state which exports module type definitions. Users
of the library declare local instances of the module types which provide an interface to the internal state of the
library. The internal state is shared between the module instances using the sharing mechanisms described
in chapter 8. Because of the restrictions on the body of a module type, instances of the type may be declared
by any number of concurrent users. Such a library may export procedures which operate only on the local
instances of modules and so may also be shared. This means that the whole library may be shared between
any number of concurrent users.

One of the most common uses of a library is to define a new type and the operations which are valid on that
type. Consider the definitions:

This implements a set data type with 64 possible members. There is an empty set and sets may have elements
added or taken away or tested for membership. The function is only an auxiliary function for the rest
of the implementation, not to be used by any other part of the program. Furthermore, the representation of
the set as an is not critical to the user.

It is often useful to be able to formalise the fact that some parts of an implementation are intended to be
internal so that they can be changed at a later date without disturbing user programs. To do this, it must be
possible to specify the part of the implementation which does not change. This is called the . In
the case of the set implementation, the export list consists of the data type, the procedures and

, and the function . The interface of an implementation is defined with an export definition.

occam

14 Libraries

module library

export list

14.1 Defining new types

DATA TYPE SET IS INT64 :
VAL SET empty IS 0(SET) :
SET FUNCTION mask (VAL INT n) IS 1(SET) << n :
PROC add (SET set, VAL INT n)
set := set \/ mask (n)

:
BOOL FUNCTION member (VAL SET set, VAL INT n) IS

(set /\ mask (n)) <> 0(SET) :
PROC delete (SET set, VAL INT n)

set := set /\ (BITNOT mask (n))
:

mask

INT64

SET add
delete member
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Consider the definition:

The construction is only legal if the body of the definition declares the names in the interface with suitable
definitions. The scope of the definition only has access to the names in the interface. Therefore, the interface
provides a complete description of the possible interactions between the user code and the implementation.
Because only the name of the data type is exported, the scope of the definition does not have access to
the structure of the type. This means that if the implementation of the type is changed, then it is only the
procedures and functions in the export list which need to be changed.

Consider the following, alternative implementation of sets:

The new implementation provides exactly the same functionality but trades the space efficiency of the first
implementation for speed.

Sometimes it can also be important to protect some of the internal state of an implementation from accidental
interference by user code. The encapsulation provided by the library construction has ensured that the value
of a set cannot be changed except by using the procedures and . In this particular case, it may be
safe to allow user code to alter the set in an unconstrained way. However, suppose that the implementation
needs to be extended to include a function which returns the number of elements in the set at a given time
and it is decided that this is to be done by maintaining a count of the number of elements. The second

14 Libraries

EXPORT
DATA TYPE NAME SET :
VAL SET empty :
PROC add (SET set, VAL INT n) :
BOOL FUNCTION member (VAL SET set, VAL INT n) :
PROC delete (SET set, VAL INT n) :

FROM
... set implementation

:

EXPORT
DATA TYPE NAME SET :
VAL SET empty :
PROC add (SET flags, VAL INT n) :
BOOL FUNCTION member (VAL SET flags, VAL INT n) :
PROC delete (SET flags, VAL INT n) :

FROM
DATA TYPE SET IS [64]BOOL :
VAL SET empty IS [ARRAY i = 0 FOR 64 : FALSE] :
PROC add (SET flags, VAL INT n)
flags[n] := TRUE

:
BOOL FUNCTION member (VAL SET flags, VAL INT n) IS flags[n] :
PROC delete (SET flags, VAL INT n)
flags[n] := FALSE

:
:

add delete
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implementation may be rewritten as:

This is all the change that is necessary in order to extend the implementation. Notice, however, that at the
end of each procedure, the value of is equal to the number of bits which are set in the array
so long as this relation is true at the start of each procedure. Had the user code had unrestrained access
to the internal structure of the implementation, then the user code would have to ensure that the relationship
between and was maintained each time was accessed. Furthermore, it is now crucial
to the implementation of the set that any access to the internal state maintains the relationship. Consider the
following process:

This process outputs the smallest number in the set or gives an indication that the set is empty. If the
relationship fails to hold on the fields of the set then this program will deadlock if the field becomes
negative or if it becomes positive when it should be .

14 Libraries

EXPORT
DATA TYPE NAME SET :
VAL SET empty :
PROC add (SET flc, VAL INT n) :
BOOL FUNCTION member (VAL SET flc, VAL INT n) :
PROC delete (SET flc, VAL INT n) :

FROM
DATA TYPE SET

RECORD
[64]BOOL flags :
INT count :

:
VAL SET empty IS [[ARRAY i = 0 FOR 64 : FALSE], 0] :
PROC add (SET flc, VAL INT n)
IF

flc[flags][n]
SKIP

NOT flc[flags][n]
flc[flags][n], flc[count] := TRUE, flc[count]+1

:
BOOL FUNCTION member (VAL SET flc, VAL INT n) IS flc[flags][n] :
PROC delete (SET flc, VAL INT n)

IF
flc[flags][n]

flc[flags][n], flc[count] := FALSE, flc[count]-1
NOT flc[flags][n]

SKIP
:
INT FUNCTION size (VAL SET flc) IS flc[count] :

:

count flags

count flags flags

IF
size(set) = 0

output ! empty
size(set) > 0

IF i = 0 FOR size(set)
member (set, i)

output ! next; i

count
0
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The syntax of an export specification is

The export mechanism allows exported definitions to be changed without affecting programs which use the
library. For this reason, procedures and functions which are exported from a library must be able to be shared
between concurrent processes and procedures must be side effect free. If this restriction were not in force,
then a user program would have to be changed if an exported procedure or function were changed so that it
could not be used in concurrent processes or if a procedure were changed so that it could not be used inside
a value process or claim process.

� �

� �

specification
export.item

specification

export.item proc.heading
function.heading

data.type name
name

name
name

name
name

name
name

name
name

name

14 Libraries

�

�

EXPORT

FROM

:

:
| :
| VAL :
| DATA TYPE :
| DATA TYPE NAME :
| MODULE TYPE :
| MODULE TYPE NAME :
| CHAN TYPE :
| CHAN TYPE NAME :
| PROTOCOL :
| PROTOCOL NAME :
| INTERFACE TYPE :
| INTERFACE TYPE NAME :
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Another use of libraries is to provide an interface to a service which is shared by a number of programs. In
this case, the library will have some internal state. Consider the following naı̈ve file system:

The state of the file system is manipulated by a server module which has two shared channels in its interface,
and . The library exports a single module type which is the file system user’s interface to the

file system. In order to use the file system, a user must first declare an instance of the module. This
module communicates with the file server on behalf of the user. The data structures which are associated
with each user are maintained by the module. The user does not communicate directly with the file store. By
the use of a module as the interface to the file server, the file pointers and other data which is important to
the correctness of the server are protected against accidental interference by user programs.

14 Libraries

14.2 Libraries with internal state

EXPORT
MODULE TYPE FILE (VAL INT id) :

FROM
[no.files]SHARED CHAN OF INT::[]BYTE read :
[no.files]SHARED CHAN OF INT::[]BYTE write :
INITIAL [no.files]INT lengths IS

[VAL i = 0 FOR no.files : 0] :
[no.files][max.len]BYTE files :
RESOURCE

PAR i = 0 FOR no.files
WHILE TRUE

ALT
GRANT read[i]

read[i] ! lengths[i]::files[i]
SKIP

GRANT write[i]
write[i] ? lengths[i]::files[i]
SKIP

:
MODULE TYPE FILE (VAL INT id)

INTERFACE
CALL read.char (RESULT BYTE c) :
CALL write.char (VAL BYTE c) :
CALL goto (VAL INT n) :

TO
[max.len]BYTE chars :
INT ptr.left, ptr.right :
INITIAL

... read file in and initialise pointers
:
FINAL

... write file out
:
SERVER

... service call channels
:

:
:

:

read write
FILE

DRAFT --- March 31, 1992



100 14 Libraries

DRAFT --- March 31, 1992



1

The previous chapters have shown how to define things and hide things in . This chapter shows how
to combine separate sections of program.

A is a library which has no free names. For instance, all the libraries in chapter 14
are separate compilation units. A separate compilation unit is only instantiated once. This means that if
a library contains internal data, then each user of the library shares the internal data; similarly, if a type is
defined within a library, then every user of the library gets the same type. The operating system environment
of a program binds library names to library text. Names which are defined in a library are imported into the
text of a program using an statement. Consider

This specifies that the names to the right of the keyword are to be imported from the library named
.

Names may be changed on import. Consider

The name defined in the library is changed to . The other names are unchanged. The
original names which are changed on import are not available in the scope of the import. In this example,
the name defined in the library is not available in the scope. The definition must be referred to by
the new name, ie . A definition of which was in scope before the import is still available in the
scope, for instance

In this example, the variable is assigned the value of .

Name changes happen in parallel. Consider:

In this example, the names and are swapped on import.

The syntax of imports is:

An import is not valid if the library does not export the names which are specified as imports. Imported names
may be exported. Types may not be renamed.

occam

15 Separate compilation and linking

� �

separate compilation unit

definition name import.item
import.item name

name name

�
�

IMPORT

FROM sets IMPORT SET, add, delete, member, empty :

IMPORT
sets

FROM sets IMPORT SET, add AS set.add, delete, member, empty :

add sets set.add

add sets
set.add add

REAL64 FUNCTION add (REAL32 x, y) IS (REAL64 x)+(REAL64 y) :
FROM sets IMPORT SET, add AS set.add, ... :
z := add (x,y)

z (REAL64 x)+(REAL64 y)

FROM sets IMPORT ..., add AS delete, delete AS add, ... :

add delete

FROM IMPORT , :

| AS
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This appendix describes the aspects of which specify the of an program.
Configuration associates the components of an program with a set of physical resources. During
configuration the processes which make up an program are distributed over the number of intercon-
nected processing devices available in the environment in which the program will execute. The processes
which execute on a single processor may be given a priority of execution, and the channels which intercon-
nect the distributed processes may be mapped onto the physical communication links between processing
devices. It is expected that the program is logically correct before configuration is used to optimise perfor-
mance. Configuration does not affect the logical behaviour of a program.

The component processes of a parallel may each be executed on an individual processor. This can be
specified by a which assigns a process for execution on a specified processor. Consider the
following example:

In this example, the processes , and , are placed on three individual processors
numbered , and . Each process is executed on the assigned processor, each process uses local memory,
and communicates with the other processes via channels.

The syntax for a placed par is:

The keywords are followed by zero or more processor allocations. A processor allocation is
the keyword , and an expression of type which serves to identify the processor on which the
associated process is to be placed. As for normal parallels (page 16), the placed parallel may be replicated.
An implementation may extend this syntax to identify the type of processor on which the process is placed.
All variables and timers used within the placement must be declared within it.

The component processes of a parallel (page 14) executing on a single processor may be assigned a priority
of execution. Consider the following example:

occam occam
occam

occam

� �

configuration

placed parallel

placedpar
placedpar

replicator
placedpar

expression
process

parallel placedpar

A Configuration

A.2.1 Priority parallel

A Configuration

A.1 Execution on multiple processors

A.2 Execution priority on a single processor

�

�

PLACED PAR
PROCESSOR 1

terminal (term.in, term.out)
PROCESSOR 2

editor (term.in, term.out, files.in, files.out)
PROCESSOR 3

network (files.in, files.out)

terminal editor network
1 2 3

PLACED PAR

| PLACED PAR

| PROCESSOR

PLACED PAR
PROCESSOR INT

PRI PAR
terminal (term.in, term.out)
editor (term.in, term.out)
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This process will always execute the process in preference to the process . Each process
executes at a separate priority, the first process is the highest priority, the last is the lowest. Lower priority
processes may only continue when all higher priority processes are unable to. The process may also be
replicated, as shown in the following example:

The process with the highest index is executed at the lowest priority.

The syntax for priority execution is:

The keywords are followed by zero or more processes at an indentation of two spaces. As for
parallels detailed in the main body of the manual (page 16), the process may be replicated.

The inputs which guard alternatives in an alternation (page 18) may also be given a selection priority. Consider
the following example:

This priority alternation will input values from the channel in preference to inputs from the channel
. If both channels and become ready then will be selected as it has the

highest priority.

Consider the following example:

This process inputs if an input from is ready, and performs the process , otherwise if the
boolean is true the process is performed.

The syntax for priority alternation is:

The keywords are followed by zero or more processes at an indentation of two spaces. As for
alternations detailed earlier in the manual (page 20) the alternative may be replicated.

This section explains how a , , or may be placed at an absolute location in
memory. presents a consistent view of a processor’s memory map. Memory is considered to be anoccam

� �

� �

parallel
process

replicator
process

alternation
alternative

replicator
alternative

variable channel timer array

A Configuration

A.2.2 Priority alternation

A.3 Allocation to memory

�

�

terminal editor

PRI PAR i = 0 FOR 8
users (term.in[i], term.out[i])

PRI PAR

| PRI PAR

PRI PAR

PRI ALT
disk ? block

d ()
keyboard ? char

k ()

disk
keyboard disk keyboard disk

PRI ALT
stream ? data

P ()
busy & SKIP

Q ()

data stream P
busy Q

PRI ALT

| PRI ALT

PRI ALT
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array of type , each address in memory is considered a subscript into that array. Consider the following
example:

This allocation places at the location specified by . Here are some further examples:

The syntax for allocation is:

An allocation begins with the keyword , followed by the name of the variable, channel, timer or array
to be placed. This in turn is followed by an expression of type which indicates the absolute location in
memory.

An allocation must allocate a channel, timer or variable to a compatible location. That is, a timer should be
placed at a location which acts as a timer, and a channel should be placed at the location which implements
a channel. Also, arrays must not be placed so that the components of an array overlap other allocations.

process allocation
process

allocation name expression

A Configuration

�

�

INT

PLACE term.in AT link1in :

term.in link1in

[80]INT buffer :
PLACE buffer AT #0400 :

[5]REAL32 points :
PLACE points AT #0800 :

CHAN OF INT term.out :
PLACE term.out AT 3 :

:

PLACE AT :

PLACE
INT
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This appendix describes how memory mapped devices may be addressed in . A process may
communicate with external devices which are mapped into the processor’s memory map, using a special
input or output in a way similar to communication on channels. A special type declares a which must
then be placed using an allocation (page 106). Consider the following example:

This example declares a port which is then allocated to a location in memory. The following
sequence includes an input which reads the value of the port, and also an output which writes a value
to the port location. Consider the following examples of port declarations:

one port of type
eight ports of byte type

A port declaration is similar to a channel declaration, and must obey the same rules of scope (page 32). That
is, a port may not be used for input or output in more than one component process in a parallel.

