occam” 3 reference manual

Geoff Barrett

DRART --- Marchi31, 1992

O 1992 INMOS Limited

This manual is a draft. Its contents represent the current state of development of the 0CCama3 specification
and some details may change before the final specification is released. However, it is envisaged that these
changes will be to the manual and not to the language itself. This copy is supplied for information purposes
only and it is not to be used for commercial purposes. INMOS assumes no responsibility for its use nor for
any infringement of patents or other rights of third parties resulting from its use. No licence is granted under
any patents, trademarks or other rights of INMOS.

INMOS, IMS and OcCam are registered trademarks of INMOS Limited.

We solicit comments on the clarity and consistency of the manual. In particular, observations in the following
areas are welcomed:

typographical errors;

inconsistency with current 0CCamz2 implementations;

clarification of descriptions;

better examples;

errors or omissions in the index.

DRART --- Marchi31, 1992

DRART --- Marchi31, 1992

A A R A R g

Contents \
Contents overview Xi
Preface Xiii
Introduction 1
Syntax and program format 3
Primitive processes 5
1.1 Assignment 5
1.2 Communication 5
121 Input 6

1.2.2 Output 6

1.3 SKI P and STOP 6
1.4 Summary 7
Combining processes 9
2.1 Sequence 9
2.1.1 Replicated sequence 10

2.2 Conditional 11
2.2.1 Replicated conditional 12

2.3 Selection 12
2.4 Loop 13
25 Parallel 14
2.5.1 Parallel disjointness 16

2.5.2 Replicated parallel 16

2.6 Alternation 18
2.6.1 Replicated alternation 20

2.7 Summary 22
Basic data types 23
3.1 Primitive data types 23
Rounding of real values 24

3.11 Literals 24

3.2 Arrays 26
3.21 Tables 26

3.2.2 Replicated tables 27
Variables and values 29
4.1 Declaring a variable 29
4.2 Array components and segments 30
4.3 Initialised declaration 32
4.4 Scope 32
4.5 Abbreviation of variables 34
4.6 Abbreviation of values 36
4.7 Result abbreviation 36
4.8 Disjoint arrays in parallels 37

DRART --- Marchi31, 1992

5 Structured data types 39
51 Named data types 39

5.2 Record data types 39

Record literals 40

The empty record 41

5.3 Union data types 41

Union literals 41

5.3.1 Subtype conversion 42

5.3.2 Subtype discrimination 42

5.3.3 Scope of subtype names 42

6 Channels 45
6.1 Channel type 45

6.2 Declaring a channel 45

6.3 Arrays of channels 45

6.3.1 Channel array components and segments 46

6.4 Channel protocol 46

6.4.1 Simple protocols 47

6.4.2 Naming a protocol 47

6.4.3 Sequential protocol 48

6.4.4 Variant protocol 49

Input on a channel with variant protocol 49

Variants in alternatives 51

Scope of tag names 52

6.5 Records of channels 52

6.6 Abbreviation of channels 53

7 Remote call channels 55
7.1 Declaring a call channel 55

7.2 Using a call channel 56

7.3 Call channels in alternations 57

7.4 Call channel abbreviation 58

8 Sharing 59
8.1 Sharing call channels 59

8.2 Shared communication channels 59

8.2.1 Restrictions on the body of a claim 60

8.3 Modelling shared call channels with shared channel records 61

8.4 Shared channels in alternations 61

9 Timers 63
9.1 Timer type 63

9.2 Declaring a timer 63

9.3 Timer input 64

9.4 Timers in alternations 65

9.5 Timer abbreviation 65

10 Expressions 67
10.1 Tables 67

10.2 Operations 68

10.2.1 Arithmetic operators 68

Rounding the results of real operations 69

DRART --- Marchi31, 1992

10.2.2 Modulo arithmetic operators 70

10.2.3 MOSTPGCS and MOSTNEG (integer range) 70

10.2.4 Bit operations 70

10.2.5 Shift operations 71

10.2.6 Boolean operations 71

10.2.7 Relational operations 72

AFTER (later than) 73

10.2.8 S| ZE (number of components in an array) 73

10.3 Data type conversion 73

11 Procedures 75
12 Functions 81
13 Modules 85
131 Process declarations 86

13.1.1 Automatic termination of processes 88

13.1.2 Disjointness of resource and server processes 89

13.2 Interfaces 89

13.3 Module types 90

13.3.1 Disjointness of instances of a module type 92

13.4 Module abbreviation and interface types 92

13.4.1 Passing modules as parameters 93

13.4.2 Interface conversion 93

14 Libraries 95
14.1 Defining new types 95

14.2 Libraries with internal state 99

15 Separate compilation and linking 101
Appendices 103

A Configuration 105
Al Execution on multiple processors 105

A2 Execution priority on a single processor 105

A.2.1 Priority parallel 105

A.2.2 Priority alternation 106

A3 Allocation to memory 106

B Ports 108
C Mapping types 109
D Concrete representation of data types 110
D.1 Record layout 110

D.2 Numbered unions 110

D.3 Type width 110

D.4 Array alignment 111

D.5 W DTHOF 111

E Rounding errors 112

DRART --- Marchi31, 1992

Omitting type decorations from literals 114
Anarchic protocol 115
Usage rules check list 116
H.1 Usage in parallel 116
H.2 The rules for abbreviations 116
H.3 The rules for procedures 117
H.4 The rules for value processes and functions 117
Invalid processes 118
Syntax summary 119
J.1 Collected syntax 119
J.1.1 Assignment 119
J.1.2 Replicator 119
J.1.3 Process constructions 119
J.1.4 Data types 121
J.1.5 Values 122
J.1.6 Variables 122
J.1.7 Channels 122
J.1.8 Call channels 124
J.1.9 Sharing 125
J.1.10 Timers 125
J.1.11 Expressions 126
J.1.12 Procedures 127
J.1.13 Functions 128
J.1.14 Process declarations 128
J.1.15 Modules 129
J.1.16 Libraries 129
J.1.17 Configuration 130
J.2 Ordered syntax 132
Keywords and symbols 144
Character set 146
Standard libraries 148
M.1 Multiple length integer arithmetic functions 148
M.2 Floating point functions 149
M.3 Full IEEE arithmetic functions 149
M.4 Elementary function library 150
M.5 Value, string conversion procedures 151
Multiple length arithmetic functions 152
N.1 The integer arithmetic functions 153
N.2 Arithmetic shifts 159
N.3 Word rotation 160

DRART --- Marchi31, 1992

Floating point functions 162
0.1 Not-a-number values 162
0.2 Absolute 162
0.3 Square root 163
0.4 Test for Not-a-Number 163
0.5 Test for Not-a-Number or infinity 163
0.6 Scale by power of two 163
O.7 Return exponent 164
0.8 Unpack floating point value 164
0.9 Negate 164
0.10 Copy sign 165
0.11 Next representable value 165
0.12 Test for orderability 165
0.13 Perform range reduction 166
0.14 Fast multiply by two 166
0.15 Fast divide by two 166
0.16 Round to floating point integer 167
IEEE floating point arithmetic 168
P.1 ANSI/IEEE real comparison 168
Elementary function library 170
Q.1 Logarithm 171
Q.2 Base 10 logarithm 171
Q.3 Exponential 171
Q.4 X to the power of Y 172
Q.5 Sine 172
Q.6 Cosine 173
Q.7 Tangent 173
Q.8 Arcsine 173
Q.9 Arccosine 174
Q.10 Arctangent 174
Q.11 Polar Angle 174
Q.12 Hyperbolic sine 175
Q.13 Hyperbolic cosine 175
Q.14 Hyperbolic tangent 175
Q.15 Pseudo-random numbers 176
Value, string conversion routines 177
R.1 Integer, string conversions 177
R.2 Boolean, string conversion 178
R.3 Real, string conversion 178
Glossary of terms 180
Index 185

DRART --- Marchi31, 1992

DRART --- Marchi31, 1992

A A R A g

S W i W IEIN VWY

The preliminaries

Preface
Introduction
Syntax and program format

A few words about the language.
A few words about the book.

Describes the modified BNF used in OCCam syntax, and details pro-
gram format and annotation.

The chapters

=

10

11
12

13

14

15

Primitive processes
Combining processes

Basic data types
Variables and Values
Structured data types
Channels

Remote call channels
Sharing

Timers

Expressions

Procedures
Functions

Modules
Libraries

Separate compilation
and linking

Describes the basic building blocks of 0CCam programs.

Describes how smaller processes may be combined into larger pro-
cesses to make programs.

Describes data types of integers, bytes, booleans, reals and arrays,
detailing literals and tables.

Describes how to declare variables and values.

Describes record and union types.

Describes channel types, detailing the declaration of channels, channel
protocol, and the definition of channel protocol.

Describes how to pass parameters to a procedure whose body is ex-
ecuted in a different process from the calling process.

Describes how channels can be used by more than one process
concurrently.

Describes timer types, detailing the declaration of timers, timer input,
and delayed input.

Describes expressions in 0CCam, arithmetic and other operators, type
conversions &c.

Describes the method of giving names to OCCam processes.
Describes value processes, and the method of giving a name to value
processes.

Describes how to structure processes and build infrastructures around
processes.

Describes how to structure program and reuse definitions in many dif-
ferent applications.

Describes how to use libraries from another application.

DRART --- Marchi31, 1992

The appendices

A

OO

mm

ZZIrr X o

T O

nw 1 O

Configuration

Ports

Mapping types
Concrete
representation of data
types

Rounding errors
Omitting type
decorations from
literals

Anarchic protocol
Usage rules check list

Invalid processes
Syntax summary

Keywords and symbols
Character set
Standard libraries
Multiple length
arithmetic functions
Floating point functions
IEEE floating point
arithmetic

Elementary function
library

Value, string
conversion routines
Glossary

THE INDEX

Describes how to allocate processes to individual processors, how to
give priority to processes running on a single processor, and place
elements at absolute locations in memory.

Describes how to communicate with memory mapped devices.
Describes how to convert the data type of a bit pattern.

Describes how to control the physical layout of data in memory.

Describes the rounding modes of the ANSI/IEEE standard.
Describes when type decorations can be omitted from literals.

Describes the unstructured protocol ANY.

A check list of the rules which apply to names used in parallel processes
and abbreviations.

Describes the three modes of existence for invalid processes.

A complete list of the OCCam syntax. Each syntactic object is pre-
sented in context, and also alphabetically.

A complete list of the keywords and symbols used in OCcCam.

The ocCcam character set, ASCII table.

A complete list of all the procedures and functions in standard libraries.
Describes the routines available for multiple length arithmetic.

Describes the routines available for floating point operations.
Describes the routines available for floating point operations.

Describes the routines in the elementary function library.
Describes the routines to convert between values and strings.

A complete glossary of terms.
A comprehensive index

DRART --- Marchi31, 1992

L] LR 4 A A 4

The 0CCam programming language is designed to express concurrent algorithms and their implementation
on a network of processing components.

The oCCam reference manual serves to provide a single reference, and definition of the language OCcam.
The manual describes each aspect of the language, starting with the most primitive components of an 0cCcam
program, and moving on to cover the whole language in detail. The manual is addressed to the wider audi-
ence, including not only the computer scientist, software engineer and programmer, but also the electronics
engineer and system designer.

Programming in OCCam is easy. OCCam enables an application to be described as a collection of processes,
where each process executes concurrently, and communicates with other processes through channels. Each
process in such an application describes the behaviour of a particular aspect of the implementation, and
each channel describes the connection between each of the processes. This approach has two important
consequences. Firstly, it gives the program a clearly defined and simple structure. Secondly, it allows the
application to exploit the performance of a system which consists of many parts.

Concurrency and communication are the prime concepts of the OCCam model. ocCam captures the hier-
archical structure of a system by allowing an interconnected set of processes to be regarded as a unified,
single process. At any level of detail, the programmer is only concerned with a small, manageable set of
processes.

occCam is an ideal introduction to a number of key methodologies in modern computer science. 0CCam
programs can provide a degree of security unknown in conventional programming languages such as C,
FORTRAN or Pascal. occam simplifies the task of program verification, by allowing application of mathe-
matical proof techniques to prove the correctness of programs. Transformations, which convert a process
from one form to a directly equivalent form, can be applied to the source of an OCCam program to improve its
efficiency in any particular environment. 0CCam makes an ideal language for specification and behavioural
description. 0OCCam programs are easily configured onto the hardware of a system or indeed, may specify
the hardware of a system.

The founding principle of 0CCam is a minimalist approach which avoids unnecessary duplication of language
mechanism, and is named after the 14th century philosopher William of Occam who proposed that invented
entities should not be duplicated beyond necessity. This proposition has become known as “Occam’s razor”.

The occam programming language arises from the concepts founded by David May in EPL (Experimental
Programming Language) and Tony Hoare in CSP (Communicating Sequential Processes). Since its concep-
tion in 1982 occam has been, and continues to be under development at INMOS Limited, in the United
Kingdom, under the direction of David May. The support for large programs provided by 0CCama3 is based
on principles found in many current programming languages which have been refined at INMOS by Geoff
Barrett. The development of the INMOS transputer, a device which places a microcomputer on a single
chip, has been closely related to OCCam, its design and implementation. The transputer reflects the 0CCam
architectural model, and may be considered an 0CCam machine. OCCam is the language of the transputer
and as such, when used to program a single transputer or a network of transputers, provides the equivalent
efficiency to programming a conventional computer at assembler level. However, this manual does not make
any assumptions about the hardware implementation of the language or the target system.

occam is a trademark of the INMOS group of companies.

DRART --- Marchi31, 1992

DRART --- Marchi31, 1992

11 18] WV MWW RINIsEL TR

This manual describes the programming language 0OCCama3. 0Ccama3 is an extension of 0CCam2 with new
constructs to support medium and large programs. In particular, 0CCama3 has mechanisms for the definition
of new data types, and for the construction of modules and libraries. The extensions also include constructs
which allow an efficient implementation of shared channels.

This manual was completed during 1991 and 1992 as a part of the final development of 0CCama3 at the
INMOS Microcomputer Centre, Bristol, UK.

Using this manual

This book is designed primarily to be used as a reference text for the programming language Occam.
However, the manual should also serve as an introduction to the language for someone with a reasonable
understanding of programming languages. The primitive aspects of the language are presented at the start
of the manual, with as few forward references as possible. It is therefore possible to read the manual from
cover to cover, giving the reader an insight into the language as a whole. The manual is cross referenced
throughout, and a full index and glossary of terms are provided at the end of the manual.

Keywords and example program fragments appear in a bol d program f ont throughout, for example:

-- exanpl e program fragment
| F
occam
programring : = easy

Words which appear in italic indicate a syntactic object, but may also serve to emphasise a need to cross
reference and encourage referral to the index. Mathematical symbols and names referring to a mathematical
values use a roman italic font.

Figures are used in a number of places to illustrate examples, they use the following conventions: an arrowed
line represents a channel, a round cornered box represents a process (referred to here as a process box),
a lighter coloured process box combines a number of smaller processes. The conventions are illustrated in
figure 0.1.

DRART --- Marchi31, 1992

/ a process \

/ a process \

a channel

.

v

- J

conmbi ned processes

Figure 0.1 Figure conventions

DRART --- March 31, 1992

V]IILULI\ /Ol 1N\ rll lev\.lll 1701 101 IWAG

Syntactic notation

The syntax of OCCam programs is described in a modified Backus-Naur Form (BNF). As an example, the
following shows the syntax of assignment, discussed on page 5:

assignment = variable : = expression
This means “An assignment is a variable followed by the symbol : =, followed by an expression”. A vertical
bar (]) means “or”, so for example:
action = assignment
| input
| output
is the same as
action = assignment
action = input
action = output

The meaning of this syntax is “An action is an assignment, an input, or an output”.

The written structure of OCCam programs is specified by the syntax. Each statement in an OCCam program
normally occupies a single line, and the indentation of each statement forms an intrinsic part of the syntax of
the language. The following example shows the syntax for sequence discussed on page 9:

sequence = SEQ
{ process }

The syntax here means “A sequence is the keyword SEQ followed by zero or more processes, each on a
separate line, and indented two spaces beyond SEQ'. Curly brackets { and } are used to indicate the number
of times some syntactic object occurs. { process } means, “zero or more processes, each on a separate
line”. Similarly, {o , expression }, means “A list of zero or more expressions, separated by commas”, and
{1, expression }, means “A list of one or more expressions, separated by commas”.

A complete summary of the syntax of the language is given at the end of the main body of the manual (starting
on page 119).

Continuation lines

A long statement may be broken immediately after one of the following:

an operator | ie. +, -, * [etc..
a comma ,

a semi-colon | ;

assignment i=

the keyword | | S, FROMor FOR

A statement can be broken over several lines providing the continuation is indented at least as much as the
first line of the statement.

The annotation of occam programs

As the format of OCCam programs is significant, there are a number of rules concerning how programs are
annotated. A comment is introduced by a double dash symbol (- -), and extends to the end of the line.

DRART --- Marchi31, 1992

Consider the following sequence:

SEQ
-- This exanple illustrates the use of comrents
-- A comment may not be indented | ess than
-- the foll owi ng statenent

SEQ -- A sequence

Comments may not be indented less than the following statement.

Names and keywords used in occam programs

Names used in OCCam programs must begin with an alphabetic character. Names consist of a sequence of
alphanumeric characters and dots. There is no length restriction. OCCam is sensitive to the case of names,
i.e. Say is considered different from say. With the exception of the names of channel protocols, names
in the examples presented in this manual are all lower case. However, the following are all valid names in
occam:

PACKETS
vector6

Li nkQut

NOT. A. NUMBER
transputer
termnal.in
t er m nal Qut

All keywords are upper case (e.g. SEQ. All keywords are reserved, and thus may not be used by the
programmer. A full list of the keywords appear on page 144. The names of library routines are given in the
appendix starting on page 148.

DRART --- Marchi31, 1992

L] L] 118 0 RSN W N\ rll S N) N Nl

1.1 Assignment

occam programs are built from processes. The simplest process in an OCCam program is an action. An
action is either an assignment, an input or an output. Consider the following example:

X =y +2

This simple example is an assignment, which assigns the value of the expression y + 2 to the variable x.
The syntax of an assignment is:

assignment = variable : = expression

The variable on the left of the assignment symbol (: =) is assigned the value of the expression on the right
of the symbol. The value of the expression must be of the same data type as the variable to which it is to be
assigned, otherwise the assignment is not valid.

Variables are discussed on page 29, data types are discussed on page 23, and expressions on page 67.
A multiple assignment assigns values to several variables, as illustrated in the following example:

a, b, c:=x, y+1 z + 2
This assignment assigns the values of x, y + 1 and z + 2 to the variables a, b and ¢ respectively. The
expressions on the right of the assignment are evaluated, and the assignments are then performed in parallel.
Consider the following example:

X, Yy =Yy, X

The effect of this multiple assignment is to swap the values of the variables x and y.

The syntax of multiple assignment extends the syntax for assignment:

assignment = variable.list : = expression.list
variable.list = {i, variable }
expression.list = {1, expression }

A list of expressions appearing to the right of the assignment symbol (: =) is evaluated in parallel, and then
each value is assigned (in parallel) to the corresponding variable of the list to the left of the symbol. The
rules which govern the names used in a multiple assignment therefore follow from those for names used in
parallel constructions (see page 16). Practically, this means that no name may appear twice on the left side
of a multiple assignment, as the name of a variable or as the name of a variable and the name of a subscript
expression which selects a component from an array (data type arrays are explained in section 3.2 which
starts on page 26).

The expression on the right of the assignment symbol (: =) may be a function. A multiple result function can
be an expression list in a multiple assignment. Functions are discussed in chapter 12 starting on page 81.

1.2 Communication
Communication is an essential part of OCCam programming. Values are passed between concurrent pro-

cesses by communication on channels. Each channel provides unbuffered, unidirectional point-to-point com-
munication between two concurrent processes. The format and type of communication on a channel is

DRART --- Marchi31, 1992

specified by a channel protocol given in the declaration of a channel. Channel protocols are discussed in
chapter 6, which starts on page 46, and channel declarations are discussed in the same chapter on page 45.

Two actions exist in 0CCam which perform communication on a channel. They are: input and output.

1.2.1 Input

An input receives a value from a channel and assigns the received value to a variable. Consider the following
example:

keyboard ? char

This simple example receives a value from the channel named keyboar d and assigns the value to the
variable char . The input waits until a value is received.

The syntax of an input is:

input = channel ? variable

An input receives a value from the channel on the left of the input symbol (?), and assigns that value to
the variable on the right of the symbol. The value input must be of the same data type as the variable to
which it is assigned, otherwise the input is not valid. Variables are discussed on page 29, and data types are
discussed on page 23.

1.2.2 Output

An output transmits the value of an expression to a channel. Consider the following example:

screen ! char

This simple example transmits the value of the variable char to the channel named scr een. The output
waits until the value has been received by a corresponding input.

The syntax of an output is:

output = channel ! expression

An output transmits the value of the expression on the right of the output symbol (!') to the channel named
on the left of the symbol.

Variables are discussed on page 29 and expressions on page 67.

1.3 SKI P and STOP
The primitive process SKI P starts, performs no action and terminates.
The primitive process STOP starts, performs no action and never terminates.

To explain how SKI P behaves, consider the following sequence:

SEQ
keyboard ? char
SKI P
screen I char

DRART --- Marchi31, 1992

This sequence executes the input keyboard ? char, then executes SKI P, which performs no action. The

sequence continues, and the output screen ! char is executed. The behaviour of STOP is illustrated by
the following sequence:

SEQ
keyboard ? char
STOP
screen I char

This sequence performs the input keyboard ? char before, then executes STOP, which starts but does not
terminate and so does not allow the sequence to continue. The output screen ! char is never executed.

1.4 Summary

The primitive OCCaMm processes are assignments, inputs, outputs, SKI P and STOP:

process = assignment
| input

| output

| SKIP

| STOP

DRART --- Marchi31, 1992

DRART --- Marchi31, 1992

e W IR IS 00 RRA Iv rll e) Nl N) Nl i

occam programs are built from processes. Primitive processes are described in the previous chapter. Larger
processes are built by combining smaller processes in a construction. A construction builds a process of one
of the following kind:

SEQ sequence

I F conditional
CASE selection
VHI LE | loop

PAR parallel
ALT alternation

A sequential process is built by combining processes in a sequence, conditional or selection construction.
A loop is built by combining processes in a VWHI LE loop. Concurrent processes are built with parallel and
alternation constructions, and communicate using channels, inputs and outputs.

The constructions SEQ | F, PAR and ALT can all be replicated. A replicated construction replicates the

constructed process, choice or alternative a specified number of times. Details of replication applied to each
of these constructions is given in the following sections.

2.1 Sequence

A sequence combines processes into a construction in which one process follows another. Consider the
following example:

SEQ
keyboard ? char
screen I char

This process combines two actions which are performed sequentially. The input keyboard ? char receives
a value which is assigned to the variable char, then the following output screen ! char is performed.

Programs are built by constructing larger processes from smaller ones. Thus a construction may contain
other constructions, as shown in the following example:

SEQ

SEQ
screen ! ' ?
keyboard ? char

SEQ
screen ! char
screen ! cr
screen ! |f

This simple example combines five actions, and suggests how embedded sequences may be used to show
the hierarchical structure of a program. Embedding constructions of the same kind has no effect on the
behaviour of the process. This example is equivalent to the following:

SEQ
screen | ' ?
keyboard ? char
screen ! char
screen ! cr
screen ! |f

DRART --- Marchi31, 1992

The syntax for a sequence is:

sequence = SEQ
{ process }

The keyword SEQ s followed by zero or more processes at an indentation of two spaces.

2.1.1 Replicated sequence

A sequence can be replicated to produce a number of similar processes which are performed in sequence,
and behave like a conventional counted loop. Consider the following:

SEQi = 0 FOR array.size
stream! data.array[i]

This process performs the output stream ! data.array[i] the number of times specified by the value
of array. si ze. The initial value of the index i is specified by a base value (in this case 0). In the above
sequence the value of i for the first output is 0, and for each successive output performed the value of the
index is an increment of its previous value. If array. si ze has the value 2, the example can be expanded
to show the effect of the replication as follows:

SEQ
stream ! data.array[0]
stream ! data.array[1]

Consider the following example in which the base value is 14:

SEQi = 14 FOR 2
stream! data.array[i]

This example may also be expanded to show the value of the index for each replication, as follows:

SEQ
stream ! data. array[14]
stream ! data. array[15]

This example uses an array; arrays (page 26) are explained later in the manual. Arrays may also be
communicated in a single output (see page 47).

The syntax for a replicated sequence extends the syntax for sequences:

sequence = SEQreplicator
process
replicator = name = base FOR count
base = expression
count = expression

The keyword SEQ and a replicator are followed by a process which is indented two spaces. The replicator
appears to the right of the keyword SEQ The replicator specifies a name for the index (ie the name does
not need to be declared elsewhere). The value of the index for the first replication is the value of the base
expression, and the number of times the process is replicated is the value of the count expression at the
start of the sequence.

The index may be used in expressions but cannot be assigned to by an input or assignment. The index has a
value of type | NT. The base and count expressions must also be of data type | NT. Data types (page 23) are
explained later in the the manual. A negative value count expression is invalid. See appendix I, page 118 for
an explanation of how invalid processes behave. If the value of the count expression is zero, the replicated
sequence behaves like the primitive process SKI P (page 6).

DRART --- Marchi31, 1992

2.2 Conditional

A conditional combines a number of processes each of which is guarded by a boolean expression. The
conditional evaluates each boolean expression in sequence; if a boolean expression is found to be true the
associated process is performed, and the conditional terminates. If none of the boolean expressions are true
the conditional behaves like the primitive process STOP (page 6), for example:

I F
X <y
X = x +1
X >=y
SKI P

Consider this example in detail: if X < y is true, the associated process x : = x + 1 is performed, however
if the expression x < vy is false, the next boolean expression x >= y is evaluated. If x >= vy is true, then
the associated process SKI P is performed. In this example, one of the boolean expressions must be true.
However, consider the next example:

I F
X <y
X :=x +1

This conditional has a single component. If the expression x < y is false then the conditional will behave
like the primitive process STOP (page 6). It is often convenient to use a form of conditional where the final
choice is guaranteed to be performed, as illustrated by the following example:

I F
X >y
order := gt
X <y
order := 1t
TRUE
order := eq

The expressions x > y and x < y will each be either true or false. The final expression uses the boolean
constant TRUE which is always true, and acts as a catch-all which causes the associated process to be
performed if none of the previous boolean expressions are true. In this context TRUE may be read as
“otherwise”.

The syntax for a conditional is:

conditional = |F
{ choice }
choice = guarded.choice | conditional
guarded.choice = boolean
process
boolean = expression

The keyword | F is followed by zero or more choices, indented two spaces. A choice is either a guarded
choice or another conditional. A guarded choice is a boolean expression followed by a process, indented two
spaces.

A choice which is itself a conditional has the same behaviour if “flattened out” in a similar way to the embedded
sequences shown earlier (page 9). Consider the following example:

I F

DRART --- Marchi31, 1992

This has the same effect as:
I F
X >y
X :=x +1
TRUE
SKI P

Boolean expressions (page 71) are discussed later in the manual.

2.2.1 Replicated conditional

A conditional may also be replicated, just as a sequence may (page 10). A replicated conditional constructs
a number of similar choices. The following example compares the two strings st ri ng and obj ect:

I F
IFi =1 FOR length
string[i] <> object[i]
found : = FALSE
TRUE
found : = TRUE

The first choice in this example is a replicated conditional. This has created a number of similar choices each
guarded by a boolean expression comparing a component of the array st ri ng and the array obj ect. The
replication may be expanded to show its meaning. If I engt h has a constant value 2, this example has the
same effect as:
I F
| F
string[1l] <> object[1]
found : = FALSE
string[2] <> object[2]

I F
string[1l] <> object[1]
found : = FALSE
or string[2] <> object[2]

found : = FALSE found : = FALSE
TRUE TRUE
found : = TRUE

found : = TRUE

The syntax for the replicated conditional is:

conditional = | F replicator
choice
replicator = name = base FOR count
base = expression
count = expression

The keyword | F and a replicator are followed by a choice which is indented two spaces. The replicator
appears to the right of the keyword | F. The replicator specifies a name for the index. The value of the index
for the first replication is the value of the base expression, and the number of times the choice is replicated
is the value of the count expression.

The index may be used in expressions but cannot be assigned to by an input or assignment. The index is of
data type | NT. The data type of the base and the count expressions must also be of type | NT. Data types
(page 23) are explained later in the the manual. A negative value count expression is invalid. See appendix I,
page 118 for an explanation of how invalid processes behave. If the value of the count expression is zero,
the replicated conditional behaves like a conditional with no true conditions.

2.3 Selection

A selection combines a number of options, one of which is selected by matching the value of a selector
with the value of a constant expression (called a case expression) associated with the option. Consider the

DRART --- Marchi31, 1992

following example:

CASE direction

up
X :=x +1
down
X :=x -1
In this example the value of di rect i on is compared to the value of the case expressions up and down. If
di rection has a value equal to up then x : = x + 1 is performed, if di recti on has a value equal to
down then x := x - 1 is performed, however if no match is found, the selection behaves like the primitive
process STOP (page 6). Several case expressions may be associated with a single option, for example:
CASE letter
a', 'e’, i, o,
vowel := TRUE

Ifletter hasthevalue’a’,’ e’ ,’i’,’ 0", or’u’, then the variable vowel is assigned the value TRUE,
otherwise the selection behaves like the primitive process STOP. Here it is useful to use a special form of
selection where one of the options is guaranteed to be performed, as illustrated below:

CASE | etter
a', 'e’, i, "o, 'u
vowel := TRUE
ELSE
vowel := FALSE

The process associated with ELSE in a selection will be performed if none of the case expressions match the
selector.

The syntax for a selection is:

selection = CASE selector
{ option }
option = {,, case.expression }
process
| ELSE
process
selector = expression
case.expression expression

The keyword CASE is followed by an expression and then by zero or more options, indented two spaces.
The expression must have type BOOL, BYTE or an integer type. An option starts with either a list of case
expressions or the keyword ELSE. This is followed by a process, indented two spaces. All case expressions
used in a selection must have distinct constant values (that is, each must be a different value from the other
expressions used). The selector and the case expressions must be the same data type, which may be either
an integer or a byte data type. A selection can have only one ELSE option.

Constant expressions may be given a name in an abbreviation (page 36). Data types (page 23) and expres-
sions (page 67) are also discussed later.

24 Loop

A loop repeats a process while an associated boolean expression is true. Consider the following example:

VWH LE buffer <> eof
SEQ
in ? buffer
out ! buffer

DRART --- Marchi31, 1992

This loop repeatedly copies a value from the channel i n to the channel out. The copying continues while
the boolean expression buf f er <> eof is true. The sequence is not performed if the boolean expression
is initially false.

To further illustrate how processes combine, consider the following process:

SEQ
-- initialise variables
poi nt er =0
finished : = FALSE
f ound = FALSE

-- search until found or end of string
VWHI LE NOT fi ni shed
I F
string[pointer] <> char

poi nter < end.of.string

pointer := pointer + 1
poi nter = end. of.string
finished : = TRUE
string[pointer] = char
SE
f ound = TRUE
finished : = TRUE

This example searches the array st ri ng for a character (char). Note how the process is built from primitive
processes and constructions. In fact it is simpler and easier to write this example using a replicated conditional
(page 12) as follows:

I F
IFi =0 FOR string.size
string[i] = char
found : = TRUE
TRUE
found : = FALSE

The syntax for a loop is:

loop = VWH LE boolean
process
boolean = expression

The keyword WHI LE and a boolean expression are followed by a process which is indented two spaces. The
boolean expression appears to the right of the keyword WHI LE.

2.5 Parallel

The parallel is one of the most useful constructs of the OCCam language. A parallel combines a number of
processes which are performed concurrently. Consider the following example:

PAR
editor (termin, termout)
keyboard (termin)
screen (termout)

This parallel combines three named processes (known as procedures, page 75), which are performed to-
gether. They start together and terminate when all three processes have terminated. The editor and keyboard

DRART --- Marchi31, 1992

t er m out SCreen

editor

termin

\< keyboard)
AN Z4

Figure 2.1 Communicating concurrent processes

process communicate using channel t er m i n, the screen and editor communicate using channel t er m out .

Values are passed between concurrent processes by communication on channels (page 45) using input
and output (page 6). Each channel provides unbuffered unidirectional point-to-point communication between
two concurrent processes. Figure 2.1 illustrates the channels connecting the three processes in the above
example.

The example above shows the parallel being used to tie together the major components of a system. However,
a parallel may also be used simply to allow communication and computation to proceed together, as in the
following example:

VWHI LE next <> eof
SEQ
X = next
PAR
in ? next
out ! x * x
The parallel in this example inputs the next value to be processed from one channel while the last value is
being processed and output on another.

The syntax of a parallel is similar to that of a sequence:

parallel = PAR
{ process }

The keyword PAR is followed by zero or more processes at an indentation of two spaces.

Parallels may be nested to form the hierarchical structure of a program. The behaviour of the following
process is the same as the earlier example:

PAR
editor (termin, termout)
PAR
keyboard (termin)
screen (term out)

Writing a parallel like this helps later in program development when a program must be configured to its
environment (when its processes are allocated to physical devices).

A parallel construction which specifies a priority of execution on a single processing device able to perform
several tasks (ie a multi-tasking processor) is described in appendix A.2.1, page 105.

DRART --- Marchi31, 1992

2.5.1 Parallel disjointness

Parallel processes which share channels and variables are subtly dependent on the way in which parallel
composition is implemented. For instance, a variable which is written by one process and read by another
depends upon the scheduling of the processes to ensure that the variable is written before it is read. The
scheduling can be affected by events outside the control of the processes and differs between implemen-
tations. This means that errors in the program can become apparent on rare occasions and are therefore
difficult to repeat. Chapter 8 describes sharing constructs. Variables and channels in parallels are subject to
disjointness rules which prevent them from being accidentally shared between processes.

Variables which are assigned by input or assignment in one of the processes of a parallel may not be used in
expressions or for assignment by any other process in the parallel. A variable may appear in expressions in
any number of components of a parallel so long as it is not assigned in any parallel component. The following
process, for example, is INVALID:

PAR -- this parallel is INVALID
SEQ
mce := 42 -- the variable mce is assigned
c! 42
c ? mce -- in nore than one parallel conponent
This process is invalid because it assigns to the variable ni ce in the assignment nmi ce : = 42 in the first

component of the parallel and also in the inputc ? m ce in the second component.

A channel which is used for input (respec output) in one component of a parallel may not be used for input
(respec output) in any other component of the parallel. The following process, for example, is INVALID:

PAR -- this parallel is INVALID
c! 0 -- the channel c is used for output
SEQ
cC ? X
c?y
c! 1 -- in nore than one parallel conponent

This process is invalid because it uses the channel ¢ for output in more than one parallel component.

A check list of the usage rules which apply to parallel processes is given in appendix H.

2.5.2 Replicated parallel

A parallel can be replicated, in the same way as sequences and conditionals described earlier. A replicated
parallel constructs a number of similar concurrent processes, as shown in the following example:

PARi = 3 FOR 4
user[i] ! nessage

This replication performs the four outputs concurrently, and is equivalent to

PAR
user[3] ! nessage
user[4] ! nessage
user[5] ! nessage
user[6] ! nessage

Now consider the following example:

PAR
farmer ()
PARi =0 FOR 4

wor ker (i)

DRART --- Marchi31, 1992

f ar mer

Figure 2.2 A farm of parallel processes

The replicated parallel in this example starts 4 processes, each a copy of the procedure wor ker, and
terminates when all four processes are finished. Figure 2.2 shows the structure of this process, which is
elaborated upon in the following section. Unlike sequence and conditional replications, the count value (here
4) must be constant. The procedure wor ker takes a single parameter (page 75), for each instance (page 75)
of the procedure the value of the index i is passed. Expanding the replication shows that the above example
is equivalent to the following:

PAR
farmer ()
PAR
wor ker (0)
wor ker (1)
wor ker (2)
wor ker (3)

The syntax of a replicated parallel is similar to that of the replicated sequence shown earlier in the manual:

parallel = PARreplicator
process
replicator = name = base FOR count
base = expression
count = expression

The keyword PAR and a replicator are followed by a process, indented two spaces. The replicator appears
to the right of the keyword PAR. The replicator specifies a name for the index. The value of the index for the
first replication is the value of the base expression, and the number of times the process is replicated is the
value of the count expression.

