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Abstract. The Agreement Problem Protocol Verification Environment ( APPROVE)
has become a mature and robust platform for the automated verification of proposed
solutions to agreement problems. APPROVE is based on the Spin model checker
and leverages the literate programming tool noweb to provide Promela code supplied
with LATEX documentation. The APPROVE discussion opened in Communicating
Process Architectures 2001 and described the initial project phases and summarised
some preliminary results. This paper presents a follow up, providing a canonical report
on the development, application and insight gained from the project.

1 Introduction

Agreement problems are characterised by the need for a group of processes to ‘agree’ on
a particular value and examples include: consensus, group membership and leader election
schemes. As such, agreement algorithms are intrinsic to strong group communication sys-
tems. Strong group communication, differs from its semantically weaker counterparts by
including the notion of membership, that is, each strong peer maintains a representation of
the groups association termed a view. In [1], Chandra et al. proved that several important
agreement problems, including consensus, are not solvable in asynchronous systems subject
to even a single crash failure. As consensus underlies all agreement problems, the implica-
tions of this result are wide ranging. However, it should be noted that this impossibility result
should be interpreted as ‘not always possible’ instead of ‘never possible’, and providing that
the correctness of an agreement algorithm be determined rigorously, the proposed solution
can circumvent this result.

A range of techniques, at varying degrees of rigor, have been applied to accomplish this
task. Birman adopted Temporal Logic to reason about the correctness of virtually syn-
chronous group membership [2]. Lamport applied numerous formalisms in the study of con-
sensus [3] as did Hadzilacos, Chandra and Toueg in their research on failure detectors [1].
Current work suggests that a verification technique termed Rigorous Argument has become
a de facto standard and in a previous application, has successfully proved the correctness of
the Collaborative Group Membership (CGM) algorithm [4]. During its application, it was
observed that there exists an opportunity to extend the methodology to provide additional
benefits.

The Agreement Problem Protocol Verification Environment ( APPROVE) is a highly con-
figurable automated verification environment that quickly and systematically verifies the cor-
rectness of a proposed solution to an agreement problem. Through the comparison of other
proofs, it was observed that there exist central themes which are modeled repeatedly, albeit
in different formalisms and so additional motivation was to exploit this potential for reuse.
Thus, the APPROVE design philosophy is to provide a configurable, extensible, automated
verification environment through which a catalogue of previously verified reusable compo-
nents can be quickly composed to suit an application. In doing so, the researcher need only
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model the algorithm or protocol under test and invoke the automated verifier to establish its
correctness. The aim is to not only reduce the amount of effort and error associated with
developing such proofs, but to instill a much higher degree of confidence in the process and
demonstrate the effectiveness of formal tools in practical settings.

This paper presents the development of APPROVE and its application to a suitable ex-
emplar, which in this case is a revisitation of CGM. The next section presents background
which includes an introduction and worked example of the techniques used to implement
APPROVE. In section 4, the architecture of APPROVE is described and the design abstrac-
tions are justified. Section 8 discusses the application of APPROVE to CGM before section
10 concludes the paper.

2 Background

A number of formal techniques that reason about the development of strong group communi-
cation systems exist. Possibly the most notable is the application of the NuPrl theorem prover
(‘New’ Proof/Program Refinement Logic) [5, 6] to Ensemble. Ensemble [7] is a strong group
communication system that develops network protocol support for secure fault-tolerant ap-
plications and is the successor to Horus [8]. An Ensemble developer composes the required
system from a catalogue of micro protocols. Each micro protocol is coded in O’Caml and
so has a formal semantic which can be translated into type theory, that is, the input language
to NuPrl. Through NuPrl, the developer can prove correctness theorems or partially evaluate
the type theory and so automatically perform some optimisations for common occurrences.
This result is then reflected back in the original implementation.

Although in this case, the NuPrl/Ensemble combination is a powerful mechanism for rea-
soning about micro protocols, NuPrl was not deemed to be a suitable basis for the realisation
of APPROVE. This was primarily due to the level of user interaction that NuPrl and indeed
most other theorem provers require. Since one of the primary project goals was to encour-
age a greater utilization of formal tools in more practical communities, it was beneficial that
APPROVE should offer a ‘press-on-the-button’ approach. The methodology of automating
verification is primarily embodied in a family of formal tools termed model checkers. Thus,
APPROVE leverages this technology as its basis.