The syntax for ports is:

A port is declared in just the same way as a channel. Instead of a defined (page 46) the port
definition specifies a data type as the type for communication.

occam

� �

port

port.type data.type
expression port.type

declaration port.type name
port name

port expression
port base count
port base
port count

input port variable
output port expression

protocol

B Ports

B Ports

�

�
�

�
�

PORT OF INT16 status :
PLACE status AT uart.status :
SEQ

...
status ? state
status ! reset
...

uart.status
reset

PORT OF [8]INT uart : [8]INT
[8]PORT OF BYTE transducer :

PORT OF
| [ ]

, :

| [ ]
| [ FROM FOR ]
| [ FROM ]
| [ FOR ]

?
!
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This appendix describes retyping conversion. A retyping conversion changes the data type of a bit pattern,
from one data type to another. There are two kinds of retyping conversions: conversions which convert a
variable, and conversions which convert the value of an expression. The length ( the number of bits) of the
new type specified must be the same as the length of the bit pattern. A retyping conversion has no effect
upon the bit pattern, and differs from (page 73) where the value of one type is represented
as an equivalent value of another type.

The retyping conversion of a value may be used to specify a name for a particular bit pattern described by a
hexadecimal constant. Consider the following example:

The advantage of the above conversion is that it has been possible to specify the exact representation of a
value otherwise difficult to represent. Consider also the following example:

The bit pattern for the real representation of the value 42 0 is mapped to a name of type . As
for the (page 36) of expressions, no variable used in the expression may be assigned to by input
or assignment within the scope of the conversion.

The retyping conversion may also specify a name of a new type for an existing variable of the same length.
For example:

In this example, , a variable of type , is converted into an array of 8 bytes. Each byte is
accessible via subscript, any change to the bit pattern as a result of an assignment or input will directly affect
the value of the original variable.

The same rules apply to names specified by retyping conversions as apply to abbreviations. That is, no
variable used in a subscript or count expression which selects a component or segment of an array may be
assigned to by an input or assignment within the (page 32, the region of a program where a name is
valid) of the conversion. The variable converted may not be be used within the scope of the conversion. See
the rules which affect abbreviations on page 116.

The syntax for retyping conversion is:

The retyping conversion of a value begins with the keyword , a specifier appears to the right of ,
followed by the name specified, and the keyword , the expression appears to the right of the
keyword . The line on which the conversion occurs may not be broken after the keyword ,
but may be broken at some valid point in the expression.




ie

type conversion

abbreviation

scope

definition specifier name variable
specifier name expression

C Mapping types

C Mapping types

�

VAL REAL32 root.NaN RETYPES #7F840000(INT32) :

VAL INT64 pattern RETYPES 42.0(REAL64) :

pattern INT

INT64 condition :
...

[8]BYTE state RETYPES condition :
...

condition INT64

RETYPES :
| VAL RETYPES :

VAL VAL
RETYPES

RETYPES RETYPES
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This section explains how to control the layout of a record. If the layout of a record is not specified, then an
implementation is free to place the fields in any order and at any offset from the base of the record. Consider
the following record type:

In this record type, all of the fields are placed at a specified offset from the base of the record. The offset is
measured in bytes. In this example, the field starts at the beginning of the record and the field
starts at the beginning of the first byte.

The syntax of record layout is:

The offset must be given by a constant expression. Negative offsets are not allowed. Fields may not overlap.

Some implementations may insist that data types are only placed at appropriate boundaries. For instance,
s may only be allowed to be placed at offsets which are a multiple of the word length.

Sometimes it is useful to be able to determine the value of the tag of a union. The expression ,
where is of a numbered union type, gives an representation of the tag. This does not imply that the
machine representation of the tag must be an . The value of is specified in a numbered union
type definition as follows:

If is applied to a variable which happens to belong to the second variant, then the value is produced.
The integers specified for each variant must be different. Integers must be specified for all branches of a
numbered union.

The tag of a numbered union may be used to index arrays, .

The syntax of numbered unions is:

The tag expression must be constant.

This section explains how to control the width of a type. If no width is specified for a type, then the imple-
mentation is free to choose a width. The width of a data type defines the amount of store which is required

� �

� � � �

structured.type
data.type name expression

&c

structured.type
data.type 1 expression name

D Concrete representation of data types

D Concrete representation of data types

D.1 Record layout

D.2 Numbered unions

D.3 Type width

�

�

DATA TYPE LINK
RECORD

PLACE BYTE data OFFSET 0 :
PLACE BOOL control OFFSET 1 :

:

data control

RECORD
PLACE OFFSET :

INT

TAG (x)
x INT

INT TAG (x)

DATA TYPE PARAM
UNION

INT32 (0) word:
INT64 (1) long.word, (2) extra.word:

:

TAG 1

UNION
, ( ) :
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for a value of that type. Consider the following type:

This specifies that the width of the data type is bytes.

The syntax of width specifications is:

The width expression must be constant. The width must be large enough to hold values of the type.

Some implementations may insist that the width of a type is an appropriate size for the structure of the type.
For instance, consider the type:

An implementation may insist that the width of this record be a multiple of bytes so that the field may
be aligned on a word boundary. In this case, the value of must be a multiple of .

Arrays are always aligned according to the width of the component type. For instance, if the type
is given the width by the implementation, then an array with components of type will have width

. Furthermore, the address of each component of the array will be one byte away from the address of its
neighbours.

The operator returns the width of a type in bytes. For instance, will typically
return . Because components of arrays are aligned according to the width of the component type, the
following equation is always true:

=

The syntax of is:

�

definition expression name data.type
expression name

structured.type

expression data.type

D Concrete representation of data types

D.4 Array alignment

D.5

�

�

WIDTH 2 DATA TYPE LINK
RECORD

PLACE BYTE data OFFSET 0 :
PLACE BOOL control OFFSET 1 :

:

LINK 2

WIDTH DATA TYPE IS :
| WIDTH DATA TYPE

:

WIDTH n DATA TYPE FIFTEEN
RECORD

REAL64 a :
REAL32 b :
[3]BYTE c :

:

16 a
n 16

BOOL
1 n BOOL

n

WIDTHOF WIDTHOF (BYTE)
1

WIDTHOF ([n]TY) n WIDTHOF (TY)

WIDTHOF

WIDTHOF ( )

WIDTHOF
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Earlier sections of this manual have discussed rounding and the possibility of rounding errors. These occur
because the types and only contain a subset of the real numbers. This is because it is
not possible to store all the possible real values in the format for real numbers available on a machine.
Rounding takes a value, which is considered infinitely precise and, if necessary, modifies it to a value which
is representable by the type. By default, values are rounded to the nearest value of the type, if the nearest
greater value and the nearest smaller value are equally near, then the result which has the least significant
bit zero is chosen. Other modes of rounding are selectable using the library routine, these modes
round values toward plus infinity, minus infinity or toward zero. A value rounded to plus infinity is the value
nearest to and not less than the value to be represented, a value rounded to minus infinity is the value nearest
to and not greater than the value to be represented, a value rounded toward zero is the value no greater in
magnitude than the value to be represented.

A value is rounded to the precision of its type. A value of type is equivalent to IEEE single precision,
and a value of type is equivalent to IEEE double precision.

Values in the and formats are stored in the following formats

where is the sign bit, is the exponent and is the fraction. For the type is 1 bit wide,
is 8 bits wide and is 23 bits wide. For the type is 1 bit wide, is 11 bits wide and is
52 bits wide. Whenever the field is not 0 the actual fraction of the number represented has an “implied”
1 placed on the left of the value.

The value of finite s is given by

= ( 1) 1 2 if = 0;
( 1) 0 2 if = 0;

where is 127 for and 1023 for .

In the type the value 1.0 is represented by an unset sign bit , an equal to 127, and a
of 0. The next larger number has an unset sign bit, of 127 and a of 1. This has the value
1 000000119209 . . .. Hence any number lying between 1.0 and this value cannot be exactly represented in
the type – such values have to be to one of these values. Now consider the assignment:

The previous sections show that the result of this operation cannot be exactly represented by the type
. The exact result has to be rounded to “fit” the type. Here the exact result will be rounded to the

nearest value 1 000000119209 . . ..

Other rounding modes – Round to Zero (truncation), Round to Plus infinity and Round to Minus infinity – can
be obtained through the use of the function. Because of the presence of rounding, programmers
should be wary of using equality tests on real types. Consider the following example:

never terminates as rounding errors cause and to differ.

The nearest unique value of a conversion of a literal of type can be determined from the first 9
significant digits, and from the first 17 significant digits of a literal of type . Complete details of the
IEEE Standard for Binary Floating-Point Arithmetic can be found in the published ANSI/IEEE Std 754-1985

� �������������� ���������

 ����� � � �����

 ����� � � �����







� � � �
� � �

s exp frac

s exp frac s exp
frac s exp frac

exp
frac

val s exp frac

bias

s exp frac
exp frac

rounded

E Rounding errors

E Rounding errors

REAL32 REAL64

IEEEOP

REAL32
REAL64

REAL32 REAL64

REAL32
REAL64

REAL

REAL32 REAL64

REAL32

REAL32

X := 1.0(REAL32) + 1.0E-7(REAL32)

REAL32
REAL32

IEEEOP

SEQ
X := 1.0(REAL32)
WHILE X <> 1.000001(REAL32)

X := X + 0.0000005(REAL32)

1.000001 1.0 + 0.0000005 + 0.0000005

REAL32
REAL64
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standard.

E Rounding errors
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In many expressions the explicit type decoration of a literal does not aid the clarity of an expression. In
these circumstances, the decoration may be omitted. Within a single expression, a type decoration may be
omitted when there is only one decoration which would type check correctly. For instance, the expression

is valid because the only decoration of which type checks correctly is .

There are three other sorts of contextual information which may be used to determine the type of an expres-
sion:

expressions in process constructs where only one data type is permitted are assumed to have that
type. For instance, array size and subscript expressions are assumed to be of type . Guards
of conditional processes and loops, and boolean guards of alternatives are assumed to be of type

.

in assignment and output the types of expressions are inferred from the types of the variables or the
protocol of the channel.

in abbreviations and initialising declarations, the type of the expression is inferred from the type of the
abbreviation or declaration. This rule also applies to the actual parameters of functions, procedures
and calls.

For instance, the following processes are valid:

�

�

�

F Omitting type decorations from literals

F Omitting type decorations from literals

1(INT32)+10 10 (INT32)

INT

BOOL

CHAN OF INT32 c:
c ! 4

REAL32 x:
x := 2.0

VAL BYTE ESC IS 13:
SKIP
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In some situations it may be necessary to specify a channel protocol where the format of the protocol for some
reason cannot be defined. Such situations are rare, and are likely to occur only when communicating with
an external device such as a printer, terminal or other device controller. Such a device can be considered an

where the protocol for communication with that process is dictated by the nature of the device.
A special protocol exists which allows the input and output of any format without checking. The protocol is
specified by the keyword , as illustrated in the following example:

A channel with this protocol can only input or output data values. The effect of an output on a channel with
the protocol is that the value is mapped down into its constituent bytes, and output as an array of bytes.
An input on a channel with the protocol inputs the array of bytes and converts (by retyping conversion,
see page 109) the value to the type of the receiving variable.

alien process

G Anarchic protocol

G Anarchic protocol

ANY

CHAN OF ANY printer :

ANY
ANY
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This appendix summarises the rules which govern the use of variables, channels, timers, ports (page 108)
and arrays in parallel constructions, and the rules which govern abbreviations and parameters. These rules
are discussed in context throughout the manual, and are gathered here as a check list.

The purpose of these rules is to prevent parallel processes from sharing variables, to ensure that each
channel connects only two parallel processes, and to ensure that the connection of channels is unidirectional.
The rules allow most of the checking for valid usage to be performed by a compiler, thus reducing runtime
overheads.

A channel implements a point-to-point communication between two parallel processes. The name
of a channel may only be used in one component of a parallel for input, and in one other component
of the parallel for output.

A timer may be used for input by any number of components of a parallel.

A variable or component of an array of variables, which is assigned to in a component of a parallel,
may not appear in any other component of the parallel.

An array may be used in more than one component of a parallel, if and only if the subscripts used
to select components of the array can be determined at compile time. Otherwise the array may only
be used in one component of the parallel.

Several abbreviations can decompose an array into non-overlapping disjoint parts; components of
these parts may then be selected using variable subscripts.

A port may be used in only one component of a parallel.

For the purposes of these rules, a or process must be considered to be a parallel
component.

Instances of a module type may occur in parallel components of the same process and, therefore, the usage
rules for variables, channels, timers and ports in the body of a module type definition prevent the usage of
variables, unshared channels or ports which are declared outside the body of the module type definition.

The purpose of these rules is to ensure that each name identifies a unique object, and that the substitution
semantics are maintained.

All reference to an abbreviated element must be via the abbreviation only, with the exception that ar-
ray elements may be further abbreviated providing the later abbreviations do not include components
of the array already abbreviated.

Variables used in an abbreviated expression may not be assigned to by input or assignment within
the scope of the abbreviation.

The abbreviated expression must be valid, in range and not subject to overflow, and all subscript
expressions must be in range.

All subscript expressions used in an abbreviation must be valid, not subject to overflow and in
range.

�

�

�

�

�

�

�

�

�

�

ie

ie

H Usage rules check list

H Usage rules check list

H.1 Usage in parallel

H.2 The rules for abbreviations

RESOURCE SERVER
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All reference to a variable must be via the new name only, with the exception that array
variables may be further retyped providing the later retyping conversions do not include components
of the array already retyped.

Variables used in a retyping conversion may not be assigned to by input or assignment within the
scope of the new name.

The rules for procedure parameters follow from those for abbreviations, but in addition a channel
parameter or free channel may not be used for both input and output in a procedure.

The rules for procedures which are exported from libraries are constructed so that exported pro-
cedures may be called by parallel components of the same process and so follow from the rules
for parallel usage. This means that exported procedures may only assign to variables which are
declared locally or passed in as parameters. Further, exported procedures may only input from or
output to channels which are shared, declared locally or passed in as parameters.

Functions may only have value parameters.

Only variables declared within the scope of a value process may be assigned to. Free names may
be used in expressions.

A value process may not contain inputs or outputs on channels which are declared outside the
process.

The body of a procedure used within a function must also obey these rules.