The index may be used in expressions but cannot be assigned to by an input or assignment. A negative value
count expression is invalid (see appendix I, page 118 for an explanation of how invalid processes behave).
If the value of the count expression is zero, the parallel replication behaves like the primitive process SKI P
(page 6). The base and count expressions of a replicated PAR must be constant values.

The index has a value of type | NT. The data type of the base and the count expressions must also be of
type | NT. Data types (page 23) are explained later in the manual.

DRART --- Marchi31, 1992

2.6 Alternation

An alternation combines a number of processes guarded by inputs. The alternation performs the process
associated with a guard which is ready. Consider the following example:

ALT
left ? packet
stream ! packet
ri ght ? packet
stream ! packet

The effect of this example is to merge the input from the two channels named | eft and ri ght, on to the
channel stream The alternation (illustrated in figure 2.3) receives an input from either channel | eft or
channel ri ght. A ready input is selected, and the associated process is performed. Consider this example
in detail. If the channel | ef t is ready, and the channel right is not ready, then the input | eft ? packet is
selected. If the channel ri ght is ready, and the channel left is not ready, then the input ri ght ? packet
is selected. If neither channel is ready then the alternation waits until an input becomes ready. If both inputs
are ready, only one of the inputs and its associated process are performed.

ALT
bflef t ?packet \
| ef t
st ream packet >
stream
ri ght ?packet
right _ P Y,

Figure 2.3 Merging the flow of data

A boolean expression may be included in an alternation to selectively exclude inputs from being considered
ready, as shown in the following example:

ALT
left.enabled & left ? packet
stream ! packet
ri ght ? packet
stream ! packet

This alternation places the boolean variable (page 29) | eft. enabl ed before the second input. If
| ef t. enabl ed is true, the input is included for consideration by the alternation. If | ef t . enabl ed is false,

DRART --- Marchi31, 1992

the input is excluded. To clarify this behaviour, consider the following example:

-- Regul ator:
-- regul ate flow of work into a networked farm
SEQ
idle := processors
VW LE runni ng
ALT
fromworkers ? result
SEQ
fromfarm! result
idle :=idle + 1
(idle >= 1) & to.farm ? packet
SEQ
to.workers ! packet
idle :=idle - 1

J

far mer

|

fromfarmT Lto.farn

from wor ker

‘¢

(regul at or
N

t 0. wor ker

Figure 2.4 Regulating the flow of data

This is an example (part of the farmer process first illustrated in figure 2.2 and fully illustrated in figure 2.4)
of a process which regulates the flow of work into a processor farm. A processor farm can be thought of as
a number of machines (worker processes), microcomputers perhaps, each able to perform some task and
output a result. The above example controls the amount of work (as packets of data) given to a farm which
consists of a network of worker processes. Work may be received by the inputt o. farm ? packet, and is
only considered if a member of the farm is idle (ie (i dl e >= 1)). As a packet of work is sent to the farm,
the counter i dl e is decremented to indicate the number of worker processes which are idle. The worker
processes are sent work on the channel t 0. wor ker s (see figure 2.2), and the variable i dl e is decremented
to keep a count of the idle machines in the farm. If a worker is busy, the work packet is passed on until a

non-busy worker is found.

The syntax for alternation is:

alternation = ALT
{ alternative }
alternative = guarded.alternative | alternation
guarded.alternative = guard
process
guard input

| boolean & input
| boolean & SKI P

DRART --- Marchi31, 1992

The keyword ALT is followed by zero or more alternatives, indented two spaces. An alternative is either a
guarded alternative or another alternation. A guarded alternative is an input, or a boolean expression to the
left of an ampersand (&) with an input or SKI P on the right. SKI P can take the place of an input in a guard
which includes a boolean expression, as shown in the following example:

ALT
in ? data
out ! data
nonday & SKI P
out ! no.data

If the boolean nonday is true then SKI P is treated as though it where a ready input, and may be selected
immediately. If the inputin ? dat a is also ready, only one of the processes is performed, which process
will be performed is undefined.

Alternation with priority selection is explained in appendix A.2.1, page 106. Delayed inputs explained on
page 64 will delay before they become ready, and may be used in guards wherever an input may be used.

Inputs (page 6) and SKI P (page 6) are discussed in chapter 1. Expressions (page 67) are discussed later in
the manual. Details of boolean expressions are given on page 71.

2.6.1 Replicated alternation

An alternation can be replicated in the same way as sequences, conditionals and parallels described earlier
in the manual. A replicated alternation constructs a number of similar alternatives. The alternation performs
a single process which is associated with a ready guard. Consider the following example:

ALT
ALT i = 0 FOR number. of . workers
free.worker[i] & to.farm ? packet
SEQ
to.worker[i] ! packet
free.worker[i] := FALSE

ALT i = 0 FOR nunber. of . wor kers
fromworker[i] ? result
SEQ
fromfarm! result
free.worker[i] := TRUE

This example presents an alternate version of the process f ar ner discussed in the previous section and is
illustrated in figure 2.5. This version also regulates the flow of work into the farm, but does so by maintaining an
array of booleans (f r ee. wor ker) which indicate when a worker is busy. This version of the farmer process
is most suitable where several worker processes in the farm are able to input directly from the process. Work
packets are input on the channel t o. f ar mand distributed to an array of worker processes. The completed
result is returned to the farmer process via the channel fr om wor ker. Consider first the upper half of
this alternation. Each alternative is guarded by a boolean free. worker[i] (which has the value true if
the worker process is idle), and an input t o. farm ? packet which inputs packets of work. A selected
component of this replication will, after completing the input of a packet, perform the output t 0. wor ker[i]
I packet (ie pass work to an idle worker process), and then set the boolean free. worker[i] to false,
indicating the worker is no longer idle.

The replication may be expanded to show its meaning. For instance, if the value of nunber . of . wor ker s
is 2, the second alternation expands to:

ALT
fromworker[0] ? result
SEQ

frorﬁ {A/.c)rker[l] ? result
SEQ

DRART --- Marchi31, 1992

ALT
ALTi =0 FOR 2

(free. worker[0] }

t 0. wor ker [O]

>

free. worker[1]
(J

ALT i

<<
fromfarm(
S

=0 FR2

t 0. wor ker [1]

>
(D-EHEO-W)

(W)rkers m ght be\
farners too ...

from wor ker[0]

from worker[1]

.

Figure 2.5 A tree structured farm of parallel processes

Now consider the lower half of this example, which handles the results returning from worker processes. Each
component of the replication is guarded by an input f rom worker[i] ? result which receives results
from a worker process. A selected component of this replication will, after completing the input from the
resul t (ie pass the result back to the process which

worker process, perform the output from farm !

sent the work), and reset the boolean f r ee. wor ker to true to indicate the worker is now idle.

A number of these farmer processes in parallel can form a tree of worker processes (see figure 2.5), enabling

large and effective farms to be built.

If nunber . of . wor ker s has the value 2, the example has the same effect as:

ALT
ALT
free.worker[0] & to.farm ? packet
SEQ
to.worker[0] ! packet
free.worker[0] := FALSE

free.worker[1l] & to.farm ? packet
SEQ

to.worker[1] ! packet
free.worker[1] := FALSE
ALT
fromworker[0] ? result
SEQ
fromfarm! result
free.worker[0] := TRUE
fromworker[1] ? result
SEQ
fromfarm! result
free.worker[1l] := TRUE

As for the earlier descriptions of replication, the value of the index for the first replication is the value of the
base expression, and the number of replications is the value of the count expression. The syntax for the

DRART --- Marchi31, 1992

replicated alternation is:

alternation = ALT replicator
alternative

replicator = name = base FOR count

base = expression

count = expression

The keyword ALT and a replicator are followed by an alternative which is indented two spaces. The replicator
appears to the right of the keyword ALT. The replicator specifies a name for the index.

The index may be used in expressions but cannot be assigned to by an input or assignment. A negative value
count expression is invalid. See appendix I, page 118 for an explanation of how invalid processes behave. If
the value of the count expression is zero, the replicated alternation behaves like the primitive process STOP
(page 6).

The index has a value of data type | NT. The data type of the base and the count expressions must also be
an integer of type | NT. Data types (page 23) are explained later in the manual.

2.7 Summary

This chapter has shown how processes can be constructed from a sequence of processes; from a conditional
choice between processes; by selection of a process according to a value; by repeated execution of a process
in a loop; by execution of a number of processes in parallel; and by selection between process according to
alternative communications:

process = sequence

| conditional
| selection

| loop

| parallel

|

alternation

DRART --- Marchi31, 1992

e WO | W WA WA W \-] rl\l\-l

occam programs act upon variables, channels and timers. A variable has a value, and may be assigned a
value in an assignment or input. Channels communicate values. Timers produce a value which represents

the time.

This chapter describes the data type of values and literal representations of known values. Variables are

discussed on page 29, channels are discussed on pages 45 and 55 and timers are discussed on page 63.

3.1 Primitive data types

Values are classified by their data type. A data type determines the set of values that may be taken by

objects of that type.

These are the primitive data types available in occam:

BOCL

Boolean values true and false.

BYTE

Integer values from O to 255.

I NT

Signed integer values represented in twos complement form using the word size most effi-
ciently provided by the implementation.

I NT16

Signed integer values in the range —32768 to 32767, represented in twos complement form
using 16 bits.

I NT32

Signed integer values in the range —23! to (2°! — 1), represented in twos complement form
using 32 bits.

| NT64

Signed integer values in the range —2%3 to (2% — 1), represented in twos complement form
using 64 bits.

REAL32

Floating point numbers stored using a sign bit, 8 bit exponent and 23 bit fraction in ANSI/IEEE
Standard 754-1985 representation. The value is positive if the sign bit is 0, negative if the
sign bit is 1. The magnitude of the value is:

(2(eeponent—127)y . 1 fraction if O < exponent and ezponent < 255
(2-126) x 0. fraction if ezponent = 0 and fraction 70
0 if ezponent =0 and fraction =0 ‘

REAL 64

Floating point numbers stored using a sign bit, 11 bit exponent and 52 bit fraction in ANSI/IEEE
Standard 754-1985 representation. The value is positive if the sign bit is 0, negative if the
sign bit is 1. The magnitude of the value is:

(2lezponent=1023)y . 1 fraction | if O < exponent and exponent < 2047
(271022) x 0. fraction if exponent = 0 and fraction Z0
0 if ezponent = 0 and fraction =0

As the above list shows, all signed integer values are represented in twos complement form using the number
of bits indicated by the type. All real values are represented according to the representation specified by the

ANSI/IEEE standard 754-1985, for binary floating-point arithmetic.

Objects which have values in 0CCam have one of the following forms:

Literals

Constants | Symbolic names which have a constant value
Variables | Symbolic names which have a value, and may be assigned to by input or assignment

Index

Textual representation of known values

Replication index value

DRART --- Marchi31, 1992

A literal is a known value (1, 2, ' H , "Hel | 0", &c.). A variable has a value of a specified type, and may
be assigned a new value by an input or assignment. Names with a constant value are specified by an
abbreviation (page 36). Expressions (page 67) and functions (page 81) also have a data type and value.
The name specified as the index of a replication has a different value for each component of the replication.

The syntax of primitive data types is:

data.type = BOCOL

| BYTE

| INT

| [INT16
| INT32
| INT64
| REAL32
I

REAL64

Rounding of real values

An accepted limitation in the use of floating point representations of real values is that only a finite set of
all possible real values can be represented, thus any real value will be rounded to produce a result which
is the nearest value that can be represented by the type. For example, where the type is REAL32, the next
representable value after 1.0 is the value 1.000000119209 (to the nearest 12 digits past the decimal point),
any value lying between 1.0 and this value cannot be exactly represented using the representation of type
REAL32. Thus, values which do lie between 1.0 and 1.00000019209 which are of type REAL32 must be
rounded to one of these values.

The rounding of real numbers occurs in arithmetic expression evaluation (page 67), in explicit type conversions
(page 73), and also when literals are converted to the IEEE representation. An explanation of the IEEE
rounding modes, is given in the appendix (page 112).

3.1.1 Literals

A literal is a textual representation of a known value, and has a data type. For example, the following are all
valid literals:

42 an integer literal in decimal
#2A an integer literal in hexadecimal
T a byte literal

"zen" | a string literal
| TRUE | a boolean literal |

A number (eg 42) representing a decimal value, or a hexadecimal value introduced by the hash symbol (#),
is an integer of type | NT. A character enclosed within a pair of quotation marks (eg ' z’) has a value of type
BYTE. A string is an array of bytes, thus the string "zen" is an array of type [3] BYTE.

Literal values of other types may be expressed by decorating the textual representation of the value with the
type, for example:

42(BYTE) a byte value

T (1 NT) an integer value

42(1 NT64) an integer value with 64 bit representation
42. 0(REAL32) a 32 bit floating point value

386. 54(REAL64) a 64 bit floating point value

587. OE- 20(REAL64) a 64 bit floating point value
+1. OE+123(REAL64) a 64 bit floating point value
16777217. O(REAL32) | a 32 bit floating point value

DRART --- Marchi31, 1992

All real number literals must be explicitly decorated with their type in parentheses after the real number
unless the rules in section F allow the decoration to be omitted. A literal of type REAL32 or REAL64 will
be rounded (page 24) when the value is converted into the representation of the type. The effect of this
rounding can be seen particularly in the last example shown here. The value 16777216.0 is 224 and can be
represented precisely in the representation of 32 bit real numbers with a fraction of 23 bits. However, the
value 16777217.0 is (224 +1) and cannot be represented precisely in this representation, and will round to the
value 16777216.0. The nearest unique value of a conversion of a literal of type REAL32 can be determined
from the first 9 significant digits, and from the first 17 significant digits of a literal of type REAL64. The routines
which perform these conversions will use all the digits given in a literal, but further digits will have no affect
on the value, for example:

54321765439. 54(REAL32) | has a nearest representable value of 54321766400.0
54321765400. 00(REAL32) | also has a nearest representable value of 54321766400.0

An explanation of the IEEE rounding is given in the appendix (page 112).

The syntax for literals is:

literal = integer
| byte
| integer(decoration)
| byte(decoration)
| real(decoration)
| string
| TRUE| FALSE
decoration = data.type
integer = digits | #hex.digits
byte = ' character’
real = digits. digits | digits. digits Eexponent
exponent = +digits | - digits
digit = 0]1]2]|3|]4]5|6]7]8]|]29
hex.digit = digit| A| B]| C| D| E| F

All characters are coded according to their ASCII code. The character A, for example, has a value 65, and
so on. A table of the ASCII character set is given in the appendix (appendix L, page 146). A character
enclosed in a pair of quotes (eg ' T') is a byte value, unless explicitly stated otherwise by placing a type in
parentheses to the right of the enclosing quotes.

Strings are a sequence of characters enclosed by double quotes (eg "zen"). The type of a string is an
array of type BYTE. Each component of the array is the ASCII value of the corresponding character in the
string. Special character sequences allow control values such as Tabulation and Carriage Return values to be
included in strings. Full details of the OCCam character set and special characters are given in the appendix
(page 146).

A string may be broken over several lines by terminating broken lines with an asterisk, and starting the
continuation on the following line with another asterisk. The indentation of the continuation should be no less
than the current indentation, as illustrated in the following example:

occam : = "Beware the jabberwock nmy son, the jaws that bite, the*
* claws that catch, beware the jubjub bird, and shun the*
* frum ous bandersnatch."

The literals TRUE and FALSE represent the boolean values true and false respectively.

DRART --- Marchi31, 1992

3.2 Arrays

An array has a number of consecutively numbered components of the same type. Arrays of channels and
timers are discussed in chapters 6, 7 and 9. Primitive data types have already been discussed in some detail.
Non-primitive data types include array types. An example of an array type is:

[5] 1 NT

Arrays of this type have components each of type | NT. The components are numbered 0, 1, 2, 3, 4. Arrays
may have further dimensions specified by simply adding the size of the dimension, enclosed in square
brackets, to the type. The following is an array type with two dimensions:

[4][5] I NT

An array of this type has four components each of type [5] | NT. Equally, an array of type [3] [4] [5] | NT
is an array with three components of type [4] [5] | NT, and so on. In this way, arrays with any number of
dimensions may be constructed.

In theory there is no limit to the number of dimensions an array type may have. In practice however, arrays
of data type require memory, and therein lies the limit. Here are some more array types:

[n] BYTE a byte array with n components
[3]1[3][3] REAL32 | a three dimensional array of real numbers
| [50] BOOL an array with boolean components.

The size of each dimension in an array declaration must be specified by a value of type | NT, and be a value
greater than or equal to zero. Two arrays of data type are considered to have the same type if they have the
same number and type of components. An array may be assigned to by input or assignment. An input or
assignment to an array is valid only if the value to be assigned is of the same type as the array.

The syntax for data type arrays is:

data.type = [expression] data.type

The syntax for array types shows that any type can be preceded by a value (of type | NT) in square brackets,
that value specifying the number of components of the type. Primitive and non-primitive types are collectively
called basic types. The syntax is defined recursively, and this allows the syntax to cater for multidimensional
arrays, as illustrated in the examples above.

3.2.1 Tables

A table constructs an array of values from a number of expressions which must yield values of the same data
type. The value of each component of the array is the value of the corresponding expression. Consider the
following example:

[1, 2, 3]

This example constructs an array with three components, each of type | NT. Here are some more examples:

["a, "b, "c’] a table of three bytes (equivalent to "abc")
[x, vy, z] a table of three values

[x * vy, x + 4] a table of with two component values
[(a* b) + c] a table with a single component

[6(1 NT64), 8888(1NT64)] | atable of two | NT64 integers

If the variables a, b and ¢ are of type | NT, then the table [(a * b) + c] is an expression whose type is
[1]INT.["a, 'b', ’'c’] is an expression whose type is [3] BYTE, and so on.

DRART --- Marchi31, 1992

Tables are the literal representation of array values, their syntax is:

literal = [{1, expression }]
A table is one or more expressions of the same data type, separated by commas, and enclosed in square
brackets. Line breaks are permitted after a comma.
3.2.2 Replicated tables
A replicated table constructs a number of similar expressions as shown on the following example:
[VAL i = 4 FOR 10 : i*i]
This constructs the sequence of squares below:

[16, 25, 36, 49, 64, 81, 100, 121, 144, 169]

The syntax of a replicated table is:

literal = [VAL replicator : expression]

Like the replicated parallel, the count of a replicated table (10 in the example above) must be constant. Line
breaks are permitted after the colon.

DRART --- Marchi31, 1992

DRART --- Marchi31, 1992

L] ¥ WUVAl I VAN I W WAL T NI V¥ WAl W W W

occam programs act upon variables, channels and timers. A variable has a value, and may be assigned a
value in an assignment or input. Channels communicate values. Timers produce a value which represents
the time.

This chapter describes variables, the declaration of names for variables and values and their scope.

Channels (pages 45 and 55) and timers (page 63) are discussed elsewhere in the manual.

4.1 Declaring a variable
The declaration of a variable declares the data type and name of the variable. Consider the following example:

INT n :

This declaration introduces an integer variable of type | NT, and identifies the variable with the name n. The
variable is not initialised, and therefore the value of the variable is unspecified until assigned to by an input
or assignment. An assignment or input to a variable is valid only if the value to be assigned is the same data
type as the variable. Here is a sequence of variable declarations:

BOOL flag :
BYTE char

I NT64 big :
REAL32 x :

The syntax for a data declaration is :

declaration = data.type {1, name } :

A variable declaration consists of the data type, and a nhame to identify the variable. The declaration appears
on a single line, and is terminated by a colon. Where a number of variables of the same type need to be
declared, 0ocCam permits a single declaration for several names, as shown in the following example:

REAL64 a, b, c :

The type of the declaration is determined, and then the declarations are performed. This declaration is
equivalent to the following sequence of declarations:

REAL64 a :
REAL64 b :
REAL64 c :

The variable names specified in a multiple declaration are separated by commas. A line break is permitted
after a comma. Here are a few more multiple declarations:

BOOL flag, switch :

INT16 i, j, k :
REALG4 x, vy :
I NT64 chai ns,

nor e. chai ns :

The declaration of an array follows the same form as other declarations, for example:
[5] INT x :

This declaration introduces an integer array x with five components.

DRART --- Marchi31, 1992

The declaration of an array with multiple dimensions is similar to other declarations, as shown in the following
example:

[4][5]INT x :

Here are a few more examples of array declarations:
[4]BOOL flag :
[B]INT v1, v2 :
[xsize][ysi ze] REAL64 matri X :
[3]1[3][3]INT16 cube :
Several arrays of the same type can be declared together, for example:
[users]INT id, privilege :
The type of the declarations is determined, and then the declarations are made. This is especially important
in the declaration of arrays. Consider the following rather silly declaration:

[forms] INT forns, teachers :

This declaration introduces two new array variables, f or ms and t eacher s. The size of the arrays is deter-
mined by the value f or s, which is evaluated before the declarations are made and therefore refers to some
name already in scope when the declaration is made.

4.2 Array components and segments

The declaration of an array also introduces the components and segments of the array. Subscripted names
select a component of an array. Suppose dat a is declared as follows:

[8][9][10] REAL32 data :

Consider these examples:

dat a[0] the first component of a dimension of dat a, of type [9] [10] REAL32.
dat a[3] [0] | the first component of another dimension of dat a, of type [10] REAL32.

A subscript appears in square brackets after the name of an array. The component selected has one
dimension less than its type for each subscript. Subscripts must be an expression of integer type | NT. A
subscript is valid only if the value of the expression is within the bounds of the array, and so a negative value
subscript is always invalid. That is, the value of a subscript must be in the range 0 to (n — 1), where n is the
number of components in the array.

The syntax of components is:

variable = variable[expression]

The simplest subscripted variable is a name followed by a single subscript in square brackets to the right of
the name. This is itself a variable and may also be followed by a subscript in square brackets, and so on,
limited by the number of dimensions in the array.

DRART --- Marchi31, 1992

A segment of an array is itself an array. The segment has zero or more components, as shown in the
following examples:

[data FROM 0 FOR n] | the first n components of dat a,

of type [n] [9] [10] REAL32.

[data FROM n FOR 6] | six components of the array dat a from n,
of type [6] [9] [10] REAL32.

[data FROM 1 FOR 0] | an “empty” segment,

of type [0] [9] [10] REAL32.

A segment of an array has the same number of dimensions as the array.

Short forms of segment may be used if the segment starts at the first component of the array or finishes with
the last component. The segment [dat a FOR n] denotes the first n components of the array dat a. It is
equivalent to [data FROM 0 FOR n]. The segment [data FROM 4] denotes the components of dat a
starting with dat a[4] and continuing to the end of the array. It is equivalent to [data FROM 4 FOR 4].

The syntax of segments is:

variable = [variable FROMbase FOR count]
| [variable FOR count]
I

[variable FROMbase]

The syntax is defined recursively, and shows how more complex variables can be built. A segment begins
with a square bracket, followed on the right by a variable and the keyword FROM This is followed by a
subscript, which must be an integer of type | NT, indicating the first component of the segment, this in turn
is followed by the keyword FOR and a count, which is a value of type | NT which specifies the number of
components in the segment.

Line breaks are permitted immediately after the keyword FROM and the keyword FOR. The segment is valid
only if the value of the count is not negative, and does not violate the bounds of the array. That is, the value
must be in the range 0 to ((subscript + count) — 1). Here is another example to consider:

[[c FROMj FORi] FROM 0 FOR 5]

This complex looking segment selects the first five components of a variable which is itself a segment, it is
in fact equivalentto [¢ FROM j FOR 5] providedi > 5. Segments may also be subscripted, for example:

[x FROM n][3]

The subscript in this example selects component number 3 from the segment which starts at x[n] and
continues to the last component of x.

An assignment to a variable selected by a subscript is an assignment to that component of the array, and
has no effect on any other component in the array. Consider the following example:

X[3] := 42
The effect of an assignment to an array or a segment of an array, is to assign to each component the value
of the corresponding component of the expression. Assignment to a segment of a variable which is an array,
is not valid if a component of the expression is also a component of the array to which it is to be assigned.
Thus, the following assignment is not valid:

[x FROM6 FOR 6] := [x FROM 8 FOR 6] -- |NVALID!

Both these segments share the component x[8] , but in different positions so that the meaning could depend
on the order in which an implementation causes the component assignments to be performed. However an

DRART --- Marchi31, 1992

assignment which assigns a segment of an array to itself is not invalid as it must always be implemented to
have no effect whatsoever.

The combined effect of an input and output on a channel of an array or a segment of an array is equivalent
to an assignment from the outputting process to the inputting process. Consider the following example:

[x FOR 10] := [y FOR 10]
This is a valid assignment, and has the same effect as the following:
PAR
c ! [y FOR 10]
c ? [x FOR 10]
Also consider the following assignment of v1 to v2, where both are arrays of type [12] | NT:
vl 1= v2

This assignment assigns each component of the array v2 to each respective component of the array v1, and
has the same effect as the following communication:

PAR
c! vl
c ? v2

Assignment is discussed earlier on page 5, input and output are also described earlier on page 6. See the
appendix (page 118) to discover how invalid processes behave.

4.3 Initialised declaration

The previous sections described how to declare a variable and where the variable may be used. This section
describes how to declare a variable with an initial value. Consider the example:

INNTIAL REAL32 y IS (m* x) + C :

This declaration introduces a new variable y whose initial value is (m * x) + c. The initial value and the
type are determined and then the declaration is made.

If the variable x is not used in the expression e, then the process

INNTIAL INT x IS e :
P

is equivalent to

INT x :
SEQ
X 1= e
P

The syntax of initialised declarations is:

declaration = | NITI AL data.type name | S expression :

4.4 Scope

The previous section explained the declaration of names for variables. This section explains the scope of a
name, or the region of the program in which the name is valid.

DRART --- Marchi31, 1992

The declaration of all names is terminated by a colon in 0CCam, for instance:
INT x :
Later chapters of the manual show how to declare other sorts of name, for instance:

CHAN OF BYTE c :

PROC add.to (INT x, vy)
X 1= Xty

All of these declarations are terminated by a colon.

The scope of a name is illustrated by the level of program indentation. The scope of a name starts on the
line following the colon which terminates its declaration. The scope includes any other declaration which may
immediately follow at the same level of indentation, and encompasses all greater levels of indentation in the
program. The illustrated scope concludes when the level of indentation returns to the same or lesser level,
as the following example shows :

SEQ
I NT max : -- specify max
INT min : -- scope of max ~-- specify nmn
SEQ -- -- scope of mn
c ? max -- - -
cC ?mn -- --
I F -- --
p

p
SEQ

This example increments p if it is less than the value specified by max. The scope associated with the
variable p in this example begins at the declaration of p earlier in the program. The association of a hame
with any particular scope is either local, that is, it is specified at the start of the scope under consideration,
or the name is free of local association. That is, the name is specified at an outer level of scope (as for p in
the above example) which includes the scope under consideration. If a specification is made which uses an
existing name then the new meaning supersedes the old meaning for the duration of the scope of the new
specification, as illustrated by the following example:

I NT x : -- integer variable x
SEQ -- scope
dm ? x --
ALT --
REAL32 x : -- real x hides integer variable x
rs ? x -- scope
dm? vy --

The second declaration of x in the above example, has the effect of “hiding” the earlier use of the name x for
the duration of its scope. All names within a scope in OCCam are distinct. That is, a name may only have
one meaning within any scope.

Consider the following declaration:
INITIAL INT x 1S x+1 :

Because the scope of the new name x does not begin until after the colon, the value of x which is used to
initialise the new variable is the value of the name which is already in scope before the declaration.

DRART --- Marchi31, 1992

The following syntax specifies at which point in a program a declaration, abbreviation, or definition may occur,
and the scope associated with each:

process = specification
process
choice = specification
choice
option = specification
option
alternative = specification
alternative
variant = specification
variant
P specification = declaration
valof = specification o
valof [abprgylatlon
| definition

Names of keywords may not be used in specifications. A specification is a declaration, an abbreviation (eg a
variable abbreviation, page 34) or a definition (eg a protocol definition, page 46). A specification may appear
before a process, choice, option, alternative, variant, or valof (See functions page 81). The region of the
program in which a specified name is valid includes any other specification that may immediately follow at
the same level of indentation, and the corresponding process, choice, option, alternative, variant or valof.

4.5 Abbreviation of variables

A variable abbreviation specifies a new name for a variable. Consider
INT n 1S m:

This abbreviation specifies the name n as the new name for m Also, consider the following example:
I NT user IS |ines[8]

This abbreviation specifies the name user for a component of the array | i nes. All subscript expressions
used in an abbreviation must be valid. The type of the abbreviated variable must be the same as the data type
specified, so in this example, | i nes has to be an array of | NT. Other components of the array | i nes may
be used only in abbreviations within the scope (page 32) of user, but they must not include the component
I i nes[8] . Here are some more examples of abbreviations:

\ X 1Sy : specifies a new name x fory
INT ¢c IS al[i] : specifies a name for a component of the array a
[JREAL32 s IS [a FROM 8 FOR n] : | specifies a name for a segment of a

An abbreviation simply provides a name to identify an existing variable. The name c in the above example
identifies the existing variable a[i] . In the scope of the abbreviation, ¢ : = e is an assignment to the original
variable a[i] . A variable used in a subscript to select a component or components of an array may not be
assigned to within the scope of the abbreviation. For example, no assignment or input can be made to i
within the scope of c. As a result the abbreviation always refers to the same variable throughout its scope.
This allows various optimisations to be provided, such as evaluating any expression within the abbreviated
variable only once. The original variable a[i] may not be used within the scope of the abbreviation c. Where
the abbreviation is of a component of an array no other reference may be made to any other part of that

DRART --- Marchi31, 1992

array, except in a further abbreviation. Consider the following example:
[60][72] I NT page :

..first.line I S page[0]
last.line 1S page[59]

SEQ
first.line :=last.line
[ast.line = page[58] -- This assignnment is | NVALID!
next.to.last.line | S page[58] : -- This abbreviation is valid
last.line :=next.to.last.line -- and so too, this assignnent

Also consider the following example:

VHILE i < limt
this.line I'S page[i]
next.line IS page[i+1]
SEQ
this.line := next.line

i =0 o+ 1 -- this assignment is | NVALID

The assignment in the above example is invalid as i is used to select components of the array page in an
abbreviation within the scope of the assignment. This is how the above should be written:

VHLE i < limt
SEQ
this.line IS page[i] :
next.line IS page[i +1]
SEQ
this.line := next.line

It is important to ensure that all the components of an array remain identified by a single name within any
given scope. Identification of any component of an array by more than one name constitutes an invalid usage
of the component, and it is especially important to be aware of this of when abbreviating components of an
array. Once any component of an array is abbreviated then reference to other components of the array must
be made by further abbreviation. Checks are made to ensure that two abbreviations which identify segments
from the same array do not overlap. Further discussion on abbreviation is given in the chapter on procedures
(page 75).

The syntax for abbreviations of variables is:

abbreviation specifier name | S variable :
name | S variable :

[1 specifier

|

specifier = data.type
I
| [expression] specifier

The abbreviation of a variable begins with an optional specifier. The name specified appears to the right of
the optional specifier followed by the keyword | S, the abbreviated variable appears to the right of the keyword
I S. The line on which the abbreviation occurs may be broken after the keyword | S or at some valid point in
the variable. The type of the variable must be the same as the data type specified.

The specifier can usually be omitted from the abbreviation, as the type can be inferred from the type of

the variable. A specifier [] type simply defines the abbreviation as being an array with components of the
specified type.

DRART --- Marchi31, 1992

4.6 Abbreviation of values

The last section described variable abbreviations. This section describes abbreviations of values. Consider
the example:
VAL I NT days.in.week 1S 7 :

This abbreviation specifies the name days. i n. week for the value 7. Here are some more abbreviations for
values:

VAL REAL32 y IS (m* x) + C : specifies a name for the current value of an expression
VAL INT n IS m: specifies a name for the current value of the variable m
VAL []BYTE vowels IS e

[a, 'e, 'i', "0, 'u] : specifies a name for a table of values

The abbreviated value must be a valid expression, that is, it must not overflow, and all subscripts must be in
range. Variables used in an abbreviated expression may not be assigned to by an input or assignment within
the scope (page 32, the region of a program where a name is valid) of the abbreviation. This ensures that
the value of the expression remains constant for the scope of the abbreviation. For example, in the following
abbreviation

VAL REAL32 y IS (m* x) + c :

no assignment or input may be made to m x, or ¢ within the scope of y of this abbreviation. The effect of
the abbreviation is the same as each instance of y being replaced by the abbreviated value. Similarly for the
following abbreviation of the value [screen FROM | i ne FOR | engt h]

VAL [JINT scan IS [screen FROM | ine FOR | engt h]

no assignment or input may be made to screen, | i ne or | engt h within the scope of scan. The effect of
the abbreviation is the same as each instance of scan being replaced by the abbreviated value, thus

VAL [JINT scan IS [screen FROM | ine FOR | engt h]
SEQ
row : = scan

is equivalent to

SEQ
row : = [screen FROM line FOR | ength]
VAL [JINT scan IS [screen FROM | ine FOR | engt h]

The syntax for abbreviations of values is:

abbreviation = VAL specifier name | S expression :
| VAL name | S expression :

The abbreviation of a value begins with the keyword VAL. An optional specifier (which specifies the data type
of the abbreviation) appears to the right of VAL, followed by the name, and the keyword | S. The abbreviated
value appears to the right of the keyword | S. Line breaks are permitted after the keyword | S. The type of
the value must be compatible with the specifier. The specifier can usually be omitted from the abbreviation,
as the type can be inferred from the type of the value.

4.7 Result abbreviation

This section shows how to define a value for a variable from the result of a process. Consider

RESULT REAL32 y IS x :
P

DRART --- Marchi31, 1992

This introduces a new variable y whose final value after execution of the process P will be assigned to x.
The process is equivalent to

REAL32 vy:
SEQ

P

X 1=y

The syntax of result abbreviations is:

abbreviation = RESULT specifier name | S variable :
| RESULT name | S variable :

In order to ensure that result abbreviations can be implemented in the same way as variable abbreviations,
the rules of variable abbreviation apply to result abbreviation.

4.8 Disjoint arrays in parallels

Abbreviations may be used to decompose an array into a number of disjoint parts, so that each part may
have a unique name in all or several processes in parallel. Components of each disjoint part may then be
selected by a variable subscript (a subscript whose value is dependent on a procedure parameter, a variable,
or a replicator index whose base or count is not a constant value), for example:

franmel 1S [page FROM 0 FOR 512] :
frame2 1S [page FROM 512 FOR 512]
PAR

I NT i

SEQ

cl 2 framel[i]
INT
SEQ

c2 2 frame2[j]

This example divides the array page into two parts, and provides a name for those parts in each of the two
parallel processes. These parts may then be selected by using variable subscripts.

DRART --- Marchi31, 1992

DRART --- Marchi31, 1992

-l WV LGV W W W WAWWA \-] rl\l\-l

Previous chapters have described the basic data types and variables of those types. This chapter describes
how to create new types and how to define new structures for those types.

5.1 Named data types
This section describes how to create new types which have the same values as existing data types.

Consider the definition
DATA TYPE LENGTH | S REAL32 :

This creates a new type called LENGTH with the same structure as the type REAL32. Literals of the new
type are denoted in just the same way as literals of the type REAL32 except that they are decorated with the
name of the new type. For example:

54321765439. 54(LENGTH)

The rules for rounding literals of the new type are just the same as those for REAL32 so that the nearest
representable value of this literal is 54321766400.0.