2.1 Model Checking

Model checking is a technique for the automatic verification of software and reactive systems.
Applying model checking to a design consists of several tasks [9]:

1. Modeling – the first task is to convert a design into a formalism accepted by a model
checking tool. In many cases, this is simply a compilation task, however, where there
are limitations on time and memory, the modeling phase requires the use of abstraction
to eliminate unimportant details;

2. Invariant specification – before verification, it is necessary to state the properties that
the design must satisfy. This specification is usually given using a temporal logic,
which asserts how the behavior of the system evolves over time;

3. Verification – the verification is automatic resulting in either a positive result (in which
case the invariants hold for the given model) or a negative result which provides a trace
of the counter example. Scenarios where a result can not be determined usually occur
because of a state space explosion. State space explosion occurs when the model is not
sufficiently abstract and so verifications require more memory than is available. In this
case either the model is amended or a partial search of the state space is conducted.
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Several general purpose model checkers exist with the Symbolic Model Verifier (SMV)
[9], Failures-Divergence Refinement (FDR) [10] and Simple Promela Interpreter (Spin) [11]
being three of the more well known. Although SMV and FDR predate Spin, they are possibly
more oriented towards formal methods experts than protocol engineers. For example, SMV
only delivers a simple boolean result and does not simulate models whereas Spin provides
full counter examples and advanced facilities for simulation. Furthermore, as Spin is stable,
well documented and uses a C like syntax, it is considered suitable for protocol developers
[12, 13, 14]. Also, as the XSpin interface is particularly usable, Spin was deemed the most
suitable basis for APPROVE. Further motivation for using Spin came from the prior work of
Ruys [15, 16]. In his thesis [15], Ruys provides insight into the modeling of weak multicast
and broadcast protocols using Spin. Thus, APPROVE aims to supplement this work by
investigating a strong model.

Having concluded that Spin is the most suitable platform on which to base APPROVE, it is
pertinent to expand upon its theory of operation. Thus, the subjects of automata, verification
mechanisms and the state space explosion problem are discussed below.

2.2 Spin Model Checking

In this section, the principles underlying the algorithms used for the Spin model checker
are introduced. The discussion begins with a description of finite automata which is the
method used for representing models suited to verification. Following this, the Spin automata
approach to the model checking problem is given. This includes a more formal description
of the state space explosion problem. A comprehensive source of additional model checking
theory, including a description of the SMV algorithms is Bérard et al. [17].

2.2.1 Automata

A finite automaton is a machine which evolves from one state to another under the action of
transitions. Overlooking second, a digital watch can be represented as 24� 60 = 1440 states
where each state represents an hour and a minute. Furthermore, each pair of states is linked
by a single transition which represents times one minute apart.

An arbitrary automaton is denoted using the symbolA and when graphically represented,
it consists of circles (states) and arrows (transitions). An incoming arrow without origin
identifies the initial state. The availability of such representations is one of the benefits of
automata based formalisms and as such, Spin includes the capability to generate automata
diagrams at the request of the user.

2.2.2 Automata Based Model Checking

The underlying Spin model checking algorithm is essentially due to Lichtenstein et al. [18].
For brevity, this treatment will summarise certain technical details and for a full treatment
the reader is referred to [19].

For Linear Temporal Logic verifications it is not possible to deal with state formulas or
the marking of automaton states. Instead Linear Temporal Logic uses path formulas, that
is, sets of executions which are independent of a tree representation. Thus, a finite automaton
will generally give rise to infinitely many executions, themselves often infinite in length. In
this context, the adopted conventional perspective is language theory.

Consider for example a Linear Temporal Logic formula � :
1

F P which states that P is
satisfied infinitely often and � is the property under test. An execution q0; q1; : : : satisfying
� must contain infinitely many positions qn1; qn2; : : : where P holds. Between each of these,
there can be a finite number of states where :P holds. Such an execution is said to be of
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the form: ((:P )� :P )!. In a similar vein, an execution which does not satisfy � must, from
a certain position onwards, only contain states satisfying :P . Such an expression is of the
form: (P + :P )

�

: (:P )
!. These two expressions which define the form of an execution

that satisfies and does not satisfy � respectively are !-regular expressions and these extend
the familiar notion of regular expressions to deal with languages of infinite words. For more
information on this, see [17] page 43.

The Spin model checker associates with each � an !-regular expression "� describing
the form imposed on an execution by its satisfaction of �. Thus, the ‘is � satisfied (j=) by A’
question reduces to ‘are all executions of A of the form described by "�’?

In practice, the algorithm does not reason about the regular expressions, but on the au-
tomata themselves. Given a formula �, Spin constructs an automaton B:� that recognises
precisely the executions that do not satisfy �. Spin then strongly synchronises the two au-
tomata such that A and B:� progress simultaneously to obtain a third automata: A 
 B:�,
whose sole behaviors are the behaviors of A accepted by B:� or the executions of A which
do not satisfy �. Thus, the model checking problem A j= � reduces to whether the language
recognised by A
 B:� is empty.