�

�

�

�

�

�

�

�

retyped

H Usage rules check list

H.3 The rules for procedures

H.4 The rules for value processes and functions
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Processes which become invalid during program execution may behave in one of three ways, determined by
a compiler option. An invalid process may behave in one of these ways: the process may stop, the system
may halt, or the behaviour of the process may be undefined.

The three modes of existence in detail are:

In this mode, processes which become invalid behave like the primitive process ,
thus allowing other processes to continue. The invalid process stops, and in particular does not make
erroneous outputs to other processes. Other processes continue until they become dependent upon
data from the stopped process. In this mode it is therefore possible to write communications which
will timeout to warn of a stopped process, and to construct a system with redundancy in which a
number of processes performing the same task may be used to enable the system to continue after
one of the processes has failed.

In this mode an invalid process may cause the whole system to halt, and is useful for
the development of programs, particularly when debugging concurrent systems. In this mode the
primitive process will also cause the whole system to halt.

In this mode, an invalid process may have an arbitrary effect, and is only useful for opti-
mising programs known to be correct!

I Invalid processes

Stop process mode

Halt system mode

Undefined mode

I Invalid processes

STOP

STOP
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� �

� �

� �

assignment variable.list expression.list

expression.list name expression
expression

value.process

variable.list variable

replicator name base count

base expression

count expression

sequence
process
replicator

process

conditional
choice

replicator
choice

choice guarded.choice
conditional
specification
choice

guarded.choice boolean
process

J Syntax summary

J.1.1 Assignment

J.1.2 Replicator

J.1.3 Process constructions

J Syntax summary

J.1 Collected syntax

�

�

�

�

�

�

�

�

�

�

:=

( , )
| ,
| (

)

,

= FOR

SEQ

| SEQ

IF

| IF

|
|
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� �

� �

� �

selection selector
option

selector expression

option case.expression
process

process
specification
option

case.expression expression

loop boolean
process

parallel
process
replicator

process

alternation
alternative
replicator

alternative

alternative guarded.alternative
alternation
channel

variant
boolean channel

variant
specification
alternative

guarded.alternative guard
process

variant specification
variant
tagged.list

process
specification
variant

J Syntax summary

�

�

�

�

�

�

�

�

�

�

CASE

,

| ELSE

|

WHILE

PAR

| PAR

ALT

| ALT

|
| ? CASE

| & ? CASE

|

|

|
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� �

� �

� �

guard input
boolean input
boolean

call.channel call.formal
process

boolean call.channel call.formal
process

channel
process

boolean channel
process

discrimination expression
discriminant

discriminant name
process

process

specification
process

specification declaration
abbreviation
definition

export.item

specification

data.type

expression data.type
name

J Syntax summary

J.1.4 Data types

�

�

�

�

�

�

| &
| & SKIP
| ACCEPT ( , )

| & ACCEPT ( , )

| GRANT

| & GRANT

CASETAG

SKIP
| STOP
|

|
|
| EXPORT

FROM

:

BOOL
| BYTE
| INT
| INT16
| INT32
| INT64
| REAL32
| REAL64
| NONE
| [ ]
|
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� �

definition name data.type
name

structured.type

structured.type
data.type field.name

data.type name

field.name name

specifier data.type
specifier
expression specifier

abbreviation name expression
specifier name expression

variable variable name
variable base count
variable count
variable base

variable expression

declaration data.type name
data.type name expression

abbreviation name variable
specifier name variable

name variable
specifier name variable

channel.type protocol
name

expression channel.type

J Syntax summary

J.1.5 Values

J.1.6 Variables

J.1.7 Channels

�

�

�

�

�

�

�

�

�

DATA TYPE IS :
| DATA TYPE

:

RECORD
, :

| UNION
, :

| []
| [ ]

VAL IS :
| VAL IS :

[ ]
| [ FROM FOR ]
| [ FOR ]
| [ FROM ]
| [ ]

, :
| INITIAL IS :

IS :
| IS :
| RESULT IS :
| RESULT IS :

CHAN OF
|
| [ ]
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� �
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� �

� �

channel name
channel expression

channel base count
channel base
channel count

channel
replicator channel

module name

declaration channel.type name

abbreviation name channel
specifier name channel

input channel input.item
channel tagged.list
channel

variant

input.item variable
variable variable

tagged.list tag
tag input.item

variant specification
variant
tagged.list

process
specification
variant

output channel output.item
channel tag
channel tag output.item
port expression

output.item expression
expression expression

J Syntax summary

�

�

�

�

�

�

�

�

�

| [ ]
| [ FROM FOR ]
| [ FROM ]
| [ FOR ]
| [ , ]
| [CHAN : ]
| [ ]

, :

IS :
| IS :

? ;
| ? CASE
| ? CASE

| ::

| ; ;

|

|

! ;
| !
| ! ; ;
| !

| ::
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definition name

declaration

name

declaration

name

tagged.protocol

name simple.protocol
name sequential.protocol

protocol name
simple.protocol

simple.protocol data.type
data.type data.type

sequential.protocol simple.protocol

tagged.protocol tag
tag sequential.protocol

tag name

specifier channel.type
specifier

expression specifier

call.channel name
call.channel expression

call.channel
replicator call.channel

call.channel base count
call.channel base
call.channel count

module name

J Syntax summary

J.1.8 Call channels

�

�

�

�

�

�

�

�

CHAN TYPE
RECORD

:
| CHAN TYPE

RECORD

:
| PROTOCOL

CASE

:
| PROTOCOL IS :
| PROTOCOL IS :

|

| ::[]

;

| ;

| []
| [ ]

| [ ]
| [ , ]
| [CALL : ]
| [ FROM FOR ]
| [ FROM ]
| [ FOR ]
| [ ]
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� �

�

� �

declaration call.type name call.formal

abbreviation name call.channel
specifier call.header call.channel

call.actual expression
variable

call.formal data.type name
data.type name

data.type name
data.type name

call.type
expression call.type

specifier call.type
specifier

expression specifier

declaration shared.call name formal
shared.channels name

shared.call
expression shared.call

shared.channels name
expression shared.channels

timer name
timer expression

timer base count
timer base
timer count

declaration timer.type name

J Syntax summary

J.1.9 Sharing

J.1.10 Timers

�

�

�

�

�

�

�

�

�

�

�

( , ) :

IS :
| IS :

|

,
| VAL ,
| INITIAL ,
| RESULT ,

CALL
| [ ]

| []
| [ ]

( , ) :
| :

SHARED CALL
| [ ]

SHARED
| [ ]

| [ ]
| [ FROM FOR ]
| [ FROM ]
| [ FOR ]

, :
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abbreviation name timer
specifier name timer

timer.type expression timer.type

timer.input timer variable

delayed.input timer expression

specifier timer.type
specifier

expression specifier

boolean expression

byte character

expression operand
monadic.operator operand
operand dyadic.operator operand

data.type
data.type

expression name
conversion

data.type

operand variable
literal
table

expression
value.process

name expression

valof specification
valof

J Syntax summary

J.1.11 Expressions

�

�

�

�

�

�

�

�

�

�

IS :
| IS :

[ ]
| TIMER

?

? AFTER

| []
| [ ]

’ ’

|
|
| MOSTPOS
| MOSTNEG
| [ ]
|
| WIDTHOF ( )

|
|
| ( )
| (

)
| ( , )
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literal integer
byte
integer decoration
byte decoration
real decoration
string

expression
expression decoration
replicator expression

name expression decoration

table table subscript
expression

table subscript count
table subscript
table count

conversion data.type operand
data.type operand
data.type operand

digit

exponent digits digits

hex.digit digit

integer digits hex.digits

real digits digits digits digits exponent

decoration data.type

definition name formal
process

J Syntax summary

J.1.12 Procedures

�

�

�

�

�

�

�

�

�

�

|
| ( )
| ( )
| ( )
|
| TRUE | FALSE
| [](NONE)
| [ , ]
| [ , ]( )
| [VAL : ]
| ( :- ) ( )

[ ]
| [ , ]
| [ FROM FOR ]
| [ FROM ]
| [ FOR ]

| ROUND
| TRUNC

0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

+ | -

| A | B | C | D | E | F

| #

. | . E

PROC ( , )

:
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� �

instance name actual

actual variable
channel
call.channel
timer
expression
module

formal specifier name
specifier name

specifier name
data.type name

interface.type

definition data.type name formal expression.list
data.type name formal

function.body

function.body value.process

value.process
process

expression.list
specification
value.process

declaration
process

process

process

alternative

J Syntax summary

J.1.13 Functions

J.1.14 Process declarations

�

�

�

�

�

�

�

( , )

|
|
|
|
|

,
| VAL ,
| RESULT ,
| INITIAL ,
| MODULE

, FUNCTION ( , ) IS :
| , FUNCTION ( , )

:

VALOF

RESULT
|

INITIAL

:
| FINAL

:
| RESOURCE

:
| SERVER

:
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� �
�

� �

� �

� �
� �

� �

� �

� �

� �

module name
module expression

name actual
module

module base count
module base
module count

replicator module
interface.specifier module

declaration
declaration

specification

abbreviation module.specifier name module

interface.type name

module.specifier
interface.type

definition name formal
declarations

name
declaration

specification
export.item

specification

definition name import.item

J Syntax summary

J.1.15 Modules

J.1.16 Libraries

�

�

�

�

�

�

�

�

| [ ]
| INSTANCE ( , )
| [ , ]
| [ FROM FOR ]
| [ FROM ]
| [ FOR ]
| [INSTANCE : ]
| CONVERT( )

INTERFACE

TO

:

IS :

MODULE
| MODULE

MODULE TYPE ( , )

:
| INTERFACE TYPE

:

EXPORT

FROM

:

FROM IMPORT , :
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� �

� �

� �

export.item proc.heading
function.heading

data.type name
name

name
name

name
name

name
name

name
name

name

import.item name
name name

allocation name expression

alternation
alternative

replicator
alternative

parallel
process

replicator
process

placedpar

placedpar
placedpar

replicator
placedpar

expression
process

port.type data.type
expression port.type

port name
port expression

port base count
port base
port count

J Syntax summary

J.1.17 Configuration

�

�

�

�

�

�

�

�

:
| :
| VAL :
| DATA TYPE :
| DATA TYPE NAME :
| MODULE TYPE :
| MODULE TYPE NAME :
| CHAN TYPE :
| CHAN TYPE NAME :
| PROTOCOL :
| PROTOCOL NAME :
| INTERFACE TYPE :
| INTERFACE TYPE NAME :

| AS

PLACE AT :

PRI ALT

| PRI ALT

PRI PAR

| PRI PAR

|

PLACED PAR

| PLACED PAR

| PROCESSOR

PORT OF
| [ ]

| [ ]
| [ FROM FOR ]
| [ FROM ]
| [ FOR ]
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� �
declaration port.type name

definition specifier name variable
specifier name expression

expression name data.type
expression name

structured.type

J Syntax summary

�

�

, :

RETYPES :
| VAL RETYPES :
| WIDTH DATA TYPE IS :
| WIDTH DATA TYPE

:
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The following tables present the syntax of , with each syntactic object placed in alphabetical order.occam

� �

� �

� �

� �

abbreviation name variable
specifier name variable

name expression
specifier name expression

name variable
specifier name variable

name channel
specifier name channel
name call.channel
specifier call.header call.channel
name timer
specifier name timer
module.specifier name module

actual variable
channel
call.channel
timer
expression
module

allocation name expression

alternation
alternative
replicator

alternative

alternative
replicator

alternative

alternative guarded.alternative
alternation
channel

variant
boolean channel

variant
specification
alternative

assignment variable.list expression.list

J Syntax summary

J.2 Ordered syntax

�

�

�

�

�

�

IS :
| IS :
| VAL IS :
| VAL IS :
| RESULT IS :
| RESULT IS :
| IS :
| IS :
| IS :
| IS :
| IS :
| IS :
| IS :

|
|
|
|
|

PLACE AT :

ALT

| ALT

| PRI ALT

| PRI ALT

|
| ? CASE

| & ? CASE

|

:=
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� �

� �
� �

� �
� �

� �

� �

base expression

boolean expression

byte character

call.actual expression
variable

call.channel name
call.channel expression

call.channel
replicator call.channel

call.channel base count
call.channel base
call.channel count

module name

call.formal data.type name
data.type name

data.type name
data.type name

call.type
expression call.type

case.expression expression

case.input channel
variant

channel.type protocol
name

expression channel.type

channel name
channel expression

channel base count
channel base
channel count

channel
replicator channel

module name

J Syntax summary

�

�

�

�

�

�

�

�

�

�

�

’ ’

|

| [ ]
| [ , ]
| [CALL : ]
| [ FROM FOR ]
| [ FROM ]
| [ FOR ]
| [ ]

,
| VAL ,
| INITIAL ,
| RESULT ,

CALL
| [ ]

? CASE

CHAN OF
|
| [ ]

| [ ]
| [ FROM FOR ]
| [ FROM ]
| [ FOR ]
| [ , ]
| [CHAN : ]
| [ ]
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� �

choice guarded.choice
conditional
specification
choice

conditional
choice

replicator
choice

conversion data.type operand
data.type operand
data.type operand

count expression

data.type

expression data.type
name

J Syntax summary

�

�

�

�

�

|
|

IF

| IF

| ROUND
| TRUNC

BOOL
| BYTE
| INT
| INT16
| INT32
| INT64
| REAL32
| REAL64
| NONE
| [ ]
|
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� �

� �
� �

� �
�

� �

� �

� �

� �

declaration data.type name
data.type name expression

channel.type name
call.type name call.formal
timer.type name
shared.call name formal
shared.channels name
port.type name

process

process

process

alternative

declaration

specification

decoration data.type

J Syntax summary

�

�

, :
| INITIAL IS :
| , :
| ( , ) :
| , :
| ( , ) :
| :
| , :
| INITIAL

:
| FINAL

:
| RESOURCE

:
| SERVER

:
| INTERFACE

TO

:
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� �

� �

� �

� �

� � � �
� � � �

� �
� �

� �

� �

definition name data.type
name

structured.type

name

declaration

name

declaration

name

tagged.protocol

name simple.protocol
name sequential.protocol

name formal
process

data.type name formal expression.list
data.type name formal

function.body

name formal
declarations

name
declaration

name import.item
specifier name variable

specifier name expression
expression name data.type
expression name

structured.type

delayed.input timer expression

digit

discriminant name
process

exponent digits digits

J Syntax summary

�

�

�

�

�

DATA TYPE IS :
| DATA TYPE

:
| CHAN TYPE

RECORD

:
| CHAN TYPE

RECORD

:
| PROTOCOL

CASE

:
| PROTOCOL IS :
| PROTOCOL IS :
| PROC ( , )