This new type definition might be used in a context in which many different sorts of variable all have the same
primitive type representation. For instance, by defining a LENGTH type and an AREA type, the type checking
system can be used to ensure that a length is not assigned to an area, or that an area is not passed to a
procedure where a length is expected.

Variables of the new type are declared in just the same way as variables of any of the primitive types. For
instance:

LENGTH hei ght, width :

The syntax of named types is:

definition
data.type

DATA TYPE name | S data.type :
name

The data type which is defined may be referred to by its name. Modules (chapter 13) introduce indirect
ways of referencing a data type. Two named data types are only equal when their references are equal. For
example, in:

DATA TYPE AREA | S REAL32 :
AREA a, b :
REAL32 c :

the types of a and b are the same, but the type of c is different. In:

DATA TYPE AREA | S REAL32 :
AREA a :
DATA TYPE AREA | S REAL32 :
AREA b :

the types of a and b are different because, although the representation of the name of each type is the same,
the two declarations introduce different names.

5.2 Record data types

The previous sections have shown how to use the data types which are built in to the language. This section
shows how record data types may be defined.

DRART --- Marchi31, 1992

A record has a number of fields, each of which are data types. Records are used to gather together com-
ponents of data which make a logical unit. For instance, the real and imaginary components of a complex
number form a logical unit:

DATA TYPE COWVPLEX32

RECORD
REAL32 real :
REAL32 inmag :

This definition creates a new type named COVPLEX32. It is a record type with two fields r eal and i nag.

Variables of the type COMPLEX32 are declared in the same way as variables of any other named type.
Consider:
COWPLEX32 z :

This declaration introduces a variable, z, of type COMPLEX32. This variable may be assigned and commu-
nicated in the same way as a variable of primitive type. The components z[real] and z[i mag] may be
used like ordinary variables in assignments and communications.

The syntax of record types is:

definition = DATA TYPE name
structured.type

structured.type = RECORD

{ data.type {1, field.name}: }
field.name = name

The same field name may be used in the definition of more than one type. Consider

DATA TYPE KETTLE
RECORD
REAL32 capacity, power

DATA TYPE HEATER
RECCORD
REAL32 power :
REAL64 hei ght, width :

KETTLE k -
HEATER h

In this example, both kettles and heaters have a power field. The field k[power] refers to the second field
of the record k and h[power] refers to the first field of h.

Record literals

A literal representation of a record gives values for each field and the name of the type. Consider:
[0. O(REAL32), 1. 0O(REAL32)] (COVPLEX32)

This is a literal with data type COVPLEX32 (defined above). The value of the r eal field is 0. 0(REAL32)
and the value of the i mag field is 1. O(REAL32) .

The syntax of a record type literal is:

literal = [{, expression }] (decoration)

The expressions in a record literal must have the type of the corresponding field in the type definition. For
instance, a record literal of type HEATER must have three expressions, the first of these expressions must
have type REAL32 and the second two must have type REAL64.

DRART --- Marchi31, 1992

The empty record

There is one record type which has a special representation. That is the record type with no fields. The type
is called NONE and its definition is:

DATA TYPE NONE
RECORD

There is only one value of this type, namely [] (NONE) .

The syntax of empty records is:

data.type = NONE
literal = []1(NONE)

This value is useful to communicate along a channel when synchronisation is required without communication
of data.

5.3 Union data types

The previous section described data types whose values all have the same format. This section describes
data types whose values may have one of a number of different formats.

Consider the data type definitions:

DATA TYPE CARTESI AN
RECORD
REAL32 real, imag :

DATA TYPE POLAR
RECORD
REAL32 nmod, arg :

DATA TYPE COMVPLEX
UNI ON
CARTESI AN ¢ :
POLAR p:

This defines three data types. The data types CARTESI AN and POLAR are the subtypes of the type COVPLEX.
Values of the type COVPLEX may have either of the types specified by the subtypes.

Variables of union types are declared in the usual way, for instance:

COVWPLEX X :

The syntax of union types is:

structured.type = UNION
{data.type {1, name }: }

Union literals

A literal representation of a union value gives a value from one of the subtypes, the name of the subtype tag
and the name of the union type. For instance:

(c :- [0.0(REAL32), 1.0(REAL32)] (CARTESI AN)) (COVPLEX)

The syntax of union literals extends the syntax of literals:
literal = (name : - expression) (decoration)

DRART --- Marchi31, 1992

5.3.1 Subtype conversion
A variable may be converted into a variable of a subtype of a union. Consider the process:

wWcl[real] := z[p][mod] * COS (z[p][arg])
This assignment calculates the real component of the POLAR variable z and assigns it to the r eal field of the
CARTESI AN variable w. This process is INVALID if the current type of wis not CARTESI AN or if the current
type of z is not POLAR.

The syntax of subtype conversion is:

variable = variable[name]
expression expression[hame]

5.3.2 Subtype discrimination

The subtype to which a variable belongs is determined using a subtype discrimination process:

CASETAG z

p

wc][real]
c

wc][real] := z[c][real]

z[p][mod] * COS (z[p][arg])

This process determines the current type of the variable z and behaves like the appropriate process.

The syntax of subtype discrimination is:

process = CASETAG expression
{discriminant }
discriminant = name
process

5.3.3 Scope of subtype names

It is possible that the name of a subtype is used again during the scope of a union. For instance:

DATA TYPE COVPLEX

UNI ON
CARTESI AN c :
POLAR p :
DATA TYPE CARTESI AN
RECORD
INT X, y :

Although the data type COVPLEX is still in scope after these definitions, the subtype CARTESI AN is not. New
variables which are declared to be of type CARTESI AN will be records with two integer fields. However, it is
still possible to declare variables of the type COVPLEX, to express COVPLEX literals of subtype CARTESI AN

DRART --- Marchi31, 1992

and to analyse COMPLEX expressions using a CASETAG process. Consider the program:

DATA TYPE COWPLEX
UNI ON
CARTESI AN c :
POLAR p :

DATA TYPE CARTESI AN
RECORD
INT X, vy :

COVPLEX 7 :
CARTESI AN orig :

SEQ
z 1= (c :- [1.0(REAL32),0.0(REAL32)] (CARTESI AN)) (COVPLEX)

orig := [0, 0] (CARTESI AN)

In the assignment to z, the name CARTESI AN is interpreted as a subtype of COMPLEX and therefore the
literal of that type has two REAL32 fields. In the assignment to or i g, CARTESI AN refers to the most recently

declared type of that name.

DRART --- Marchi31, 1992

DRART --- Marchi31, 1992

- 1 1 WAR TR N IS

occam programs act upon variables, channels and timers. A variable has a value, and may be assigned a
value in an assignment or input. Channels communicate values. Timers produce a value which represents
the time.

This chapter describes communication channels, the declaration of communication channels, the specification
of the format and data type of communications, and the declaration of a record of channels.

Variables (page 23), call channels (page 55) and timers (page 63) are discussed elsewhere in the manual.
Communication channels provide unbuffered, unidirectional point-to-point communication of values between

two concurrent processes. The format and type of values passed on a channel is specified by the channel
protocol. The name and protocol of a channel are specified in a channel declaration.

6.1 Channel type

The type of a channel is:

channel.type = CHAN OF protocol

6.2 Declaring a channel

A channel is declared in just the same way as variables are declared. Consider the following example:
CHAN OF BYTE screen :

This declaration introduces a channel named scr een with a protocol of type BYTE. The protocol in this

example specifies that each communication on this channel must be a value of type BYTE. An output on this

channel could be:

screen ! 'H

Several channels with the same protocol can be declared together, for example:
CHAN OF BYTE screen, keyboard :

The type of the declarations is determined, and then the declarations are made.

The syntax of channel declarations is:

declaration = channel.type {1, name }:

6.3 Arrays of channels

Arrays of channels can be declared in the same way as arrays of variables (see page 29). The following, for
example, declares an array of channels:

[4] CHAN OF BYTE screens :

This declaration introduces an array scr eens of four channels.

Multidimensional arrays of channels are built in the same way as multidimensional arrays of variables, for
example:

[5] [5] CHAN OF PACKETS node :

DRART --- Marchi31, 1992

There is a subtle semantic distinction to be made between an array of data type and arrays of channels. An
array of variables is itself a variable (it may be assigned to by assignment or input), however, an array of
channels is not itself a channel (that is, only single components of the array may be used in input/output) but
a means of referencing a number of distinct channels identified by consecutive subscripts.

Several arrays of the same type can be declared together. Consider the following example:

[users] CHAN OF BYTE screen, keyboard :

The type of the declarations is determined, and then the declarations are made.

The syntax of channel types is extended with:

channel.type = [expression] channel.type

6.3.1 Channel array components and segments

Components and segments of channel arrays are denoted in just the same way as components and segments
of variable arrays. Unlike arrays of variables, arrays of channels may be specified by tables.

Subscripted names select a component of an array. Suppose user . i n is declared as follows:

[12] CHAN OF MESSAGES user.in :

Consider the example:

\ user.inf[9] \ the tenth component of the array user . i n, of type CHAN OF NMESSAGES. |

A segment of an array is itself an array. The segment has zero or more components, as shown in the
following examples:

[user.in FROM 9 FOR 1] | the tenth component of the array user. i n,

of type [1] CHAN OF MESSAGES.

[user.in FROM 9 FOR 3] | the tenth, eleventh and twelfth components of the array user. i n,
of type [3] CHAN OF MESSAGES.

A segment of an array has the same number of dimensions as the array.

The syntax is:

channel name

channel[expression]

[channel FROMbase FOR count]
[channel FROMbase]

[channel FOR count]

[{1, channel }]

[CHAN replicator : channel]

6.4 Channel protocol

A channel communicates values between two concurrent processes. The format and data type of these
values is specified by the channel protocol. The channel protocol is specified when the channel is declared.
Each input and output must be compatible with the protocol of the channel used. Channel protocols enable
the compiler to check the usage of channels.

DRART --- Marchi31, 1992

6.4.1 Simple protocols

The simplest protocols consist of a data type. An example of a channel with a byte protocol has already been
given. A protocol with an array type can be declared in the same way, for example:

CHAN OF [36] BYTE nessage :

This declaration introduces a channel with a byte array protocol which is identified by the name message.
The protocol of this channel specifies that the channel is able to pass byte arrays with 36 components. For
example, consider this output:

nmessage ! "The vorpal blade went snicker-snack."”

It is often desirable to have a channel that will pass arrays of values, where the number of components in
the array is not known until the output occurs. A special protocol, called a counted array protocol, enables
this kind of array communication by passing a length and that number of components from the array. A
declaration for such a channel looks like this:

CHAN OF | NT::[] BYTE nessage :

This declaration introduces a channel which passes an integer value and that number of components from
the array. An output on this channel will look like this:

message ! 16::"The vorpal bl ade went snicker-snack."

This has the effect of outputting the integer 16 and the string " The vor pal bl ade"; the first 16 characters
of the array. The associated input could look like this:

message ? len::buffer

This input receives an integer value (16 in this example), which is assigned to the variable | en, and that
number of components, which are assigned to the first components of the array buf f er. The assignments
to | en and buf f er happen in parallel and therefore the same rules apply as for parallel assignment. That
is, the name | en may not appear free in buf fer and vice versal. The input is invalid if the number of
components in buf f er is less than the value input to | en.

All the above protocols are called simple protocols, their syntax is:

simple.protocol data.type

data.type: : [] data.type

input channel ? input.item
input.item = variable

| variable : : variable
output = channel ! output.item
output.item = expression

| expression :: expression
protocol = simple.protocol

This syntax has extended the syntax for input and output (see page 6). A simple protocol is either a data
type or a counted array as described above, and is specified by the data type of the count (which may be
either an integer or byte), followed by a double colon, square brackets (: : []), and the specifier indicating
the type of the components.

6.4.2 Naming a protocol

A protocol can be given a name in a protocol definition, as shown in the following example:

PROTOCOL CHAR IS BYTE :

1lIn OCCamMmy2, the count was input first and the parallel assignment rules did not apply. Some OCCaIM2 programs are invalidated
by the new rule.

DRART --- Marchi31, 1992

A channel can now be declared with the protocol CHAR, for example:

CHAN OF CHAR screen :

A protocol definition must be used if more complex protocols, like the sequential protocol described in the
following section are required. The syntax for protocol definition is:

definition = PROTOCOL name | S simple.protocol :
| PROTOCOL name | S sequential.protocol :
protocol = name

A protocol definition defines a name for the simple protocol or sequential protocol (described in the following
section) which appears to the right of the keyword | S. A protocol definition appears on a single line, and is
terminated by a colon. The line may be broken after the keyword | S or after a semi-colon in a sequential
protocol.

6.4.3 Sequential protocol

Simple protocols have been discussed earlier. Sequential protocols specify a protocol for communication
which consists of a sequence of simple protocols. Consider the following example:

PROTOCOL COVPLEX | S REAL64; REAL64 :

Channels declared with this protocol (CHAN OF COWVPLEX) pass pairs of values. An input or output on a
channel with sequential protocol is a sequence of distinct inputs or outputs. An input on a channel with the
above protocol COVPLEX is shown below:

items ? real.part; imaginary.part

Each value is input in sequence and assigned to each variable in turn. Here are some more examples of
sequential protocol definitions:

PROTOCOL DI R ENTRY IS I NT16; [14] BYTE :
PROTOCOL | NODE |I'S I NT16; | NT16; | NT32; 1 NT32; | NT16; [7] | NT16; | NT16; | NT16 :
PROTOCOL LINE IS I NT16::[]BYTE :

Declarations of channels with these protocols would look like this:

CHAN OF DI R ENTRY directory :
CHAN OF | NCDE sys :
CHAN OF LI NE bl ocks :

The syntax of sequential protocols is:

sequential.protocol = {1 ; simple.protocol }
input = channel ? {; ; input.item }
output = channel! {;; outputitem }

A sequential protocol is one or more simple protocols separated by semi-colons. The communication on a
channel with a sequential protocol is valid provided the type of each item input or output is compatible with
the corresponding component of the protocol.

DRART --- Marchi31, 1992

6.4.4 Variant protocol

It is often convenient to use a single channel to communicate messages with different formats. A variant
protocol specifies a number of possible formats for communication on a single channel. Consider the following
example:

PROTOCOL FI LES
CASE
request; BYTE
filenane; [14] BYTE

wor d; | NT16

record; I NT32; | NT16::[]BYTE
error; I NT16; BYTE::[]BYTE
hal t

This example defines a variant protocol named FI LES. CASE combines a number of tags, each of which may
identify a sequential protocol. The variant protocol defined here has six variants.

A channel declared with this protocol would look like this:

CHAN OF FILES to.dfs :

A communication on this channel first sends a tag to inform the receiving process of the format for the rest
of the communication. So, for example

to.dfs ! request; get.record
first sends the tag r equest followed by a BYTE value (get . r ecor d). Consider the output:
to.dfs ! halt

This output sends only the tag hal t and according to the above variant protocol definition requires no further
output.

The syntax for a variant protocol and the associated output is:

definition = PROTOCOL name
CASE
{ tagged.protocol }

tag

tagged.protocol =

| tag; sequential.protocol
tag = name
output channel ! tag

channel ! tag ; {i; output.item }

In a definition of a variant protocol the name which identifies the protocol appears to the right of the keyword
PROTOCAL, this is followed at an indentation of two spaces by the keyword CASE, which in turn is followed
at a further indentation of two spaces by a number of tagged protocols. The definition of a variant protocol
is terminated by a colon, which appears on a line by itself, at the same level of indentation as the P of
the keyword PROTOCCL. A tagged protocol is either a tag by itself or a tag followed by a semi-colon, and
sequential protocol.

An output on a channel of variant protocol is a tag by itself or a tag followed by a number of output items

separated by semi-colons. The output is valid only if the tag and the associated output items are compatible
with one of the tagged protocols specified in the definition.

Input on a channel with variant protocol

So far only output on a channel with variant protocol has been shown. A special form of input is required
(called case input) to provide for input on channels with a variant protocol. The previous example is suggestive

DRART --- Marchi31, 1992

of a conversation with a disc filing system, and is a reminder that channels are unidirectional. So, for a user
process to “listen to” the other side of this conversation, another channel must be declared, as shown below:

CHAN OF FILES fromdfs :

This example declares another channel with the protocol FI LES. The process which outputs r equest ;
get . recor d, might reasonably expect to receive a reply on a channel with this protocol. Consider a more
complete example of this conversation:

SEQ
to.dfs ! request; get.record
fromdfs ? CASE
record; rnunber; rlen::buffer
do what ever
error; enunber; elen::buffer
handl e error

lllustrated in the above example is a case input on the channel f r om df s. This accepts a variant input with
either the tag r ecor d or the tag er r or, any other tag would be invalid and the input would behave like the
primitive process STOP.

A special form of case input simply receives a tag from the channel named on the left of the case input
symbol (? CASE), and then compares the tag for equality with the tag of the tagged list which appears to the
right of the symbol. A tag is input, then if the tags match the process next inputs the remainder of the tagged
list, if the tags do not match the process next behaves like the primitive process STOP, for example:

fromdfs ? CASE fil enane; nane. buffer

This process inputs a tag, if the tag is f i | enane the input is completed, and a value assigned to the variable
nane. buf f er. Otherwise, no further input is performed, and the input behaves like the primitive process
STOP (page 6). A case input is valid only if the tagged lists are compatible with one of the tagged protocols
specified in the definition.

Consider the following:

PROTOCOL COMVB
CASE
packet; I NT:: [] BYTE
sync

CHAN OF COWMVS route :
PAR
SEQ
route ! packet; 11::"Hello world"
R ()
SEQ
route ? CASE sync
S (O

In this example the input rout e ? CASE sync will behave like the primitive process STOP as the tags do
not match. The associated output will also behave like STOP, for although the output of the tag packet
succeeds, the output 11:: "Hel | o wor| d" does not. In this example the procedures R() and S() will not
be performed. Also consider the following:

PAR
SEQ
route ! sync
P ()
SEQ
route ? CASE packet; |ength:: message

Q0

Each communication of a sequential protocol, or of a tagged sequential protocol is in fact a sequence of sep-
arate communications. So, in the above example, the input r out e ? CASE packet; | ength:: message

DRART --- Marchi31, 1992

will behave like the primitive process STOP because the tags do not match. However, the associated output
route ! sync will succeed as the output of the tag has completed, and the variant requires no further
output. Thus, the procedure (page 75) P() will be performed, and the procedure Q) will not be performed.

The syntax for case input is:

case.input = channel ? CASE
{ variant }
tagged.list
process
| specification
variant
tag
tag ; {1; inputitem }
case.input
channel ? CASE tagged.list

variant

tagged.list

process
input

A case input receives a tag from the channel named on the left of the case input symbol (? CASE), and then
the tag is used to select one of the variants. These appear on the following lines, indented by two spaces. A
tag is input, then if a variant with that tag is present the process next inputs the remainder of the tagged list,
and an associated process, indented a further two spaces, is performed. If no variant with that tag is found
the process next behaves like the primitive process STOP.

A case input may consist of a tagged list only, as shown in the earlier examples.

Variants in alternatives

A case input may also be used as an input in an alternation (chapter 2, page 18). Consider the following
example:

ALT
fromdfs ? CASE

request; query
do query

error; enunber; elen::buffer
handl e dfs error

record; rnunber; rlen::buffer
accept record

from network ? CASE
request; query
do query
error; enunber; elen::buffer
handl e network error
record; rnunber; rlen::buffer
accept record

This alternation accepts input from either of the two channels (f rom df s and f r om net wor k). These inputs
are explained in the previous section. This alternation could have included a mix of case inputs, and the
alternatives described on page 18. The syntax for case inputs in an alternative is:

alternative = channel ? CASE
{ variant }
| boolean & channel ? CASE
{ variant }

A case input as an alternative is either a case input with variants as described in the earlier syntax, or such
a case input preceded by a boolean guard and an ampersand (&) to the left of the channel name. The case
input is not considered by the alternation if the boolean guard is false.

DRART --- Marchi31, 1992

Scope of tag names

It is possible for the name a variant protocol tag to be used again during the scope of the protocol. For
instance:

PROTOCCOL COWVS
CASE
packet; I NT:: [] BYTE
sync

[4] BYTE packet

However, it is still possible to use the name packet to denote a tag of the protocol COMMS in outputs and
CASE inputs on channels with protocol COMVS. Consider the following, rather silly, program:

PROTOCOL COMVB
CASE
packet; I NT: : [] BYTE
sync

[4] BYTE packet
CHAN OF COWS ¢ :
INT len :
PAR
c ! packet; 3::"xyz"
c ? CASE packet; |en:: packet

The name packet is used to denote the variant tag in both the input and the output. The name is also used
to specify the destination of the input.

6.5 Records of channels

A single channel may only communicate values in one direction. Often the communication between processes
is achieved over a number of channels in both directions which are more conveniently thought of as a group.
The group structure can be defined by a record of channels. The structure of the record is declared in a
channel type declaration as for instance:

CHAN TYPE RPC
RECORD
CHAN OF REAL32 param result:

This declaration introduces a channel type RPC which is a record of two channels, one named par amand
the other r esul t . A record of this type is declared as in the following example:

RPC si ne:

Components of the record are accessed by subscription in just the same way as components of a data record
are. For instance, the record si ne might be used in the following way:

PAR

REAL32 x:

SEQ
sine[param ? X
sine[result] ! SIN (x)

SEQ
sine[param ! 46.2(REAL32)
sine[result] ? vy

DRART --- Marchi31, 1992

The syntax of the channel record declaration is

definition = CHAN TYPE name
RECORD
{ declaration }

channel.type = name

Only channels may be declared as fields of a channel record.

6.6 Abbreviation of channels

Channel abbreviations are similar to variable abbreviations (see page 34). A channel abbreviation specifies
a new name for a channel, channel array or record of channels. Consider

CHAN OF I NT user IS lines[8]
This introduces the name user as the new name for | i nes[8] .

The syntax of channel abbreviation is:

abbreviation specifier name | S channel :
name | S channel :

I
specifier = channel.type
| [] specifier
| [expression] specifier

The specifier may be omitted whenever the type of the abbreviation can be inferred from the type of the
channel. Channel abbreviations are subject to the same usage restrictions as variable abbreviations. These
are summarised in appendix H.

DRART --- Marchi31, 1992

DRART --- Marchi31, 1992

L] I VN Wil i W - W/l i i 1WA 1R N I

occam programs act upon variables, channels and timers. A variable has a value, and may be assigned a
value in an assignment or input. Channels communicate values. Timers produce a value which represents
the time.

This chapter describes remote call channels, the declaration of remote call channels, and the specification of
the parameter list of a call.

Variables (page 23), communication channels (page 45) and timers (page 63) are discussed elsewhere in
the manual.

Remote call channels provide the ability to pass parameters from one process to a procedure which is
executed by another process, in much the same way as the traditional low level system call. The format of
the parameters is specified by a formal parameter list in the declaration of the call channel. The call channel
provides a point-to-point connection.

A call channel is declared with its name and formal parameter list. Consider:
CALL cosine (RESULT REAL32 result, VAL REAL32 Xx)

The effect of this is to declare a remote call channel named cosi ne which takes two parameters: the first is
a variable of type REAL32 and the second is a value of the same type.

A call is made along a call channel by supplying a list of actual parameters. For instance:
cosine (cos.pi, 3.14159(REAL32))

The actual parameters specified in the call are passed to a procedure body which is defined by an accept
process, for example:

ACCEPT cosi ne (RESULT REAL32 result, VAL REAL32 x)
SEQ
calls := calls+1
result := COS (x)

This process will accept a call on the cosi ne channel. On acceptance, the process increments its count of
the number of calls accepted and assigns to the resul t parameter. If the cosi ne channel is called with
parameters cos. pi and 3. 14159(REAL32) and it is accepted by this process, the variable cos. pi will
contain the result of COS(3. 14159(REAL32)) on termination of the call.

7.1 Declaring a call channel

The declaration of a call channel specifies the name of the channel and its formal parameter list as in the
example of cosi ne above. The formal parameters of a call correspond to the initialising declaration and
the variable, value and result abbreviations described in chapter 4. The different parameter types specify
different ways in which a parameter may be passed from a call process to an accept process and also specify
different ways in which the parameter may be used within the accept process.

In the declaration of cosi ne, the parameter x is specified to be a value. This means that the value of the
actual parameter corresponding to x is passed to the accept process. The nhame x cannot be assigned within
the body of the call.

The first parameter of the cosi ne channel is specified to be a result parameter. This means that the final
value of the variable r esul t is passed back on termination of the call. The name r esul t may be used like
any other variable in the accept process.

The value of an initial parameter is passed from the call process to the accept process at the beginning of

the call just like a value parameter. However, unlike a value parameter, the name of an initial parameter may
be used in the body of the accept process in the same way as any other variable.

DRART --- Marchi31, 1992

A simple variable parameter is passed from call to accept at the beginning of a call and passed back again
on termination. The parameter name may be used like any other variable in the body of the accept process.

The syntax of call formals is:

call.formal = data.type {1, name }

| INITIAL data.type {1 , name }
| RESULT data.type {; , name }

|

VAL data.type {1 , name }

Arrays of call channels are declared in the usual way by preceding the declaration with the size of the array
in square brackets:

[10] CALL cosine (RESULT REAL32 result, VAL REAL32 x)

The syntax of a call declaration is:

declaration = call.type name ({, call.formal }) :
call.type = CALL
| [expression] call.type

7.2 Using a call channel

A call channel is used to make calls and accept calls as in the cosi ne example above. Call channels provide
a point-to-point connection between processes and so no more than one concurrent process may use a call
channel for call or accepting.

A call is made on a call channel by providing a list of actual parameters, for example:

cosi ne(cos. pi, 3. 14159(REAL32))

An actual parameter is either a variable or an expression. Actual parameters must be compatible with the
specification given in the formal parameter list of the call. This means that only variables are permitted where
a variable or result parameter is specified and that the type of the actual parameter must match the type
specified by the formal parameter.

The syntax of a call is:

process = call.channel ({o, call.actual })
call.channel = name

| call.channel[expression]

| [{1, call.channel }]

| [CALL replicator : call.channel]

| [call.channel FROMbase FOR count]
| [call.channel FROMbase]

| [call.channel FOR count]

= expression

| variable

call.actual

A call is accepted by specifying the name of the call channel and repeating its formal parameter list and then
giving a process to be executed on acceptance of the call as in the following example:

ACCEPT cosi ne (RESULT REAL32 result, VAL REAL32 x)
SEQ
calls := calls+1
result := COS (x)

DRART --- Marchi31, 1992

The list of call formals must match the list in the specification of the call exactly; the names of the parameters
must be the same. There may be several accept processes for the same call channel, and they may have
different effects. For instance, the process below might sequentially follow the process above:

ACCEPT cosi ne (RESULT REAL32 result, VAL REAL32 x)
result := 0.0(REAL32)

The syntax of the accept process is:

process = ACCEPT call.channel ({, call.formal })
process

Remote call channels can be implemented using two communication channels. The first channel is used to
communicate the value parameters and the initial values of the variables at the beginning of the call; and the
other is used to communicate back the final values of the variable parameters and the result parameters. For
instance, the processes above can be modelled by:

CHAN TYPE CALL. CHAN -- call declaration
RECCRD
CHAN OF REAL32 parans:
CHAN OF REAL32 results:

CALL. CHAN cosi ne. rpc:

SEQ -- call process
cosine.rpc[parans] ! 3.14159(REAL32)
cosine.rpc[results] ? cos.pi

REAL32 result, x: -- accept process
SEQ

cosi ne.rpc[parans] ? X

calls := calls+1

result := COS (x)

cosine.rpc[results] ! result

Notice that the call process and the accept process synchronise both at the beginning and the end of the call.

7.3 Call channels in alternations

A process may use the acceptance of a call as a guard in an alternation. For instance:

ALT
ACCEPT cosine (RESULT REAL32 result, VAL REAL32 x)
result := COS (x)
calls := calls+1
halt ? TRUE
STOP

The guard becomes ready as soon as a process makes a call on the channel. In this example, the increment
of the cal | s variable is performed in the body of the alternative after the final synchronisation of the call
process with the accept process.

The syntax of accept process guards is:

guard = ACCEPT call.channel ({, call.formal })
process
| boolean & ACCEPT call.channel ({, call.formal })
process

DRART --- Marchi31, 1992

7.4 Call channel abbreviation

A call channel abbreviation specifies a new name for a call channel or an array of call channels. Consider

CALL cosine.4 (RESULT REAL32 cos.x, VAL REAL32 x) |S cosine[4]

This abbreviation specifies a new name for cosi ne[4] . Notice that the names of the formal parameters
have changed but otherwise the formal parameter list is just the same as that of cosi ne.

The syntax for call channel abbreviation is:

abbreviation

|
specifier =

I

|

specifier call.header | S call.channel :
name | S call.channel :

call.type

[1 specifier

[expression] specifier

If the formal parameter list of the call is not specified in the abbreviation, then the formal parameter list of the
call channel which is abbreviated is assumed.

DRART --- Marchi31, 1992

-’ 1 1WAl 1R Iv

occam programs act upon variables, channels and timers. A variable has a value, and may be assigned a
value in an assignment or input. Channels communicate values. Timers produce a value which represents
the time.

Communication channels (page 45) and call channels (page 55) provide point-to-point connections between
processes. This chapter describes shared channels which provide connections between a single process
and an arbitrary number of other processes.

8.1 Sharing call channels

A shared communication channel is declared similarly to an ordinary channel except that the declaration is
preceded by the key word SHARED. Consider:
SHARED CALL cosine (RESULT REAL32 result, VAL REAL32 x):
This introduces a call channel cosi ne which may be shared between many processes.
The use of a shared call channel is just the same as the use of an unshared call channel. Processes make

calls on the shared end of the channel and a single process accepts the calls. The accepting process may
not accept more than one call at once on any channel.

The type of a shared call channel is:

shared.call = SHARED CALL
| [expression] shared.call
declaration = shared.call name ({o, formal) :

8.2 Shared communication channels

Communication channels are not shared singly but as a record. A type of channel records is declared as
follows:
CHAN TYPE RPC
RECORD
CHAN OF REAL32 param result:

Shared records of channels are declared using the keyword SHARED:
SHARED RPC si ne :

A process which wishes to use the shared ends of a channel record must first claim it. Consider:

CLAI M si ne
SEQ
sine[paranj ! 3.14159(REAL32)
sine[result] ? x

This process claims the channel record si ne, outputs a parameter along the component par amand then
inputs the result from the component r esul t . The shared end of the record may not be used outside a claim
process.

The process which has access to the non-shared end of the record must first grant the record to a claim
process. Consider

GRANT si ne
REAL32 vy:
SEQ

sine[param ? vy
sine[result] ! SIN (y)

DRART --- Marchi31, 1992

This process grants the record to one of the claiming processes, inputs from the parameter channel, outputs
along the result channel and then terminates the grant. The granting action synchronises with the claiming
action of the claim process and the termination of the grant process synchronises with the termination of
the claim process. The cooperation of both parties in these actions ensures that there can be no confusion
caused by the channel being released when one party is not expecting it. Since no more than one process
may grant a channel at once, a successful claim process has exclusive use of the channel for the duration
of the claim.

The syntax of shared channel records is:

definition = CHAN TYPE name
RECORD
{ declaration }

SHARED name
[expression] shared.channels
shared.channels name :

shared.channels

declaration

The syntax of the claim and grant is:

process = CLAI Mchannel
process

| GRANT channel
process

8.2.1 Restrictions on the body of a claim

Shared channels and process scheduling can conspire to give the most subtle deadlocks in concurrent
languages. Consider the following process, which the restrictions below make INVALID:

PAR
CLAIM a
CLAIM b
SKI P
CLAIM b
CLAIM a
SKI P

The channel records a and b are granted by processes which run concurrently with a pair of processes
which attempt to claim them in different orders. If one of the claiming processes should claim both channel
records before the other process has claimed either, then the whole compaosition will terminated successfully.
However, should each process succeed in its first claim, then the whole process will deadlock because each
of the claiming processes is waiting for the other process to release the channel record which it has claimed.

The probability of a deadlock like this occurring is very small because it requires a very precise interaction
with the scheduler. Errors caused by the presence of this sort of deadlock are therefore difficult to repeat
and detect. The restriction which is imposed prevents the programming of these subtle deadlocks.

A claim process is only allowed to affect its environment by assignment to its own variables or communication
along the channels of the shared record. The claim process may not communicate with its environment
along any other channels and may not claim any other shared record. This prevents a claim process from
synchronising with anything other than the granting process during the period of the claim. Similar restrictions
apply to the bodies of procedures called from the claim process.

DRART --- Marchi31, 1992

8.3 Modelling shared call channels with shared channel records

The call and accept mechanism may be modelled by a shared record pair

CHAN TYPE CALL. CHANS
RECORD
CHAN OF REAL32 parans:
CHAN OF REAL32 results:

SHARED CALL. CHANS cosi ne. rpc:
so that the call

cosine (cos.4, 4.0(REAL32))
is modelled by:

CLAI M cosi ne. rpc
SEQ
cosi ne.rpc[paranms] ! 4.0(REAL32)
cosine.rpc[results] ? cos.4

In this way, the call on the shared channel is equivalent to a claim on the channel, followed by communicating
the parameters and releasing the channel. The accept process is modelled by a grant so that

ACCEPT cosi ne (RESULT REAL32 result, VAL REAL32 x)
result := COS (x)

may be implemented by

GRANT cosi ne. rpc
REAL32 result, x:
SEQ
cosi ne.rpc[parans] ? X
result := COS (x)
cosine.rpc[results] ! result

This shows how the accept of the shared channel is equivalent to granting the channel, copying in the
parameters, executing the body of the accept and copying the parameters back out again.

8.4 Shared channels in alternations

Grant processes and accept processes may be used as guards of alternations. The syntax for accept
processes is exactly the same as that for the unshared case. Consider the alternation:

ALT
GRANT cosi ne. rpc
SEQ
cosi ne. rpc[params] ? X
result := COS (x)
cosine.rpc[results] ! result
SKI P
ACCEPT cosine (RESULT REAL32 result, VAL REAL32 x)
result := COS (x)
SKI P
NONE n :
halt ? n
STOP

DRART --- Marchi31, 1992

The syntax of guards is extended as follows:

guard = GRANT channel
process
| boolean & GRANT channel
process

DRART I March 31l 1992

A4 LB R R A 4

occam programs act upon variables, channels and timers. A variable has a value, and may be assigned a
value in an assignment or input. Channels communicate values. Timers produce a value which represents
the time.

This chapter describes timers, the declaration of timers, and access to them.

Channels are discussed on pages 45 and 55 and variables are discussed on page 23.

A timer provides a clock which can be accessed by any number of concurrent processes.

9.1 Timer type

The type of a timer is:
timer.type = TIMER

Timer arrays have type similar to other arrays, for example:

[10] TI MER

The syntax of timer array types is:

timer.type = [expression] timer.type

9.2 Declaring a timer
A timer is declared in a manner similar to channels and variables. Consider the following example:
TI MER cl ock :

This declaration introduces a timer which is identified by the name cl ock. Several timers may be declared
together, for example:

TI MER cl ockA, cl ockB :

The type of the declarations is determined, and then the declarations are made. Timer arrays are declared
in just the same way as other arrays, for example:

[10] TI MER cl ocks:

Components and segments of timer arrays are denoted in just the same way as components and segments
of variable arrays (page 30) and channel arrays (page 46).

The syntax of timer declarations is:

declaration = timer.type {1, name }:
timer = name
| timer[expression]
| [timer FROMbase FOR count]
| [timer FROMbase]
| [timer FOR count]

DRART --- Marchi31, 1992

A value input from a timer provides an integer value of type | NT representing the time. The value is derived
from a clock, which changes by an increment at regular intervals. The value of the clock is cyclic (ie when
the value reaches the most positive integer value, an increment results in the most negative integer value).
The special operator AFTER can be used to compare times even though the value may have crossed from
most positive to most negative, just as one o’clock pm may be considered later than eleven o’clock am. If
t1 and t 2 are successive inputs from the same timer, then the expression t1 AFTER t2 is true if t 1 is
later than t 2. This behaviour is only sensible if the second value (t 2) is input within one cycle of the timer.
AFTER is also explained in the chapter on expressions (page 67).

The rate at which a timer is incremented is implementation dependent.

9.3 Timer input

Timers are accessed by special forms of input called timer inputs, which are similar to channel inputs, for
example:

clock ? t

This example inputs a value from the timer cl ock and assigns the value to the variable t . Unlike channels,
inputs from the same timer may appear in any humber of components of a parallel.

Another special input (called a delayed input) specifies a time, after which the input terminates, for example:
clock ? AFTER t

This input waits until the value of the timer cl ock is later than the value of t . In other words, if ¢ is the value
of the timer cl ock, then the input will wait until (¢ AFTER t) is true. The value of t is unchanged.

More usefully perhaps, a delay can be caused by this sequence:

SEQ
cl ock ? now
cl ock ? AFTER now PLUS del ay

This sequence inputs a value representing the current time and assigns it to the variable now. The following
delayed input waits until the value input from cl ock is later than the value of now PLUS del ay. PLUS
(page 70) is a modulo operator.

The syntax for timer inputs is:

input = timer.input
| delayed.input
timer.input = timer ? variable

delayed.input timer ? AFTER expression

A timer input receives a value from the timer named on the left of the input symbol (?), and assigns that value
to the variable named on the right of the symbol. A delayed input waits until the value of the timer named on
the left of the input symbol (?) is later than the value of the expression on the right of the keyword AFTER.

DRART --- Marchi31, 1992

9.4 Timers in alternations

Timer inputs and delayed inputs may be used as guards in alternations. This gives a simple way in which to
program time outs. Consider the process:

SEQ
to.server ! request
time ? request.tine
ALT
fromserver ? reply
the server has replied in tinme

ti ne ? AFTER request.time PLUS time. out
the server has m ssed the deadline

In this example, the process sends a request to a server and notes the time at which the request was sent.
When the process is ready to receive the reply, it waits alternatively for the server to become ready with the
reply or for the time out period to pass. If the server has not become ready to reply before the end of the
time out period, then the process will execute the branch of the alternation associated with the delayed input.
Notice that the time out period starts from the time of the request, not from the beginning of the alternation.

9.5 Timer abbreviation

Timers may be abbreviated in just the same way as variables (page 34) and channels (page 53). The same
rules, summarised in appendix H, apply to abbreviated timer names as apply to abbreviated variable or
channel names.

The syntax of timer abbreviation is

abbreviation specifier name | S timer :
name | S timer :

[1 specifier

|

specifier = timer.type
I
| [expression] specifier

DRART --- Marchi31, 1992

DRART --- Marchi31, 1992

L I—I\rll e S o | B DS

This chapter is about expressions, and describes the range of operators provided by OCCam. The chapter
also describes data type conversions and tables.

An expression is evaluated and produces a result. The result of an expression has a value and a data
type. The simplest expressions are literals and variables. More complex expressions are constructed from
operands, operators and parentheses. An operand is a variable (page 29), a literal, a table, or another
expression enclosed in parentheses. An operator performs an operation, for example an addition, upon its
operand(s). The following are all valid expressions:

5(1 NT64) | a literal value

X a variable
6 * 4 multiplication of two literal operands
X *y multiplication of two variable operands

NOT TRUE | a boolean expression

An expression may itself be an operand in an expression. In this way larger expressions are built, as shown
in the following examples:

(1 +2) -1 subtract 1 from the result of (1 + 2)
(x *y) * (w* z) | multiply the results of the expressions (x * y) and (w * 2z)

There is no operator precedence as the hierarchical structure of a large expression is clearly defined by
parentheses. With the exception of shift operations, where the number of bits shifted is indicated by a value
of type | NT, the data type of the two operands in a dyadic expression must be of the same type. In an
assignment the value of the expression must be of the same data type as the variable to which it is to be
assigned. Consider in detail the following example:

y :=(m* x) +c

Each of the components of this expression (y, m x and c) must be of the same data type. The result of an
expression is of the same type as its operand(s). The expression in this example - (m * x) + c - has two
operators. The parentheses indicate that the expression (m * x) is an operand of the operator +, and thus
must be evaluated before the + operation can be performed.

The syntax for expressions is:

expression = monadic.operator operand
| operand dyadic.operator operand
| conversion
| operand
operand = variable
| literal
| table
I

(expression)

Tables, operators and conversions are detailed in the following sections. Variables (page 29) and literals
(page 24) have been explained earlier.

10.1 Tables

A table constructs an array of values from a number of expressions which must yield values of the same data
type. The value of each component of the array is the value of the corresponding expression. Consider the
following example:

[1, 2, 3]

DRART --- Marchi31, 1992

This example constructs an array with three components, each of type | NT. Here are some more examples:

["a", "b", "c¢'] a table of three bytes (equivalent to "abc")
[x, vy, z] a table of three values

[x * vy, x + 4] a table of with two component values
[(a* b) + c] a table with a single component

[6(1 NT64), 8888(1NT64)] | atable of two | NT64 integers

If the variables a, b and ¢ are of type | NT, then the table [(a * b) + c] is an expression whose type is
[1]INT.["a’, "b’, ’'c’'] is an expression whose type is [3] BYTE, and so on.

The syntax for tables is:

table = table [subscript]

| [{1, expression }]

| [table FROMsubscript FOR count]
| [table FROMsubscript]

|

[table FOR count]
—index,@, A table is one or more expressions of the same data type, separated by commas, and enclosed

in square brackets. Line breaks are permitted after a comma. The meanings of subscript and count are
given earlier in the description of variables (page 29).

10.2 Operations

An operation evaluates its operand(s) and produces a result. The result of an operation has a value and a
data type.

+ addition ~ BI TNOT | bitwise not
subtraction >> shift right
* multiplication << shift left
/ division AND boolean and
REM remainder R boolean or
\ remainder NOT boolean not
PLUS modulo addition = equal
M NUS modulo subtraction <> not equal
TI MES modulo multiplication | < less than
MOSTNEG most negative > greater than
MOSTPOS most positive <= less than or equal
/\ BI TAND | bitwise and >= greater than or equal
\/ BITOR | bitwise or AFTER later than
>< bitwise exclusive or | Sl ZE array size
10.2.1 Arithmetic operators
The arithmetic operators are:

+ addition

- subtraction

* multiplication

/ division

REM | remainder

DRART --- Marchi31, 1992

Arithmetic operators perform an arithmetic operation upon operands of the same integer or real data type
(not on bytes or booleans), for example:

39 + 3 produces a value of 42
45 - 3 produces a value of 42
6 * 7 produces a value of 42

126 / 3 produces a value of 42
| 128 REM 3 | produces a value of 2|

The final example in this list may also be written: 128 \ 3. The symbols REM and \ both signify the
remainder operation. A remainder operation produces a value which is the remainder of the division of the
two operands. The sign of a remainder operation is the sign of the left hand expression (except where the
result is zero) regardless of the sign of the right hand value. The result of an integer division is rounded
toward zero (ie truncated), for example:

3/ 2 produces a value of 1

(-3) / 2 produces a value of —1

(-9) / 4 produces a value of —2
\ (-9) REM 4 | produces a value of —1

The operator - is also a monadic negation operator, which has the effect of negating the value of its operand,
for example:

X | has the value (0 — x)
- 5 | minus 5

The result of an arithmetic operation produces a result of the same data type as the operands. An arithmetic
operation is not valid if the resulting value cannot be represented by the same data type as the operands, for
example where the result of a multiplication of two large integers produces a value which exceeds the range
of the type (arithmetic overflow). Division by zero is also treated as invalid.

Remainder operations on both integers and reals, obeys the following law:

((z/y)*y) + (e REMy) = =

Here are some examples of real expressions, in which x is a value of 39. 0(REAL32), and y is a value of
3. 0(REAL32):

X +y produces a value of 42.0 of type REAL32
X -y produces a value of 36.0 of type REAL32
X *y produces a value of 117.0 of type REAL32
x 1y produces a value of 13.0 of type REAL32
X REMy | produces a value of 0.0 of type REAL32

Rounding the results of real operations

The result of a real arithmetic expression (which is considered to be infinitely precise) is rounded to the
nearest value which can be represented by the type. That is, the value will be adjusted, if necessary, to fit
into the representation of its type. The precision of an operation is that of the type of the operands.
It is possible for the result of a real remainder operation to be negative. Consider the following example:

1. 5(REAL32) REM 2. 0(REAL32)

The result of this expression is (—0.5). If z and y are real values, the result of z REMy is (z — (y *n)), where n
is the result of dividing z and y rounded toward zero. Applying this to the above example, n is 0.75 rounded
to the nearest integer (1), leaving : (1.5 - (2.0% 1) = (-0.5).

Full details of IEEE rounding modes are given in the appendix (page 112).

DRART --- Marchi31, 1992

10.2.2 Modulo arithmetic operators

The modulo arithmetic operators are:

PLUS modulo addition
M NUS | modulo subtraction
TI MES | modulo multiplication

These modulo arithmetic operators perform an operation upon operands of the same integer data type (not
on reals, bytes or booleans). Whilst the effect of these operations is similar to the corresponding arithmetic
operations, no overflow checking takes place, and thus the values are cyclic. For example, adding one to
the most positive integer will produce a value equal to the most negative integer (ie (MOSTPOS PLUS 1) =
MOSTN EGQG), and subtracting one from the most negative integer will produce a value equal to the most
positive integer (ie (MOSTNEG M NUS 1) = MOSTPOS). Consider these examples:

32767(1 NT16) + 1(1NT16) causes an arithmetic overflow. INVALID!
32767(1 NT16) PLUS 1(1 NT16) produces the value —32768.

(-32768(1 NT16)) - 1(I1NT16) causes an arithmetic overflow. INVALID!
(-32768(1 NT16)) M NUS 1(INT16) | produces the value 32767.

20000(I NT16) * 10(I NT16) causes an arithmetic overflow. INVALID!
20000(I NT16) TI MES 10(| NT16) produces the value 3392

M NUS is also a valid monadic operator.

10.2.3 MOSTPGCS and MOSTNEG (integer range)

The operator MOSTPGS produces the most positive value of an integer type. The operator MOSTNEG produces
the most negative value of an integer type. Consider the following examples:

MOSTNEG | NT16 | has the value —32768
MOSTPCS | NT16 | has the value 32767

The syntax for these operators is:

expression = MOSTPCS data.type
| MOSTNEG data.type

The keyword (MOSTPOS or MOSTNEG) appears to the left of a type.

10.2.4 Bit operations

Bitwise operators perform operations on the bit pattern of a value of integer type. The bitwise operators are:

/\ Bl TAND | bitwise and

\/ BITOR bitwise or

>< bitwise exclusive or
~ Bl TNOT bitwise not

Here are some example expressions using the bitwise operators. The results shown are true if the value of
pi xel is #1010, and the value of patt er n is #FFFF, and their type is | NT16:

pi xel /\ pattern | produces a result #1010(| NT16)
~ pi xel produces a result #EFEF(| NT16)
pi xel \/ pattern | produces a result #FFFF(| NT16)
pi xel >< pattern | produces a result #EFEF(| NT16)

DRART --- Marchi31, 1992

The operands of /\, \/ and >< must both be of the same integer type. The following table illustrates how
each bit of the result is produced from the corresponding bits in the operand.

1 ><0=1|1/A0=0|1\/0=1
0 >< 0=0[0/\0=0|0\/0=0
1><1=0|1/\1=1]1\/1=1
0>< 1=1]0/\1=0/0\/1=1

The bitwise not operator (~) has a single operand which must be an integer type. Each bit of the result is the
inverse of the corresponding bit in the operand, as shown in the following table:

0
1

"1
"0
The result of a bitwise operation is of the same integer type as the operand(s). The keywords Bl TAND, Bl TOR
and BI TNOT are equivalentto /\,\/, ~ respectively, and are included especially for implementations which
have a restricted character set.

10.2.5 Shift operations

The shift operators perform a logical shift on the value of an integer type. The shift operators are:

>> | shift right
<< | shift left

The shift operators shift the bit pattern of a value of any integer type by a humber of places determined by a
count value of type | NT. For example, if the value of n is #FFFF, and of type | NT16:

n << 4 | produces a result #FFF0(| NT16)
n >> 4 | produces a result #0FFF(| NT16)

The result is of the same integer type as n. The bits vacated by the shift become zero, the bits shifted out of
the pattern are lost. The left shift operator shifts toward the most significant end of the pattern, the right shift
operator shifts toward the least significant end of the pattern.

Consider these further examples, where n is a value of type | NT32:

<< 0 produces the value n
>> 0 produces the value n
>> 32 | produces the value 0
<< 32 | produces the value 0

5 3 35 O

A shift by a negative value, or by a value which exceeds the number of bits in the representation, is invalid.

10.2.6 Boolean operations

The boolean operators combine operands of boolean type, and produce a boolean result. The boolean
operators are:

AND | boolean and
oR boolean or
NOT | boolean not

DRART --- Marchi31, 1992

The following table shows the results for each operation:

false AND true = false | false OR true =true NOT false =true

false AND false = false | false OR false = false | NOT true = false
true AND false = false | true OR false =true
true AND true =true true OR true =true

The operand to the left of a boolean operator is evaluated, and if the result of the operation can be determined
evaluation ceases. This differs from the behaviour of other expressions. Consider the following example:

I F
((ch >="a’) AND (ch <= "z’)) OR ((ch >="A) AND (ch <= 'Z))

(ch”: cr) OR (ch = down) OR (ch = up)

((i:'h. = escape) AND shift)) OR ((ch = escape) AND control))

Note that parentheses may be omitted between expressions containing adjacent AND or OR operators. The
evaluation of the boolean expression ((ch >= "a’) AND (ch <= '2z')) ceases if the expression (ch
>= ' a') is false, the evaluation of the expression (ch <= 'z’) does not take place. If the result is true,
the expression ((ch >= "A") AND (ch <= 'Z)) to the right of OR is not evaluated. The rule is that
evaluation of a boolean expression will cease if the operand to the left of AND is false, or if the operand to
the left of ORis true.

10.2.7 Relational operations

The relational operators perform a comparison of their operands, and produce a boolean result. The relational
operators are:

= equal

<> not equal

< less than

> greater than

<= less than or equal
>= greater than or equal

Here are examples of relational expressions using = and <>. In these examples the operands, x and y, can
be any primitive data type:

X =y is true if the value of x is equal to the value of y
the result is false otherwise

X <>y | istrue if the value of x is not equal to the value of y
the result is false otherwise

The following are examples using the other relational operators. In these examples the operands, x and vy,
can be an integer, byte or real type, but may not be a boolean:

X <y is true if the value of x is less than the value of y

the result is false otherwise

X >y is true if the value of x is greater than the value of y

the result is false otherwise

X <=y | is true if the value of x is less than or equal to the value of y
the result is false otherwise

x >=y | is true if the value of x is greater than or equal the value of y
the result is false otherwise

DRART --- Marchi31, 1992

AFTER (later than)

The special modulo operator AFTER performs a comparison operation, and returns a boolean result, for
example:

(a AFTER b)

This expression is true if a is later in a cyclic sequence than b, just as one o’clock pm can be considered
later than eleven o’clock am. The first operand is considered the starting point on a “clock face” of integer
values. If the shortest route to the value of the second operator is clockwise, then the value is later than the
first operand and the result of the expression is true. If the shortest route to the value of the second operand
is anticlockwise, then the value of the second operand is earlier, and the result of the expression is false.

(a AFTER®) produces the same value as (e M NUS?) > 0.

10.2.8 Sl ZE (number of components in an array)

The special operator Sl ZE has a single operand of array type, and produces an integer value of type | NT,
equal to the number of components in the array. For example, if a is an array of type [8] | NT, then:

| SI ZE a | produces the value 8 |

If a is of type [8] [4] | NT, then:

SI ZE a produces the value 8
S| ZE a[1] | produces the value 4

10.3 Data type conversion

With the exception of logical shifts (where the number of bits to shift must be of type | NT), the types of
the operands in an expression must be of the same type. Operands may explicitly have their data type
converted. A data type conversion permits a value of a primitive data type (not array types) to be converted
to a numerically similar value of another primitive data type. A data type conversion produces the value of
its operand as a value of the specified data type, for example:

i 1= (k * 4.5(REAL64)) * (REAL64 n)

The value of n in this example is converted to a value of type REAL64. Note that 4. 5(REAL64) is a literal
value of type REAL64, whereas (REAL64 n) is a data type conversion of the value of n.

The syntax for data type conversions is:

conversion = data.type operand
| data.type ROUND operand
I

data.type TRUNC operand

The type must be a primitive data type, and appears to the left of the operand. A data type conversion which
includes the keyword ROUND as described by the syntax, produces a value rounded to the nearest value of
the specified type. Where two values are equally near, the value is rounded toward the nearest even number.
A data type conversion which includes the keyword TRUNC as described by the syntax, produces a value
truncated (rounded toward zero) to a value of the specified type.

A conversion between any of the integer types, and conversions between those types and type BYTE, is valid
only if the value produced is within the range of the receiving type. Byte and integer values may be converted
to boolean values if their value is one or zero. The boolean value is true if the value is one, and false if the
value is zero. That is:

| BOOL 1 evaluates to TRUE

| BOOL 0 evaluates to FALSE |
I NT TRUE evaluates to 1
I NT FALSE | evaluates to O

DRART --- Marchi31, 1992

Conversions from integer values to real values, and vice versa, must specify whether the result is to be
rounded or truncated. A value of type REAL32 can be extended to an exact value of type REAL64. Values of
type REAL64 can be converted to values of type REAL32, providing the value is in the range of the REAL32

type. The conversion must specify if

the value is to be rounded or truncated. Consider these examples,

where n, and mare integers of type | NT64, and n has a value 255 and mhas a value 3:

BYTE n
REAL32 ROUND n
REAL64 TRUNC n
REAL64 ROUND(n * m
(REAL64 ROUND n) *

produces a byte value 255

produces a REAL32 value 255.0
produces a REAL64 value 255.0
produces a REAL64 value 765.0
(REAL64 ROUND m) | produces a REAL64 value 765.0

Conversions may be applied to operands of the same type, but will have no effect. The truncation and
rounding of integer types to real types occurs where the integer cannot be exactly represented as a value of
the real type. Consider the following example:

SEQ
i := 33554435 (I NT32)
a := REAL32 ROUND i
b := REAL32 TRUNC i

-- hex #2000003

The value in this example has been chosen specifically to illustrate the behaviour of explicitly rounding an
integer value which cannot be directly represented in the floating point representation of REAL32. The value
of a after this sequence is 33554436.0, and the value of b is 33554432.0. For b, the two least significant bits
of the integer representation have been lost (they had held the value 3). For a the value of those bits has
been rounded to the next nearest representable value. Further detail of rounding is given in the appendix on

page 112.

Conversion of real values to integers has the effect illustrated by the following examples:

| NT32 ROUND 0. 75(REAL32) | produces a value of 1
| NT32 ROUND 0. 25(REAL32) | produces a value of O
I NT32 TRUNC 0. 75(REAL32) | produces a value of 0
\ I NT32 TRUNC 0. 25(REAL32) | produces a value of O

Consider these examples, where x, and y are type REAL32, x has a value 3.5, y has a value 2.5.:

I NT16 TRUNC y
I NT16 ROUND y
I NT32 ROUND x

(I NT ROUND x)
REAL64 x

I NT16 TRUNC (x / y) | produces the value 1

produces the value 2, y truncated
produces the value 2, y rounded (even)
produces the value 4, x rounded (even)

* 10 produces the value 40
produces the value 3.5

A full explanation of the IEEE rounding modes is given in the appendix (page 112).

DRART --- Marchi31, 1992

L] L} 1 W WA W I

This chapter describes procedures in OCCam. A procedure definition in 0CCam defines a name for a process.
Consider the following example:

PROC i ncrenent (I NT x)
X :=x +1

This example defines i ncrenent as the name for the process, x := x + 1. Formal parameters of a
procedure are specified in parentheses after the procedure name. In this example, x is a formal parameter,
and is of type | NT. The procedure i ncr emrent may be used as shown in the following example:

INT vy :
SEQ

i”ni:remant (y)

A formal parameter is an abbreviation of the actual parameter used in an instance of a procedure or a variable
which is initialised with a value given as an actual parameter. An instance of a procedure has the same effect
as the substitution of the process named in the procedure’s definition. This instance of i ncr ement can be
expanded to show its effect:

INT vy :
SEQ

X |
X

1w

y
x +1
which is equivalent to
INT vy :
SEQ

y;:y+l

Here is a further example:

PROC wites (CHAN OF BYTE stream VAL []BYTE string)
SEQi = 0 FOR SIZE string
stream! string[i]

This procedure takes a channel (st r ean) and an array (st r i ng) as parameters, and outputs the components
of the array to the channel. An instance of the procedure looks like this:

SEQ

wites (screen, "Hello world")

Again, this instance can be expanded to show the effect:

SEQ

CHAN OF BYTE stream | S screen :
VAL []BYTE string IS "Hell o worl d"
SEQi = 0 FOR SIZE string

stream! string[i]

DRART --- Marchi31, 1992

A name which is free in the body of the procedure is statically bound to the name used in the procedure
definition, for example:

I NT step :
SEQ
step := 39
PROC next.item (I NT next, VAL INT present)
next := present + step

INT g, step :
SEQ
step :=7
next.item (g, 3)
-- at this point the value of g is 42

The free variable st ep, in scope when the procedure next . i t emwas defined, is bound to the occurrence
of the name in the procedure next . item The rules of OCCam ensure that distinct names identify distinct
objects. The second declaration of a variable with the name st ep introduces a distinct new name. This
means that in the example, the scope and binding of the variables can be seen more clearly by making
systematic changes of name. Once this is done, the example is equivalent to:

I NT step :
SEQ
step := 39
INT g, curb : -- nane changed
SEQ
curb :=7
next 1S g: -- expand instance of next.item
VAL present IS 3 :
next := present + step

-- at this point the value of g is 42

In this transformation of the earlier example, it can be seen that the variable used in the instance of next . i t em
is the variable named st ep declared before the procedure definition of next.item and not the second
variable declared with the same name.

The rules for abbreviations lead to restrictions on the actual parameters which may be used in procedure
instances. Consider the procedure:

INT x, y, step :
PROC next.item (I NT next, VAL INT present)
next := present + step

And now consider the following equivalences of instances that may appear in the scope of the procedure:

next.item(x, y) is equivalent to: INT next IS x :
VAL I NT present ISy :
next := present + step
next.item (x, step) is equivalent to: INT next IS x :
VAL | NT present IS step :
next := present + step
next.item (step, Xx) is equivalent to: I NT next IS step :
which is INVALID! VAL INT present IS x :
next := present + step
next.item(x, X) is equivalent to: INT next IS x :
which is INVALID! VAL I NT present IS x :
next := present + step

DRART --- Marchi31, 1992

Here it can be seen how the meaning of each procedure parameter is defined in terms of an abbreviation,
the ordering of parameters corresponds to a sequence of abbreviations. next.item (step, X) is in-
valid because the variable st ep is used in the expression next := present + step, after it has been
abbreviated, and the example next.item (x, Xx) is invalid as x has already been used in the previous
abbreviation of the variable x (and the rules state [see appendix H] that a variable used in such an abbrevia-
tion may not be used within the associated scope). Notice also the effect with the order of parameters used
in next . i t emchanged:

INT X, y, step :
PROC next.item (VAL I NT present, |NT next)
next := present + step

With this re-ordering, next . item (x, x) is still invalid, although now for a different reason, as follows:

next.item (x, Xx) is equivalent to: VAL I NT present IS x :
which is INVALID! I NT next IS x :
next := present + step

next.item (x, X) is invalid here as there is an assignment to X (via next) within the scope of the first
abbreviation. Now consider the following example:

PROC nonsense (I NT x, VAL INT vy)

SEQ
X 1= X +y
X =X -y

This procedure should leave the value of the variable used as the actual parameter for x, unchanged, as the
following expansion shows:

nonsense (n, 3) is equivalent to: INT Xx IS n :
VAL INTYy IS 3:
SEQ
X =X +y
X =X -y

and by substitution SEQ
n:=n+ 3

The value of n after this instance is n, as might be expected. However, the following instance is invalid,
which is just as well, as the effect is non-intuitive:

nonsense (n, n) is equivalent to: INT X 1S n :
which is INVALID! VAL INTy ISn:
SEQ
X =X +y
X 1= X -y

and by substitution SEQ
a non-intuitive effect! n:=n+n
n:=n-n

The value of n after this instance, if it were valid, would be 0, which is counter intuitive. The following example

DRART --- Marchi31, 1992

highlights the problem further.

nonsense (i, v[i]) is equivalent to: INT x IS
which is INVALID! VAL INT y IS v[i]
SEQ
X=X +y
X=X -y

and by substitution SEQ
a non-intuitive effect! =0+ v[i]
o= - v[i]
If this instance were valid, the value of i after the instance of nonsense would be difficult to predict, as

in each of the assignments v[i] will probably reference a different component of v, as the value of the
subscript i may be changed by the first assignment.

The syntax for a procedure definition is:

definition = PROCname ({o, formal })
process
formal specifier {; , name }

RESULT specifier {1 , name }

| VAL specifier {; , name }
I
| I NITIAL data.type {1 , name }

The keyword PROC, the name of the procedure, and a formal parameter list enclosed in parentheses is
followed by a process, indented two spaces, which is the body of the procedure. The procedure definition is
terminated by a colon which appears on a new line at the same indentation level as the start of the definition.
Because an initial parameter requires a local variable within the procedure, its type must be given exactly, it
may not be specified.

The syntax for procedure instance is:

instance
actual

= name ({o, actual })
= variable

| channel

| call.channel
| timer

| expression

process instance

An instance of a procedure is the procedure name followed by a list of zero or more actual parameters in
parentheses. An actual parameter is a variable, channel, call channel, timer or expression. The list of actual
parameters must correspond directly to the list of formal parameters used in the definition of the procedure.
The actual parameter list must have the same number of entries, each of which must be compatible with the
kind (VAL or non-VAL) and type of the corresponding formal parameter. In a program in which all nhames
are distinct, an instance of a procedure behaves like the substitution of the procedure body. Notice that all
programs can be expressed in a form in which all names are made distinct by systematic changes of name.
Procedures in 0OCCam are not recursive. A channel parameter or free channel may only be used for input or
output (not both) in the procedure.

An instance of a procedure defined with zero parameters must be followed by empty parentheses. Where a
number of parameters of the same type appear in the parameter list, a single specifier may specify several
names. For example:

PROC snark (VAL | NT butcher, beaver, REAL64 boojum j ubj ub)

DRART --- Marchi31, 1992

This example, is equivalent to:

PROC snark (VAL INT butcher, VAL I NT beaver,
REAL64 booj um REAL64 | ubj ub)

DRART I March 31l 1992

DRART --- Marchi31, 1992

e f— u WAl IV GINS T I

The previous chapter discusses named processes (called procedures). This chapter describes functions in
occam. A function defines a name for a special kind of process, called a value process. A value process
produces a result of data type, and may appear in expressions. Value processes may also produce more
than one result, which may be assigned in a multiple assignment. 0CCam functions are side effect free, as
they are forbidden to communicate or assign to free variables. This helps to ensure that programs are clear
and easy to maintain.

A value process performs an enclosed process and produces a result. Consider the following example:

total := subtotal + (INT sum:
VALCF
SEQ
sum:= 0
SEQi = 0 FOR SIZE v
sum := sum + v[i]
RESULT sum
)
In the example shown here, the value process produces the sum of the array v, and is equivalent to
Sl ZEv
> Vi
i =0
The syntax of value processes is:
value.process = VALCF
process
RESULT expression.list
| specification

value.process

operand = (value.process
expression.list = (value.process

More commonly the value process is the body of a function definition, as illustrated in the following example:

I NT FUNCTI ON sum (VAL []I NT val ues)
I NT accunul at or

VALOF
SEQ
accurnul ator := 0
SEQi = 0 FOR Sl ZE val ues

accumul ator := accunul ator + values[i]
RESULT accunul at or

This function definition defines the name sum for the associated value process. The type of the result is
I NT, specified by | NT FUNCTI ON. Just as the behaviour of procedures is defined by the substitution of the
procedure body, functions behave like the substitution of the function body. It follows that the example which
starts this chapter is an expansion of the following:

total := subtotal + sum (n)

DRART --- Marchi31, 1992

A function definition may also define a name for an expression list, so that simple, single line functions can
be defined in the following fashion:

BOOL FUNCTI ON | ower case (VAL BYTE ch) IS (ch >="a’) AND (ch <= "'2")
BOCL FUNCTI ON uppercase (VAL BYTE ch) IS (ch >="A") AND (ch <="'2')
BOOL FUNCTI ON i schar (VAL BYTE ch) | S uppercase (ch) OR | owercase (ch)

Each of these functions returns a single boolean result. The definition of the function i schar is equivalent
to the following:

BOOL FUNCTI ON i schar (VAL BYTE ch)
VALOF
SKI P
RESULT uppercase (ch) OR | owercase (ch)

A number of rules apply to functions to ensure they are side effect free. As for procedures, the correspondence
between the formal and actual parameters of a function is defined in terms of abbreviations, and follows the
associated scope rules. However, an argument of a function may only be a value parameter or an initial
parameter. Only initial parameters and variables declared within the body of a value process or function may
be assigned to and communications may only occur along channels which are declared within the body of
the value process or function.

Any procedure used within a function must also be side effect free. A name which is free within the value
process (Scope, page 32) can be used only in expressions within the value process or function body, they
may not be assigned to by input or assignment. Consider the following:

I NT FUNCTION read.top.of.stack () IS stack[stack poi nter]
BOOL FUNCTION enpty () IS stack.pointer = 0 :

Functions may also have initial parameters which are used for giving the initial values of a calculation.
Consider the function:

I NT FUNCTI ON exponent (1IN TIAL INT x,)
INITIAL INT k IS 1:

VALOF
WHLEyYy <> 0
I F
(y\2) =0
X, Y := X*X, yl2
(y\2) <> 0
Y = k*x, y-1
RESULT k

This function copies the values of its parameters and uses them as variables in the calculation of its result.

A value process may produce more than one result, which may then be assigned using a multiple assignment.

DRART --- Marchi31, 1992

Consider the following example:

point, found := (VAL BYTE char 1S 'g :
VAL []BYTE string IS message :
BOOL ok :
I NT ptr
VALOF
I F
IFi =0 FOR SIZE string
string[i] = char
SEQ
ok := TRUE
ptr =1
TRUE
SEQ
ok := FALSE
ptr := -1
RESULT ptr, ok

This value process searches the byte array st ri ng for the character ' g’ . The result is produced from the
expression list which follows RESULT, and is then assigned to poi nt, and f ound. This value process can
be given a name in a function definition, as follows:

I NT, BOOL FUNCTION instr (VAL BYTE char, VAL []BYTE string)

BOOL ok :
I NT ptr
VALCF
I F
IFi =0 FOR SIZE string
string[i] = char
SE
ok := TRUE
ptr =i
TRUE
SEQ
ok := FALSE
ptr := -1
RESULT ptr, ok
VAL nessage IS "Twas brillig and the slithy toves"
I NT point :
BOOL found
SEQ
point, found := instr (g, nessage)

This example finds the position of ' g’ in the string nessage. After the multiple assignment in this example,

the value of poi nt will be 11, and the value of f ound will be TRUE. Single line functions with multiple results
may also be defined:

INT, INT FUNCTION div.rem (VAL INT x, y) ISx/ vy, X REMy :
This function produces the division and remainder of x and y. If an error occurs within a function or value

process, it will behave like the primitive process STOP. This behaviour is equivalent to the behaviour of
a mathematical overflow in an arithmetic expression (see page 118 for details of the behaviour of invalid

DRART --- Marchi31, 1992

processes). Consider the behaviour of an instance of the following partial function:
I NT FUNCTI ON factorial (VAL INT n)

I NT product
VALCF
SEQ
product :=1
SEQi =1 FOR n
product := product * i

RESULT product

This function will behave like the primitive process STOP if n is less than zero, or if an overflow occurs in
the evaluation of the factorial. In either case the behaviour is equivalent to the behaviour of any other invalid
expression (page 118).

The syntax for functions is:

definition = {;, datatype } FUNCTI ON name ({o, formal })
function.body

function.body value.process

operand = name ({o, expression })
expression.list = name ({o, expression })
definition = {;, data.type } FUNCTI ONname ({o, formal }) | S expression.list :

A value process consists of zero or more specifications which precede the keyword VALOF, followed by a
process at an indentation of two spaces, and the keyword RESULT at the same indentation. The keyword
RESULT is followed by an expression list on the same line. The line may be broken after a comma, or at a
valid point in an expression. An operand of an expression may consist of a left parenthesis, a value process,
followed by a right parenthesis. The structured parentheses appear at the same indentation as each other,
and are equivalent to the left hand and right hand parentheses of a bracketed expression respectively. So,
where the value process produces a single result, the upper bracket may be preceded by an operator, or the
lower bracket may be followed by an operator.

The heading of a function definition consists of the keyword FUNCTI ON, preceded by the type(s) of the result(s)
produced by the function. The name of the function and a formal parameter list enclosed by parentheses
follows the keyword FUNCTI ON on the same line. This is followed by a value process, indented two spaces,
which forms the body of the function. The function definition is terminated by a colon which appears on a
new line at the same indentation level as the start of the definition. Alternatively, a function definition may
consist of the function heading followed by the keyword | S, an expression list, and a colon, on the same line.
The line may be broken after the keyword | S, a comma, or at a valid point in an expression.

An instance of a function defined to have zero parameters must be followed by empty parentheses. Where
a number of parameters of the same type appear in the parameter list, a single specifier may specify several
names. For example:

I NT FUNCTION alice (VAL REAL64 tweedl e.dum tweedl e. dee,
I NT cheshire.cat)

This example is equivalent to:

I NT FUNCTI ON alice (VAL REAL64 tweedl e. dum
VAL REAL64 tweedl e. dee,
I NT cheshire. cat)

DRART --- Marchi31, 1992

e Nt 1V ING W W I

There are two methods for structuring 0OCCam programs so that they can be easily changed and components
used again. These are the module and the library. This chapter describes modules. Libraries are described
in chapter 14.

Modules provide a mechanism for structuring processes. A module is like a black box with a number of
channels which can be used for communicating with the contents of the box. Inside the box there are
processes which service the channels. Because the user of the box cannot access the contents and can only
communicate with it through the channel interface, the contents can be changed and a new implementation
plugged into the user program with no alteration required to the rest of the program. Also because the user
has no access to the contents, the internal state of the box is protected from accidental interference.

This chapter describes the mechanisms which permit logically connected program components to be written
as a contiguous sequence of declarations. Once in this form, the sequence can be extracted into a module
type and multiple instances of it may be created in different parts of a program. The second part of the
chapter describes the mechanisms which achieve this.

Consider the process:

CHAN OF I NT in, out
PAR
CHAN OF INT md
PAR
VWH LE TRUE
I NT x :
SEQ
in ? x
md ! x
VH LE TRUE
INT y :
SEQ
md ? vy
out ! vy
user process

This example shows a two place buffer with input channel i n and output channel out , along with a user
process. The channels i n and out provide an interface to the buffer process. Furthermore, it would be
unusual to see such a buffer process written without the declaration of its channels. This conceptual unit can
be emphasised by declaring the buffer process as a resource:

CHAN OF INT in, out
RESOURCE
buf fer process

user process

This sequence of declarations may be used as the body of a module type so that many processes with similar
implementations may be declared:

MODULE TYPE TWO. BUFFER ()
CHAN OF INT in, out
RESQURCE

buf fer process

Instances of the module type are declared as follows:
MODULE buffer 1S | NSTANCE TWO. BUFFER ()

This gives the name buf f er to an instance of the channels and processes specified in the body of the
module type. The channels are referenced by subscription as for a record (here they are buf fer[i n] and
buffer[out]).