:
| , FUNCTION ( , ) IS :
| , FUNCTION ( , )

:
| MODULE TYPE ( , )

:
| INTERFACE TYPE

:
| FROM IMPORT , :
| RETYPES :
| VAL RETYPES :
| WIDTH DATA TYPE IS :
| WIDTH DATA TYPE

:

? AFTER

0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

+ | -
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� �
� �

� �
� �

� �
� �

export.item proc.heading
function.heading

data.type name
name

name
name

name
name

name
name

name
name

name

expression.list name expression
expression

value.process

expression operand
monadic.operator operand
operand dyadic.operator operand

data.type
data.type

expression name
conversion

data.type

field.name name

formal specifier name
specifier name

specifier name
data.type name

interface.type

function.body value.process

guarded.alternative guard
process

guarded.choice boolean
process

J Syntax summary

�

�

�

�

�

�

�

�

:
| :
| VAL :
| DATA TYPE :
| DATA TYPE NAME :
| MODULE TYPE :
| MODULE TYPE NAME :
| CHAN TYPE :
| CHAN TYPE NAME :
| PROTOCOL :
| PROTOCOL NAME :
| INTERFACE TYPE :
| INTERFACE TYPE NAME :

( , )
| ,
| (

)

|
|
| MOSTPOS
| MOSTNEG
| [ ]
|
| WIDTHOF ( )

,
| VAL ,
| RESULT ,
| INITIAL ,
| MODULE
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� �

� �

� �

� �

� �
� �

guard input
boolean input
boolean

call.channel call.formal
process

boolean call.channel call.formal
process

channel
process

boolean channel
process

hex.digit digit

import.item name
name name

input.item variable
variable variable

input channel input.item
channel tagged.list
timer.input
delayed.input
port variable

instance name actual

integer digits hex.digits

interface.type name

literal integer
byte
integer decoration
byte decoration
real decoration
string

expression
expression decoration
replicator expression

name expression decoration

J Syntax summary

�

�

�

�

�

�

�

�

�

| &
| & SKIP
| ACCEPT ( , )

| & ACCEPT ( , )

| GRANT

| & GRANT

| A | B | C | D | E | F

| AS

| ::

? ;
| ? CASE
|
|
| ?

( , )

| #

|
| ( )
| ( )
| ( )
|
| TRUE | FALSE
| [](NONE)
| [ , ]
| [ , ]( )
| [VAL : ]
| ( :- ) ( )
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� �
�

� �

� �

� �

� �

� �

� �

loop boolean
process

module.specifier
interface.type

module name
module expression

name actual
module

module base count
module base
module count

replicator module
interface.specifier module

operand variable
literal
table

expression
value.process

name expression

option case.expression
process

process
specification
option

output.item expression
expression expression

output channel output.item
channel tag
channel tag output.item
port expression

parallel
process
replicator

process

process
replicator

process
placedpar

J Syntax summary

�

�

�

�

�

�

�

�

WHILE

MODULE
| MODULE

| [ ]
| INSTANCE ( , )
| [ , ]
| [ FROM FOR ]
| [ FROM ]
| [ FOR ]
| [INSTANCE : ]
| CONVERT( )

|
|
| ( )
| (

)
| ( , )

,

| ELSE

|

| ::

! ;
| !
| ! ; ;
| !

PAR

| PAR

| PRI PAR

| PRI PAR

|
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� �

� �

� �

� �

placedpar
placedpar

replicator
placedpar

expression
process

port.type data.type
expression port.type

port name
port expression

port base count
port base
port count

process expression
discriminant

allocation
process
assignment
input
output

instance
sequence
conditional
selection
loop
parallel
alternation
specification
process

call.channel call.formal
process

channel
process

channel
process

call.channel call.actual
case.input

protocol name
simple.protocol

real digits digits digits digits exponent

J Syntax summary

�

�

�

�

�

�

PLACED PAR

| PLACED PAR

| PROCESSOR

PORT OF
| [ ]

| [ ]
| [ FROM FOR ]
| [ FROM ]
| [ FOR ]

CASETAG

| :

|
|
|
| SKIP
| STOP
|
|
|
|
|
|
|
|

| ACCEPT ( , )

| CLAIM

| GRANT

| ( , )
|

|

. | . E
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� �

� �

� �

� �

� �

replicator name base count

selection selector
option

selector expression

sequence
process
replicator

process

sequential.protocol simple.protocol

shared.call
expression shared.call

shared.channels name
expression shared.channels

simple.protocol data.type
data.type data.type

specification declaration
abbreviation
definition

export.item

specification

specifier call.type
channel.type
data.type
timer.type

specifier
expression specifier

J Syntax summary

�

�

�

�

�

�

�

�

�

�

= FOR

CASE

SEQ

| SEQ

;

SHARED CALL
| [ ]

SHARED
| [ ]

| ::[]

|
|
| EXPORT

FROM

:

|
|
|
| []
| [ ]
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� � � �

� � � �

� �

� � � �

� �

� �

structured.type
data.type field.name

data.type name

data.type name expression

data.type 1 expression name

table table subscript
expression

table subscript count
table subscript
table count

tagged.list tag
tag input.item

tagged.protocol tag
tag sequential.protocol

tag name

timer.input timer variable

timer.type expression timer.type

timer name
timer expression

timer base count
timer base
timer count

valof specification
valof

value.process
process

expression.list
specification
value.process

J Syntax summary

�

�

�

�

�

�

�

�

�

�

RECORD
, :

| UNION
, :

| RECORD
PLACE OFFSET :

| UNION
, ( ) :

[ ]
| [ , ]
| [ FROM FOR ]
| [ FROM ]
| [ FOR ]

| ; ;

| ;

?

[ ]
| TIMER

| [ ]
| [ FROM FOR ]
| [ FROM ]
| [ FOR ]

VALOF

RESULT
|
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� �
variable.list variable

variable variable name
variable base count
variable count
variable base

variable expression

variant specification
variant
tagged.list

process
specification
variant

J Syntax summary

�

�

�

,

[ ]
| [ FROM FOR ]
| [ FOR ]
| [ FROM ]
| [ ]

|

|
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This section provides a complete list of symbols and keywords.

call channel body
later than operator
alternation
boolean and operator
anarchic protocol
import renaming
at
bitwise and operator
bitwise not operator
bitwise or operator
boolean type
byte type
data type width
call channel type
selection, variant protocol, case input
union type discriminator
channel type
claim of shared channel
data type conversion
data type definition
default selection
library export
boolean constant
finalised declaration, finalisation process
count
base
function definition
grant of shared channel
conditional
import from library
initialised declaration, initialisation process
module instance
integer type
16bit integer type
32bit integer type
64bit integer type
module interface
specification introduction
modulo subtraction/negation operator
module

most negative
most positive
type name exported from library
data type with no content
boolean not operator
record layout
boolean or operator
parallel
allocation
placed processes
modulo addition operator
port type
prioritised construction
procedure
processor allocation
protocol definition
32bit real type
64bit real type
record type
remainder operator
resource process
value process result
retyping conversion
rounding operator
sequence
server declaration
channel type modifier
array size operator
skip process
stop process
timer type
modulo multiplication operator

boolean constant
truncation operator
type definition
union type
value
value process
loop
data type width specification

If an implementation adds further reserved words, then the names used must not include lower case letters.

occam

location

K Keywords and symbols

K Keywords and symbols

ACCEPT
AFTER
ALT
AND
ANY
AS
AT
BITAND
BITNOT
BITOR
BOOL
BYTE
WIDTHOF
CALL
CASE
CASETAG
CHAN OF
CLAIM
CONVERT
DATA
ELSE
EXPORT
FALSE
FINAL
FOR
FROM
FUNCTION
GRANT
IF
IMPORT
INITIAL
INSTANCE
INT
INT16
INT32
INT64
INTERFACE
IS
MINUS
MODULE

MOSTNEG
MOSTPOS
NAME
NONE
NOT
OFFSET
OR
PAR
PLACE
PLACED
PLUS
PORT OF
PRI
PROC
PROCESSOR
PROTOCOL
REAL32
REAL64
RECORD
REM
RESOURCE
RESULT
RETYPES
ROUND
SEQ
SERVER
SHARED
SIZE
SKIP
STOP
TIMER
TIMES
TO
TRUE
TRUNC
TYPE
UNION
VAL
VALOF
WHILE
WIDTH
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plus
minus
times
divide
remainder

and
or
exclusive or
not
left shift
right shift

equal
less than
greater than
less than or equal to
greater than or equal to
not equal

Input
Output

Hexadecimal
Ampersand; used in a guard
Parentheses; used to delimit expressions,
the type of literals and a parameter list
Square brackets; used to delimit array subscripts,
and to construct segments and tables
Array type specifier
Counted array communication
Assignment symbol
Double quote; used to construct a string byte table
Single quote; used to delimit character byte literal
Separator for specifications, parameters, and table
Sequential protocol separator
Specification terminator
Comment introduction
Union type literal constructor

K Keywords and symbols

Arithmetic operators

Bit operators

Relational operators

Communication symbols

Other symbols

+
-
*
/
\

/\
\/
><
~
<<
>>

=
<
>
<=
>=
<>

!
?

#
&
(
)
[
]
[]
::
:=
"
’
,
;
:
--
:-
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Characters in are represented according to the American Standard Code for Information Interchange
(ASCII). Where the full character set is not available guarantees the following subset:

For reference, here is a table of all printable ASCII characters, and their values:

SPACE 32 20
33 21
34 22
35 23
36 24
37 25
38 26
39 27
40 28
41 29
42 2A
43 2B
44 2C
45 2D
46 2E
47 2F
48 30
49 31
50 32
51 33
52 34
53 35
54 36
55 37
56 38
57 39
58 3A
59 3B
60 3C
61 3D
62 3E
63 3F

64 40
65 41
66 42
67 43
68 44
69 45
70 46
71 47
72 48
73 49
74 4A
75 4B
76 4C
77 4D
78 4E
79 4F
80 50
81 51
82 52
83 53
84 54
85 55
86 56
87 57
88 58
89 59
90 5A
91 5B
92 5C
93 5D
94 5E
95 5F

96 60
97 61
98 62
99 63

100 64
101 65
102 66
103 67
104 68
105 69
106 6A
107 6B
108 6C
109 6D
110 6E
111 6F
112 70
113 71
114 72
115 73
116 74
117 75
118 76
119 77
120 78
121 79
122 7A
123 7B
124 7C
125 7D
126 7E

The characters , and may not be used directly in strings or as character constants. These and non-
printable characters (such as carriage return, tab .) can be included in strings, or used as character

occam
occam

&c

L Character set

ASCII Dec Hex ASCII Dec Hex ASCII Dec Hex

L Character set

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz
0123456789
!"#&’()*+,-./:;<=>?[]

!
"
#
$
%
&
’
(
)
*
+
,
-
.
/
0
1
2
3
4
5
6
7
8
9
:
;
<
=
>
?

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
[
\
]
^
_

‘
a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p
q
r
s
t
u
v
w
x
y
z
{
|
}
~

* ’ "
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constants, in the following form:

carriage return = *#0D
newline = *#0A
tab = *#09
space = *#20
quotation mark
double quotation mark
asterisk

In addition, any byte value can be represented by followed by two hexadecimal digits, for example:

is a byte constant.

L Character set

*c *C
*n *N
*t *T
*s *S
*’
*"
**

*#

soh := ’*#01’ ’*#01’
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This appendix provides a complete list of the standard library routines. The behaviour of routines is described
in detail in the following appendices. Library routines (typically the most primitive routines) may be predefined
in an implementation, that is, they may be known to the compiler and do not need to be explicitly referenced
by the programmer. Other libraries must be explicitly referenced by the programmer, and the name used in
their specification has the same property as any other specification. However, programmers are discouraged
from using the names of any library routine for any specification other than that of naming the routine in
question. The following tables include the name of the routine, and a specifier which indicates the type of
each of the parameters to the routine.

The arithmetic functions provide arithmetic shifts, word rotations and the primitives to construct multiple length
arithmetic and multiple length shift operations.

M Standard libraries

M Standard libraries

M.1 Multiple length integer arithmetic functions

INT FUNCTION LONGADD (VAL INT left, right, carry.in) :
INT FUNCTION LONGSUB (VAL INT left, right, borrow.in) :
INT FUNCTION ASHIFTRIGHT (VAL INT argument, places) :
INT FUNCTION ASHIFTLEFT (VAL INT argument, places) :
INT FUNCTION ROTATERIGHT (VAL INT argument, places) :
INT FUNCTION ROTATELEFT (VAL INT argument, places) :
INT,INT FUNCTION LONGSUM (VAL INT left, right, carry.in) :
INT,INT FUNCTION LONGDIFF (VAL INT left, right, borrow.in) :
INT,INT FUNCTION LONGPROD (VAL INT left, right, carry.in) :
INT,INT FUNCTION LONGDIV (VAL INT dividend.hi, dividend.lo, divisor):
INT,INT FUNCTION SHIFTLEFT (VAL INT hi.in, lo.in, places) :
INT,INT FUNCTION SHIFTRIGHT (VAL INT hi.in, lo.in, places) :
INT,INT,INT FUNCTION NORMALISE (VAL INT hi.in, lo.in) :
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The floating point functions provide the list of facilities suggested by the ANSI/IEEE standard 754-1985.