DRART --- Marchi31, 1992

The occam scoping rules provide a restricted interface (the channels i n and out) to the internal state of
the buffer (the integers x and y and the channel m d), the internal state has been protected from accidental
interference by the user process and it allows the details of the implementation to be changed. In this case,
the protection of the internal state is essential to the correct functioning of the buffer because if the variables
x and y were overwritten, then the buffer would output the wrong values.

The fact that the internal details of the implementation are hidden means that the buffer implementation above
may be replaced by the following implementation without affecting the functional behaviour of the program:

MODULE TYPE NEW TWO. BUFFER ()
CHAN OF INT in, out
RESQURCE

INT x, y :
SEQ
in ? X
VWH LE TRUE
SEQ
PAR
out ! x
in?y
PAR
out ! vy
in ? X

The only way in which to distinguish between this buffer process and the first buffer process is through its
timed behaviour and its space requirements.

13.1 Process declarations
We have just seen how a resource process can be used to structure a program so that logically connected

components of a program can be written as a contiguous sequence of declarations and then extracted as a
module. This section describes some more process structuring constructs.

DRART --- Marchi31, 1992

Consider the sequence of declarations:

CALL Get (RESULT BYTE c, VAL INT n)
CALL Put (VAL INT n, VAL BYTE c)

CALL Halt () :
[bl ock. si ze] BYTE cache:
I NI TI AL
from di sk. bl ock ? cache
FI NAL
to. di sk.block ! cache
RESOURCE
I NI TI AL BOOL going |'S TRUE
VHI LE goi ng
ALT
ACCEPT Get (RESULT BYTE c, VAL INT n)
¢ .= cache[n]
SKI P
ACCEPT Put (VAL INT n, VAL BYTE c)
cache[n] := ¢
SKI P

ACCEPT Halt ()
goi ng : = FALSE
SKI P

FI NAL
Halt ()

This provides a call channel interface to a disk block cache. The cache is initialised by input from the
channel from di sk. bl ock into the local array cache. The module then repeatedly enables a number
of alternative guards and services Put and Get requests. When the scope of the module terminates, the
finalisation process is executed and causes the local array to be output along the channel t o. di sk. bl ock.
The module then terminates.

Each of the process declarations can be described with existing OCCam constructs. A resource process is
executed in parallel with its scope so that the process:

RESOURCE
P

Q
is equivalent to

PAR
P

Q

An initialisation process is executed before its scope so that the process:

I NITI AL
P

Q
is equivalent to

SEQ
p
Q

DRART --- Marchi31, 1992

Similarly, the finalisation process is executed after its scope so that the process:

FI NAL
P

Q
is equivalent to

SEQ

Q
P

The syntax of process declarations is:

declaration = |INTIAL
process

| FINAL
process

| RESOURCE
process

13.1.1 Automatic termination of processes

Some processes are only active in response to user requests. Consider the cache process above. Its only
actions are to repeatedly enable the guards of the alternation, service the call channels and terminate when
its scope terminates. This sort of module is called a server and has a special representation in 0OCCam.
Consider the following declarations:

CALL Get (RESULT BYTE c, VAL INT n)
CALL Put (VAL INT n, VAL BYTE c)
[bl ock. si ze] BYTE cache:
I NI TI AL
from di sk. bl ock ? cache

FI NAL
to. di sk. bl ock ! cache

SERVER
ACCEPT Get (RESULT BYTE c, VAL INT n)
c := cache[n]
SKI P
ACCEPT Put (VAL INT n, VAL BYTE c)
cache[n] :=c¢
SKI P

These declarations have precisely the same effect as the previous cache implementation. A server process
repeatedly enables and services a set of accept guards until its scope terminates. Once its scope has
terminated, the server process terminates as soon as all of its branches have terminated.

DRART --- Marchi31, 1992

The accept guards of a server may themselves be guarded by boolean conditions as in the following example:

CHAN OF BYTE in, out :
CHAN OF NONE out. request

[si ze] BYTE buff :
INITIAL INT front IS O :
INITIAL I NT back IS 0 :
INITIAL INT contents IS O :

SERVER
contents < size & ¢ ? buff[back]
back, contents := (back+1l)\size, contents+1l
NONE n :
contents > 0 & out.request ? n
SEQ
out ! buff[front]
front, contents := (front+l)\size, contents-1

These declarations introduce a buffer module with a process which repeatedly enables an alternative with
two input guards with conditions which check whether the buffer is full or empty.

The syntax of servers is:

declaration = SERVER
{ alternative }

13.1.2 Disjointness of resource and server processes

The rules governing the disjointness of variables and channels in process declarations can be deduced from
the equivalences with the process constructs. Because resource and server processes execute in parallel
with their scope, the following rules apply (see page 16 or appendix H for the disjointness rules of parallel
processes):

e if aresource or server process assigns a variable, then its scope may not read or assign the variable.
e if a resource or server process reads a variable, then its scope may not assign the variable.

e if a resource or server process uses a channel for input, then its scope may not use that channel
for input.

e if a resource or server process uses a channel for output, then its scope may not use that channel
for output.

13.2 Interfaces
In the example of the cache server above, the internal state (namely the array cache) is in scope in the

user code. Although the user code cannot read or assign the state because of the usage rules, the declared
names might interfere with names previously in scope. The internal state of the server can be hidden using

DRART --- Marchi31, 1992

an interface declaration. Consider the declaration:

| NTERFACE
CALL Cet (RESULT BYTE c, VAL |NT n)
CALL Put (VAL INT n, VAL BYTE c)

TO

[bl ock. si ze] BYTE cache:
I NI TI AL

from di sk. bl ock ? cache
FI NAL

to. di sk. bl ock ! cache
SERVER

user code

This declares the call channels Put and Get as the interface to the server which implements the cache. The
interface channels are available both to the body of the interface declaration and to the user code. Names
which are brought into scope in the body of the declaration (in this example cache) are not available to the
user code.

The syntax of interfaces is:

declaration = | NTERFACE
{ declaration }
TO
{ specification }

Only channels may be declared in the first part of an interface declaration. Any specification may appear in
the second part of the declaration.

13.3 Module types

The previous sections have shown how to structure processes so that a logical unit of the process can be
expressed as a contiguous sequence of declarations with a restricted interface. This section shows how to
define many named modules with similar implementations. Consider the definition:

MODULE TYPE TWO. BUFFER ()
CHAN OF INT in, out
RESCURCE

This defines a type of two place buffer module named TWO. BUFFER whose interface consists of the channels
i n and out . Instances of the type are declared as in the following example:

MODULE buffer 1S | NSTANCE TWO. BUFFER ()
This declaration has the effect of introducing two new channels, named buffer[in] and buffer[out],

and creating a parallel process as specified in the body of the type definition. The module type serves to
abstract the body of the module.

DRART --- Marchi31, 1992

Module types may have parameters in just the same way as procedures may. Consider

MODULE TYPE CACHE (CHAN OF BYTE to. di sk. bl ock, from disk. bl ock)
| NTERFACE
CALL Get (RESULT BYTE c, VAL INT n)
CALL Put (VAL INT n, VAL BYTE c)

TO
[bl ock. si ze] BYTE cache :
I NI TI AL
from di sk. bl ock ? cache
FI NAL

to.di sk. bl ock ! cache

This defines a cache type which may be instantiated with different disk block channels.

Arrays of modules may be declared as follows:

MODULE caches IS [INSTANCEi = 0 FOR 10 :
CACHE (to.disk.block[i],fromdisk.block[i])]

Each component of the array must present the same interface, although it does not have to be of the same
type. Consider the declaration:

MODULE buffers 1S [I NSTANCE TWD. BUFFER (), | NSTANCE NEW TWO. BUFFER ()]
where TWO. BUFFER and NEW TWO. BUFFER are the modules defined on pages 85 and 86. This declaration
introduces the name buf f er s for an array of two buffers with channels i n and out in their interfaces.

Unlike data and channel declarations, the order of declarations in a module array is important. The declaration
of caches above is equivalent to:

MODULE caches[0] 1S CACHE (to.disk.block[O],from di sk. bl ock[0])
MODULE caches[1] IS CACHE (to. disk. bl ock[1], from di sk. bl ock[1])
MODULE caches[9] |'S CACHE (to. di sk. bl ock[9], from di sk. bl ock[9])

The first component of the array is declared first and so on. This means that the first cache is the first to be
initialised. If the disk is only willing to initialise the third cache first, then the process in which the declaration
occurs will deadlock. Similarly, the finalisations occur in the reverse order of declaration so that it is the cache
with index 9 which is written back first.

The syntax of module types is:

definition = MODULE TYPE name({o, formal })
{ declarations }

abbreviation = module.specifier name | S module :
module.specifier = MODULE
module = name

| module[expression]
| 1 NSTANCE name({o, actual })
| [1 NSTANCE replicator : module]
| [{1, module]
| [module FROMbase FOR count]
| [module FROMbase]
| [module FOR count]

channel = module[name]

call.channel = module[name]

DRART --- Marchi31, 1992

The declarations permitted within the body of a module type are restricted to channels, processes and
interfaces. Data declarations are not permitted within the body of a module type nor in the first part of an
interface.

13.3.1 Disjointness of instances of a module type

It must always be possible to declare more than one instance of any module type. These instances may be
declared in parallel processes and so there are rules which govern the way in which variables and channels
may be used:

¢ within a module type body, only variables which are declared within the body may be assigned.

e within a module type body, only shared channels or channels which are declared within the body
may be used for communication.

Therefore, variables and channels which are global to the module type may not be referenced in an exclusive
way within the type body. Any global state which is altered in the type body must be accessed via shared
channels. Consider the following example which maintains a count of the number of instances of a particular
module type which exist at any point:

SHARED CALL begi n. nodul e ()
SHARED CALL end. nbdule () :
INITIAL I NT no.of.nmodules IS O :

SERVER
ACCEPT begi n. nodul e ()
no. of . nodul es : = no. of . modul es+1
SKI P
ACCEPT end. nmodul e ()
no. of . nodul es : = no. of . modul es-1
SKI P

i\/DDULE TYPE count ed. nodul e ()
I NI TI AL
begi n. nodul e ()

FI NAL
end. nodul e ()

Each instance of the module type will make calls along begi n. nodul e and end. nodul e. Instances
of the type may be declared in concurrent processes. If each instance assigned directly to the variable
no. of . nodul es, the variable separation rules would be violated.

13.4 Module abbreviation and interface types

The name of a module may be abbreviated in the same way as the name of a variable or a channel, for
example

MODULE ny. bl ock |'S caches][4]

The type of the name may be specified using an interface type. Consider:

| NTERFACE TYPE BUFFER
CHAN OF INT in, out

MODULE BUFFER ny. buffer 1S buffers[29]

DRART --- Marchi31, 1992

This introduces the new name nry. buf f er for the module buf f er s[29] . The abbreviation is only valid if
the interface of the abbreviated module name matches the interface type precisely.

Interface types may also be used in the declaration of modules. Consider
MODULE BUFFER key. board |'S | NSTANCE TWO. BUFFER ()

This declares the module key. boar d with implementation TWO. BUFFER () and specifies that it must have
the interface type BUFFER.

The syntax of module abbreviation and interface types is:

definition = | NTERFACE TYPE name
{ declaration }

interface.type = name
module.specifier = MODULE interface.type
formal = MODULE interface.type
actual = module

The rules restricting module abbreviation (summarised in appendix H) are the same as for other abbreviations.

13.4.1 Passing modules as parameters

In the same way as variable, channel, &c abbreviations define procedure parameters, module abbreviation
defines how to pass modules as procedure parameters.

Consider the procedure

PROC out put.string (VAL []BYTE s, MODULE BUFFER b)
SEQi = 0 FOR SIZE s
b[in] ! s[i]

This procedure puts the string s in the buffer b.

13.4.2 Interface conversion

The previous sections showed how to define abbreviations for modules and how to pass modules as param-
eters. This section shows how to restrict the interface of a module. Consider the module:

MODULE TYPE COUNT. BUFFER ()
| NTERFACE
CHAN CF INT in, out :
CALL count (RESULT | NT n)

TO
INITIAL I NT how. many IS O :
SERVER
INT x :
in? X
PAR
how. many : = how. nany+1
out ! x
ACCEPT count (RESULT | NT n)
n : = how. many
SKI P

DRART --- Marchi31, 1992

This module extends the functions provided by a one place buffer by providing a count of the number of
items which have passed through the buffer. The interface specification BUFFER can be used to restrict the
interface of the buffer so that it can be passed to a procedure which expects a simple buffer. Consider the
abbreviation

MODULE BUFFER si npl e. buffer |I'S CONVERT(BUFFER) count. buffer

This introduces si npl e. buf f er as a new name for count . buf f er but with a restricted interface which
does not have access to the count channel.

The syntax of interface conversions is:

module = CONVERT(interface.specifier) module

A conversion is only valid when the interface of the module which is being converted contains the channels
specified by the interface specifier.

DRART --- Marchi31, 1992

-t 0 il NS 1 WA NI

There are two methods for structuring 0OCCam programs so that they can be easily changed and components
used again. These are the module and the library. This chapter describes libraries. Modules are described
in chapter 13.

Libraries provide a mechanism for structuring programs. A library is a reusable unit of a program. It gathers
together definitions which implement a data type or a system service. These definitions may be used by any
number of concurrently running programs.

A data type is implemented by a library which exports a type definition and a number of values, functions and
procedures which operate on values and variables of the type. Users of the library declare local variables and
values of the type and operate on these with the exported functions and procedures. Because the functions
and procedures operate on local variables and values, they can be shared between any number of concurrent
users.

A system service is implemented by a library with internal state which exports module type definitions. Users
of the library declare local instances of the module types which provide an interface to the internal state of the
library. The internal state is shared between the module instances using the sharing mechanisms described
in chapter 8. Because of the restrictions on the body of a module type, instances of the type may be declared
by any number of concurrent users. Such a library may export procedures which operate only on the local
instances of modules and so may also be shared. This means that the whole library may be shared between
any number of concurrent users.

14.1 Defining new types

One of the most common uses of a library is to define a new type and the operations which are valid on that
type. Consider the definitions:

DATA TYPE SET IS | NT64 :
VAL SET enpty IS O(SET) :
SET FUNCTI ON mask (VAL INT n) IS 1(SET) << n :
PROC add (SET set, VAL INT n)
set := set \/ mask (n)

BOOL FUNCTI ON nenmber (VAL SET set, VAL INT n) IS
(set /\ mask (n)) <> O(SET) :
PROC del ete (SET set, VAL INT n)
set := set /\ (BITNOT mask (n))

This implements a set data type with 64 possible members. There is an empty set and sets may have elements
added or taken away or tested for membership. The mask function is only an auxiliary function for the rest
of the implementation, not to be used by any other part of the program. Furthermore, the representation of
the set as an | NT64 is not critical to the user.

It is often useful to be able to formalise the fact that some parts of an implementation are intended to be
internal so that they can be changed at a later date without disturbing user programs. To do this, it must be
possible to specify the part of the implementation which does not change. This is called the export list. In
the case of the set implementation, the export list consists of the SET data type, the procedures add and
del et e, and the function nenber . The interface of an implementation is defined with an export definition.

DRART --- Marchi31, 1992

Consider the definition:

EXPORT
DATA TYPE NAME SET :
VAL SET enpty :
PROC add (SET set, VAL INT n)
BOOL FUNCTI ON rmnber (VAL SET set VAL | NT n)
PROC del ete (SET set, VAL INT n) :
FROM
set inplenentation

The construction is only legal if the body of the definition declares the names in the interface with suitable
definitions. The scope of the definition only has access to the names in the interface. Therefore, the interface
provides a complete description of the possible interactions between the user code and the implementation.
Because only the name of the data type is exported, the scope of the definition does not have access to
the structure of the type. This means that if the implementation of the type is changed, then it is only the
procedures and functions in the export list which need to be changed.

Consider the following, alternative implementation of sets:

EXPORT
DATA TYPE NAME SET :
VAL SET enpty :
PROC add (SET flags, VAL INT n) :
BOOL FUNCTI ON nenber (VAL SET flags, VAL INT n)
PROC del ete (SET flags, VAL INT n)

FROM
DATA TYPE SET IS [64] BOOL :
VAL SET enpty IS [ARRAY i = 0 FOR 64 : FALSE]

PROC add (SET flags, VAL INT n)
flags[n] := TRUE

BOO. FUNCTI ON menber (VAL SET flags, VAL INT n) IS flags[n]
PRCC del ete (SET flags, VAL INT n)
flags[n] := FALSE

The new implementation provides exactly the same functionality but trades the space efficiency of the first
implementation for speed.

Sometimes it can also be important to protect some of the internal state of an implementation from accidental
interference by user code. The encapsulation provided by the library construction has ensured that the value
of a set cannot be changed except by using the procedures add and del et e. In this particular case, it may be
safe to allow user code to alter the set in an unconstrained way. However, suppose that the implementation
needs to be extended to include a function which returns the number of elements in the set at a given time
and it is decided that this is to be done by maintaining a count of the number of elements. The second

DRART --- Marchi31, 1992

implementation may be rewritten as:

EXPORT
DATA TYPE NAME SET :
VAL SET enpty :
PROC add (SET flc, VAL INT n) :
BOOL FUNCTI ON nenber (VAL SET flc, VAL INT n)
PROC del ete (SET flc, VAL INT n) :

FROM
DATA TYPE SET
RECORD
[64] BOOL flags :
I NT count :
VAL SET enmpty IS [[ARRAY i = 0 FOR 64 : FALSE], 0]
PROC add (SET flc, VAL INT n)
I F
flc[flags][n]
SKI P
NOT flc[flags][n]
flc[flags][n], flc[count] := TRUE, flc[count]+1

BOOL FUNCTI ON nenber (VAL SET flc, VAL INT n) IS flc[flags][n]
PROC delete (SET flc, VAL INT n)
I F
flc[flags][n]
flc[flags][n], flc[count] := FALSE, flc[count]-1
NOT flc[flags][n]
SKI P

iNT FUNCTI ON size (VAL SET flc) IS flc[count]

This is all the change that is necessary in order to extend the implementation. Notice, however, that at the
end of each procedure, the value of count is equal to the number of bits which are set in the array f | ags
so long as this relation is true at the start of each procedure. Had the user code had unrestrained access
to the internal structure of the implementation, then the user code would have to ensure that the relationship
between count and f | ags was maintained each time f | ags was accessed. Furthermore, it is now crucial
to the implementation of the set that any access to the internal state maintains the relationship. Consider the
following process:

| F
size(set) =0
output ! enpty
size(set) >0
IFi = 0 FOR size(set)
nmenber (set, i)
output ! next; i

This process outputs the smallest number in the set or gives an indication that the set is empty. If the

relationship fails to hold on the fields of the set then this program will deadlock if the count field becomes
negative or if it becomes positive when it should be 0.

DRART --- Marchi31, 1992

The syntax of an export specification is

specification = EXPORT
{ export.item }
FROM
{ specification }

export.item proc.heading :
function.heading :

VAL data.type name :

DATA TYPE name :

DATA TYPE NANME name :
MODULE TYPE name :
MODULE TYPE NAME name :
CHAN TYPE name :

CHAN TYPE NAME name :
PROTOCOL name :
PROTOCOL NAME name :

| NTERFACE TYPE name :

| NTERFACE TYPE NANME hame :

The export mechanism allows exported definitions to be changed without affecting programs which use the
library. For this reason, procedures and functions which are exported from a library must be able to be shared
between concurrent processes and procedures must be side effect free. If this restriction were not in force,
then a user program would have to be changed if an exported procedure or function were changed so that it
could not be used in concurrent processes or if a procedure were changed so that it could not be used inside
a value process or claim process.

DRART --- Marchi31, 1992

14.2 Libraries with internal state

Another use of libraries is to provide an interface to a service which is shared by a number of programs. In
this case, the library will have some internal state. Consider the following naive file system:

EXPORT
MODULE TYPE FILE (VAL INT id)

FROM
[no.files] SHARED CHAN OF I NT::[]BYTE read :
[no.fil es] SHARED CHAN OF INT::[]BYTE wite :
INITIAL [no.files]INT lengths IS

[VAL i =0 FOR no.files : 0]
[no.files][max. | en] BYTE files :
RESCURCE

PARi =0 FOR no.files

VWH LE TRUE

ALT

GRANT read[i]
read[i] ! lengths[i]::files[i]
SKI P
GRANT write[i]
write[i] ? lengths[i]::files[i]
SKI P

MODULE TYPE FILE (VAL INT id)

| NTERFACE
CALL read.char (RESULT BYTE c)
CALL write.char (VAL BYTE c)
CALL goto (VAL INT n)

TO
[max. | en] BYTE chars :
INT ptr.left, ptr.right
I NI TI AL

read file in and initialise pointers

FI NAL
wite file out

SERVER
service call channels

The state of the file system is manipulated by a server module which has two shared channels in its interface,
read and write. The library exports a single module type which is the file system user’s interface to the
file system. In order to use the file system, a user must first declare an instance of the FI LE module. This
module communicates with the file server on behalf of the user. The data structures which are associated
with each user are maintained by the module. The user does not communicate directly with the file store. By
the use of a module as the interface to the file server, the file pointers and other data which is important to
the correctness of the server are protected against accidental interference by user programs.

DRART --- Marchi31, 1992

DRART --- Marchi31, 1992

b NtV VUVU&I AR \JVIIIP’IIULLIVII /Ol 1N\ AaEE R NED} Iv ‘

The previous chapters have shown how to define things and hide things in OCCam. This chapter shows how
to combine separate sections of program.

A separate compilation unit is a library which has no free names. For instance, all the libraries in chapter 14
are separate compilation units. A separate compilation unit is only instantiated once. This means that if
a library contains internal data, then each user of the library shares the internal data; similarly, if a type is
defined within a library, then every user of the library gets the same type. The operating system environment
of a program binds library names to library text. Names which are defined in a library are imported into the
text of a program using an | MPORT statement. Consider

FROM sets | MPORT SET, add, del ete, nenber, enpty :

This specifies that the names to the right of the | MPORT keyword are to be imported from the library hamed
sets.

Names may be changed on import. Consider
FROM sets | MPORT SET, add AS set.add, delete, nmenber, enpty :

The name add defined in the library set s is changed to set . add. The other names are unchanged. The
original names which are changed on import are not available in the scope of the import. In this example,
the name add defined in the library set s is not available in the scope. The definition must be referred to by
the new name, ie set . add. A definition of add which was in scope before the import is still available in the
scope, for instance

REAL64 FUNCTI ON add (REAL32 x, y) |S (REAL64 Xx)+(REAL64 vy)
FROM sets | MPORT SET, add AS set.add, ... :
Z .= add (x,y)
In this example, the variable z is assigned the value of (REAL64 Xx) +(REAL64).
Name changes happen in parallel. Consider:
FROM sets | MPORT ..., add AS delete, delete AS add,
In this example, the names add and del et e are swapped on import.

The syntax of imports is:

definition = FROMname | MPORT {;, import.item } :
import.item = name
| name AS name

An import is not valid if the library does not export the names which are specified as imports. Imported names
may be exported. Types may not be renamed.

DRART --- Marchi31, 1992

DRART --- Marchi31, 1992

s \rlrJVI LA <R 4 4 4

DRAFRT --- March 31, 1992

DRART --- Marchi31, 1992

A Configuration

This appendix describes the aspects of 0CcCam which specify the configuration of an OCCam program.
Configuration associates the components of an OCCam program with a set of physical resources. During
configuration the processes which make up an OCCam program are distributed over the number of intercon-
nected processing devices available in the environment in which the program will execute. The processes
which execute on a single processor may be given a priority of execution, and the channels which intercon-
nect the distributed processes may be mapped onto the physical communication links between processing
devices. It is expected that the program is logically correct before configuration is used to optimise perfor-
mance. Configuration does not affect the logical behaviour of a program.

A.1 Execution on multiple processors

The component processes of a parallel may each be executed on an individual processor. This can be
specified by a placed parallel which assigns a process for execution on a specified processor. Consider the
following example:

PLACED PAR
PROCESSOR 1
termnal (termin, termout)
PROCESSOR 2
editor (termin, termout, files.in, files.out)
PROCESSOR 3
network (files.in, files.out)

In this example, the processes t er mi nal , edi t or and net wor k, are placed on three individual processors
numbered 1, 2 and 3. Each process is executed on the assigned processor, each process uses local memory,
and communicates with the other processes via channels.

The syntax for a placed par is:

placedpar = PLACED PAR
{ placedpar }
| PLACED PAR replicator
placedpar
| PROCESSOR expression
process
parallel = placedpar

The keywords PLACED PAR are followed by zero or more processor allocations. A processor allocation is
the keyword PROCESSOR, and an expression of type | NT which serves to identify the processor on which the
associated process is to be placed. As for normal parallels (page 16), the placed parallel may be replicated.
An implementation may extend this syntax to identify the type of processor on which the process is placed.
All variables and timers used within the placement must be declared within it.

A.2 Execution priority on a single processor
A.2.1 Priority parallel

The component processes of a parallel (page 14) executing on a single processor may be assigned a priority
of execution. Consider the following example:

PRI PAR
terminal (termin, termout)
editor (termin, termout)

DRART --- Marchi31, 1992

This process will always execute the process t er mi nal in preference to the process edi t or . Each process
executes at a separate priority, the first process is the highest priority, the last is the lowest. Lower priority
processes may only continue when all higher priority processes are unable to. The process may also be
replicated, as shown in the following example:

PRI PARi = 0 FOR 8
users (termin[i], termout[i])

The process with the highest index is executed at the lowest priority.

The syntax for priority execution is:

parallel = PR PAR
{ process }
| PRI PAR replicator
process

The keywords PRI PAR are followed by zero or more processes at an indentation of two spaces. As for
parallels detailed in the main body of the manual (page 16), the process may be replicated.

A.2.2 Priority alternation

The inputs which guard alternatives in an alternation (page 18) may also be given a selection priority. Consider
the following example:

PRI ALT
di sk ? bl ock
d ()
keyboard ? char

k ()

This priority alternation will input values from the channel di sk in preference to inputs from the channel
keyboar d. If both channels di sk and keyboar d become ready then di sk will be selected as it has the
highest priority.

Consider the following example:

PRI ALT
stream ? data
P ()
busy & SKI P
Q()

This process inputs dat a if an input from st reamis ready, and performs the process P, otherwise if the
boolean busy is true the process Qis performed.

The syntax for priority alternation is:

alternation = PR ALT
{ alternative }
| PRI ALT replicator
alternative

The keywords PRI ALT are followed by zero or more processes at an indentation of two spaces. As for
alternations detailed earlier in the manual (page 20) the alternative may be replicated.

A.3 Allocation to memory

This section explains how a variable, channel, timer or array may be placed at an absolute location in
memory. OCCam presents a consistent view of a processor’'s memory map. Memory is considered to be an

DRART --- Marchi31, 1992

array of type | NT, each address in memory is considered a subscript into that array. Consider the following
example:

PLACE termin AT linklin :
This allocation places t er m i n at the location specified by | i nk1i n. Here are some further examples:

[80] I NT buffer :
PLACE buffer AT #0400 :

[5] REAL32 points :
PLACE poi nts AT #0800 :

CHAN OF | NT term out
PLACE termout AT 3 :

The syntax for allocation is:

process = allocation :
process
allocation = PLACE name AT expression :

An allocation begins with the keyword PLACE, followed by the name of the variable, channel, timer or array
to be placed. This in turn is followed by an expression of type | NT which indicates the absolute location in
memory.

An allocation must allocate a channel, timer or variable to a compatible location. That is, a timer should be

placed at a location which acts as a timer, and a channel should be placed at the location which implements
a channel. Also, arrays must not be placed so that the components of an array overlap other allocations.

DRART --- Marchi31, 1992

B Ports

This appendix describes how memory mapped devices may be addressed in OCCam. A process may
communicate with external devices which are mapped into the processor's memory map, using a special
input or output in a way similar to communication on channels. A special type declares a port which must
then be placed using an allocation (page 106). Consider the following example:

PORT OF I NT16 status :
PLACE status AT uart.status :
SEQ

status ? state
status ! reset

This example declares a port which is then allocated to a location uart. st at us in memory. The following
sequence includes an input which reads the value of the port, and also an output which writes a value r eset
to the port location. Consider the following examples of port declarations:

PORT OF [8] I NT uart
[8] PORT OF BYTE transducer

one port of type [8] I NT
eight ports of byte type

A port declaration is similar to a channel declaration, and must obey the same rules of scope (page 32). That
is, a port may not be used for input or output in more than one component process in a parallel.

The syntax for ports is:

port.type = PORT OF data.type
| [expression] port.type
declaration = porttype {1, name }:
port = name
| port[expression]
| [port FROMbase FOR count]
| [port FROMbase]
| [port FOR count]
input = port ? variable
output = port! expression

A port is declared in just the same way as a channel.

Instead of a defined protocol (page 46) the port

definition specifies a data type as the type for communication.

DRART --- Marchi31, 1992

C Mapping types

This appendix describes retyping conversion. A retyping conversion changes the data type of a bit pattern,
from one data type to another. There are two kinds of retyping conversions: conversions which convert a
variable, and conversions which convert the value of an expression. The length (ie the number of bits) of the
new type specified must be the same as the length of the bit pattern. A retyping conversion has no effect
upon the bit pattern, and differs from type conversion (page 73) where the value of one type is represented
as an equivalent value of another type.

The retyping conversion of a value may be used to specify a name for a particular bit pattern described by a
hexadecimal constant. Consider the following example:

VAL REAL32 root.NaN RETYPES #7F840000(| NT32)

The advantage of the above conversion is that it has been possible to specify the exact representation of a
value otherwise difficult to represent. Consider also the following example:

VAL | NT64 pattern RETYPES 42. 0(REAL64)

The bit pattern for the real representation of the value 42.0 is mapped to a name patt er n of type | NT. As
for the abbreviation (page 36) of expressions, no variable used in the expression may be assigned to by input
or assignment within the scope of the conversion.

The retyping conversion may also specify a name of a new type for an existing variable of the same length.
For example:

I NT64 condition :

" [8] BYTE state RETYPES condition

In this example, condi ti on, a variable of type | NT64, is converted into an array of 8 bytes. Each byte is
accessible via subscript, any change to the bit pattern as a result of an assignment or input will directly affect
the value of the original variable.

The same rules apply to names specified by retyping conversions as apply to abbreviations. That is, no
variable used in a subscript or count expression which selects a component or segment of an array may be
assigned to by an input or assignment within the scope (page 32, the region of a program where a name is
valid) of the conversion. The variable converted may not be be used within the scope of the conversion. See
the rules which affect abbreviations on page 116.

The syntax for retyping conversion is:

definition = specifier name RETYPES variable :
| VAL specifier name RETYPES expression :

The retyping conversion of a value begins with the keyword VAL, a specifier appears to the right of VAL,
followed by the name specified, and the keyword RETYPES, the expression appears to the right of the
keyword RETYPES. The line on which the conversion occurs may not be broken after the keyword RETYPES,
but may be broken at some valid point in the expression.

DRART --- Marchi31, 1992

D Concrete representation of data types

D.1 Record layout

This section explains how to control the layout of a record. If the layout of a record is not specified, then an
implementation is free to place the fields in any order and at any offset from the base of the record. Consider
the following record type:

DATA TYPE LI NK
RECORD
PLACE BYTE data OFFSET 0 :
PLACE BOCL control OFFSET 1 :

In this record type, all of the fields are placed at a specified offset from the base of the record. The offset is
measured in bytes. In this example, the field dat a starts at the beginning of the record and the field cont r ol
starts at the beginning of the first byte.

The syntax of record layout is:

structured.type = RECORD
{ PLACE data.type name OFFSET expression : }

The offset must be given by a constant expression. Negative offsets are not allowed. Fields may not overlap.

Some implementations may insist that data types are only placed at appropriate boundaries. For instance,
I NTs may only be allowed to be placed at offsets which are a multiple of the word length.

D.2 Numbered unions

Sometimes it is useful to be able to determine the value of the tag of a union. The expression TAG (x),
where x is of a numbered union type, gives an | NT representation of the tag. This does not imply that the
machine representation of the tag must be an | NT. The value of TAG (x) is specified in a numbered union
type definition as follows:

DATA TYPE PARAM
UNI ON
I NT32 (0) word:
INT64 (1) long.word, (2) extra.word:

If TAGis applied to a variable which happens to belong to the second variant, then the value 1 is produced.
The integers specified for each variant must be different. Integers must be specified for all branches of a
numbered union.

The tag of a numbered union may be used to index arrays, &c.

The syntax of humbered unions is:

structured.type = UNION
{ data.type {1, (expression) name } : }

The tag expression must be constant.

D.3 Type width

This section explains how to control the width of a type. If no width is specified for a type, then the imple-
mentation is free to choose a width. The width of a data type defines the amount of store which is required

DRART --- Marchi31, 1992

for a value of that type. Consider the following type:

W DTH 2 DATA TYPE LI NK
RECORD
PLACE BYTE dat a OFFSET 0 :
PLACE BOOL control OFFSET 1 :

This specifies that the width of the data type LI NK is 2 bytes.
The syntax of width specifications is:

definition = W DTH expression DATA TYPE name | S data.type :
| W DTH expression DATA TYPE name
structured.type

The width expression must be constant. The width must be large enough to hold values of the type.

Some implementations may insist that the width of a type is an appropriate size for the structure of the type.
For instance, consider the type:

W DTH n DATA TYPE FI FTEEN
RECORD
REAL64 a :
REAL32 b :
[3] BYTE c :

An implementation may insist that the width of this record be a multiple of 16 bytes so that the field a may
be aligned on a word boundary. In this case, the value of n must be a multiple of 16.

D.4 Array alignment
Arrays are always aligned according to the width of the component type. For instance, if the type BOOL
is given the width 1 by the implementation, then an array with n components of type BOCL will have width

n. Furthermore, the address of each component of the array will be one byte away from the address of its
neighbours.

D.5 W DTHOF

The W DTHOF operator returns the width of a type in bytes. For instance, W DTHOF (BYTE) will typically
return 1. Because components of arrays are aligned according to the width of the component type, the
following equation is always true:

W DTHOF ([n] TY) =n x W DTHOF (TY)

The syntax of W DTHOF is:

expression = W DTHOF (data.type)

DRART --- Marchi31, 1992

E Rounding errors

Earlier sections of this manual have discussed rounding and the possibility of rounding errors. These occur
because the types REAL32 and REAL64 only contain a subset of the real numbers. This is because it is
not possible to store all the possible real values in the format for real numbers available on a machine.
Rounding takes a value, which is considered infinitely precise and, if necessary, modifies it to a value which
is representable by the type. By default, values are rounded to the nearest value of the type, if the nearest
greater value and the nearest smaller value are equally near, then the result which has the least significant
bit zero is chosen. Other modes of rounding are selectable using the | EEEQOP library routine, these modes
round values toward plus infinity, minus infinity or toward zero. A value rounded to plus infinity is the value
nearest to and not less than the value to be represented, a value rounded to minus infinity is the value nearest
to and not greater than the value to be represented, a value rounded toward zero is the value no greater in
magnitude than the value to be represented.

A value is rounded to the precision of its type. A value of type REAL32 is equivalent to IEEE single precision,
and a value of type REAL64 is equivalent to IEEE double precision.

Values in the REAL32 and REAL64 formats are stored in the following formats

‘s‘ exp ‘ frac

where s is the sign bit, exp is the exponent and frac is the fraction. For the REAL32 type s is 1 bit wide, exp
is 8 bits wide and frac is 23 bits wide. For the REAL64 type s is 1 bit wide, exp is 11 bits wide and frac is
52 bits wide. Whenever the exp field is not O the actual fraction of the number represented has an “implied”
1 placed on the left of the frac value.