M Standard libraries

M.2 Floating point functions

M.3 Full IEEE arithmetic functions

REAL32 FUNCTION ABS (VAL REAL32 X) :
REAL64 FUNCTION DABS (VAL REAL64 X) :
REAL32 FUNCTION SCALEB (VAL REAL32 X,VAL INT n):
REAL64 FUNCTION DSCALEB (VAL REAL64 X,VAL INT n):
REAL32 FUNCTION COPYSIGN (VAL REAL32 X, Y) :
REAL64 FUNCTION DCOPYSIGN (VAL REAL64 X, Y) :
REAL32 FUNCTION SQRT (VAL REAL32 X) :
REAL64 FUNCTION DSQRT (VAL REAL64 X) :
REAL32 FUNCTION MINUSX (VAL REAL32 X) :
REAL64 FUNCTION DMINUSX (VAL REAL64 X) :
REAL32 FUNCTION NEXTAFTER (VAL REAL32 X, Y) :
REAL64 FUNCTION DNEXTAFTER (VAL REAL64 X, Y) :
REAL32 FUNCTION MULBY2 (VAL REAL32 X) :
REAL64 FUNCTION DMULBY2 (VAL REAL64 X) :
REAL32 FUNCTION DIVBY2 (VAL REAL32 X) :
REAL64 FUNCTION DDIVBY2 (VAL REAL64 X) :
REAL32 FUNCTION LOGB (VAL REAL32 X) :
REAL64 FUNCTION DLOGB (VAL REAL64 X) :
BOOL FUNCTION ISNAN (VAL REAL32 X) :
BOOL FUNCTION DISNAN (VAL REAL64 X) :
BOOL FUNCTION NOTFINITE (VAL REAL32 X) :
BOOL FUNCTION DNOTFINITE (VAL REAL64 X) :
BOOL FUNCTION ORDERED (VAL REAL32 X, Y) :
BOOL FUNCTION DORDERED (VAL REAL64 X, Y) :
INT,REAL32 FUNCTION FLOATING.UNPACK (VAL REAL32 X) :
INT,REAL64 FUNCTION DFLOATING.UNPACK (VAL REAL64 X) :
BOOL,INT32,REAL32 FUNCTION ARGUMENT.REDUCE (VAL REAL32 X, Y, Y.err):
BOOL,INT32,REAL64 FUNCTION DARGUMENT.REDUCE (VAL REAL64 X, Y, Y.err):
REAL32 FUNCTION FPINT (VAL REAL32 X) :
REAL64 FUNCTION DFPINT (VAL REAL64 X) :

REAL32 FUNCTION REAL32OP (VAL REAL32 X, VAL INT Op, VAL REAL32 Y):
REAL64 FUNCTION REAL64OP (VAL REAL64 X, VAL INT Op, VAL REAL64 Y):
REAL32 FUNCTION IEEE32OP (VAL REAL32 X, VAL INT Rm, VAL INT Op,

VAL REAL32 Y):
REAL64 FUNCTION IEEE64OP (VAL REAL64 X, VAL INT Rm, VAL INT Op,

VAL REAL64 Y):
REAL32 FUNCTION REAL32REM (VAL REAL32 X, Y) :
REAL64 FUNCTION REAL64REM (VAL REAL64 X, Y) :
REAL32 FUNCTION REAL32EQ (VAL REAL32 X, Y) :
REAL64 FUNCTION REAL64EQ (VAL REAL64 X, Y) :
REAL32 FUNCTION REAL32GT (VAL REAL32 X, Y) :
REAL64 FUNCTION REAL64GT (VAL REAL64 X, Y) :
INT FUNCTION IEEECOMPARE (VAL REAL32 X, Y) :
INT FUNCTION DIEEECOMPARE (VAL REAL64 X, Y) :
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M.4 Elementary function library

REAL32 FUNCTION ALOG (VAL REAL32 X) :
REAL64 FUNCTION DALOG (VAL REAL64 X) :
REAL32 FUNCTION ALOG10 (VAL REAL32 X) :
REAL64 FUNCTION DALOG10 (VAL REAL64 X) :
REAL32 FUNCTION EXP (VAL REAL32 X) :
REAL64 FUNCTION DEXP (VAL REAL64 X) :
REAL32 FUNCTION TAN (VAL REAL32 X) :
REAL64 FUNCTION DTAN (VAL REAL64 X) :
REAL32 FUNCTION SIN (VAL REAL32 X) :
REAL64 FUNCTION DSIN (VAL REAL64 X) :
REAL32 FUNCTION ASIN (VAL REAL32 X) :
REAL64 FUNCTION DASIN (VAL REAL64 X) :
REAL32 FUNCTION COS (VAL REAL32 X) :
REAL64 FUNCTION DCOS (VAL REAL64 X) :
REAL32 FUNCTION ACOS (VAL REAL32 X) :
REAL64 FUNCTION DACOS (VAL REAL64 X) :
REAL32 FUNCTION SINH (VAL REAL32 X) :
REAL64 FUNCTION DSINH (VAL REAL64 X) :
REAL32 FUNCTION COSH (VAL REAL32 X) :
REAL64 FUNCTION DCOSH (VAL REAL64 X) :
REAL32 FUNCTION TANH (VAL REAL32 X) :
REAL64 FUNCTION DTANH (VAL REAL64 X) :
REAL32 FUNCTION ATAN (VAL REAL32 X) :
REAL64 FUNCTION DATAN (VAL REAL64 X) :
REAL32 FUNCTION ATAN2 (VAL REAL32 X, Y):
REAL64 FUNCTION DATAN2 (VAL REAL64 X, Y):
REAL32, INT32 FUNCTION RAN (VAL INT32 N) :
REAL64, INT64 FUNCTION DRAN (VAL INT64 N) :
REAL32 FUNCTION POWER (VAL REAL32 X, Y):
REAL64 FUNCTION DPOWER (VAL REAL64 X, Y):
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The library provides primitive procedures to convert a value to and from decimal or hexadecimal representa-
tions.

M Standard libraries

M.5 Value, string conversion procedures

PROC INTTOSTRING (INT len, []BYTE string, VAL INT n) :
PROC INT16TOSTRING (INT len, []BYTE string, VAL INT16 n) :
PROC INT32TOSTRING (INT len, []BYTE string, VAL INT32 n) :
PROC INT64TOSTRING (INT len, []BYTE string, VAL INT64 n) :
PROC STRINGTOINT (BOOL error, INT n, VAL []BYTE string) :
PROC STRINGTOINT16 (BOOL error, INT16 n, VAL []BYTE string) :
PROC STRINGTOINT32 (BOOL error, INT32 n, VAL []BYTE string) :
PROC STRINGTOINT64 (BOOL error, INT64 n, VAL []BYTE string) :
PROC HEXTOSTRING (INT len, []BYTE string, VAL INT n) :
PROC HEX16TOSTRING (INT len, []BYTE string, VAL INT16 n) :
PROC HEX32TOSTRING (INT len, []BYTE string, VAL INT32 n) :
PROC HEX64TOSTRING (INT len, []BYTE string, VAL INT64 n) :
PROC STRINGTOHEX (BOOL error, INT n, VAL []BYTE string) :
PROC STRINGTOHEX16 (BOOL error, INT16 n, VAL []BYTE string) :
PROC STRINGTOHEX32 (BOOL error, INT32 n, VAL []BYTE string) :
PROC STRINGTOHEX64 (BOOL error, INT64 n, VAL []BYTE string) :
PROC STRINGTOREAL32 (BOOL error, REAL32 r, VAL []BYTE string):
PROC STRINGTOREAL64 (BOOL error, REAL64 r, VAL []BYTE string):
PROC REAL32TOSTRING (INT, []BYTE, VAL REAL32, VAL INT) :
PROC REAL64TOSTRING (INT, []BYTE, VAL REAL64, VAL INT) :
PROC STRINGTOBOOL (BOOL, error, b, VAL []BYTE string) :
PROC BOOLTOSTRING (INT len, []BYTE string, VAL BOOL b) :
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The following arithmetic functions provide arithmetic shifts, word rotations and the primitives to construct
multiple length integer arithmetic and multiple length shift operations.

signed addition with a carry in.
unsigned addition with a carry in and a carry out.
signed subtraction with a borrow in.
unsigned subtraction with a borrow in and a borrow out.
unsigned multiplication with a carry in, producing a double length result.
unsigned division of a double length number, producing a single length result.
right shift on a double length quantity.
left shift on a double length quantity.
normalise a double length quantity.
arithmetic right shift on a double length quantity.
arithmetic left shift on a double length quantity.
rotate a word right.
rotate a word left.

For the purpose of explanation imagine a new type , and the associated conversion. This imaginary
type is capable of representing the complete set of integers and is presumed to be represented as an infinite
bit two’s complement number. With this one exception the following are descriptions of the various
arithmetic functions.

constants used in the following description

= 2

= ( 2 1)

= ( 2)
literals

IS 1( ) :
IS 2( ) :

mask

In , values are considered to be signed. However, in these functions the concern is with other
interpretations. In the construction of multiple length arithmetic the need is to interpret words as containing
both signed and unsigned integers. In the following the new type is used to manipulate these
values, and other values which may require more than a single word to store.

occam

occam

��� 
 � ������� �����
��� ��� � �

��� ��� � �

�

�

INTEGER

INTEGER
INTEGER

INTEGER

INTEGER

INTEGER
INTEGER
INTEGER

INTEGER

N Multiple length arithmetic functions

N Multiple length arithmetic functions

LONGADD
LONGSUM
LONGSUB
LONGDIFF
LONGPROD
LONGDIV
SHIFTRIGHT
SHIFTLEFT
NORMALISE
ASHIFTRIGHT
ASHIFTLEFT
ROTATERIGHT
ROTATELEFT

--
VAL bitsperword IS machine.wordsize( ) :
VAL range IS storeable.values( ) :

-- range
VAL maxint IS (MOSTPOS INT) :

-- maxint
VAL minint IS (MOSTNEG INT) :

-- minint
--
VAL one
VAL two
--
VAL wordmask IS range - one :
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The sign conversion of a value is defined in the functions and . These are used in the description
following but they are NOT functions themselves.

Returns the value of as an unsigned integer value.
for example, on a 32 bit word machine :

1 = 1
1 = 2 1

Takes the and returns the signed type .
for example, on a 32 bit word machine :
2 1 becomes 2 1
2 becomes 2

performs the addition of signed quantities with a carry in. The function is invalid if arithmetic overflow
occurs.

� �

� �
�

INTEGER

INTEGER

INTEGER

INTEGER

INTEGER

INTEGER

N Multiple length arithmetic functions

N.1 The integer arithmetic functions

unsign sign

FUNCTION unsign (VAL INT operand)

-- operand
--
-- unsign ( )
-- unsign ( )

operand.i
VALOF

IF
operand < 0

operand.i := ( operand) + range
operand >= 0

operand.i := operand
RESULT operand.i

:

INT FUNCTION sign (VAL result.i)

-- result.i INT
--
--
--

INT result :
VALOF

IF
(result.i > maxint) AND (result.i < range)

result := INT (result.i - range)
TRUE

result := INT result.i
RESULT result

:

LONGADD

DRAFT --- March 31, 1992



154

The action of the function is defined as follows:

Adds (signed) word to word with least significant bit of .

overflow may occur in the following conversion
resulting in an invalid process

performs the addition of unsigned quantities with a carry in and a carry out. No overflow can occur.

The action of the function is defined as follows:

Adds (unsigned) word to word with the least significant bit of .
Returns two results, the first value is one if a carry occurs, zero otherwise,
the second result is the sum.

performs the subtraction of signed quantities with a borrow in. The function is invalid if arithmetic
overflow occurs.

INTEGER

INTEGER
INTEGER
INTEGER

INTEGER

INTEGER

N Multiple length arithmetic functions

INT FUNCTION LONGADD (VAL INT left, right, carry.in)

-- left right carry.in

sum.i, carry.i, left.i, right.i :
VALOF

SEQ
carry.i := (carry.in /\ 1)
left.i := left
right.i := right
sum.i := (left.i + right.i) + carry.i

--
--
RESULT INT sum.i

:

LONGSUM

INT, INT FUNCTION LONGSUM (VAL INT left, right, carry.in)

-- left right carry.in
--
--

INT carry.out :
sum.i, left.i, right.i :

VALOF
SEQ

left.i := unsign (left)
right.i := unsign (right)
sum.i := (left.i + right.i) + (carry.in /\ 1)
IF -- assign carry

sum.i >= range
SEQ

sum.i := sum.i - range
carry.out := 1

TRUE
carry.out := 0

RESULT carry.out, sign (sum.i)
:

LONGSUB

DRAFT --- March 31, 1992



155

The action of the function is defined as follows:

Subtracts (signed) word from word and subtracts from the result.

overflow may occur in the following conversion
resulting in an invalid process

performs the subtraction of unsigned quantities with borrow in and borrow out. No overflow can
occur.

The action of the function is defined as follows:

Subtracts (unsigned) word from word and subtracts from the result.
Returns two results, the first is one if a borrow occurs, zero otherwise,
the second result is the difference.

assign borrow

performs the multiplication of two unsigned quantities, adding in an unsigned carry word. Produces
a double length unsigned result. No overflow can occur.

INTEGER

INTEGER
INTEGER
INTEGER

INTEGER

INTEGER

N Multiple length arithmetic functions

INT FUNCTION LONGSUB (VAL INT left, right, borrow.in)

-- right left borrow.in

diff.i, borrow.i, left.i, right.i :
VALOF

SEQ
borrow.i := (borrow.in /\ 1)
left.i := left
right.i := right
diff.i := (left.i - right.i) - borrow.i

--
--
RESULT INT diff.i

:

LONGDIFF

INT, INT FUNCTION LONGDIFF (VAL INT left, right, borrow.in)

-- right left borrow.in
--
--

diff.i, left.i, right.i :
VALOF

SEQ
left.i := unsign (left)
right.i := unsign (right)
diff.i := (left.i - right.i) - (borrow.in /\ 1)
IF --

diff.i < 0
SEQ

diff.i := diff.i + range
borrow.out := 1

TRUE
borrow.out := 0

RESULT borrow.out, sign (diff.i)
:

LONGPROD
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The action of the function is defined as follows:

Multiplies (unsigned) word by word and adds .
Returns the result as two integers most significant word first.

divides an unsigned double length number by an unsigned single length number. The function
produces an unsigned single length quotient and an unsigned single length remainder. An overflow will occur
if the quotient is not representable as an unsigned single length number. The function becomes invalid if the
divisor is equal to zero.

The action of the function is defined as follows:

Divides (unsigned) and by .
Returns two results the first is the quotient and the second is the remainder.

performs a right shift on a double length quantity. The function must be called with the number
of places in range, otherwise the implementation can produce unexpected effects.