The value of finite REALS is given by

(—1)* x 1.frac x 2°2P=bias if ezp 2 0;

val ‘s ‘ exp H frac ‘ = { (=1)* x O.frac x 217%e ifexp=0;

where bias is 127 for REAL32 and 1023 for REAL64.

In the REAL32 type the value 1.0 is represented by an unset sign bit s, an exp equal to 127, and a frac
of 0. The next larger number has an unset sign bit, exp of 127 and a frac of 1. This has the value
1.000000119209.... Hence any number lying between 1.0 and this value cannot be exactly represented in
the REAL32 type — such values have to be rounded to one of these values. Now consider the assignment:

X := 1.0(REAL32) + 1.0E-7(REAL32)

The previous sections show that the result of this operation cannot be exactly represented by the type
REAL32. The exact result has to be rounded to “fit" the type. Here the exact result will be rounded to the
nearest REAL32 value 1.000000119209....

Other rounding modes — Round to Zero (truncation), Round to Plus infinity and Round to Minus infinity — can
be obtained through the use of the | EEEOP function. Because of the presence of rounding, programmers
should be wary of using equality tests on real types. Consider the following example:

SEQ

X := 1.0(REAL32)
WHI LE X <> 1.000001(REAL32)
X := X + 0.0000005(REAL32)

never terminates as rounding errors cause 1. 000001 and 1. 0 + 0. 0000005 + 0. 0000005 to differ.
The nearest unique value of a conversion of a literal of type REAL32 can be determined from the first 9

significant digits, and from the first 17 significant digits of a literal of type REAL64. Complete details of the
IEEE Standard for Binary Floating-Point Arithmetic can be found in the published ANSI/IEEE Std 754-1985

DRART --- Marchi31, 1992

standard.

DRART = March 31, 1992

F Omitting type decorations from literals

In many expressions the explicit type decoration of a literal does not aid the clarity of an expression. In
these circumstances, the decoration may be omitted. Within a single expression, a type decoration may be
omitted when there is only one decoration which would type check correctly. For instance, the expression
1(1 NT32) +10 is valid because the only decoration of 10 which type checks correctly is (1 NT32) .

There are three other sorts of contextual information which may be used to determine the type of an expres-
sion:

e expressions in process constructs where only one data type is permitted are assumed to have that
type. For instance, array size and subscript expressions are assumed to be of type | NT. Guards
of conditional processes and loops, and boolean guards of alternatives are assumed to be of type
BOOL.

e in assignment and output the types of expressions are inferred from the types of the variables or the
protocol of the channel.

e in abbreviations and initialising declarations, the type of the expression is inferred from the type of the
abbreviation or declaration. This rule also applies to the actual parameters of functions, procedures
and calls.

For instance, the following processes are valid:

CHAN OF | NT32 c:

c! 4
REAL32 x:
X := 2.0

VAL BYTE ESC | S 13:
SKI P

DRART --- Marchi31, 1992

G Anarchic protocol

In some situations it may be necessary to specify a channel protocol where the format of the protocol for some
reason cannot be defined. Such situations are rare, and are likely to occur only when communicating with
an external device such as a printer, terminal or other device controller. Such a device can be considered an
alien process where the protocol for communication with that process is dictated by the nature of the device.
A special protocol exists which allows the input and output of any format without checking. The protocol is
specified by the keyword ANY, as illustrated in the following example:

CHAN OF ANY printer
A channel with this protocol can only input or output data values. The effect of an output on a channel with
the ANY protocol is that the value is mapped down into its constituent bytes, and output as an array of bytes.

An input on a channel with the ANY protocol inputs the array of bytes and converts (by retyping conversion,
see page 109) the value to the type of the receiving variable.

DRART --- Marchi31, 1992

H Usage rules check list

This appendix summarises the rules which govern the use of variables, channels, timers, ports (page 108)
and arrays in parallel constructions, and the rules which govern abbreviations and parameters. These rules
are discussed in context throughout the manual, and are gathered here as a check list.

H.1 Usage in parallel

The purpose of these rules is to prevent parallel processes from sharing variables, to ensure that each
channel connects only two parallel processes, and to ensure that the connection of channels is unidirectional.
The rules allow most of the checking for valid usage to be performed by a compiler, thus reducing runtime
overheads.

e A channel implements a point-to-point communication between two parallel processes. The name
of a channel may only be used in one component of a parallel for input, and in one other component
of the parallel for output.

e A timer may be used for input by any number of components of a parallel.

e A variable or component of an array of variables, which is assigned to in a component of a parallel,
may not appear in any other component of the parallel.

e An array may be used in more than one component of a parallel, if and only if the subscripts used
to select components of the array can be determined at compile time. Otherwise the array may only
be used in one component of the parallel.

¢ Several abbreviations can decompose an array into non-overlapping disjoint parts; components of
these parts may then be selected using variable subscripts.

A port may be used in only one component of a parallel.

For the purposes of these rules, a RESOURCE or SERVER process must be considered to be a parallel
component.

Instances of a module type may occur in parallel components of the same process and, therefore, the usage
rules for variables, channels, timers and ports in the body of a module type definition prevent the usage of
variables, unshared channels or ports which are declared outside the body of the module type definition.

H.2 The rules for abbreviations

The purpose of these rules is to ensure that each name identifies a unique object, and that the substitution
semantics are maintained.

o All reference to an abbreviated element must be via the abbreviation only, with the exception that ar-
ray elements may be further abbreviated providing the later abbreviations do not include components
of the array already abbreviated.

¢ Variables used in an abbreviated expression may not be assigned to by input or assignment within
the scope of the abbreviation.

e The abbreviated expression must be valid, ie in range and not subject to overflow, and all subscript
expressions must be in range.

e All subscript expressions used in an abbreviation must be valid, ie not subject to overflow and in
range.

DRART --- Marchi31, 1992

H.3

H.4

e All reference to a retyped variable must be via the new name only, with the exception that array
variables may be further retyped providing the later retyping conversions do not include components
of the array already retyped.

e Variables used in a retyping conversion may not be assigned to by input or assignment within the
scope of the new name.

The rules for procedures

e The rules for procedure parameters follow from those for abbreviations, but in addition a channel
parameter or free channel may not be used for both input and output in a procedure.

e The rules for procedures which are exported from libraries are constructed so that exported pro-
cedures may be called by parallel components of the same process and so follow from the rules
for parallel usage. This means that exported procedures may only assign to variables which are
declared locally or passed in as parameters. Further, exported procedures may only input from or
output to channels which are shared, declared locally or passed in as parameters.

The rules for value processes and functions

e Functions may only have value parameters.

¢ Only variables declared within the scope of a value process may be assigned to. Free names may
be used in expressions.

e A value process may not contain inputs or outputs on channels which are declared outside the
process.

e The body of a procedure used within a function must also obey these rules.

DRART --- Marchi31, 1992

| Invalid processes

Processes which become invalid during program execution may behave in one of three ways, determined by
a compiler option. An invalid process may behave in one of these ways: the process may stop, the system
may halt, or the behaviour of the process may be undefined.

The three modes of existence in detail are:

Stop process mode In this mode, processes which become invalid behave like the primitive process STOP,
thus allowing other processes to continue. The invalid process stops, and in particular does not make
erroneous outputs to other processes. Other processes continue until they become dependent upon
data from the stopped process. In this mode it is therefore possible to write communications which
will timeout to warn of a stopped process, and to construct a system with redundancy in which a
number of processes performing the same task may be used to enable the system to continue after
one of the processes has failed.

Halt system mode In this mode an invalid process may cause the whole system to halt, and is useful for
the development of programs, particularly when debugging concurrent systems. In this mode the
primitive process STOP will also cause the whole system to halt.

Undefined mode In this mode, an invalid process may have an arbitrary effect, and is only useful for opti-
mising programs known to be correct!

DRART --- Marchi31, 1992

J Syntax summary

J.1 Collected syntax

J.1.1 Assignment

assignment

expression.list

variable.list

J.1.2 Replicator

replicator

base

count

J.1.3

sequence

conditional

choice

guarded.choice

Process constructions

variable.list : = expression.list

name ({o, expression })
{1, expression }
(value.process

)

{1, variable }

name = base FOR count

expression

expression

SEQ
{ process }
SEQ replicator
process

I F
{ choice }
| F replicator
choice

guarded.choice
conditional
specification
choice

boolean
process

DRART --- Marchi31, 1992

selection

selector

option

case.expression

loop

parallel

alternation

alternative

guarded.alternative

variant

CASE selector
{ option }

expression

{1, case.expression }
process
ELSE
process
specification
option

expression

VWHI LE boolean
process

PAR
{ process }
PAR replicator
process

ALT
{ alternative }
ALT replicator
alternative

guarded.alternative
alternation
channel ? CASE
{ variant }
boolean & channel ? CASE
{ variant }
specification
alternative

guard
process

specification
variant
tagged.list
process
specification
variant

DRART --- Marchi31, 1992

guard input

boolean & input

boolean & SKI P

ACCEPT call.channel ({, call.formal })

process

| boolean & ACCEPT call.channel ({, call.formal })
process

| GRANT channel
process

| boolean & GRANT channel

process

discrimination = CASETAG expression
{discriminant }

discriminant = name
process

= SKIP

| STOP

| specification
process

process

declaration
abbreviation
definition
EXPORT

{ export.item }
FROM

{ specification }

specification

J.1.4 Data types

BOOL
BYTE

| NT

| NT16

| NT32

| NT64
REAL32
REAL64
NONE

[expression] data.type
name

data.type

DRART --- Marchi31, 1992

definition = DATA TYPE name | S data.type :
| DATA TYPE name
structured.type

structured.type = RECORD
{ data.type {1, field.name}: }
| UNION
{data.type {1, name }: }

field.name = name
specifier = data.type
| [specifier
| [expression] specifier
J.1.5 Values
abbreviation = VAL name | S expression :

| VAL specifier name | S expression :

J.1.6 Variables

variable variable[name]

[variable FROMbase FOR count]
[variable FOR count]

[variable FROMbase]

variable[expression]

declaration = data.type {1, name }:
| I NITIAL data.type name | S expression :

name | S variable :

specifier name | S variable :
RESULT name | S variable :

RESULT specifier name | S variable :

abbreviation

J.1.7 Channels

channel.type = CHAN OF protocol
| name
I

[expression] channel.type

DRART --- Marchi31, 1992

channel

declaration

abbreviation

input

input.item

tagged.list

variant

output

output.item

name
channel[expression]

[channel FROMbase FOR count]
[channel FROMbase]

[channel FOR count]

[{1, channel }]

[CHAN replicator : channel]
module[name]

channel.type {;, name }:

name | S channel :
specifier name | S channel :

channel ? {1 ; input.item }
channel ? CASE tagged.list
channel ? CASE

{ variant }

variable
variable : : variable

tag
tag ; {1; inputitem }

specification
variant
tagged.list
process
specification
variant

channel ! {; ; output.item }
channel ! tag

channel ! tag; {1 ; outputitem }
port ! expression

expression
expression : : expression

DRART --- Marchi31, 1992

definition = CHAN TYPE name
RECORD
{ declaration }

| CHAN TYPE name
RECORD
{ declaration }

| PROTOCOL name
CASE
{ tagged.protocol }

| PROTOCOL name | S simple.protocol :
| PROTOCOL name | S sequential.protocol :

protocol = name
| simple.protocol

simple.protocol = data.type
| data.type: : [] data.type

sequential.protocol = {1 ; simple.protocol }

tagged.protocol = tag
| tag; sequential.protocol

tag

name

specifier = channel.type
| [specifier
I

[expression] specifier

J.1.8 Call channels

call.channel name

call.channel[expression]

[{1, call.channel }]

[CALL replicator : call.channel]

[call.channel FROMbase FOR count]
[call.channel FROMbase]

[call.channel FOR count]

module[name]

DRART --- Marchi31, 1992

declaration

abbreviation

call.actual

call.formal

call.type

specifier

J.1.9 Sharing

declaration

shared.call

shared.channels

J.1.10 Timers

timer

declaration

call.type name ({, call.formal }) :

name | S call.channel :
specifier call.header | S call.channel :

expression
variable

data.type {1, name }

VAL data.type {1, name }

I NI TI AL data.type {1 , name }
RESULT data.type {1 , name }

CALL
[expression] call.type

call.type
[1 specifier
[expression] specifier

shared.call name ({o, formal) :
shared.channels name :

SHARED CALL
[expression] shared.call

SHARED name
[expression] shared.channels

name
timer[expression]

[timer FROMbase FOR count]
[timer FROMbase]

[timer FOR count]

timer.type {1, name }:

DRART --- Marchi31, 1992

abbreviation

timer.type

timer.input

delayed.input

specifier

J.1.11 Expressions

boolean

byte

expression

operand

valof

name | S timer :
specifier name | S timer :

[expression] timer.type
TI MER

timer ? variable

timer ? AFTER expression

timer.type
[1 specifier
[expression] specifier

expression

' character’

operand

monadic.operator operand
operand dyadic.operator operand
MOSTPOS data.type

MOSTNEG data.type

expression[hame]

conversion

W DTHOF (data.type)

variable

literal

table

(expression)

(value.process

)

name ({o, expression })

specification
valof

DRART --- Marchi31, 1992

literal

table

conversion

digit

exponent

hex.digit

integer

real

decoration

J.1.12 Procedures

definition

integer

byte

integer(decoration)
byte(decoration)
real(decoration)

string
TRUE | FALSE
[1 (NONE)

[{1, expression }]

[{, expression }] (decoration)

[VAL replicator : expression]

(name : - expression) (decoration)

table [subscript]

[{1, expression }]

[table FROMsubscript FOR count]
[table FROMsubscript]

[table FOR count]

data.type operand
data.type ROUND operand
data.type TRUNC operand

Ol 1| 2| 3456|7809

+digits | - digits

digit| A| B| C| D| E| F

digits | #hex.digits

digits. digits | digits. digits Eexponent

data.type

PRCC name ({o, formal })
process

DRART --- Marchi31, 1992

instance

actual

formal

J.1.13 Functions

definition =

function.body

value.process =

J.1.14 Process declarations

declaration =

name ({o, actual })

variable
channel
call.channel
timer
expression
module

specifier {; , name }

VAL specifier {; , name }
RESULT specifier {1 , name }

I NI TI AL data.type {1 , name }
MODULE interface.type

{1, data.type } FUNCTI ONname ({o, formal }) | S expression.list :
{1, data.type } FUNCTI ON name ({o, formal })
function.body

value.process

VALCF

process

RESULT expression.list
specification
value.process

I NITIAL
process

FI NAL
process

RESOURCE
process

SERVER
{ alternative }

DRART --- Marchi31, 1992

J.1.15 Modules

module name
module[expression]

| NSTANCE name({q, actual })

[{1, module]

[module FROMbase FOR count]

[module FROM base]

[module FOR count]

[I NSTANCE replicator : module]
CONVERT (interface.specifier) module

declaration = | NTERFACE
{ declaration }
TO
{ specification }

abbreviation = module.specifier name | S module :
interface.type = name

module.specifier = MODULE
| MODULE interface.type

definition = MODULE TYPE name({o, formal })
{ declarations }

| | NTERFACE TYPE name
{ declaration }

J.1.16 Libraries

specification = EXPORT
{ export.item }
FROM
{ specification }

definition = FROMname | MPORT {;, import.item } :

DRART --- Marchi31, 1992

export.item proc.heading :
function.heading :

VAL data.type name :

DATA TYPE name :

DATA TYPE NANME name :
MODULE TYPE name :
MODULE TYPE NAME name :
CHAN TYPE name :

CHAN TYPE NAME name :
PROTOCOL name :
PROTOCOL NAME name :

| NTERFACE TYPE name :

| NTERFACE TYPE NAME name :

import.item = name
| name AS name

J.1.17 Configuration

allocation = PLACE name AT expression :

alternation = PR ALT
{ alternative }
| PRI ALT replicator
alternative

parallel = PR PAR
{ process }
| PRI PARreplicator
process
| placedpar

placedpar = PLACED PAR
{ placedpar }
| PLACED PAR replicator
placedpar
| PROCESSOR expression
process

port.type = PORT OF data.type
| [expression] port.type

port name

port[expression]

[port FROMbase FOR count]
[port FROMbase]

[port FOR count]

DRART --- Marchi31, 1992

declaration

definition

port.type {;, name }:

specifier name RETYPES variable :

VAL specifier name RETYPES expression :

W DTH expression DATA TYPE name | S data.type :

W DTH expression DATA TYPE name
structured.type

DRART --- Marchi31, 1992

J.2 Ordered syntax

The following tables present the syntax of OCCam, with each syntactic object placed in alphabetical order.

abbreviation = name | Svariable :
| specifier name | S variable :
| VAL name | S expression :
| VAL specifier name | S expression :
| RESULT name | S variable :
| RESULT specifier name | S variable :
| name | S channel :
| specifier name | S channel :
| name I S call.channel :
| specifier call.header | S call.channel :
| name | Stimer:
| specifier name | S timer :
| module.specifier name | S module :
actual = variable
| channel
| call.channel
| timer
| expression
| module
allocation = PLACE name AT expression :
alternation = ALT
{ alternative }
| ALT replicator
alternative
| PR ALT
{ alternative }
| PRI ALT replicator
alternative
alternative = guarded.alternative
| alternation
| channel ? CASE
{ variant }
| boolean & channel ? CASE
{ variant }
| specification
alternative
assignment = variable.list : = expression.list

DRART --- Marchi31, 1992

base

boolean

byte

call.actual

call.channel

call.formal

call.type

case.expression

case.input

channel.type

channel

expression

expression

' character’

expression
variable

name
call.channel[expression]

[{1, call.channel }]

[CALL replicator : call.channel]

[call.channel FROMbase FOR count]
[call.channel FROMbase]

[call.channel FOR count]

module[name]

data.type {1, name }

VAL data.type {1 , name }

I NI TI AL data.type {; , name }
RESULT data.type {1 , name }

CALL
[expression] call.type

expression

channel ? CASE
{ variant }

CHAN OF protocol
name
[expression] channel.type

name

channel[expression]

[channel FROMbase FOR count]
[channel FROMbase]

[channel FOR count]

[{1, channel }]

[CHAN replicator : channel]
module[name]

DRART --- Marchi31, 1992

choice

conditional

conversion

count

data.type

guarded.choice
conditional
specification
choice

I F
{ choice }
| F replicator
choice

data.type operand
data.type ROUND operand
data.type TRUNC operand

expression

BOOL
BYTE

I NT

| NT16
| NT32
| NT64
REAL32
REAL64
NONE

[expression] data.type
name

DRART --- Marchi31, 1992

declaration data.type {1 , name } :
I NI TI AL data.type name | S expression :
channel.type {;, name }:
call.type name ({, call.formal }) :
timer.type {;, name }:
shared.call name ({p, formal) :
shared.channels name :
port.type {1, name }:
I NI TI AL

process

| FINAL
process

| RESOURCE
process

| SERVER
{ alternative }

| | NTERFACE
{ declaration }

TO
{ specification }

decoration = data.type

DRART --- Marchi31, 1992

definition = DATA TYPE name | S data.type :
| DATA TYPE name
structured.type

| CHAN TYPE name
RECORD
{ declaration }

| CHAN TYPE name
RECORD
{ declaration }

| PROTOCOL name
CASE
{ tagged.protocol }

| PROTOCOL name | S simple.protocol :
| PROTOCOL name | S sequential.protocol :
| PROCname ({o, formal })

process

| {1, data.type } FUNCTI ONname ({o, formal }) | S expression.list :
| {1, data.type } FUNCTI ONname ({0, formal })
function.body

| MODULE TYPE name({o, formal })
{ declarations }

| | NTERFACE TYPE name
{ declaration }

FROMname | MPORT {;, import.item } :

specifier name RETYPES variable :

VAL specifier name RETYPES expression :

W DTH expression DATA TYPE name | S data.type :

W DTH expression DATA TYPE name
structured.type

delayed.input timer ? AFTER expression

digit = 0]1]2]|3|]4]5|6]7]8]|]9
discriminant = name

process
exponent = +digits | - digits

DRART --- Marchi31, 1992

export.item proc.heading :
function.heading :

VAL data.type name :

DATA TYPE name :

DATA TYPE NAME name :
MODULE TYPE name :
MODULE TYPE NAME name :
CHAN TYPE name :

CHAN TYPE NAME name :
PROTOCOL name :
PROTOCOL NAME name :

| NTERFACE TYPE name :

| NTERFACE TYPE NAME name :

expression.list name ({o, expression })
{1, expression }
(value.process

)

expression operand

monadic.operator operand
operand dyadic.operator operand
MOSTPCS data.type

MOSTNEG data.type

expression[hame]

conversion

W DTHOF (data.type)

field.name name

formal specifier {; , name }

VAL specifier {; , name }
RESULT specifier {1 , name }

I NI TI AL data.type {1 , name }

MODULE interface.type

function.body = value.process

guarded.alternative = guard
process

guarded.choice = boolean
process

DRART --- Marchi31, 1992

guard

hex.digit

import.item

input.item

input

instance

integer

interface.type

literal

input

boolean & input

boolean & SKI P

ACCEPT call.channel ({, call.formal })
process

boolean & ACCEPT call.channel ({, call.formal })
process

GRANT channel
process

boolean & GRANT channel
process

digit| A| B| C| D| E| F

name
name AS name

variable
variable : : variable

channel ? {; ; input.item }
channel ? CASE tagged.list
timer.input

delayed.input

port ? variable

name ({o, actual })

digits | #hex.digits

name

integer

byte

integer(decoration)
byte(decoration)
real(decoration)

string
TRUE | FALSE
[] (NONE)

[{1, expression }]

[{, expression }] (decoration)

[VAL replicator : expression]

(name : - expression) (decoration)

DRART --- Marchi31, 1992

loop

module.specifier

module

operand

option

output.item

output

parallel

VWH LE boolean
process

MODULE
MODULE interface.type

name

module[expression]

| NSTANCE name({o, actual })

[{1, module]

[module FROMbase FOR count]

[module FROMbase]

[module FOR count]

[1 NSTANCE replicator : module]
CONVERT(interface.specifier) module

variable

literal

table

(expression)

(value.process

)

name ({o, expression })

{1, case.expression }
process
ELSE
process
specification
option

expression

expression : : expression

channel ! {; ; output.item }
channel ! tag

channel ! tag; {i; output.item }
port ! expression

PAR
{ process }
PAR replicator
process
PRI PAR
{ process }
PRI PAR replicator
process
placedpar

DRART --- Marchi31, 1992

placedpar = PLACED PAR
{ placedpar }
| PLACED PAR replicator
placedpar
| PROCESSOR expression
process

port.type = PORT OF data.type
| [expression] port.type

port name

port[expression]

[port FROMbase FOR count]
[port FROMbase]

[port FOR count]

process = CASETAG expression
{discriminant }
| allocation :
process
| assignment
| input
| output
| SKIP
| STOP
| instance
| sequence
| conditional
| selection
| loop
| parallel
| alternation
| specification
process
| ACCEPT call.channel ({, call.formal })
process
| CLAI Mchannel
process
| GRANT channel
process
| call.channel ({o, call.actual })
| case.input

protocol = name
| simple.protocol

real = digits. digits | digits. digits Eexponent

DRART --- Marchi31, 1992

replicator = name = base FOR count

selection = CASE selector
{ option }

selector = expression

sequence = SEQ

{ process }
| SEQreplicator

process
sequential.protocol = {1 ; simple.protocol }
shared.call = SHARED CALL

| [expression] shared.call

shared.channels = SHARED name
| [expression] shared.channels

simple.protocol = data.type
| data.type: : [] data.type

declaration
abbreviation
definition
EXPORT

{ export.item }
FROM

{ specification }

specification

specifier = call.type

| channel.type

| data.type

| timer.type

| [] specifier

| [expression] specifier

DRART --- Marchi31, 1992

structured.type = RECORD
{ data.type {;, field.name}: }

| UNION

{data.type {1, name }: }
| RECORD

{ PLACE data.type name OFFSET expression : }
| UNION

{ data.type {1, (expression) name }: }

table table [subscript]

[{1, expression }]

[table FROMsubscript FOR count]
[table FROMsubscript]

[table FOR count]

tagged.list = tag
| tag; {i; inputitem }

tagged.protocol tag

tag ; sequential.protocol

tag = name

timer.input = timer ? variable

timer.type = [expression] timer.type
| TIMER

timer name

timer[expression]

[timer FROMbase FOR count]
[timer FROMbase]

[timer FOR count]

valof = specification
valof

value.process = VALOF
process
RESULT expression.list
| specification
value.process

DRART --- Marchi31, 1992

variable.list

variable

variant

{1, variable }

variable[name]

[variable FROMbase FOR count]
[variable FOR count]

[variable FROMbase]

variable[expression]

specification
variant
tagged.list
process
specification
variant

DRART --- Marchi31, 1992

K Keywords and symbols

This section provides a complete list of 0CCam symbols and keywords.

ACCEPT
AFTER
ALT

AND

ANY

AS

AT

Bl TAND
Bl TNOT
BI TOR
BOCL
BYTE

W DTHOF
CALL
CASE
CASETAG
CHAN OF
CLAI M
CONVERT
DATA
ELSE
EXPORT
FALSE

FI NAL
FOR
FROM
FUNCTI ON
GRANT

I F

| MPORT

I NI TI AL
| NSTANCE
I NT

I NT16

| NT32

| NT64

| NTERFACE
IS

M NUS
MODULE

call channel body

later than operator

alternation

boolean and operator

anarchic protocol

import renaming

at location

bitwise and operator

bitwise not operator

bitwise or operator

boolean type

byte type

data type width

call channel type

selection, variant protocol, case input
union type discriminator

channel type

claim of shared channel

data type conversion

data type definition

default selection

library export

boolean constant

finalised declaration, finalisation process
count

base

function definition

grant of shared channel

conditional

import from library

initialised declaration, initialisation process
module instance

integer type

16bit integer type

32hbit integer type

64bit integer type

module interface

specification introduction

modulo subtraction/negation operator
module

MOSTNEG
MOSTPOS
NAME
NONE
NOT
OFFSET
oR

PAR
PLACE
PLACED
PLUS
PORT OF
PRI
PRCC
PROCESSOR
PROTOCOL
REAL32
REAL64
RECCRD
REM
RESOURCE
RESULT
RETYPES
ROUND
SEQ
SERVER
SHARED
S| ZE

SKI P
STOP

TI MER
TI MES
TO

TRUE
TRUNC
TYPE

UNI ON
VAL
VALCF
VWH LE
W DTH

most negative
most positive
type name exported from library
data type with no content
boolean not operator

record layout

boolean or operator

parallel

allocation

placed processes

modulo addition operator
port type

prioritised construction
procedure

processor allocation

protocol definition

32bit real type

64bit real type

record type

remainder operator

resource process

value process result

retyping conversion

rounding operator

sequence

server declaration

channel type modifier

array size operator

skip process

stop process

timer type

modulo multiplication operator

boolean constant

truncation operator

type definition

union type

value

value process

loop

data type width specification

If an implementation adds further reserved words, then the names used must not include lower case letters.

DRART --- Marchi31, 1992

Arithmetic operators

Communication symbols

+ plus

- minus

* times

/ divide

\ remainder

Bit operators

/\ | and

\/ | or

>< | exclusive or

~ | not

<< | left shift

>> | right shift

Relational operators

= equal

< less than

> greater than

<= | less than or equal to
>= | greater than or equal to
<> | not equal

! Input

? Output

Other symbols

Hexadecimal

& | Ampersand; used in a guard

Parentheses; used to delimit expressions,

the type of literals and a parameter list

Square brackets; used to delimit array subscripts,
and to construct segments and tables

Array type specifier

Counted array communication

Assignment symbol

Double quote; used to construct a string byte table
Single quote; used to delimit character byte literal
Separator for specifications, parameters, and table
Sequential protocol separator

Specification terminator

Comment introduction

Union type literal constructor

DRART --- Marchi31, 1992

L Character set

Characters in 0CCam are represented according to the American Standard Code for Information Interchange
(ASCII). Where the full character set is not available 0CCam guarantees the following subset:

ABCDEFGHI J KL MNOPQRSTUVWKYZ
abcdef ghi j kl mopqgr st uvwxyz
0123456789

PUH& ()*+, -1 <=>7[]

For reference, here is a table of all printable ASCII characters, and their values:

ASCII Dec Hex || ASCIl Dec Hex || ASCII Dec Hex
SPACE 32 20 || @ 64 40 || ¢ 96 60
! 33 21 || A 65 41 || a 97 61
" 34 22 || B 66 42 || b 98 62
35 23 || C 67 43 || c 99 63
$ 36 24 || D 68 44 || d 100 64
% 37 25 || E 69 45 || e 101 65
& 38 26 || F 70 46 || f 102 66
’ 39 27 || G 71 47 || g9 103 67
(40 28 || H 72 48 || h 104 68
) 41 29 || | 73 49 || i 105 69
* 42 2A || J 74 aA || j 106 6A
+ 43 2B || K 75 4B || k 107 6B
, 44 2C || L 76 4C || | 108 6C
- 45 2D || M 77 4D || m 109 6D
. 46 2E || N 78 4E || n 110 6E
/ 47 2F || O 79 4F || o 111 6F
0 48 30 || P 80 50 || p 112 70
1 49 31 || Q 81 51 || q 113 71
2 50 32 || R 82 52 ||r 114 72
3 51 33 || S 83 53 || s 115 73
4 52 34 || T 84 54 ||t 116 74
5 53 35 || U 85 55 || u 117 75
6 54 36 || V 86 56 || v 118 76
7 55 37 || W 87 57 || w 119 77
8 56 38 || X 88 58 || x 120 78
9 57 391||Y 89 59 ||y 121 79
: 58 3A || Z 90 BA || z 122 A
; 59 3B || [91 5B || { 123 7B
< 60 3C ||\ 92 5C || | 124 7C
= 61 3D ||] 93 5D || } 125 7D
> 62 3E || 94 5E || ~ 126 7E
? 63 3F || _ 95 5F

The characters *, ' and " may not be used directly in strings or as character constants. These and non-
printable characters (such as carriage return, tab &c.) can be included in strings, or used as character

DRART --- Marchi31, 1992

constants, in the following form:

*c *C carriage return = *#0D
*n *N newline = *#0A
*t *T tab = *#09
*s *S space = *#20
*! quotation mark

* double quotation mark

*x asterisk

In addition, any byte value can be represented by *# followed by two hexadecimal digits, for example:

| soh :='*#01' | ' *#01' is a byte constant. |

DRART --- March 31, 1992

M Standard libraries

This appendix provides a complete list of the standard library routines. The behaviour of routines is described
in detail in the following appendices. Library routines (typically the most primitive routines) may be predefined
in an implementation, that is, they may be known to the compiler and do not need to be explicitly referenced
by the programmer. Other libraries must be explicitly referenced by the programmer, and the name used in
their specification has the same property as any other specification. However, programmers are discouraged
from using the names of any library routine for any specification other than that of naming the routine in
qguestion. The following tables include the name of the routine, and a specifier which indicates the type of
each of the parameters to the routine.

M.1 Multiple length integer arithmetic functions

The arithmetic functions provide arithmetic shifts, word rotations and the primitives to construct multiple length
arithmetic and multiple length shift operations.

I NT FUNCTI ON LONGADD (VAL INT left, right, carry.in)

I NT FUNCTI ON LONGSUB (VAL INT left, right, borrowin)

I NT FUNCTI ON ASHI FTRI GHT (VAL | NT argunent, places)

I NT FUNCTI ON ASHI FTLEFT (VAL I NT argunent, places)

I NT FUNCTI ON ROTATERI GHT (VAL | NT argunent, places)

I NT FUNCTI ON ROTATELEFT (VAL I NT argunent, places)

I NT, I NT FUNCTI ON LONGSUM (VAL INT left, right, carry.in)

I NT, I NT FUNCTI ON LONGDI FF (VAL INT left, right, borrowin)

I NT, | NT FUNCTI ON LONGPROD (VAL INT left, right, carry.in) :
I NT, I NT FUNCTI ON LONGDI V (VAL I NT dividend. hi, dividend.lo, divisor):
| NT, I NT FUNCTI ON SHI FTLEFT (VAL INT hi.in, lo.in, places) :
I NT, I NT FUNCTI ON SHI FTRI GHT (VAL INT hi.in, lo.in, places)

I NT, I NT, | NT FUNCTI ON NORMALI SE (VAL INT hi.in, lo.in)

DRART --- Marchi31, 1992

M.2 Floating point functions

The floating point functions provide the list of facilities suggested by the ANSI/IEEE standard 754-1985.

REAL32 FUNCTI ON ABS (VAL REAL32 X) :
REAL64 FUNCTI ON DABS (VAL REAL64 X) :
REAL32 FUNCTI ON SCALEB (VAL REAL32 X, VAL INT n):
REAL64 FUNCTI ON DSCALEB (VAL REAL64 X, VAL INT n):
REAL32 FUNCTI ON COPYSI GN (VAL REAL32 X, Y) :
REAL64 FUNCTI ON DCOPYSI GN (VAL REAL64 X,) :
REAL32 FUNCTI ON SQRT (VAL REAL32 X) :
REAL64 FUNCTI ON DSQRT (VAL REAL64 X) :
REAL32 FUNCTI ON' M NUSX (VAL REAL32 X) :
REAL64 FUNCTI ON DM NUSX (VAL REAL64 X) :
REAL32 FUNCTI ON NEXTAFTER (VAL REAL32 X, Y) :
REAL64 FUNCTI ON DNEXTAFTER (VAL REAL64 X, Y) :
REAL32 FUNCTI ON MULBY?2 (VAL REAL32 X) :
REAL64 FUNCTI ON DMULBY2 (VAL REAL64 X) :
REAL32 FUNCTI ON DI VBY2 (VAL REAL32 X) ;
REAL64 FUNCTI ON DDI VBY2 (VAL REAL64 X) ;
REAL32 FUNCTI ON LOGB (VAL REAL32 X) :
REAL64 FUNCTI ON DLOGB (VAL REAL64 X) :
BOOL FUNCTI ON | SNAN (VAL REAL32 X) :
BOOL FUNCTI ON DI SNAN (VAL REAL64 X) ;
BOOL FUNCTI ON NOTFI NI TE (VAL REAL32 X) :
BOOL FUNCTI ON DNOTFI NI TE (VAL REAL64 X) :
BOOL FUNCTI ON ORDERED (VAL REAL32 X, Y) :
BOOL FUNCTI ON DORDERED (VAL REAL64 X, Y) :
| NT, REAL32 FUNCTI ON FLOATI NG UNPACK (VAL REAL32 X) :
| NT, REAL64 FUNCTI ON DFLOATI NG UNPACK (VAL REAL64 X) :
BOOL, | NT32, REAL32 FUNCTI ON ARGUMENT. REDUCE (VAL REAL32 X, Y, Y.err):
BOOL, | NT32, REAL64 FUNCTI ON DARGUVENT. REDUCE (VAL REAL64 X, Y, Y.err):
REAL32 FUNCTI ON FPI NT (VAL REAL32 X) :
REAL64 FUNCTI ON DFPI NT (VAL REAL64 X)

M.3 Full IEEE arithmetic functions

REAL32 FUNCTI ON REAL32CP (VAL REAL32 X, VAL INT Op, VAL REAL32 Y):

REAL64 FUNCTI ON REAL640P (VAL REAL64 X, VAL INT Op, VAL REAL64 Y):

REAL32 FUNCTI ON | EEE320P (VAL REAL32 X, VAL INT Rm VAL INT Op,
VAL REAL32 Y):

REAL64 FUNCTI ON | EEE640P (VAL REAL64 X, VAL INT Rm VAL INT Op,
VAL REAL64 Y):

REAL32 FUNCTI ON REAL3Z2REM (VAL REAL32 X, YY) :

REAL64 FUNCTI ON REALG64REM (VAL REAL64 X,)

REAL32 FUNCTI ON REAL32EQ (VAL REAL32 X,)

REAL64 FUNCTI ON REALG4EQ (VAL REAL64 X, YY)

REAL32 FUNCTI ON REAL32GT (VAL REAL32 X, YY)

REAL64 FUNCTI ON REALG4GT (VAL REAL64 X,)

I NT FUNCTI ON | EEECOMPARE (VAL REAL32 X,)

I NT FUNCTI ON DI EEECOMPARE (VAL REAL64 X,)

DRART --- Marchi31, 1992

M.4 Elementary function library

REAL32
REAL 64
REAL32
REAL64
REAL32
REAL6G4
REAL32
REAL64
REAL32
REAL64
REAL32
REAL64
REAL32
REAL64
REAL32
REAL64
REAL32
REAL64
REAL32
REAL64
REAL32
REAL64
REAL32
REAL 64
REAL32
REAL64
REAL32,
REAL64,
REAL32
REAL64

| NT32
| NT64

FUNCTI ON ALOG
FUNCTI ON DALOG
FUNCTI ON ALOG10
FUNCTI ON DALOGL0
FUNCTI ON EXP
FUNCTI ON DEXP
FUNCTI ON TAN
FUNCTI ON DTAN
FUNCTI ON SI N
FUNCTI ON DSI N
FUNCTI ON ASI N
FUNCTI ON DASI N
FUNCTI ON COS
FUNCTI ON DCOS
FUNCTI ON ACCOS
FUNCTI ON DACGOS
FUNCTI ON SI NH
FUNCTI ON DSI NH
FUNCTI ON COsH
FUNCTI ON DCOsH
FUNCTI ON TANH
FUNCTI ON DTANH
FUNCTI ON ATAN
FUNCTI ON DATAN
FUNCTI ON ATAN2
FUNCTI ON DATAN2
FUNCTI ON RAN
FUNCTI ON DRAN
FUNCTI ON POVEER
FUNCTI ON DPONER

(VAL
(VAL
(VAL
(VAL
(VAL
(VAL
(VAL
(VAL
(VAL
(VAL
(VAL
(VAL
(VAL
(VAL
(VAL
(VAL
(VAL
(VAL
(VAL
(VAL
(VAL
(VAL
(VAL
(VAL
(VAL
(VAL
(VAL
(VAL
(VAL
(VAL

REAL32
REAL64
REAL32
REAL64
REAL32
REAL64
REAL32
REAL64
REAL32
REAL64
REAL32
REAL64
REAL32
REAL64
REAL32
REAL64
REAL32
REAL64
REAL32
REAL64
REAL32
REAL64
REAL32
REAL64
REAL32
REAL64

X)

X)

INT32 N)
| NT64 N)

REAL32
REAL64

x:
X!