0 = = 2� � �

INTEGER

INTEGER

ie

N Multiple length arithmetic functions

INT, INT FUNCTION LONGPROD (VAL INT left, right, carry.in)

-- left right carry.in
--

prod.i, prod.lo.i, prod.hi.i, left.i, right.i, carry.i :
VALOF

SEQ
carry.i := unsign (carry.in)
left.i := unsign (left)
right.i := unsign (right)
prod.i := (left.i * right.i) + carry.i
prod.lo.i := prod.i REM range
prod.hi.i := prod.i / range

RESULT sign (prod.hi.i), sign (prod.lo.i)

:

LONGDIV

INT, INT FUNCTION LONGDIV (VAL INT dividend.hi, dividend.lo, divisor)

-- dividend.hi dividend.lo divisor
--

divisor.i, dividend.i, hi, lo, quot.i, rem.i :
VALOF

SEQ
hi := unsign (dividend.hi)
lo := unsign (dividend.lo)
divisor.i := unsign (divisor)
dividend.i := (hi * range) + lo
quot.i := dividend.i / divisor.i
rem.i := dividend.i REM divisor.i

-- overflow may occur in the following conversion of quot.i
-- resulting in an invalid process
RESULT sign (quot.i), sign (rem.i)

:

SHIFTRIGHT

places bitsperword
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The action of the function is defined as follows:

Shifts the value in and right by the given number of .
Bits shifted in are set to zero.
Returns the result as two integers most significant word first.

performs a left shift on a double length quantity. The function must be called with the number
of places in range, otherwise the implementation can produce unexpected effects.

0 = = 2� � �

INTEGER

ie

N Multiple length arithmetic functions

INT, INT FUNCTION SHIFTRIGHT (VAL INT hi.in, lo.in, places)

-- hi.in lo.in places
--
--

INT hi.out, lo.out :
VALOF

IF
(places < 0) OR (places > (two*bitsperword))

SEQ
hi.out := 0
lo.out := 0

TRUE
operand, result, hi, lo :

SEQ
hi := unsign (hi.in)
lo := unsign (lo.in)
operand := (hi << bitsperword) + lo
result := operand >> places
lo := result /\ wordmask
hi := result >> bitsperword
hi.out := sign (hi)
lo.out := sign (lo)

RESULT hi.out, lo.out
:

SHIFTLEFT

places bitsperword
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The action of the function is defined as follows:

Shifts the value in and left by the given number of .
Bits shifted in are set to zero.

Returns the result as two integers most significant word first.

normalises a double length quantity. No overflow can occur.

INTEGER

N Multiple length arithmetic functions

INT, INT FUNCTION SHIFTLEFT (VAL INT hi.in, lo.in, places)

-- hi.in lo.in places
--

--

VALOF
IF

(places < 0) OR (places > (two*bitsperword))
SEQ

hi.out := 0
lo.out := 0

TRUE
operand, result, hi, lo :

SEQ
hi := unsign (hi.in)
lo := unsign (lo.in)
operand := (hi << bitsperword) + lo
result := operand << places
lo := result /\ wordmask
hi := result >> bitsperword
hi.out := sign (hi)
lo.out := sign (lo)

RESULT hi.out, lo.out
:

NORMALISE
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The action of the function is defined as follows :

Shifts the value in and left until the highest bit is set.
The function returns three integer results
The first returns the number of places shifted.
The second and third return the result as two integers with the least significant word first;
If the input value was zero, the first result is 2 .

performs an arithmetic right shift, shifting in and maintaining the sign bit. The function must
be called with the number of places in range, otherwise the implementation can produce unexpected effects.

0 = =

No overflow can occur.

the result of this function is NOT the same as division by a power of two.

1 2 = 0
1, 1 = 1

The action of the function is defined as follows:

Shifts the value in right by the given number of .
The status of the high bit is maintained

� �

�

�

�
� �

INTEGER

ie

eg

INTEGER

N Multiple length arithmetic functions

N.B

N.2 Arithmetic shifts

INT, INT, INT FUNCTION NORMALISE (VAL INT hi.in, lo.in)

-- hi.in lo.in
--
--
--
-- bitsperword

INT places, hi.out, lo.out :
VALOF

IF
(hi.in = 0) AND (lo.in = 0)

places := INT (two*bitsperword)
TRUE

VAL msb IS one << ((two*bitsperword) - one) :
operand, hi, lo :

SEQ
lo := unsign (lo.in)
hi := unsign (hi.in)
operand := (hi << bitsperword) + lo
places := 0
WHILE (operand /\ msb) = 0

SEQ
operand := operand << one
places := places + 1

hi := operand / range
lo := operand REM range
hi.out := sign (hi)
lo.out := sign (lo)

RESULT places, hi.out, lo.out
:

ASHIFTRIGHT

places bitsperword

ASHIFTRIGHT ( )

-- operand places
--

INT FUNCTION ASHIFTRIGHT (VAL INT operand, places) IS
INT( (operand) >> places ) :
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performs an arithmetic left shift. The function is invalid if significant bits are shifted out, signalling
an overflow. The function must be called with the number of places in range, otherwise the implementation
can produce unexpected effects.

0 = =

the result of this function is the same as multiplication by a power of two.

The action of the function is defined as follows:

Shifts the value in left by the given number of .
Bits shifted in are set to zero.

rotates a word right. Bits shifted out of the word on the right, re-enter the word on the left.
The function must be called with the number of places in range, otherwise the implementation can produce
unexpected effects.

0 = =

No overflow can occur.

The action of the function is defined as follows:

Rotates the value in by the given number of .

rotates a word left. Bits shifted out of the word on the left, re-enter the word on the right.
The function must be called with the number of places in range, otherwise the implementation can produce
unexpected effects.

0 = =

� �

� �

� �

ie

INTEGER

INTEGER

ie

INTEGER

ie

N Multiple length arithmetic functions

N.B

N.3 Word rotation

ASHIFTLEFT

places bitsperword

INT FUNCTION ASHIFTLEFT (VAL INT argument, places)

-- argument places
--

result.i :
VALOF

result.i := (argument) << places
-- overflow may occur in the following conversion
-- resulting in an invalid process
RESULT INT result.i

:

ROTATERIGHT

places bitsperword

INT FUNCTION ROTATERIGHT (VAL INT argument, places)

-- argument places

high, low, argument.i :
VALOF

SEQ
argument.i := unsign(argument)
argument.i := (argument.i * range) >> places
high := argument.i / range
low := argument.i REM range

RESULT INT(high \/ low)
:

ROTATELEFT

places bitsperword
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The action of the function is defined as follows:

Rotates the value in by the given number of .

INTEGER

N Multiple length arithmetic functions

INT FUNCTION ROTATELEFT (VAL INT argument, places)

-- argument places

high, low, argument.i :
VALOF

SEQ
argument.i := unsign(argument)
argument.i := argument.i << places
high := argument.i / range
low := argument.i REM range

RESULT INT(high \/ low)
:
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The floating point functions described in this appendix provide the list of facilities suggested by the ANSI/IEEE
standard 754-1985.

Each function is specified by a skeletal function declaration, a predicate stating the relationship between the
actual parameters after the function call and an informal textual description of the operation. All functions are
implemented in a way which allows the same variable to be used as both the input and receiving variable
in an assignment. The predicate gives the formal definition of the operation, although for most purposes the
text will be an adequate explanation.

and are the sets of all Not-a-Numbers and all infinities in the format.

Floating point arithmetic implementations will return the following valued Not-a-Numbers to signify the various
errors that can occur in evaluations.

Divide zero by zero #7FC00000 #7FF80000 00000000
Divide infinity by infinity #7FA00000 #7FF40000 00000000
Multiply zero by infinity #7F900000 #7FF20000 00000000
Addition of opposite signed infinities #7F880000 #7FF10000 00000000
Subtraction of same signed infinities #7F880000 #7FF10000 00000000
Negative square root #7F840000 #7FF08000 00000000

to NaN conversion #7F820000 #7FF04000 00000000
Remainder from infinity #7F804000 #7FF00800 00000000
Remainder by zero #7F802000 #7FF00400 00000000

( ) =

This returns the absolute value of . This is implemented clearing the sign bit so that becomes and
even though Not-a-Numbers (NaNs) have no signed-ness the sign bit in their representation will be cleared.

���

NaN Inf

O Floating point functions

Error Single length value Double length value

O Floating point functions

O.1 Not-a-number values

O.2 Absolute

REAL64 REAL32

REAL32 FUNCTION ABS(VAL REAL32 X)
...

:
REAL64 FUNCTION DABS(VAL REAL64 X)
...

:

ABS X X

X -0.0 +0.0
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( ) =

This returns the square root of . Negative arguments produce a Negative square root Not-a-Number, and
infinity produces an infinity.

( ) =

This returns if is a Not-a-Number and otherwise.

( ) =

This returns if is a Not-a-Number or an infinity and otherwise.

( ) = 2

This multiplies by 2 . Overflow and underflow behaviour is as for normal multiplication under the ANSI/IEEE
standard 754-1985. can take any value as the operation will return the correct result even when 2 cannot
be represented in the format.

�

�
�

�

� � �

� � � � � �

�

�

� �

� � �

�

O Floating point functions

O.3 Square root

O.4 Test for Not-a-Number

O.5 Test for Not-a-Number or infinity

O.6 Scale by power of two

REAL32 FUNCTION SQRT(VAL REAL32 X)
...

:
REAL64 FUNCTION DSQRT(VAL REAL64 X)

...
:

SQRT X

X

BOOL FUNCTION ISNAN(VAL REAL32 X)
...

:
BOOL FUNCTION DISNAN(VAL REAL64 X)
...

:

ISNAN X TRUE X

TRUE X FALSE

BOOL FUNCTION NOTFINITE(VAL REAL32 X)
...

:
BOOL FUNCTION DNOTFINITE(VAL REAL64 X)

...
:

NOTFINITE X TRUE X

TRUE X FALSE

REAL32 FUNCTION SCALEB(VAL REAL32 X, VAL INT n)
...

:
REAL64 FUNCTION DSCALEB(VAL REAL64 X, VAL INT n)

...
:

SCALEB X n X

X
n
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= result
= 0 = ( )

= 0 =
= +

=

This returns the exponent of as an integer valued floating point number; special cases for Infs, NaNs and
zero. that all denormalised numbers return the same value – this is not equivalent to rounding the
logarithm to an integer value. If is a NaN then it is returned as the result, if is an infinity then the result
is plus infinity and if is zero then the result is minus infinity.

= (n, r)
= 0 =

“otherwise” = 2 [1 2)

This “unpacks” into a real ( ) and an integer ( ) so that lies between 1 and 2 and that = 2 . This is
useful for reducing a value to the primary range for “exponential” type functions. If is an infinity or a NaN
then a NaN is returned in and holds MaxExp - the exponent of a NaN. If is zero then a NaN is returned
in and MaxExp in - this is because the methods used to evaluate a function in its primary range will not
be defined for which should have already been dealt with as a special case. The use of a NaN in these
cases signals an error in the attempt to produce a “primary range” value and offset from .

= result
= = =

This returns with the sign bit toggled. This is not the same as (0 ) as it has different behaviour on zero
and NaNs. This should not be used as a unary negation where (0 ) should be used. As with it does
affect the representation of NaNs even though they have no sign in their interpretation.
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where

where r n
r r

r n r

r n
r n

where

O Floating point functions

NOTE

O.7 Return exponent

O.8 Unpack floating point value

O.9 Negate

REAL32 FUNCTION LOGB(VAL REAL32 X)
...

:
REAL64 FUNCTION DLOGB(VAL REAL64 X)

...
:
LOGB (X)

X X REAL32 X exp
X
X
X X

X

X X
X

INT, REAL32 FUNCTION FLOATING.UNPACK(VAL REAL32 X)
...

:
INT, REAL64 FUNCTION DFLOATING.UNPACK(VAL REAL64 X)

...
:
FLOATING.UNPACK (X)

X X
X

X X
X

X

0.0
X

REAL32 FUNCTION MINUSX(VAL REAL32 X)
...

:
REAL64 FUNCTION DMINUSX(VAL REAL64 X)

...
:
MINUSX (X)

X X X

X X
X ABS
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= result
= = =

This returns with the sign bit from .

= result

=
=

This can be specified precisely but as several subsidiary definitions are required first the informal third line of
the “predicate” is used for brevity.

This returns the first floating point number from in the direction of . The major area where this will be
used is in interval arithmetic. If either or both of or is a NaN then a NaN equal to or is returned. An
overflow from a finite to an infinite result is handled in the same way as an arithmetic overflow.

( ) =

This returns if and are “orderable” as defined by the ANSI/IEEE standard 754-1985. This implements
the negation of the comparison in ANSI/IEEE 754-1985 5.7 and enables the full IEEE style
comparison to be derived from the standard , , ... comparisons of real types in .occam
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where

where

“result is next real after in the direction of ”

unordered

O Floating point functions

O.10 Copy sign

O.11 Next representable value

O.12 Test for orderability

REAL32 FUNCTION COPYSIGN(VAL REAL32 X, Y)
...

:
REAL64 FUNCTION DCOPYSIGN(VAL REAL64 X, Y)

...
:
COPYSIGN (X,Y)

Y X X

X Y

REAL32 FUNCTION NEXTAFTER(VAL REAL32 X,Y)
...

:
REAL64 FUNCTION DNEXTAFTER(VAL REAL64 X,Y)

...
:
NEXTAFTER (X,Y)

X Y
X Y X
X Y X Y

X Y
X Y X Y

X

BOOL FUNCTION ORDERED(VAL REAL32 X,Y)
...

:
BOOL FUNCTION DORDERED(VAL REAL64 X,Y)
...

:
ORDERED X Y TRUE X Y

TRUE X Y

< >
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( ) = ( )

+ = ( + ) +
( ( + ) 2 ( = ( + ) 2 2 = 0))

+ :
= +

( 2 ( = 2 2 = 0))
=

is 20 for and 30 for .

This performs a more accurate remainder by using an extended precision value for where possible.
It is assumed that is no larger than a last bit error in . is returned as the boolean result to
indicate that the more accurate remainder has been done and the integer result will then be the quotient.
If the more accurate remainder cannot be done a normal remainder is performed and the quotient must be
calculated separately. This is designed to be used to reduce an argument to the primary range for cyclical
functions - such as the trigonometric functions.

( ) = 2

This returns 2 times with overflow handling as defined in the ANSI/IEEE standard 754-1985.

( ) = 2

This returns divided by 2 with underflow handling as defined in the ANSI/IEEE standard 754-1985.
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where b n r

where

b
n

n

O Floating point functions

Z

O.13 Perform range reduction

O.14 Fast multiply by two

O.15 Fast divide by two

BOOL,INT32,REAL32 FUNCTION ARGUMENT.REDUCE(VAL REAL32 X, Y, Y.err)
...

:
BOOL,INT32,REAL64 FUNCTION DARGUMENT.REDUCE(VAL REAL64 X, Y, Y.err)

...
:
ARGUMENT REDUCE X Y error

X Y X Y error
Y error Y error

X Y
X Y
Y Y

ARGUMENT.REDUCE DARGUMENT.REDUCE

X REM Y Y
error Y TRUE

REAL32 FUNCTION MULBY2(VAL REAL32 X)
...

:
REAL64 FUNCTION DMULBY2(VAL REAL64 X)

...
:
MULBY2 X X

X

REAL32 FUNCTION DIVBY2(VAL REAL32 X)
...

:
REAL64 FUNCTION DDIVBY2(VAL REAL64 X)

...
:
DIVBY2 X X

X
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= result
2 =
2 =

This returns rounded to a floating point integer value.
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where

O Floating point functions

O.16 Round to floating point integer

REAL32 FUNCTION FPINT(VAL REAL32 X)
...

:
REAL64 FUNCTION DFPINT(VAL REAL64 X)
...

:
FPINT (X)

X X
X REAL32(INT ROUND X)

X
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and are implementations of the ANSI/IEEE 754-1985 floating point arithmetic standard.
An implementation should comply to the requirements of the standard in as much as all results returned by
them should be correct as defined in the standard. Most programmers will not need to use these functions
directly as most implementations will compile all real arithmetic as calls to these functions. In some
applications, such as interval arithmetic, the rounding modes are needed so the functions will need to be
explicitly called in those cases. Also, in some applications, the IEEE standards use of infinities and Not-a-
number to handle errors and overflows may be required in preference to the standard treatment of
them as invalid expressions.

The functions for operands are

evaluates according to the standard without error checking, using the
conventional rounding mode. The various operations are coded in where:

= 0
= 1
= 2
= 3

evaluates according to the standard without error checking.

and are defined in an similar manner to operate on s.

evaluates according to the standard without error checking. The
rounding mode to be used is indicated by where:

round mode = 0 Round to Zero
round mode = 1 Round to Nearest
round mode = 2 Round to Plus Infinity
round mode = 3 Round to Minus Infinity

The function is:

These functions return two results, a boolean which is true if an error has occurred, and false otherwise, and
the result.

The comparisons on the real types provided in the language should suffice for most purposes.
However, if the comparisons detailed in the ANSI/IEEE 754-1985 standard are required then they can be

occam

occam

occam

� � � �

� �

� � � �

op

P IEEE floating point arithmetic

P IEEE floating point arithmetic

P.1 ANSI/IEEE real comparison

REALOP REALREM

REAL32

REAL32 FUNCTION REAL32OP (VAL REAL32 X, VAL INT Op, VAL REAL32 Y)
...

:

REAL32 FUNCTION REAL32REM (VAL REAL32 X, VAL REAL32 Y)
...

:

REAL32OP (X, Op, Y)
Op

+
-
*
/

REAL32REM (X, Y) REM

REAL64OP REAL64REM REAL64

IEEEOP (X, Rm, Op, Y)
Rm

BOOL, REAL32 FUNCTION IEEE32OP (VAL REAL32 X,
VAL INT Rm, Op, VAL REAL32 Y)

...
:
BOOL, REAL64 FUNCTION IEEE64OP (VAL REAL64 X,

VAL INT Rm, Op, VAL REAL64 Y)
...

:
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generated from the set of primitive comparisons.

A standard function will return a value which indicates which of the relations ,
, or as defined by IEEE 754 paragraph 5.7. This procedure is

Then, if really necessary, any of the 26 varieties of comparison suggested by the IEEE standard can be
derived. For instance the ? = predicate could be implemented by

Similarly ( ) could be implemented as

In either of these cases the value returned in the first boolean is equivalent to the invalid operation flag being
set according to the ANSI/IEEE standard 754-1985.

The double length version is defined in a similar manner to .

�

��� � � �

less than greater
than equals unordered

P IEEE floating point arithmetic

BOOL FUNCTION REAL32EQ (VAL REAL32 X, Y)
-- result = (X = Y) in the IEEE sense
...

:
BOOL FUNCTION REAL32GT (VAL REAL32 X, Y)

-- result = (X > Y) in the IEEE sense
...

:

IEEECOMPARE

INT FUNCTION IEEECOMPARE (VAL REAL32 X, Y)
INT result :
VALOF

IF
ORDERED (X, Y)

IF
REAL32EQ (X, Y)

result := 0
REAL32GT (X, Y)

result := 1
TRUE

result := -1
TRUE

result := 2
RESULT result

:

BOOL, BOOL FUNCTION IEEE.UGE. (VAL REAL32 X,Y)
VAL LT IS -1, EQ IS 0, GT IS 1, UN IS 2:
INT relation:
VALOF

relation := IEEECOMPARE (X, Y)
RESULT FALSE,

(relation=GT) OR ((relation=EQ) OR (relation=UN))
:

BOOL, BOOL FUNCTION IEEENOT.LG. (VAL REAL32 X,Y)
VAL LT IS -1, EQ IS 0, GT IS 1, UN IS 2:
INT relation:
VALOF

relation := IEEECOMPARE (X, Y)
RESULT (relation=UN), (relation=EQ) OR (relation=UN)

:

DIEEECOMPARE IEEECOMPARE
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The elementary function library provides a set of routines which provide elementary functions compatible with
the ANSI/IEEE standard 754-1985 for binary floating-point arithmetic.

All single length functions other than , and have one parameter which is a
taking the argument of the function. and have two parameters. They are both s
which receive the arguments of the function. has a single parameter which is a . In each
case the double-length version is obtained by prefixing a onto the function name, whose parameters are

or, in the case of , .

Accompanying the description of each function is the specification of the function’s and . The
specifies the range of valid inputs, those for which the output is a normal or denormal floating-point

number. The specifies the range of outputs produced by all arguments in the . The given
endpoints are not exceeded. Note that some of the domains specified are implementation dependent.

Ranges are given as intervals, using the convention that a square bracket [ or ] means that the adjacent
endpoint is included in the range, whilst a round bracket ( or ) means that it is excluded. Endpoints are
given to a few significant figures only. Where the range depends on the floating-point format, single-length
is indicated with an S and double-length with a D.

For functions with two arguments the complete range of both arguments is given. This means that for each
number in one range, there is at least one (though sometimes only one) number in the other range such that
the pair of arguments is valid. Both ranges are shown, linked by an ‘x’.

In the specifications, XMAX is the largest representable floating-point number: in single-length it is approx-
imately 3 4 10 , and in double-length it is approximately 1 8 10 . Pi means the closest floating-point
representation of the transcendental number , ln(2) the closest representation of ( ), and so on. In
describing the algorithm, X is used generically to designate the argument, and “result” to designate the
output.

The routines will accept any value, as specified by the IEEE standard, including special values representing
s (‘Not a Number’) and s (‘Infinity’). s are copied directly to the result, whilst s may or may not

be valid arguments. Valid arguments are those for which the result is a normal (or denormalised) floating-point
number.

Arguments outside the domain (apart from which are simply copied to the result) give rise to
, which may be , , or . s mean that the result is mathematically well-defined but too

large to be represented in the floating-point format.

Error conditions are reported by means of three distinct s :

This means that the function is mathematically undefined for this argument, for
example the logarithm of a negative number.
This means that a small change in the argument would cause a large change in the
value of the function, so any error in the input will render the output meaningless.
This means that although the mathematical function is well-defined, its value is in
range, and it is stable with respect to input errors at this argument, the limitations of
word-length (and reasonable cost of the algorithm) make it impossible to compute
the correct value.

Implementations will return the following values for these Not-a-Numbers:

#7F800010 #7FF00002 00000000
#7F800008 #7FF00001 00000000
#7F800004 #7FF00000 80000000


 

�
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Domain Range
Domain ie

Range Domain

exceptional
results

Q Elementary function library

loge 2

NaN Inf NaN Inf

NaNs
NaN +Inf Inf Inf

NaN

Error Single length value Double length value

Q Elementary function library

POWER ATAN2 RAN VAL REAL32
POWER ATAN2 VAL REAL32

RAN VAL INT32
D

VAL REAL64 DRAN VAL INT64

undefined.NaN

unstable.NaN

inexact.NaN

undefined.NaN
unstable.NaN
inexact.NaN
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In all cases, the function returns a if given a .

These compute : result = ( ).

(0, XMAX]
[MinLog, MaxLog] = [ 103 28 88 72] = [ 745 2 709 78]

All arguments outside the domain generate an .

These compute : result = ( )

(0, XMAX]
[MinLog10, MaxLog10] = [ 44 85 38 53] = [ 323 6 308 25]

All arguments outside the domain generate an .

These compute : result = .

[ Inf, MaxLog) = [ 88 72) = [ 709 78)
[0, XMAX)

If the result is too large to be represented in the floating-point format, is returned.

�
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Q Elementary function library

NaN NaN

loge X

Domain :
Range :

undefined.NaN

log10 X

Domain :
Range :

undefined.NaN

Domain :
Range :

Inf

Q.1 Logarithm

Q.2 Base 10 logarithm

Q.3 Exponential

REAL32 FUNCTION ALOG (VAL REAL32 X)
...

:
REAL64 FUNCTION DALOG (VAL REAL64 X)
...

:

REAL32 FUNCTION ALOG10 (VAL REAL32 X)
...

:
REAL64 FUNCTION DALOG10 (VAL REAL64 X)

...
:

REAL32 FUNCTION EXP (VAL REAL32 X)
...

:
REAL64 FUNCTION DEXP (VAL REAL64 X)

...
:
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These compute : result = .

[0, Inf] x [ Inf, Inf]
[ Inf, Inf]

If the result is too large to be represented in the floating-point format, is returned. If X or Y is ,
is returned. Other special cases are as follows :

0 any
0 0
0 0 XMAX 0
0

0 1 0
0 1

1 XMAX XMAX 1
1

1 XMAX
1 XMAX 0

1
1 0

1 1
otherwise 0 1
otherwise 1

These compute : result = sine(X) (where X is in radians).

[ Smax, Smax] = [ 12868 0 12868 0] = [ 2 1 10 2 1 10 ]
[ 1.0, 1.0]

All arguments outside the domain generate an . Implementations may provide a larger domain.
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Q Elementary function library

Domain :
Range :

Inf NaN NaN

First Input (X) Second Input (Y) Result

undefined.NaN
undefined.NaN

Inf unstable.NaN
Inf
Inf Inf

Inf unstable.NaN
Inf Inf
Inf

Inf Inf Inf
Inf Inf
Inf undefined.NaN

Domain :
Range :

inexact.NaN

Q.4 X to the power of Y

Q.5 Sine

REAL32 FUNCTION POWER (VAL REAL32 X, Y)
...

:
REAL64 FUNCTION DPOWER (VAL REAL64 X, Y)

...
:

REAL32 FUNCTION SIN (VAL REAL32 X)
...

:
REAL64 FUNCTION DSIN (VAL REAL64 X)

...
:
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These compute : result = cosine(X) (where X is in radians).

[ Smax, Smax] = [ 12868 0 12868 0] = [ 2 1 10 2 1 10 ]
[ 1.0, 1.0]

All arguments outside the domain generate an . Implementations may provide a larger domain.

These compute : result = tan(X) (where X is in radians).

[ Tmax, Tmax] = [ 6434 0 6434 0] = [ 1 05 10 1 05 10 ]
( Inf, Inf)

All arguments outside the domain generate an . Implementations may provide a larger domain.

These compute : result = sine ( ) (in radians).

[ 1.0, 1.0]
[ Pi/2, Pi/2]

All arguments outside the domain generate an .
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Q Elementary function library

Domain :
Range :

inexact.NaN

Domain :
Range :

inexact.NaN

Domain :
Range :

undefined.NaN

Q.6 Cosine

Q.7 Tangent

Q.8 Arcsine

REAL32 FUNCTION COS (VAL REAL32 X)
...

:
REAL64 FUNCTION DCOS (VAL REAL64 X)

...
:

REAL32 FUNCTION TAN (VAL REAL32 X)
...

:
REAL64 FUNCTION DTAN (VAL REAL64 X)

...
:

REAL32 FUNCTION ASIN (VAL REAL32 X)
...

:
REAL64 FUNCTION DASIN (VAL REAL64 X)
...

:
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These compute : result = cosine ( ) (in radians).

[ 1.0, 1.0]
[0, Pi]

All arguments outside the domain generate an .

These compute : result = tan ( ) (in radians).

[ Inf, Inf]
[ Pi/2, Pi/2]

These compute the angular co-ordinate tan ( ) (in radians) of a point whose X and Y co-ordinates are
given.

[ Inf, Inf] x [ Inf, Inf]
( Pi, Pi]

(0, 0) and ( , ) give .
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Q Elementary function library

Domain :
Range :

undefined.NaN

Domain :
Range :

Domain :
Range :

Inf Inf undefined.NaN

Q.9 Arccosine

Q.10 Arctangent

Q.11 Polar Angle

REAL32 FUNCTION ACOS (VAL REAL32 X)
...

:
REAL64 FUNCTION DACOS (VAL REAL64 X)
...

:

REAL32 FUNCTION ATAN (VAL REAL32 X)
...

:
REAL64 FUNCTION DATAN (VAL REAL64 X)
...

:

REAL32 FUNCTION ATAN2 (VAL REAL32 X, Y)
...

:
REAL64 FUNCTION DATAN2 (VAL REAL64 X, Y)

...
:

DRAFT --- March 31, 1992



175

These compute : result = sinh(X).

[ Hmax, Hmax] = [ 89 4 89 4] = [ 710 5 710 5]
( Inf, Inf)

Hmax gives , and Hmax gives .

These compute: result = cosh(X).

[ Hmax, Hmax] = [ 89 4 89 4] = [ 710 5 710 5]
[1.0, Inf)

Hmax gives .

These compute : result = tanh(X).

[ Inf, Inf]
[ 1.0, 1.0]
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Q Elementary function library

Domain :
Range :

Inf Inf

Domain :
Range :

Inf

Domain :
Range :

Q.12 Hyperbolic sine

Q.13 Hyperbolic cosine

Q.14 Hyperbolic tangent

REAL32 FUNCTION SINH (VAL REAL32 X)
...

:
REAL64 FUNCTION DSINH (VAL REAL64 X)
...

:

REAL32 FUNCTION COSH (VAL REAL32 X)
...

:
REAL64 FUNCTION DCOSH (VAL REAL64 X)
...

:

REAL32 FUNCTION TANH (VAL REAL32 X)
...

:
REAL64 FUNCTION DTANH (VAL REAL64 X)
...