SS

DRART --- Marchi31, 1992

M.5 Value, string conversion procedures

The library provides primitive procedures to convert a value to and from decimal or hexadecimal representa-
tions.

PROC | NTTOSTRI NG (I'NT Ien, []BYTE string, VAL INT n)

PROC | NTI6TOSTRING (INT len, []BYTE string, VAL INT16 n)
PROC | NT32TOSTRING (INT len, []BYTE string, VAL INT32 n)
PROC | NT6BATOSTRING (I NT len, []BYTE string, VAL | NT64 n)

PROC STRI NGTO NT (BOOL error, INT n, VAL []BYTE string)
PROC STRI NGTO NT16 (BOOL error, INT16 n, VAL []BYTE string)
PROC STRI NGTO NT32 (BOOL error, INT32 n, VAL []BYTE string)
PROC STRI NGTO NT64 (BOOL error, INT64 n, VAL []BYTE string)
PROC HEXTOSTRI NG (I'NT len, []BYTE string, VAL INT n)

PROC HEX16TOSTRING (INT len, []BYTE string, VAL INT16 n)
PROC HEX32TOSTRING (INT len, []BYTE string, VAL INT32 n)
PROC HEX64TOSTRING (INT len, []BYTE string, VAL |INT64 n)
PROC STRI NGTOHEX (BOOL error, INT n, VAL []BYTE string)
PROC STRI NGTOHEX16 (BOOL error, INT16 n, VAL []BYTE string)
PROC STRI NGTOHEX32 (BOOL error, INT32 n, VAL []BYTE string)
PROC STRI NGTOHEX64 (BOOL error, INT64 n, VAL []BYTE string) :
PROC STRI NGTOREAL32 (BOOL error, REAL32 r, VAL []BYTE string):
PROC STRI NGTOREAL64 (BOOL error, REAL64 r, VAL []BYTE string):
PROC REAL32TOSTRI NG (I NT, []BYTE, VAL REAL32, VAL |INT) :
PROC REAL64TOSTRI NG (I NT, []BYTE, VAL REAL64, VAL | NT)

PROC STRI NGTOBOCL (BOOL, error, b, VAL []BYTE string)

PROC BOCOLTOSTRI NG (I'NT len, []BYTE string, VAL BOOL b)

DRART --- Marchi31, 1992

N Multiple length arithmetic functions

The following arithmetic functions provide arithmetic shifts, word rotations and the primitives to construct
multiple length integer arithmetic and multiple length shift operations.

LONGADD signed addition with a carry in.

LONGSUM unsigned addition with a carry in and a carry out.

LONGSUB signed subtraction with a borrow in.

LONGDI FF unsigned subtraction with a borrow in and a borrow out.

LONGPROD unsigned multiplication with a carry in, producing a double length result.
LONGDI V unsigned division of a double length number, producing a single length result.

SHI FTRI GHT | right shift on a double length quantity.

SHI FTLEFT left shift on a double length quantity.

NORVALI SE normalise a double length quantity.

ASHI FTRI GHT | arithmetic right shift on a double length quantity.
ASHI FTLEFT | arithmetic left shift on a double length quantity.
ROTATERI GHT | rotate a word right.

ROTATELEFT | rotate a word left.

For the purpose of explanation imagine a new type INTEGER, and the associated conversion. This imaginary
type is capable of representing the complete set of integers and is presumed to be represented as an infinite
bit two’'s complement number. With this one exception the following are 0OCCam descriptions of the various
arithmetic functions.

- - constants used in the following description
VAL bitsperword |S machine.wordsize(INTEGER)

VAL range | S storeabl e. val ues(INTEGER)
-- range = 2bitspe'r'wo’rd

VAL maxi nt I S INTEGER (MOSTPOS | NT)
-- maxint = (range/2 — 1)

VAL mi ni nt I S INTEGER (MOSTNEG | NT)
-- mnint =—(range/2)

-- INTEGER literals

VAL one IS 1(INTEGER) :

VAL two IS 2(INTEGER) :

-- mask

VAL wor dmask I S range - one :

In OCCam, values are considered to be signed. However, in these functions the concern is with other
interpretations. In the construction of multiple length arithmetic the need is to interpret words as containing
both signed and unsigned integers. In the following the new INTEGER type is used to manipulate these
values, and other values which may require more than a single word to store.

DRART --- Marchi31, 1992

The sign conversion of a value is defined in the functions unsi gn and si gn. These are used in the description
following but they are NOT functions themselves.

INTEGER FUNCTI ON unsi gn (VAL | NT operand)

- - Returns the value of oper and as an unsigned integer value.
- - for example, on a 32 bit word machine :

--unsign (1) =1

--unsign (-1) =2%2 -1

INTEGER operand. i

VALOF
| F
operand < 0
operand.i := (INTEGER operand) + range
operand >= 0
operand.i := INTEGER operand

RESULT oper and. i

I NT FUNCTI ON sign (VAL INTEGER result.i)

- - Takes the INTEGER resul t.i and returns the signed type | NT.
- - for example, on a 32 bit word machine :

-- 231 _ 1 becomes 23t -1

-- 23! becomes —23!

I NT result
VALOF
I F
(result.i > maxint) AND (result.i < range)
result := INT (result.i - range)
TRUE
result := INT result.i

RESULT resul t

N.1 The integer arithmetic functions

LONGADD performs the addition of signed quantities with a carry in. The function is invalid if arithmetic overflow
occurs.

DRART --- Marchi31, 1992

The action of the function is defined as follows:

I NT FUNCTI ON LONGADD (VAL INT left, right, carry.in)

- - Adds (signed) | ef t word to ri ght word with least significant bit of carry. i n.

INTEGER sumi, carry.i, left.i, right.i
VALOF
SEQ
carry.i := INTEGER (carry.in /\ 1)
left.i = INTEGER | eft
right.i := INTEGER ri ght
sum i = (left.i +right.i) + carry.i

- - overflow may occur in the following conversion
- - resulting in an invalid process
RESULT I NT sum i

LONGSUM performs the addition of unsigned quantities with a carry in and a carry out. No overflow can occur.

The action of the function is defined as follows:

I NT, I NT FUNCTI ON LONGSUM (VAL INT left, right, carry.in)

- - Adds (unsigned) | ef t word to ri ght word with the least significant bit of carry. i n.
- - Returns two results, the first value is one if a carry occurs, zero otherwise,
- - the second result is the sum.

I NT carry. out
INTEGER sumi, left.i, right.i
VALOF
SEQ
left.i := unsign (left)
right.i := unsign (right)
sumi := (left.i + right.i) + INTEGER (carry.in /\ 1)
I F -- assign carry
sumi >= range
SEQ
sumi := sumi - range
carry.out :=1
TRUE
carry.out :=0
RESULT carry.out, sign (sumi)

LONGSUB performs the subtraction of signed quantities with a borrow in. The function is invalid if arithmetic
overflow occurs.

DRART --- Marchi31, 1992

The action of the function is defined as follows:

I NT FUNCTI ON LONGSUB (VAL INT left, right, borrowin)

- - Subtracts (signed) ri ght word from | ef t word and subtracts bor r ow. i n from the result.

INTEGER diff.i, borrow i, left.i, right.i
VALOF
SEQ
borrow.i := INTEGER (borrow.in /\ 1)
left.i = INTEGER | eft
right.i = INTEGER ri ght
diff.i = (left.i - right.i) - borrow.i

- - overflow may occur in the following conversion
- - resulting in an invalid process
RESULT I NT diff.i

LONGDI FF performs the subtraction of unsigned quantities with borrow in and borrow out. No overflow can
occur.

The action of the function is defined as follows:

I NT, I NT FUNCTI ON LONGDI FF (VAL INT left, right, borrowin)

- - Subtracts (unsigned) ri ght word from | ef t word and subtracts bor r ow. i n from the result.
- - Returns two results, the first is one if a borrow occurs, zero otherwise,
- - the second result is the difference.

INTEGER diff.i, left.i, right.i
VALOF
SEQ
left.i unsign (left)
right.i := unsign (right)
diff.i (left.i - right.i) - INTEGER (borrow.in /\ 1)
I F - - assign borrow
diff.i <0
SEQ
diff.i :=diff.i + range
borrow. out :=1
TRUE
borrow.out := 0
RESULT borrow. out, sign (diff.i)

LONGPROD performs the multiplication of two unsigned quantities, adding in an unsigned carry word. Produces
a double length unsigned result. No overflow can occur.

DRART --- Marchi31, 1992

The action of the function is defined as follows:

I NT, I NT FUNCTI ON LONGPROD (VAL INT left, right, carry.in)

- - Multiplies (unsigned) | ef t word by ri ght word and adds carry. in.
- - Returns the result as two integers most significant word first.

INTEGER prod.i, prod.lo.i, prod.hi.i, left.i, right.i, carry.i
VALOF
SEQ
carry.i :=unsign (carry.in)
left.i = unsign (left)
right.i := unsign (right)
prod.i = (left.i * right.i) + carry.i
prod.lo.i := prod.i REMrange
prod. hi.i := prod.i / range

RESULT sign (prod.hi.i), sign (prod.lo.i)

LONGDI V divides an unsigned double length number by an unsigned single length number. The function
produces an unsigned single length quotient and an unsigned single length remainder. An overflow will occur
if the quotient is not representable as an unsigned single length number. The function becomes invalid if the
divisor is equal to zero.

The action of the function is defined as follows:

I NT, I NT FUNCTI ON LONGDIV (VAL I NT dividend. hi, dividend.lo, divisor)

- - Divides (unsigned) di vi dend. hi and di vi dend. | o by di vi sor.
- - Returns two results the first is the quotient and the second is the remainder.

INTEGER divisor.i, dividend.i, hi, lo, quot.i, remi

VALOF
SEQ

hi := unsign (dividend.hi)
lo := unsign (dividend.lo)
divisor.i := unsign (divisor)
dividend.i := (hi * range) + lo
quot.i := dividend.i / divisor.
remi := dividend.i REM divi sor.

-- overflow may occur in the follow ng conversion of quot.i
-- resulting in an invalid process
RESULT sign (quot.i), sign (remi)

SHI FTRI GHT performs a right shift on a double length quantity. The function must be called with the number
of places in range, otherwise the implementation can produce unexpected effects.

ie 0 <= places <=2xbitsperword

DRART --- Marchi31, 1992

The action of the function is defined as follows:

I NT, I NT FUNCTION SHI FTRI GHT (VAL INT hi.in, lo.in, places)

- - Shifts the value in hi . i n and | o. i n right by the given number of pl aces.
- - Bits shifted in are set to zero.
- - Returns the result as two integers most significant word first.

I NT hi.out, |o.out
VALOF
I F
(places < 0) OR (places > (two*bitsperword))
SEQ
hi . out
| 0. out
TRUE
INTEGER operand, result, hi, lo:
SEQ
hi := unsign (hi.in)
lo := unsign (lo.in)
operand := (hi << bitsperword) + lo
result := operand >> places
lo :=result /\ wordnask
hi :=result >> bitsperword
hi.out := sign (hi)
lo.out := sign (lo)
RESULT hi . out, |o.out

0
0

SHI FTLEFT performs a left shift on a double length quantity. The function must be called with the number
of places in range, otherwise the implementation can produce unexpected effects.

ie 0 <= places <=2xbitsperword

DRART --- Marchi31, 1992

The action of the function is defined as follows:

I NT, I NT FUNCTION SHI FTLEFT (VAL INT hi.in, lo.in, places)

- - Shifts the value in hi . in and | o. i n left by the given number of pl aces.
- - Bits shifted in are set to zero.
- - Returns the result as two integers most significant word first.

VALOF
I F
(places < 0) OR (places > (two*bitsperword))
SEQ
hi.out :=0
lo.out :=0
TRUE
INTEGER operand, result, hi, lo :
SEQ
hi unsign (hi.in)

lo := unsign (lo.in)
operand := (hi << bitsperword) + |lo
result := operand << places
lo :=result /\ wordnask
hi :=result >> bitsperword
hi.out := sign (hi)
lo.out :=sign (lo)
RESULT hi.out, |o0.out

NORMALI SE normalises a double length quantity. No overflow can occur.

DRART --- Marchi31, 1992

The action of the function is defined as follows :

I NT, INT, I NT FUNCTI ON NORMALI SE (VAL INT hi.in, lo.in)

- - Shifts the value in hi . in and | o. i n left until the highest bit is set.

- - The function returns three integer results

- - The first returns the number of places shifted.

- - The second and third return the result as two integers with the least significant word first;
- - If the input value was zero, the first result is 2xbi t sper wor d.

I NT places, hi.out, |o.out

VALOF
I F
(hi.in =0) AND (lo.in = 0)
pl aces := I NT (two*bitsperword)
TRUE

VAL nmsb IS one << ((two*bitsperword) - one)
INTEGER operand, hi, lo :
SEQ
lo := unsign (lo.in)
hi := unsign (hi.in)
operand := (hi << bitsperword) + lo
places := 0
WHI LE (operand /\ nmsb) =0
SEQ
operand : = operand << one
pl aces := places + 1
hi := operand / range
|l o : = operand REM range
hi.out := sign (hi)
lo.out := sign (lo)
RESULT pl aces, hi.out, |o.out

N.2 Arithmetic shifts

ASHI FTRI GHT performs an arithmetic right shift, shifting in and maintaining the sign bit. The function must
be called with the number of places in range, otherwise the implementation can produce unexpected effects.

ie 0 <= places <= bitsperword
No overflow can occur.
N.B the result of this function is NOT the same as division by a power of two.

eg —-1/2=0
ASHI FTRI GHT (-1,1) =-1

The action of the function is defined as follows:

- - Shifts the value in oper and right by the given number of pl aces.
- - The status of the high bit is maintained

I NT FUNCTI ON ASHI FTRI GHT (VAL | NT operand, places) IS
I NT(INTEGER(operand) >> pl aces)

DRART --- Marchi31, 1992

ASHI FTLEFT performs an arithmetic left shift. The function is invalid if significant bits are shifted out, signalling
an overflow. The function must be called with the number of places in range, otherwise the implementation
can produce unexpected effects.

ie 0 <= places <= bitsperword
N.B the result of this function is the same as multiplication by a power of two.

The action of the function is defined as follows:

I NT FUNCTI ON ASHI FTLEFT (VAL | NT argument, pl aces)

- - Shifts the value in ar gunent left by the given number of pl aces.
- - Bits shifted in are set to zero.

INTEGER result.i
VALOF
result.i := INTEGER(argunent) << pl aces
-- overflow may occur in the follow ng conversion
-- resulting in an invalid process
RESULT INT result.i

N.3 Word rotation

ROTATERI GHT rotates a word right. Bits shifted out of the word on the right, re-enter the word on the left.
The function must be called with the number of places in range, otherwise the implementation can produce
unexpected effects.

ie 0 <= places <= bitsperword
No overflow can occur.

The action of the function is defined as follows:

I NT FUNCTI ON ROTATERI GHT (VAL | NT argurent, places)
- - Rotates the value in ar gunent by the given number of pl aces.

INTEGER hi gh, low, argunent.i
VALOF
SEQ
argunent . i unsi gn(ar gunent)
argument.i := (argunent.i * range) >> places
high := argunent.i / range
low := argunent.i REM range
RESULT | NT(high \/ | ow)

ROTATELEFT rotates a word left. Bits shifted out of the word on the left, re-enter the word on the right.
The function must be called with the number of places in range, otherwise the implementation can produce
unexpected effects.

ie 0 <= places <= bitsperword

DRART --- Marchi31, 1992

The action of the function is defined as follows:

I NT FUNCTI ON ROTATELEFT (VAL | NT argument, places)
- - Rotates the value in ar gunent by the given number of pl aces.

INTEGER hi gh, |ow, argunent.i
VALOF
SEQ
argunent.i := unsign(argument)
argunment.i := argunent.i << places
high := argument.i / range
low := argument.i REM range
RESULT I NT(high \/ |ow)

DRART --- Marchi31, 1992

O Floating point functions

The floating point functions described in this appendix provide the list of facilities suggested by the ANSI/IEEE
standard 754-1985.

Each function is specified by a skeletal function declaration, a predicate stating the relationship between the
actual parameters after the function call and an informal textual description of the operation. All functions are
implemented in a way which allows the same variable to be used as both the input and receiving variable
in an assignment. The predicate gives the formal definition of the operation, although for most purposes the
text will be an adequate explanation.

NaN and Inf are the sets of all Not-a-Numbers and all infinities in the format.

0.1 Not-a-number values

Floating point arithmetic implementations will return the following valued Not-a-Numbers to signify the various
errors that can occur in evaluations.

Error Single length value | Double length value
Divide zero by zero #7FC00000 #7FF80000 00000000
Divide infinity by infinity #7FA00000 #7FF40000 00000000
Multiply zero by infinity #7F900000 #7FF20000 00000000
Addition of opposite signed infinities | #7F880000 #7FF10000 00000000
Subtraction of same signed infinities | #7F880000 #7FF10000 00000000
Negative square root #7F840000 #7FF08000 00000000
REAL64 to REAL32 NaN conversion | #7F820000 #7FF04000 00000000
Remainder from infinity #7F804000 #7FF00800 00000000
Remainder by zero #7F802000 #7FF00400 00000000
0.2 Absolute

REAL32 FUNCTI ON ABS(VAL REAL32 X)

i?EAL64 FUNCTI ON DABS(VAL REAL64 X)
ABS(X) = |X|

This returns the absolute value of X. This is implemented clearing the sign bit so that - 0. 0 becomes +0. 0 and
even though Not-a-Numbers (NaNs) have no signed-ness the sign bit in their representation will be cleared.

DRART --- Marchi31, 1992

0.3 Square root

REAL32 FUNCTI ON SQRT(VAL REAL32 X)

i:{EAL64 FUNCTI ON DSQRT(VAL REAL64 X)

SQRT(X) = VX

This returns the square root of X. Negative arguments produce a Negative square root Not-a-Number, and
infinity produces an infinity.

0.4 Test for Not-a-Number
BOOL FUNCTI ON | SNAN(VAL REAL32 X)

BCI]_ FUNCTI ON DI SNAN(VAL REAL64 X)

| SNAN(X) = TRUE < X € NaN

This returns TRUE if X is a Not-a-Number and FALSE otherwise.
0.5 Test for Not-a-Number or infinity
BOOL FUNCTI ON NOTFI NI TE(VAL REAL32 X)

E(Il FUNCTI ON DNOTFI NI TE(VAL REAL64 X)

NOTFI NI TE(X) = TRUE <& X € NaN U Inf

This returns TRUE if X is a Not-a-Number or an infinity and FALSE otherwise.
0.6 Scale by power of two
REAL32 FUNCTI ON SCALEB(VAL REAL32 X, VAL |INT n)

i?EAL64 FUNCTI ON DSCALEB(VAL REAL64 X, VAL | NT n)

SCALEB(X, n) = X x 2"

This multiplies X by 2™. Overflow and underflow behaviour is as for normal multiplication under the ANSI/IEEE
standard 754-1985. n can take any value as the operation will return the correct result even when 2™ cannot
be represented in the format.

DRART --- Marchi31, 1992

0.7 Return exponent

REAL32 FUNCTI ON LOGB(VAL REAL32 X)

i?EAL64 FUNCTI ON DLOGB(VAL REAL64 X)

LOGB (X) = result
where X ¢ InfUNaN A X#0 = result = REAL32(X.exp — Bias)
X=0= result = —inf
X€ Inf = result = +inf
X € NaN = result =X

This returns the exponent of X as an integer valued floating point number; special cases for Infs, NaNs and
zero. NOTE that all denormalised numbers return the same value — this is not equivalent to rounding the
logarithm to an integer value. If X is a NaN then it is returned as the result, if X is an infinity then the result
is plus infinity and if X is zero then the result is minus infinity.

0.8 Unpack floating point value

I NT, REAL32 FUNCTI ON FLOATI NG UNPACK(VAL REAL32 X)
iNT, REAL64 FUNCTI ON DFLOATI NG UNPACK(VAL REAL64 X)

FLOATI NG UNPACK (X) = (n, 1)
where X=0VXeInfUNaN =r € NaN An = RealEzp — Bias
“otherwise” X=rx2"Ar €[1,2)

This “unpacks” X into a real (r) and an integer (n) so that r lies between 1 and 2 and that X =» x 2™. This is
useful for reducing a value to the primary range for “exponential” type functions. If X is an infinity or a NaN
then a NaN is returned in r and n holds MaxExp - the exponent of a NaN. If X is zero then a NaN is returned
in r and MaxExp in n - this is because the methods used to evaluate a function in its primary range will not
be defined for 0. 0 which should have already been dealt with as a special case. The use of a NaN in these
cases signals an error in the attempt to produce a “primary range” value and offset from X.

0.9 Negate
REAL32 FUNCTI ON M NUSX(VAL REAL32 X)
REAL64 FUNCTI ON DM NUSX(VAL REAL64 X)

"M NUSX (X) = result
where result.sign = toggleX.sign, result. frac = X. frac, result.exp = X.ezp

This returns X with the sign bit toggled. This is not the same as (0 — X) as it has different behaviour on zero

and NaNs. This should not be used as a unary negation where (0 — X) should be used. As with ABS it does
affect the representation of NaNs even though they have no sign in their interpretation.

DRART --- Marchi31, 1992

0.10 Copy sign
REAL32 FUNCTI ON COPYSI GN(VAL REAL32 X, V)
REAL64 FUNCTI ON DOOPYS| GN(VAL REAL64 X,)

" COPYSI GN (X, Y) = result
where result.sign = Y.sign, result. frac = X. frac, result.ezp = X.ezp

This returns X with the sign bit from Y.

0.11 Next representable value

REAL32 FUNCTI ON NEXTAFTER(VAL REAL32 X, Y)
i?EAL64 FUNCTI ON DNEXTAFTER(VAL REAL64 X, Y)

NEXTAFTER (X, Y) = result

where Xé& NaN VY€ NaN = result € NaNn{X,Y}
X=Y=X
X #Y ="result is next real after X in the direction of Y”

This can be specified precisely but as several subsidiary definitions are required first the informal third line of
the “predicate” is used for brevity.

This returns the first floating point number from X in the direction of Y. The major area where this will be
used is in interval arithmetic. If either or both of X or Y is a NaN then a NaN equal to X or Y is returned. An
overflow from a finite X to an infinite result is handled in the same way as an arithmetic overflow.

0.12 Test for orderability
BOCOL FUNCTI ON ORDERED(VAL REAL32 X Y)
iBOO_ FUNCTI ON DORDERED(VAL REAL64 X Y)
:(PDERED(X, Y)=TRUE< X¢ NaN AY ¢ NaN
This returns TRUE if Xand Y are “orderable” as defined by the ANSI/IEEE standard 754-1985. This implements

the negation of the unordered comparison in ANSI/IEEE 754-1985 §5.7 and enables the full IEEE style
comparison to be derived from the standard <, >, ... comparisons of real types in 0OCCam.

DRART --- Marchi31, 1992

0.13 Perform range reduction

BOOL, | NT32, REAL32 FUNCTI ON ARGUMENT. REDUCE(VAL REAL32 X, Y, Y.err)
B&l, | NT32, REAL64 FUNCTI ON DARGUMENT. REDUCE(VAL REAL64 X, Y, Y.err)

ARGUNVENT.REDUCE(X, Y, er r or) = (b, n, 7)

where X.ezp < Y.ezp+mazezpdiff => bAX=nx(Y+error)+r
Ar<(Y+error)/2v(r=(Y+error)/2AnMOD?2 =0))
X.ezp > Y.exp + mazezpdiff = Im:Z
“bAX=mxY+r
Ar<Y/2Vv(r=Y/2AmMOD?2=0))
An = unde fined
where mazezpdif f is 20 for ARGUMVENT. REDUCE and 30 for DARGUVENT. REDUCE.

This performs a more accurate remainder X REM Y by using an extended precision value for Y where possible.
It is assumed that er r or is no larger than a last bit error in Y. TRUE is returned as the boolean result b to
indicate that the more accurate remainder has been done and the integer result n will then be the quotient.
If the more accurate remainder cannot be done a normal remainder is performed and the quotient n must be
calculated separately. This is designed to be used to reduce an argument to the primary range for cyclical
functions - such as the trigonometric functions.

0.14 Fast multiply by two

REAL32 FUNCTI ON MULBY2(VAL REAL32 X)
i?EAL64 FUNCTI ON DMULBY2(VAL REAL64 X)

MILBY2(X) = X x 2
This returns 2 times X with overflow handling as defined in the ANSI/IEEE standard 754-1985.

0.15 Fast divide by two

REAL32 FUNCTI ON DI VBY2(VAL REAL32 X)
i?EAL64 FUNCTI ON DDI VBY2(VAL REAL64 X)

DI VBY2(X) = X = 2
This returns X divided by 2 with underflow handling as defined in the ANSI/IEEE standard 754-1985.

DRART --- Marchi31, 1992

0.16 Round to floating point integer
REAL32 FUNCTI ON FPI NT(VAL REAL32 X)
REAL64 FUNCTI ON DFPI NT(VAL REAL64 X)

"FPINT (X) = result
where |X| > 2bitsperword — pegylt = X
X| < 2bitsperword — pesylt = REAL32(1 NT ROUND X)

This returns X rounded to a floating point integer value.

DRART --- Marchi31, 1992

P IEEE floating point arithmetic

REALCP and REALREM are implementations of the ANSI/IEEE 754-1985 floating point arithmetic standard.
An implementation should comply to the requirements of the standard in as much as all results returned by
them should be correct as defined in the standard. Most programmers will not need to use these functions
directly as most 0OCCam implementations will compile all real arithmetic as calls to these functions. In some
applications, such as interval arithmetic, the rounding modes are needed so the functions will need to be
explicitly called in those cases. Also, in some applications, the IEEE standards use of infinities and Not-a-
number to handle errors and overflows may be required in preference to the standard 0OCCam treatment of

them as invalid expressions.

The functions for REAL32 operands are
REAL32 FUNCTI ON REAL320P (VAL REAL32 X, VAL INT Op, VAL REAL32 V)

REAL32 FUNCTI ON REAL32REM (VAL REAL32 X, VAL REAL32 Y)

REAL320P (X, Op, Y) evaluates X Op Y according to the standard without error checking, using the

conventional rounding mode. The various operations are coded in Op where:

op =0 +
=1 -
=2 *
=3 /

REAL32REM (X, Y) evaluates X REMY according to the standard without error checking.

REAL640P and REAL64REMare defined in an similar manner to operate on REAL64s.

| EEEOP (X, Rm Op, Y) evaluates X Op Y according to the standard without error checking. The

rounding mode to be used is indicated by Rmwhere:

round_.mode =0 Round to Zero
round_-mode =1 Round to Nearest
round_.mode =2 Round to Plus Infinity
round_ mode =3 Round to Minus Infinity

The function is:

BOOL, REAL32 FUNCTI ON | EEE320P (VAL REAL32 X,
VAL INT Rm Op, VAL REAL32 Y)

Boo_, REAL64 FUNCTI ON | EEE640P (VAL REAL64 X,
VAL INT Rm Op, VAL REAL64 Y)

These functions return two results, a boolean which is true if an error has occurred, and false otherwise, and

the result.

P.1 ANSI/IEEE real comparison

The comparisons on the real types provided in the ocCam language should suffice for most purposes.
However, if the comparisons detailed in the ANSI/IEEE 754-1985 standard are required then they can be

DRART --- Marchi31, 1992

generated from the set of primitive comparisons.

BOOL FUNCTI ON REAL32EQ (VAL REAL32 X, Y)
-- result = (X =Y) in the | EEE sense

BOOL FUNCTI ON REAL32GT (VAL REAL32 X, YY)
-- result = (X >Y) in the | EEE sense

A standard function | EEECOVPARE will return a value which indicates which of the relations less than, greater
than, equals or unordered as defined by IEEE 754 paragraph 5.7. This procedure is

I NT FUNCTI ON | EEECOVPARE (VAL REAL32 X, V)
I NT result
VALCF
I F
ORDERED (X, Y)
I F
REAL32EQ (X, YY)
result := 0
REAL32GT (X, Y)
result :=1
TRUE
result := -1
TRUE
result := 2
RESULT resul t

Then, if really necessary, any of the 26 varieties of comparison suggested by the IEEE standard can be
derived. For instance the ? >= predicate could be implemented by

BOOL, BOOL FUNCTI ON | EEE. UGE. (VAL REAL32 X, Y)
VAL LT IS -1, EQIS 0O, GT'IS 1, UNIS 2:
INT rel ation:

VALOF
relation : = | EEECOVWPARE (X, YY)

RESULT FALSE,
(relation=GI) OR ((relation=EQ OR (relation=UN))

Similarly NOT'(<>) could be implemented as

BOOL, BOOL FUNCTI ON | EEENOT. LG (VAL REAL32 X)
VAL LT IS -1, EQIS 0, GT' IS 1, UNIS 2:
I NT rel ation:
VALCF
relation := | EEECOVPARE (X, YY)
RESULT (relation=UN), (relation=EQ OR (relation=UN)

In either of these cases the value returned in the first boolean is equivalent to the invalid operation flag being
set according to the ANSI/IEEE standard 754-1985.

The double length version DI EEECOMPARE is defined in a similar manner to | EEECOVPARE.

DRART --- Marchi31, 1992

Q Elementary function library

The elementary function library provides a set of routines which provide elementary functions compatible with
the ANSI/IEEE standard 754-1985 for binary floating-point arithmetic.

All single length functions other than POAER, ATAN2 and RAN have one parameter which is a VAL REAL32
taking the argument of the function. POAER and ATAN2 have two parameters. They are both VAL REAL32s
which receive the arguments of the function. RAN has a single parameter which is a VAL | NT32. In each
case the double-length version is obtained by prefixing a D onto the function name, whose parameters are
VAL REALG64 or, in the case of DRAN, VAL | NT64.

Accompanying the description of each function is the specification of the function’s Domain and Range. The
Domain specifies the range of valid inputs, ie those for which the output is a normal or denormal floating-point
number. The Range specifies the range of outputs produced by all arguments in the Domain. The given
endpoints are not exceeded. Note that some of the domains specified are implementation dependent.

Ranges are given as intervals, using the convention that a square bracket { [or] } means that the adjacent
endpoint is included in the range, whilst a round bracket { (or) } means that it is excluded. Endpoints are
given to a few significant figures only. Where the range depends on the floating-point format, single-length
is indicated with an S and double-length with a D.

For functions with two arguments the complete range of both arguments is given. This means that for each
number in one range, there is at least one (though sometimes only one) number in the other range such that
the pair of arguments is valid. Both ranges are shown, linked by an ‘x’.

In the specifications, XMAX is the largest representable floating-point number: in single-length it is approx-
imately 3.4 = 103, and in double-length it is approximately 1.8 x 10%°%. Pi means the closest floating-point
representation of the transcendental number =, In(2) the closest representation of logg(2), and so on. In
describing the algorithm, X is used generically to designate the argument, and “result” to designate the
output.

The routines will accept any value, as specified by the IEEE standard, including special values representing
NaNs (‘Not a Number’) and Infs (‘Infinity’). NaNs are copied directly to the result, whilst Infs may or may not
be valid arguments. Valid arguments are those for which the result is a normal (or denormalised) floating-point
number.

Arguments outside the domain (apart from NaNs which are simply copied to the result) give rise to exceptional
results, which may be NaN, +Inf, or —Inf. Infs mean that the result is mathematically well-defined but too
large to be represented in the floating-point format.

Error conditions are reported by means of three distinct NaNs :

undef i ned. NaN | This means that the function is mathematically undefined for this argument, for
example the logarithm of a negative number.

unst abl e. NaN | This means that a small change in the argument would cause a large change in the
value of the function, so any error in the input will render the output meaningless.

i nexact . NaN This means that although the mathematical function is well-defined, its value is in
range, and it is stable with respect to input errors at this argument, the limitations of
word-length (and reasonable cost of the algorithm) make it impossible to compute
the correct value.

Implementations will return the following values for these Not-a-Numbers:

Error Single length value | Double length value \
undef i ned. NaN | #7F800010 #7FF00002 00000000
unst abl e. NaN | #7F800008 #7FF00001 00000000
i nexact . NaN #7F800004 #7FF0O0000 80000000

DRART --- Marchi31, 1992

In all cases, the function returns a NaN if given a NaN.

Q.1 Logarithm

REAL32 FUNCTI ON ALOG (VAL REAL32 X)

REAL64 FUNCTI ON DALOG (VAL REAL64 X)

These compute : result = loge(X).

Domain : (0, XMAX]
Range : [MinLog, MaxLog] =[—103.28,88.72]S = [-745.2,709.78] D

All arguments outside the domain generate an undefined.NaN.

Q.2 Base 10 logarithm

REAL32 FUNCTI ON ALOGL10 (VAL REAL32 X)

i:QEAL64 FUNCTI ON DALOGLO (VAL REAL64 X)

These compute : result = logq(X)

Domain : (0, XMAX]
Range : [MinLog10, MaxLog10] = [—44.85, 38.53]S = [-323.6, 308.25]D

All arguments outside the domain generate an undefined.NaN.
Q.3 Exponential

REAL32 FUNCTI ON EXP (VAL REAL32 X)

i?EAL64 FUNCTI ON DEXP (VAL REAL64 X)

These compute : result = eX.