:
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This function returns two results, the first is a real between 0.0 and 1.0, and the second is an integer. The
integer, which must be used as the parameter in the next call to the function, carries a pseudo-random linear
congruential sequence , and must be kept in scope for as long as the function is used. It should be
initialised before the first call to the function but not modified thereafter except by the function itself. Consider
the following sequence:

In this example , , and are each assigned a pseudo-random value.

Integers
[0.0, 1.0) x Integers

�
�

Q Elementary function library

Domain :
Range :

Q.15 Pseudo-random numbers

REAL32, INT32 FUNCTION RAN (VAL INT32 N)
...

:
REAL64, INT64 FUNCTION DRAN (VAL INT64 N)
...

:

SEQ
x, seed := RAN (8) -- initialise seed
y, seed := RAN (seed)
z, seed := RAN (seed)

x y z

DRAFT --- March 31, 1992



177

This appendix describes the standard library of string to value, value to string routines. The library provides
primitive procedures to convert a value to and from decimal or hexadecimal representations. High input/output
routines can be easily built using these simple procedures, and a number will typically be provided in an
implementation.

The procedures described here provide conversion between integer values and their decimal or hexadecimal
representations held as a string of characters, for example:

The procedure returns the decimal representation of in and the number of characters
in the representation in .

The procedure returns in the value represented by . is set to if a non
numeric character is found in . or a are allowed in the first character position. will be the value
of the the portion of up to any illegal character with the convention that the value of an empty string
is 0. is also set if the value of overflows the range of , in this case will contain the low
order bits of the binary representation of . is set to in all other cases.

The procedure returns the hexadecimal representation of in and the number of
characters in the representation in . All the nibbles (a nibble is a word 4 bits wide) of are output so that
leading zeros are included. The number of characters will be the number of bits in an divided by 4.

The procedure returns in the value represented by the hexadecimal . is set
to if a non hexadecimal character is found in . Here will be the value of the the portion of

up to the illegal character with the convention that the value of an empty string is 0. is also
set to if the value represented by overflows the range of . In this case will contain the
low order bits of the binary representation of . In all other cases is set to .

Similar procedures are provided for the types , and . These procedures use equivalent
parameters of the appropriate type. The procedures are:

R Value, string conversion routines

R Value, string conversion routines

R.1 Integer, string conversions

PROC INTTOSTRING (INT len, []BYTE string, VAL INT n)
...

:

INTTOSTRING n string
len

PROC STRINGTOINT (BOOL error, INT n, VAL []BYTE string)
...

:

STRINGTOINT n string error TRUE
string + - n

string
error string INT n

string error FALSE

PROC HEXTOSTRING (INT len, []BYTE string, VAL INT n)
...

:

HEXTOSTRING n string
len n

INT

PROC STRINGTOHEX (BOOL error, INT n, VAL []BYTE string)
...

:

STRINGTOHEX n string error
TRUE string n

string error
TRUE string INT n

string error FALSE

INT16 INT32 INT64

INTTOSTRING INT16TOSTRING INT32TOSTRING INT64TOSTRING
STRINGTOINT STRINGTOINT16 STRINGTOINT32 STRINGTOINT64
HEXTOSTRING HEX16TOSTRING HEX32TOSTRING HEX64TOSTRING
STRINGTOHEX STRINGTOHEX16 STRINGTOHEX32 STRINGTOHEX64
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The procedures described here provide conversion between boolean values and their textual representation
“ ” and “ ”.

The procedure returns “ ” in if is and “ ” otherwise. contains
the number of characters in the string returned.

The procedure returns in b if first 4 characters of are “ ”, if first
5 characters are “ ” and is undefined in other cases. is returned in if is not
exactly “ ” or .

The procedures described here provide conversion between real values and their representation as strings,
for example:

These two procedures each take a string containing a decimal representation of a real number and convert
it into the corresponding real value. If the value represented by overflows the range of the type then
an appropriately signed infinity is returned. Errors in the syntax of are signalled by a Not-a-Number
being returned and being set to . The string is scanned from the left as far as possible while
the syntax is still valid. If there any characters after the end of the longest correct string then error is set to

, otherwise it is . For example if was then the value returned would
be 12 34 10 with set to . Strings which represent real values are those specified by the syntax
for literals, for example:

Further examples are given in the section on literals on page 24.

These two procedures return a string representing the value in the first s of . The format
of the representation is determined by and . Free format is selected by passing in and into the


 �

real

R Value, string conversion routines

R.2 Boolean, string conversion

R.3 Real, string conversion

TRUE FALSE

PROC BOOLTOSTRING (INT len, []BYTE string, VAL BOOL b)
...

:

BOOLTOSTRING TRUE string b TRUE FALSE len

PROC STRINGTOBOOL (BOOL error, b, VAL []BYTE string)
...

:

STRINGTOBOOL TRUE string TRUE FALSE
FALSE b TRUE error string

TRUE "FALSE"

PROC STRINGTOREAL32 (BOOL error, REAL32 r, VAL []BYTE string)
...

:
PROC STRINGTOREAL64 (BOOL error, REAL64 r, VAL []BYTE string)

...
:

string
string

error TRUE

TRUE FALSE string "12.34E+2+1.0"
error TRUE

12.34
587.0E-20
+1.0E+123
-3.05

PROC REAL32TOSTRING (INT len, []BYTE string,
VAL REAL32 r, VAL INT m,n)

...
:
PROC REAL64TOSTRING (INT len, []BYTE string,

VAL REAL64 r, VAL INT m,n)
...

:

r len BYTE string
m n 0 m n
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procedure. Where possible a fixed point representation is used when this does not indicate more accuracy
than is available and does not have more than 3 “ ”s after the decimal point before significant digits. Otherwise
exponential form is used. The number of characters returned in here depends on the input but will
be no more than 15 in and 24 in . is left justified in free format.

If is non-zero then if possible the procedure returns a fixed point representation of with digits before the
decimal point and places after with padding spaces being added when needed. If this is not possible then
an exponential representation is returned with the same field width as the fixed point representation would
have had. If and are both very small then an exponential representation may not fit in the field width so
two special values “ ” and “ ” with a sign are returned to indicate a value under or over the representable
fixed point values. In all these cases is padded with spaces so that it contains ( + + 2) characters
- before the decimal point, after, as well as the sign and decimal point characters.

If is zero but is not then an exponential representation is returned where the number of digits of fraction
returned is . The form of the fraction is except when is 1. In this case the output is not a
proper representation as the fraction will be of the form where the padding space is added due to the
absence of a decimal point. For this reason the case = 0, = 1 should not be used in general. When is
0 will contain ( + 6) characters for and ( + 7) for .

Each procedure returns a string “ ” preceded by a sign character for infinities and a string “ ” for Not-a-
Numbers. In free format a leading space on either string is dropped. Both these will be padded on the right
with spaces to fill the field width when free format output is not being used.

digit .digits
‘ ’ digit

R Value, string conversion routines

0
string

REALTOSTRING32 REALTOSTRING64 string

m r m
n

m n
Un Ov

string m n
m n

m n
n n

m n m
string n REALTOSTRING32 n REALTOSTRING64

Inf NaN
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An abbreviation specifies a as an for an existing or for the value of
an . The meaning of the alias is defined by substitution of the abbreviated element or
expression.

A process which services a call channel.

A parameter used in an of a procedure.

A name specified by an abbreviation.

Ensure all variables and channels are identified by a single name within a given .

Place a , , , or at an absolute location in memory.

Combines a number of processes guarded by inputs, and performs the process associated with
an input which is ready.

A component of an .

A parameter used in an instance of a function.

A number of components of the same type.

Evaluates an expression or list of expressions, and assigns each result to a corresponding
variable.

Operation on the individual bits in the representation of a value.

Logical evaluation of truth values.

Selects the protocol of an input on a single channel with variant protocol.

Unbuffered, uni-directional point-to-point connection for communication between two processes
executing in parallel.

The format of communication on a channel. Communication is valid only if the output and
input are compatible; each communication is of the type specified by the channel protocol.

A process which obtains exclusive use of a shared channel and uses it.

A component of a conditional.

The communication of values between concurrent processes.

Processes acting and existing together.

A construction ( ) which combines a number of processes each of which is guarded by a
boolean.

Configuration associates the components of an program with a set of physical re-
sources.

A construction combines processes. programs are built from processes, by combining
primitive processes and other constructions to form constructions of ( ),
( ), ( ), ( ), ( ) or ( ).

The structure of a value. The data type of a variable defines which values can be stored in that
variable. The data type of a value defines the operations which can be performed on the value.

A state in which two or more concurrent processes can no longer proceed due to a communication
interdependency.

Specifies the name, type and scope of a , , or .

A special which will wait until the timer has incremented beyond a specified time
before terminating. Useful for adding a simple delay in a process.

A discrimination is a process which identifies the tag of a value of union type. This process
is introduced with the keyword .

occam

occam

name alias element
expression

instance

scope

variable channel timer array port

alternation

ie

sequence conditional
selection loop parallel alternation

variable channel timer array

timer input

S Glossary of terms

Abbreviation

Accept

Actual parameter

Alias

Alias check

Allocation

Alternation

Alternative

Argument

Array

Assignment

Bitwise operation

Boolean operation

Case input

Channel

Channel protocol

Claim

Choice

Communication

Concurrency

Conditional

Configuration

Construction

Data type

Deadlock

Declaration

Delayed input

Discrimination

S Glossary of terms

IF

SEQ
IF CASE WHILE PAR ALT

CASETAG
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A procedure, function, , which is defined in a and made available for use in other applica-
tions.

A list of expressions separated by commas; used in and .

A field is part of a record type.

A declaration which is executed after its scope.

Parameter specified in the definition of a procedure or function. A formal parameter acts
as an for the used in an of a procedure.

A channel whose name is a free name.

A name which occurs within a process, but is not specified within the process.

A variable whose name is a free name.

Specifies a name for a value process or expression list.

A process which grants exclusive use of a shared channel to a claim process.

Determines the execution of an associated process in a choice ( ) or alternative (
).

A procedure, function, , which is defined in a library and is used a separate application.

An offset from the left hand edge of the page. In indentation is critical, and serves to
define the structure of processes.

A variable declaration which provides an initial value for the variable.

A declaration which is executed before its scope.

Receive a value from a channel and assign the value to a variable.

An input which guards an alternative in an alternation.

The occurrence of a procedure or application of a function.

The names and types of channels which are used to communicate with a .

A process whose behaviour has for some reason become undefined, and as a result may
lead to the failure of a system.

A set of functions, procedures, data types, , which can be shared between any number of appli-
cations.

A literal is a textual representation of a known value, and has a data type.

A divergent process, one which may remain internally active but not perform further communication,
it may behave like the following process:

A declaration which is executed in parallel with its scope and presents a channel interface.

A modulo operator performs its operation ( , , ) with no check for over-
flow. The value returned as a result is the cyclic value within the range of the operand type.

a network consists of a number of processing devices, microcomputers perhaps, with the facility to
communicate with each other.

Yields a value in an expression.

(monadic or dyadic) performs an operation on its operand(s).

Send the value of an expression to a channel.
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A configuration statement which places a process on a particular processing device.

A primitive type is a channel, timer, integer, boolean, byte or real type. A is also a
primitive type.

Priority can be given to a parallel executing on a single processing device. Lower priority processes
on such a device may only continue when all higher priority processes are unable to. The inputs
which guard alternatives in an alternation may be given a selection priority. If two or more inputs
are ready, then the input with the highest priority is selected.

A procedure definition specifies a name for a process.

An instance of a procedure is a use of the procedure, and behaves like a substitution
of the process named in the procedure definition. The phrase “procedure call” is used in many other
languages, to indicate the use of a procedure, and has a similar meaning. Although the behaviour
of an procedure is clearly defined as the substitution of the procedure body, a procedure
may be implemented as either a substitution or as a call to a closed subroutine.

A process starts, performs a number of actions, and then either stops without completing or termi-
nates completely. programs are built from the primitive processes ( ),
( ), ( ), and . These primitives are combined in , , , , and

constructions.

The format and of values passed on a channel.

The actual time taken for a physical process to occur.

A record consists of a number of with a specified type. In a data type record, each field has a
data type and in a channel record, each field has a channel type. A value of record type associates
a value of appropriate type with each of the fields.

The concrete representation of a record data type in store.

A relational operation compares its operands and yields a boolean result.

Channel over which parameters are passed to another process which executes the body of a
procedure.

A repetitive process ( ) executes the associated process as long as the specified
condition is true; if the condition is initially false the associated process is not executed.

A replicator produces a number of similar components of a construction.

A declaration which is executed in parallel with its scope.

An abbreviation which defines the value of a variable on leaving the scope of the
abbreviation.

A retyping conversion changes the data type of a bit pattern, from one data type to
another. There are two kinds of retyping conversions: conversions which convert a variable, and
conversions which convert the value of an expression. Such a conversion has no effect upon the bit
pattern, and differs from where the value of one type is represented as an equivalent
value of another type.

The region of a program associated with the specification of a name.

A segment is one or more components of an array.

A selection process ( ) executes a process from a list of associated options. The options are
selected by matching a selector with a constant expression associated with the option.

A sequential process ( ) is one where one action follows another.

A sequential protocol specifies a sequence of simple protocols as the format of com-
munication on a channel.

A declaration which is executed in parallel with its scope.

A channel which can be used for communication by more than one process, subject to
having first been claimed.

Perform logical shift of the bit pattern of a value.
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Start, perform no action and terminate immediately.

A specification is either a declaration, an abbreviation or a definition and specifies a name
which may be used within the associated scope.

Identifies the type of an given in an abbreviation or definition.

Start, perform no further action and do not terminate.

A sequence of ASCII characters equivalent to a table of bytes.

An expression which selects a component of an array.

One of the possible values of a union type.

An array of values of the same type, used in expressions.

Identifier of a protocol variant specified in a definition; or the identifier of a union subtype
in a data type definition.

A timer is a clock which can be accessed by any number of concurrent processes.

A timer input inputs a value from a timer.

A type conversion converts the value of an expression of one data type into a similar value
of another data type.

A union is a data type with a number of of specified data type. Each subtype is discriminated
by a distinct . The values of the union type consist of a tag value and a value of the corresponding
data type.

Ensure that variables and channels are not shared between parallel components.

A value process produces one or more results, each of primitive data type.

A variable is an element of data type which may be assigned to by input or assignment.

A list of variables used in a .

A variable subscript is a subscript whose value depends on a variable, a procedure
parameter, or the index of a replicator with a base or count which is not a constant or constant
expression.

Specifies a list of possible protocols for communication on a single channel.
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tag
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