Domain : [—Inf, MaxLog) = [-Inf, 88.72)S,= [-Inf, 709.78)D
Range : [0, XMAX)

If the result is too large to be represented in the floating-point format, Inf is returned.

DRART --- Marchi31, 1992

Q.4 X to the power of Y

REAL32 FUNCTI ON PONER (VAL REAL32 X, YY)

i?EAL64 FUNCTI ON DPOAER (VAL REAL64 X, Y)

These compute : result = XY .

Domain :
Range :

If the result is too large to be represented in the floating-point format, Inf is returned. If X or Y is NaN, NaN

[0, Inf] x [—Inf, Inf]
[—Inf, Inf]

is returned. Other special cases are as follows :

Q.5 Sine

First Input (X)

Second Input (Y)

Result

X <0
0
0
0
0<X<«l1
0<X<«l1
1
1

Inf

Inf

Inf
otherwise
otherwise

1< X < XMAX
1< X < XMAX

any
<0
0< Y < XMAX
Inf
Inf
—Inf
—XMAX <Y < XMAX
+ Inf
Inf
—Inf
1<Y < Inf
—Inf<y < -1
-1l<Y <1
0
1

undefined.NaN
undefined.NaN
0
unstable.NaN
0
Inf
1
unstable.NaN
Inf
0
Inf
0
undefined.NaN
1
X

REAL32 FUNCTION SIN (VAL REAL32 X)

i?EAL64 FUNCTI ON DSI N (VAL REAL64 X)

These compute : result = sine(X) (where X is in radians).

Domain :
Range :

All arguments outside the domain generate an inexact.NaN. Implementations may provide a larger domain.

[-Smax, Smax]
[-1.0, 1.0]

= [~12868.0, 12868.0]S, = [~ 2.1 * 108, 2.1 % 108]D

DRART --- Marchi31, 1992

Q.6 Cosine

REAL32 FUNCTI ON COS (VAL REAL32 X)

REAL64 FUNCTI ON DOOS (VAL REAL64 X)

These compute : result = cosine(X) (where X is in radians).

Domain : [-Smax, Smax] = [-12868.0, 12868.0]S, = [-2.1 108,2.1 % 108]D
Range : [-1.0, 1.0]

All arguments outside the domain generate an inexact.NaN. Implementations may provide a larger domain.
Q.7 Tangent

REAL32 FUNCTI ON TAN (VAL REAL32 X)

i?EAL64 FUNCTI ON DTAN (VAL REAL64 X)

These compute : result = tan(X) (where X is in radians).

Domain : [-Tmax, Tmax] = [-6434.0,6434.0]S, = [-1.05 % 108, 1.05 % 108]D
Range : (=Inf, Inf)

All arguments outside the domain generate an inexact.NaN. Implementations may provide a larger domain.

Q.8 Arcsine

REAL32 FUNCTI ON ASIN (VAL REAL32 X)

i?EAL64 FUNCTI ON DASI N (VAL REAL64 X)

These compute : result = sine™%(X) (in radians).

Domain : [-1.0, 1.0]
Range : [—Pi/2, Pi/2]

All arguments outside the domain generate an undefined.NaN.

DRART --- Marchi31, 1992

Q.9 Arccosine

REAL32 FUNCTI ON ACOS (VAL REAL32 X)

REAL64 FUNCTI ON DACCS (VAL REAL64 X)

These compute : result = cosine™(X) (in radians).

Domain : [-1.0, 1.0]
Range : [0, Pi]

All arguments outside the domain generate an undefined.NaN.
Q.10 Arctangent

REAL32 FUNCTI ON ATAN (VAL REAL32 X)

i?EAL64 FUNCTI ON DATAN (VAL REAL64 X)

These compute : result = tan=%(X) (in radians).

Domain : [—Inf, Inf]
Range : [—Pi/2, Pi/2]

Q.11 Polar Angle

REAL32 FUNCTI ON ATAN2 (VAL REAL32 X,)

i?EAL64 FUNCTI ON DATAN2 (VAL REAL64 X, Y)

These compute the angular co-ordinate tan~1(Y/X) (in radians) of a point whose X and Y co-ordinates are
given.

Domain : [—Inf, Inf] x [—Inf, Inf]
Range : (—Pi, Pi]

(0, 0) and (£Inf,&Inf) give undefined.NaN.

DRART --- Marchi31, 1992

Q.12 Hyperbolic sine
REAL32 FUNCTI ON SI NH (VAL REAL32 X)

i?EAL64 FUNCTI ON DSI NH (VAL REAL64 X)

These compute : result = sinh(X).

Domain : [—-Hmax, Hmax] =[-89.4,89.4]S,=[-710.5, 710.5]D
Range : (—=Inf, Inf)

X < —Hmax gives —Inf, and X > Hmax gives Inf.
Q.13 Hyperbolic cosine

REAL32 FUNCTI ON COSH (VAL REAL32 X)

i?EAL64 FUNCTI ON DCOSH (VAL REAL64 X)

These compute: result = cosh(X).

Domain : [—-Hmax, Hmax] =[-89.4,89.4]S,=[-710.5, 710.5]D
Range : [1.0, Inf)

|X| > Hmax gives Inf.

Q.14 Hyperbolic tangent

REAL32 FUNCTI ON TANH (VAL REAL32 X)

i?EAL64 FUNCTI ON DTANH (VAL REAL64 X)

These compute : result = tanh(X).

Domain : [—Inf, Inf]
Range : [-1.0, 1.0]

DRART --- Marchi31, 1992

Q.15 Pseudo-random numbers

REAL32, | NT32 FUNCTI ON RAN (VAL INT32 N

REAL64, | NT64 FUNCTI ON DRAN (VAL | NT64 N)

This function returns two results, the first is a real between 0.0 and 1.0, and the second is an integer. The
integer, which must be used as the parameter in the next call to the function, carries a pseudo-random linear
congruential sequence N, and must be kept in scope for as long as the function is used. It should be
initialised before the first call to the function but not modified thereafter except by the function itself. Consider
the following sequence:

SEQ
X, seed := RAN (8) -- initialise seed
y, seed := RAN (seed)
z, seed := RAN (seed)

In this example X, y, and z are each assigned a pseudo-random value.

Domain : Integers
Range : [0.0, 1.0) x Integers

DRART --- Marchi31, 1992

R Value, string conversion routines

This appendix describes the standard library of string to value, value to string routines. The library provides
primitive procedures to convert a value to and from decimal or hexadecimal representations. High input/output
routines can be easily built using these simple procedures, and a number will typically be provided in an
implementation.

R.1 Integer, string conversions
The procedures described here provide conversion between integer values and their decimal or hexadecimal
representations held as a string of characters, for example:

PROC | NTTOSTRING (I NT len, []BYTE string, VAL INT n)

The procedure | NTTOSTRI NGreturns the decimal representation of n in st r i ng and the number of characters
in the representation in | en.

PROC STRI NGTO NT (BOOL error, INT n, VAL []BYTE string)

The procedure STRI NGTO NT returns in n the value represented by st ri ng. error is set to TRUE if a non
numeric character is found in stri ng. + or a - are allowed in the first character position. n will be the value
of the the portion of st ri ng up to any illegal character with the convention that the value of an empty string
is 0. error is also set if the value of st ri ng overflows the range of | NT, in this case n will contain the low
order bits of the binary representation of stri ng. error is set to FALSE in all other cases.

PROC HEXTOSTRING (I NT I en, []BYTE string, VAL INT n)

The procedure HEXTOSTRI NG returns the hexadecimal representation of n in stri ng and the number of
characters in the representation in | en. All the nibbles (a nibble is a word 4 bits wide) of n are output so that
leading zeros are included. The number of characters will be the number of bits in an | NT divided by 4.

PROC STRI NGTCHEX (BOOL error, INT n, VAL []BYTE string)

The procedure STRI NGTOHEX returns in n the value represented by the hexadecimal stri ng. error is set
to TRUE if a non hexadecimal character is found in st ri ng. Here n will be the value of the the portion of
st ri ng up to the illegal character with the convention that the value of an empty string is 0. error is also
set to TRUE if the value represented by st ri ng overflows the range of | NT. In this case n will contain the
low order bits of the binary representation of st ri ng. In all other cases err or is set to FALSE.

Similar procedures are provided for the types | NT16, | NT32 and | NT64. These procedures use equivalent
parameters of the appropriate type. The procedures are:

I NTTOSTRI NG | | NTLI6TOSTRI NG | | NT32TOSTRI NG | | NT64TCSTRI NG
STRI NGTO NT | STRINGTO NT16 | STRI NGTO NT32 | STRI NGTO NT64
HEXTOSTRI NG | HEX16TOSTRI NG | HEX32TOSTRI NG | HEX64TOSTRI NG
STRI NGTOHEX | STRI NGTOHEX16 | STRI NGTOHEX32 | STRI NGTCHEX64

DRART --- Marchi31, 1992

R.2 Boolean, string conversion

The procedures described here provide conversion between boolean values and their textual representation
“TRUE" and “FALSE".

PROC BOOLTOSTRING (I NT len, []BYTE string, VAL BOOL b)

The procedure BOOLTOSTRI NGreturns “TRUE” in st ri ng if b is TRUE and “FALSE” otherwise. | en contains
the number of characters in the string returned.

PROC STRI NGTOBOOL (BOCOL error, b, VAL []BYTE string)

The procedure STRI NGTOBOOL returns TRUE in b if first 4 characters of stri ng are “TRUE", FALSE if first
5 characters are “FALSE” and b is undefined in other cases. TRUE is returned in error if stri ng is not
exactly “TRUE” or " FALSE" .

R.3 Real, string conversion

The procedures described here provide conversion between real values and their representation as strings,
for example:

PROC STRI NGTOREAL32 (BOOL error, REAL32 r, VAL []BYTE string)

PROC STRI NGTOREAL64 (BOOL error, REAL64 r, VAL []BYTE string)

These two procedures each take a string containing a decimal representation of a real number and convert
it into the corresponding real value. If the value represented by st ri ng overflows the range of the type then
an appropriately signed infinity is returned. Errors in the syntax of st ri ng are signalled by a Not-a-Number
being returned and err or being set to TRUE. The string is scanned from the left as far as possible while
the syntax is still valid. If there any characters after the end of the longest correct string then error is set to
TRUE, otherwise it is FALSE. For example if stri ng was " 12. 34E+2+1. 0" then the value returned would
be 12.34 x 10% with er r or set to TRUE. Strings which represent real values are those specified by the syntax
for real literals, for example:

12. 34
587. OE- 20
+1. 0E+123
-3.05

Further examples are given in the section on literals on page 24.

PROC REAL32TOSTRI NG (I NT len, []BYTE string,
VAL REAL32 r, VAL INT mn)

PROC REAL64TCSTRING (I NT | en, []BYTE string,
VAL REAL64 r, VAL INT mn)

These two procedures return a string representing the value r in the first | en BYTESs of st ri ng. The format
of the representation is determined by mand n. Free format is selected by passing O in mand n into the

DRART --- Marchi31, 1992

procedure. Where possible a fixed point representation is used when this does not indicate more accuracy
than is available and does not have more than 3 “0”s after the decimal point before significant digits. Otherwise
exponential form is used. The number of characters returned in st ri ng here depends on the input but will
be no more than 15 in REALTOSTRI NG32 and 24 in REALTOSTRI NG64. st ri ng is left justified in free format.

If mis non-zero then if possible the procedure returns a fixed point representation of r with mdigits before the
decimal point and n places after with padding spaces being added when needed. If this is not possible then
an exponential representation is returned with the same field width as the fixed point representation would
have had. If mand n are both very small then an exponential representation may not fit in the field width so
two special values “Un” and “Ov” with a sign are returned to indicate a value under or over the representable
fixed point values. In all these cases st ri ng is padded with spaces so that it contains (m+n + 2) characters
- mbefore the decimal point, n after, as well as the sign and decimal point characters.

If mis zero but n is not then an exponential representation is returned where the number of digits of fraction
returned is n. The form of the fraction is digit.digits except when n is 1. In this case the output is not a
proper representation as the fraction will be of the form *’ digit where the padding space is added due to the
absence of a decimal point. For this reason the case m= 0, n = 1 should not be used in general. When mis
0 st ri ng will contain (n + 6) characters for REALTOSTRI NG32 and (n + 7) for REALTOSTRI NG54.

Each procedure returns a string “I nf ” preceded by a sign character for infinities and a string “NaN’ for Not-a-

Numbers. In free format a leading space on either string is dropped. Both these will be padded on the right
with spaces to fill the field width when free format output is not being used.

DRART --- Marchi31, 1992

S Glossary of terms

Abbreviation An abbreviation specifies a name as an alias for an existing element or for the value of
an expression. The meaning of the alias is defined by substitution of the abbreviated element or
expression.

Accept A process which services a call channel.

Actual parameter A parameter used in an instance of a procedure.

Alias A name specified by an abbreviation.

Alias check Ensure all variables and channels are identified by a single name within a given scope.
Allocation Place a variable, channel, timer, array or port at an absolute location in memory.

Alternation Combines a number of processes guarded by inputs, and performs the process associated with
an input which is ready.

Alternative A component of an alternation.
Argument A parameter used in an instance of a function.
Array A number of components of the same type.

Assignment Evaluates an expression or list of expressions, and assigns each result to a corresponding
variable.

Bitwise operation Operation on the individual bits in the representation of a value.
Boolean operation Logical evaluation of truth values.

Case input Selects the protocol of an input on a single channel with variant protocol.

Channel Unbuffered, uni-directional point-to-point connection for communication between two processes
executing in parallel.

Channel protocol The format of communication on a channel. Communication is valid only if the output and
input are compatible; ie each communication is of the type specified by the channel protocol.

Claim A process which obtains exclusive use of a shared channel and uses it.
Choice A component of a conditional.

Communication The communication of values between concurrent processes.
Concurrency Processes acting and existing together.

Conditional A construction (I F) which combines a number of processes each of which is guarded by a
boolean.

Configuration Configuration associates the components of an OCCam program with a set of physical re-
sources.

Construction A construction combines processes. OCCam programs are built from processes, by combining
primitive processes and other constructions to form constructions of sequence (SEQ), conditional
(I F), selection (CASE), loop (WHI LE), parallel (PAR) or alternation (ALT).

Data type The structure of a value. The data type of a variable defines which values can be stored in that
variable. The data type of a value defines the operations which can be performed on the value.

Deadlock A state in which two or more concurrent processes can no longer proceed due to a communication
interdependency.

Declaration Specifies the name, type and scope of a variable, channel, timer or array.

Delayed input A special timer input which will wait until the timer has incremented beyond a specified time
before terminating. Useful for adding a simple delay in a process.

Discrimination A discrimination is a process which identifies the tag of a value of union type. This process
is introduced with the keyword CASETAG.

DRART --- Marchi31, 1992

Export A procedure, function, &c, which is defined in a library and made available for use in other applica-
tions.

Expression list A list of expressions separated by commas; used in multiple assignment and functions.

Field A field is part of a record type.
Final process A declaration which is executed after its scope.

Formal parameter Parameter specified in the definition of a procedure or function. A formal parameter acts
as an abbreviation for the actual parameter used in an instance of a procedure.

Free channel A channel whose name is a free name.

Free name A name which occurs within a process, but is not specified within the process.
Free variable A variable whose name is a free name.

Function definition Specifies a name for a value process or expression list.

Grant A process which grants exclusive use of a shared channel to a claim process.

Guard Determines the execution of an associated process in a choice (boolean guard) or alternative (input
guard).

Import A procedure, function, &c, which is defined in a library and is used a separate application.

Indentation An offset from the left hand edge of the page. In OCCam indentation is critical, and serves to
define the structure of processes.

Initial abbreviation A variable declaration which provides an initial value for the variable.
Initial process A declaration which is executed before its scope.

Input Receive a value from a channel and assign the value to a variable.

Input guard An input which guards an alternative in an alternation.

Instance The occurrence of a procedure or application of a function.

Interface The names and types of channels which are used to communicate with a module.

Invalid process A process whose behaviour has for some reason become undefined, and as a result may
lead to the failure of a system.

Library A set of functions, procedures, data types, &c, which can be shared between any number of appli-
cations.

Literal A literal is a textual representation of a known value, and has a data type.

Livelock A divergent process, one which may remain internally active but not perform further communication,
ie it may behave like the following process:

VWH LE TRUE
SKI P

Module A declaration which is executed in parallel with its scope and presents a channel interface.

Modulo operator A modulo operator performs its operation (PLUS, M NUS, Tl MES) with no check for over-
flow. The value returned as a result is the cyclic value within the range of the operand type.

Network a network consists of a number of processing devices, microcomputers perhaps, with the facility to
communicate with each other.

Operand Yields a value in an expression.
Operator (monadic or dyadic) performs an operation on its operand(s).
Output Send the value of an expression to a channel.

DRART --- Marchi31, 1992

Placement A configuration statement which places a process on a particular processing device.

Primitive type A primitive type is a channel, timer, integer, boolean, byte or real type. A port is also a
primitive type.

Priority Priority can be given to a parallel executing on a single processing device. Lower priority processes
on such a device may only continue when all higher priority processes are unable to. The inputs
which guard alternatives in an alternation may be given a selection priority. If two or more inputs
are ready, then the input with the highest priority is selected.

Procedure definition A procedure definition specifies a name for a process.

Procedure instance An instance of a procedure is a use of the procedure, and behaves like a substitution
of the process named in the procedure definition. The phrase “procedure call” is used in many other
languages, to indicate the use of a procedure, and has a similar meaning. Although the behaviour
of an 0oCcCam procedure is clearly defined as the substitution of the procedure body, a procedure
may be implemented as either a substitution or as a call to a closed subroutine.

Process A process starts, performs a number of actions, and then either stops without completing or termi-
nates completely. OCCam programs are built from the primitive processes assignment (: =), input
(?), output (!), SKI P and STOP. These primitives are combined in SEQ | F, CASE, WH LE, PAR and
ALT constructions.

Protocol The format and type of values passed on a channel.

Real time The actual time taken for a physical process to occur.

Record A record consists of a number of fields with a specified type. In a data type record, each field has a
data type and in a channel record, each field has a channel type. A value of record type associates
a value of appropriate type with each of the fields.

Record layout The concrete representation of a record data type in store.
Relational operation A relational operation compares its operands and yields a boolean result.

Remote call Channel over which parameters are passed to another process which executes the body of a
procedure.

Repetitive process A repetitive process (WHI LE) executes the associated process as long as the specified
condition is true; if the condition is initially false the associated process is not executed.

Replication A replicator produces a number of similar components of a construction.
Resource process A declaration which is executed in parallel with its scope.

Result abbreviation An abbreviation which defines the value of a variable on leaving the scope of the
abbreviation.

Retyping conversion A retyping conversion changes the data type of a bit pattern, from one data type to
another. There are two kinds of retyping conversions: conversions which convert a variable, and
conversions which convert the value of an expression. Such a conversion has no effect upon the bit
pattern, and differs from type conversion where the value of one type is represented as an equivalent
value of another type.

Scope The region of a program associated with the specification of a name.
Segment A segment is one or more components of an array.

Selection A selection process (CASE) executes a process from a list of associated options. The options are
selected by matching a selector with a constant expression associated with the option.

Sequence A sequential process (SEQ) is one where one action follows another.

Sequential protocol A sequential protocol specifies a sequence of simple protocols as the format of com-
munication on a channel.

Server process A declaration which is executed in parallel with its scope.

Shared channel A channel which can be used for communication by more than one process, subject to
having first been claimed.

Shift operation Perform logical shift of the bit pattern of a value.

DRART --- Marchi31, 1992

Skip Start, perform no action and terminate immediately.

Specification A specification is either a declaration, an abbreviation or a definition and specifies a name
which may be used within the associated scope.

Specifier ldentifies the type of an alias given in an abbreviation or definition.
Stop Start, perform no further action and do not terminate.

String A sequence of ASCII characters equivalent to a table of bytes.
Subscript An expression which selects a component of an array.

Subtype One of the possible values of a union type.

Table An array of values of the same type, used in expressions.

Tag Identifier of a protocol variant specified in a variant protocol definition; or the identifier of a union subtype
in a data type definition.

Timer A timer is a clock which can be accessed by any number of concurrent processes.
Timer input A timer input inputs a value from a timer.

Type conversion A type conversion converts the value of an expression of one data type into a similar value
of another data type.

Union A union is a data type with a number of subtypes of specified data type. Each subtype is discriminated
by a distinct tag. The values of the union type consist of a tag value and a value of the corresponding
data type.

Usage check Ensure that variables and channels are not shared between parallel components.

Value process A value process produces one or more results, each of primitive data type.
Variable A variable is an element of data type which may be assigned to by input or assignment.
Variable list A list of variables used in a multiple assignment.

Variable subscript A variable subscript is a subscript whose value depends on a variable, a procedure
parameter, or the index of a replicator with a base or count which is not a constant or constant
expression.

Variant protocol Specifies a list of possible protocols for communication on a single channel.

DRART --- Marchi31, 1992

DRART --- Marchi31, 1992

- s F SR s R

I, 6,145 variable, 34

", 24, 145 ABS, 162
#, 24, 145 Absolute, 162
&, 18, 145 ACCEPT, 57
', 24,145 Accept, 56, 180
(, 25, 67, 78, 81, 91, 145 ACCS, 174
), 25, 67, 78, 81, 91, 145 Action, 5
*, 68, 68, 145 Actual parameter, 56, 75, 78, 82, 180
*" 147 Addition, 68
*#, 147 AFTER, 64, 68, 73, 144
*' 147 Alias, 180
** 147 Alias check, 116, 117, 180
*C, 147 Allocation, 106, 107, 108, 180
*N, 147 ALGCG, 171
*S, 147 ALOGLO, 171
*T, 147 ALT, 18, 144
*c, 147 Alternation, 9, 18, 106, 180
*n, 147 accept guard, 57
*s, 147 priority, 106
*t, 147 replicated, 20
+, 68, 68, 145 shared channel, 61
,, 145 timer guard, 65
-, 68, 68, 145 Alternative, 18, 34, 51, 180
--,145 Anarchic protocol, 115
/, 68, 68, 145 AND, 68, 71, 144
/\, 68, 70, 145 ANSI/IEEE standard 754-1985, 23, 24, 113, 162,
., 145 168
-, 41, 145 ANY, 115, 144
11, 47,145 Arccosine, 174
[, 47 Arcsine, 173
:=, 5,145 Arctangent, 174
;, 48, 145 Argument, 82, 180
<, 68, 72, 145 ARGUMENT. REDUCE, 166
<<, 68, 71, 145 Arithmetic operator, 68, 145
<=, 68, 72, 145 Arithmetic overflow, 69
<>, 68, 72, 145 Arithmetic shift, 159
=, 68, 72, 145 Array, 47, 63, 91, 116, 180
>, 68, 72, 145 alignment, 111
><, 68, 70, 145 allocation, 107
>=, 68, 72, 145 assignment, 26, 32
>> 68, 71, 145 channel, 45
?, 6, 145 component, 30
? AFTER, 64 data type, 26
? CASE, 49, 51 parallel, 37
[, 67,145 segment, 30
[1.145 Sl ZE, 73
\, 68, 69, 145 table, 26, 67
\/, 68, 70, 145 variable, 29
], 67, 145 Array protocol, 47
~, 68, 70, 145 Array size, 68
ASCII, 25, 146
Abbreviation, 24, 34, 109, 116, 180 ASHI FTLEFT, 160
call channel, 58 ASHI FTRI GHT, 159
channel, 53 ASI N, 173
module, 92 Assignment, 5, 29, 31, 180
result, 36 multiple, 5
rules, 116 Assignment
timer, 65 multiple, 82
value, 36

DRART --- Marchi31, 1992

AT, 144 Concurrent process, 9

ATAN, 174 Conditional, 9, 11, 180
ATANZ, 174 replicated, 12
Configuration, 105, 180
Base 10 logarithm, 171 Constant, 23
Bit operation, 70, 145 Construction, 9, 180
Bit pattern, 109 Continuation line, 3
Bl TAND, 68, 70, 144 Conversion, 73
Bl TNOT, 68, 70, 144 interface, 93
Bl TOR, 68, 70, 144 COPYSI GN, 165
Bitwise and, 68, 70 CGCs, 173
Bitwise exclusive or, 68, 70 CGCsH, 175
Bitwise not, 68, 70 Cosine, 173
Bitwise operation, 180 Count, 68
Bitwise or, 68, 70 Counted array protocol, 47
BOOL, 23, 144 Counted loop, 10
Boolean and, 68, 71
Boolean expression, 11, 18 DABS, 162
Boolean not, 68, 71 DACCS, 174
Boolean operation, 71, 180 DALCG, 171
Boolean or, 68, 71 DALCGLO, 171
Boolean to string, 178 DARGUMENT. REDUCE, 166
Boolean type, 23 DASI N, 173
BOOLTOSTRI NG, 178 Data type, 5, 6, 23, 23, 39, 95, 180
BYTE, 23, 144 conversion, 73
Byte type, 23 name, 39
record, 39
CALL, 56 union, 41
Call channel, 55, 56 width, 110, 111
abbreviation, 58 Data type conversion, 67
declaration, 55 DATAN, 174
formal, 56 DATAN2, 174
shared, 59 DCOPYSI GN, 165
type, 56 DCCsS, 173
CASE, 12, 49, 144 DCGOSH, 175
Case expression, 12 DDI VBY2, 166
Case input, 49, 180 Deadlock, 60, 180
CASETAG 42 Declaration, 32, 34, 56, 90, 180
CHAN OF, 45, 144 call channel, 55
Channel, 5, 45, 57, 116, 145, 180 channel, 45
abbreviation, 53 initial, 32
array, 45 PORT, 108
declaration, 45, 47, 48 process, 86
protocol, 46 timer, 63
record, 52 variable, 29
shared, 59 Decoration, 114
type, 45 Definition, 34, 93, 109
Channel protocol, 180 Delayed input, 64, 180
Character set, 146 DEXP, 171
Checking usage, 116 DFLOATI NG. UNPACK, 164
Choice, 11, 34, 180 DFPI NT, 167
CLAI M 59 DI EEECOVPARE, 169
Claim, 59, 180 Discrimination, 42, 180
deadlock, 60 Disjoint array, 37
Clock, 63 Dl SNAN, 163
Coercion, 109 Distributed processor, 105
Combining processes, 9 Dl VBY2, 166
Comment, 3 Division, 68
Communication, 5, 15, 45, 46, 55, 59, 105, 180 DLOGB, 164
Component, 30 DM NUSX, 164
Concurrency, 180 DMULBY2, 166

DRART --- Marchi31, 1992

DNEXTAFTER, 165
DORDERED, 165
DPOVER, 172
DRAN, 176
DSCALEB, 163
DSI N, 172

DSI NH, 175
DSQRT, 163
DTAN, 173
DTANH, 175

Elementary function, 170
Elementary function library, 150
ELSE, 13, 144

Empty record, 41
Encapsulation, 99

Equal operation, 68, 72
Error handling, 118

EXP, 171

Exponential, 171

Export, 180

Export list, 95, 95, 98
Expression, 5, 24, 67
Expression list, 5, 181
External device, 108

FALSE, 144
Farm, 19, 20
Fast divide, 166
Field, 39, 110, 181
FI NAL, 87, 144
Final process, 87, 181
Floating point, 23, 24, 113, 149
Floating point arithmetic, 168
Floating point function, 162
FLOATI NG UNPACK, 164
FOR, 68, 144
Formal parameter, 78, 181
Format

protocol, 46
FPI NT, 167
Free channel, 181
Free name, 82, 181
Free variable, 181
FROM 68, 144
FUNCTI ON, 84, 144
Function, 24, 81, 117

multiple result, 82
Function definition, 181

GRANT, 59

Grant, 59, 181
Greater than, 68, 72
Guard, 181

Halt system mode, 118
Hex to string, 177
HEXTOSTRI NG, 177
Hyperbolic cosine, 175
Hyperbolic sine, 175
Hyperbolic tangent, 175

IEEE arithmetic, 149
| EEE320P, 168
| EEE640P, 168
| EEECOVPARE, 169
| EEEOP, 112
I F, 11, 144
Import, 181
Import list, 95, 101
Indentation, 33, 181
I NI TI AL, 32, 56, 87
Initial
declaration, 32
Initial abbreviation, 181
Initial process, 87, 181
INMOS, 1
Input, 6, 29, 47, 49, 51, 64, 108, 181
Input guard, 181
Instance, 75, 181
I NT, 23, 144
| NT16, 23, 144
I NT32, 23, 144
| NT64, 23, 144
Integer, 23
Integer range, 70
Integer to string, 177
Integer type, 23
| NTERFACE, 89
Interface, 85, 89, 181
type, 92
Interface conversion, 93
I NTTOSTRI NG, 177
Invalid process, 118, 181
'S, 144
| SNAN, 163

Keyword, 4, 34, 144

Later than, 68, 73

Less than, 68, 72

Less than or equal, 68, 72
Library, 95, 101, 148, 181
Line break, 3

Linking, 101

Literal, 23, 24, 114, 181
Livelock, 181

Local scope, 33
Logarithm, 171

LOGB, 164

LONGADD, 154

LONGDI FF, 155

LONGDI V, 156
LONGPROD, 156
LONGSUB, 155

LONGSUM 154
Loop, 9, 13

Memory
allocation, 106
Memory map, 106
Memory mapped device, 108
M NUS, 68, 70, 144

DRART --- Marchi31, 1992

M NUSX, 164
Module, 85, 86, 181
abbreviation, 92
array, 91
type, 90
Module parameter, 93
Modulo
addition, 68
multiplication, 68
subtraction, 68
Modulo operator, 70, 181
MOSTNEG, 68, 70, 144
MOSTPGCS, 68, 70, 144
MULBY2, 166
Multiple assignment, 5, 81, 82
Multiple length arithmetic functions, 152
Multiplication, 68

NAME, 96
Name, 4
Named data type, 39, 39
Named process, 75
Network, 19, 181
NEXTAFTER, 165
NONE, 41
Nonsense, 77
NORMALI SE, 159
NOT, 68, 71, 144
Not equal operation, 68, 72
Not-A-Number, 162, 163, 170
Notation

syntax, 3
NOTFI NI TE, 163
Numbered union, 110

occamz, 1

OFFSET, 110

Omission of type decoration, 114
Operand, 67, 181
Operation, 68

Operator, 67, 181
Operator precedence, 67
Option, 12, 34

OR, 68, 71, 144
ORDERED, 165

Output, 6, 47, 108, 181

PAR, 14, 144
Parallel, 9, 14, 105, 106
array, 37
disjointness, 16, 89, 92, 116
placed, 105
priority, 105
replicated, 16
usage, 16, 89, 92, 98, 116, 117
Parameter, 82
actual, 78
formal, 78
Parenthesis, 67
Physical resource, 105
PLACE, 107, 110, 144

PLACED, 144
PLACED PAR, 105
Placed parallel, 105
Placement, 182
PLUS, 64, 68, 70, 144
Polar angle, 174
PORT, 144
Port, 108, 116
Port type, 108
POVER, 172
PRI, 144
PRI ALT, 106
PRI PAR, 105
Primitive type, 182
Priority, 105, 106, 182
alternation, 106
execution, 105
level, 106
parallel, 105
PRCC, 144
Procedure, 75, 117
Procedure definition, 182
Procedure instance, 182
Process, 5, 9, 34, 107, 182
declaration, 86
final, 87
initial, 87
named, 75
resource, 87
server, 88
Process declaration, 85
PROCESSOR, 105, 144
Processor allocation, 105
Program, 95
PROTOCAL, 48, 144
Protocol, 45, 46, 47-49, 182
ANY, 115
definition, 47
name, 47
sequential, 48
simple, 47
variant, 49
Protocol definition, 49
Pseudo-random number, 176

RAN, 176

Real arithmetic, 69
Real comparison, 168
Real number, 23, 24
Real time, 182

Real to string, 178
Real type, 23
REAL32, 23, 144
REAL32EQ, 169
REAL32GT, 169
REAL320P, 168
REAL32REM 168
REAL64, 23, 144
REAL64EQ, 169
REAL64GT, 169
REAL640P, 168

DRART --- Marchi31, 1992

REAL64REM 168 SKI P, 6, 144

REALNNTOSTRI NG, 178 Skip, 182
REALOP, 168 Specification, 34, 34, 183
REALREM 168 Specifier, 183
RECORD, 53 SQRT, 163
Record, 39, 39, 110, 182 Square root, 163

channel, 52 Standard library, 148
Record layout, 110, 182 STOP, 6, 118, 144
Record literal, 40 Stop, 183
Relational operation, 72, 145, 182 Stop process mode, 118
REM 68, 68, 144 String, 25, 183
Remainder, 68 String to boolean, 178
Remote call, 182 String to hex, 177
Repetitive process, 182 String to integer, 177
Replicated alternation, 20 String to real, 178
Replicated conditional, 12 String to value conversion, 177
Replicated parallel, 16 STRI NGTOBOOL, 178
Replicated sequence, 10 STRI NGTOHEX, 177
Replication, 9, 10, 12, 16, 20, 182 STRI NGTO NT, 177
Replication index, 10, 23, 24 STRI NGTOREALNnN, 178
Representation, 24 Subscript, 68, 116, 183
Reserved word, 144 Subtraction, 68
RESOURCE, 87 Subtype, 41, 42, 183
Resource process, 87, 182 Subtype discrimination, 42
RESULT, 56, 84, 144 Symbol, 144
Result abbreviation, 36, 182 Symbols, 145
Return exponent, 164 Syntactic notation, 3
RETYPES, 109, 144 Syntax, 3, 119, 132
Retyping conversion, 109, 182 System requirement, 105
ROTATELEFT, 161 System service, 95
ROTATERI GHT, 160
ROUND, 73, 144 Table, 26, 67, 67, 183
Rounding, 24, 69, 112, 167 replicated, 27

Tag, 41, 49, 49, 110, 183

SCALEB, 163 scope, 52
Scope, 32, 34-36, 52, 82, 109, 182 TAN, 173
Segment, 30, 182 Tangent, 173
Selection, 12, 182 TANH, 175

CASE, 12 TI MER, 144
Selector, 12 Timer, 63, 116, 183
Separate compilation, 101 abbreviation, 65
SEQ 9, 144 alternation, 65
Sequence, 9, 9, 182 array, 63

replicated, 10 declaration, 63
Sequential protocol, 48, 48, 182 Timer input, 63, 64, 183
SERVER, 88 Timer type, 63
Server process, 88, 182 TI MES, 68, 70, 144
Shared, 59 TRUE, 12, 144
Shared call channel, 59, 61 TRUNC, 73, 144
Shared channel, 59, 61, 182 TYPE, 90, 92

alternation, 61 Type
Shift left, 68, 71 interface, 92
Shift operation, 71, 182 module, 90
Shift right, 68, 71 Type conversion, 183
SHI FTLEFT, 158
SHI FTRI GHT, 157 Undefined mode, 118
Simple protocol, 47 Union, 39, 41, 183
SIN, 172 numbered, 110
Sine, 172 subtype, 42
SI NH, 175 Union literal, 41
S| ZE, 68, 73, 144 Usage

DRART --- Marchi31, 1992

parallel, 16
Usage check, 60, 89, 92, 98, 116, 117, 183
Using the manual, 1

VAL, 56, 78, 109, 144
VALOF, 84, 144
Valof, 34, 84
Value
abbreviation, 36
Value process, 81, 117, 183
Value to string conversion, 151, 177
Variable, 5, 23, 29, 116, 183
abbreviation, 34
array, 26
declaration, 29
Variable list, 5, 183
Variable subscript, 37, 183
Variant, 34
Variant input, 49, 51
Variant protocol, 49, 183

VHI LE, 13, 144
W DTH, 110

W DTHOF, 111
Word rotation, 160

DRART --- Marchi31, 1992