2.2.3 The State Space Explosion Problem

The main obstacle encountered by this and other model checking algorithms is the state space
explosion problem. The algorithm presented above requires the explicit construction of the
A and B:� automatons. In practice, the number of states in A rapidly becomes very large,
particularly when A is divided into several components A1; : : : ;An. In this case, the size of
the result is in the order of jA1j � : : : � jAnj where jAj denotes the length of A. This is
potentially exponential with respect to the system description.

More frequently, such explosions arise when automata are interpreted, for example with
automata ordering on state variables. When the automata (and possibly some atomic propo-
sitions) depend on the values of the state variables, the automaton A submitted to the model
checker has to be the automaton of the configurations. For example, an automaton that has
m = jQj control states and n boolean state variables results in m� 2n states.

The discussion of the state space explosion problem concludes the theoretical introduc-
tion to the Spin model checking algorithms. The remainder of this section considers the
pragmatics of realising APPROVE. Discussion with more practical researchers showed that
documenting APPROVE (including its Promela source) was paramount to its usability. In
an imperative language such as C, programs are often effectively documented through com-
ments. However, the inherent power of formal notations can lead to scenarios where the
verbosity and number of comments compromises the readability of the code. To address
this, APPROVE was developed using the noweb literate programming tool [20]. noweb is
described next.

2.3 Literate Programming Using noweb

Literate programming was first proposed by Knuth [21] as a new programming methodology
that primarily promoted two philosophies. Firstly, literate programming combines documen-
tation and source into a fashion suitable for reading by humans, the underlying premise being
that the experts insight is more efficiently conveyed if it is stored alongside the code to which
it corresponds. Literate programming also aims to free the developer from ordering programs
in a compiler specified manner, that is, when writing a program, the developer need not ini-
tially concern themselves with distracting side issues but instead focus on the problem in
hand. In order to facilitate literate programming, Knuth provided a tool termed WEB [21]
which produced both TEX documentation and Pascal code from a file written in the WEB
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notation. One of WEBs drawbacks, was that it was Pascal specific and so this was addressed
by Ramsey who produced a language independent tool termed noweb.

In terms of applying noweb to Promela, Ruys has contributed significant insight in
[22, 15]. Thus, through noweb, the researcher is able to read the APPROVE source code
and the corresponding LATEX documentation at an appropriate degree of combination. In the
following sections, the noweb notation is introduced concurrently with Promela and the
worked example. Thus, the paper now focuses on an introduction to literate verification.

3 Literate Verification Basics: A Brief Introduction

Promela is the modeling language that facilitates abstraction in Spin. A Promela model
predominantly consists of processes, variables, message channels and verification constructs.
Processes are global objects whereas message channels and variables are declared either
globally or locally1. Processes specify behavior, channels and global variables define the
environment in which the processes run. In this section a brief introduction to Promela is
presented as a series of noweb chunks. Each noweb file must contain a root chunk which
defines the order of subsequent chunks. The root chunk for the Promela tutorial is below:

61a h* Promela introduction 61ai�
hBusy wait loop 61bi
hBlocking statement 61ci
hProctype: A 62ai
hSmallest possible Promela specification 62bi
hLonger init proctype 62ci
hChannel: qname 62di
hCommunication 62ei
hCase selection 63ai
hRepetition 63bi
hDijkstra Semaphore 64i

3.1 Executability

Central to the basis of synchronisation in Promela, is the notion of executability. In Promela
there is no distinction between conditions and statements, even totally isolated boolean con-
ditions can be thought of as statements. Statements are either executable or blocked and
processes wait for events to occur by waiting for statements to become executable. For ex-
ample, instead of writing a busy wait loop:

61b hBusy wait loop 61bi� (61a)
while (a != b) skip /* ‘skip’ being a statement of no effect */

the semantic equivalent in Promela is:
61c hBlocking statement 61ci� (61a)
(a == b)

A condition may only be passed (executed) when it holds. If the condition does not hold,
execution blocks until it does.

3.2 Process Types and Variables

The state of variables or message channels can only be manipulated by processes. Processes
are similar in concept to threads where the behavior of a process is defined in a proctype
declaration. The following example declares a process with one local variable called state.

1Note that Promela does not support anything in between e.g. nested blocks.
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62a hProctype: A 62ai� (61a)
proctype A()
{
byte state;
/* local variable */
state = 3

}

Note that the semicolon is a statement separator and not a terminator (hence the absence
of a semicolon on line 4 of the above example). In Promela another type of separator is
permitted (->) and although the arrow is often used to imply a causal (!) relationship,
it is equivalent to the semicolon. Furthermore, as the nature of Promela types is directly
inferrable from their C counterparts, an explicit description is not given. Such a description
can be found in [23].

3.3 Process Instantiation

A proctype definition only defines the behavior of a process i.e. it does not execute it.
Initially, in a Promela model the only process that executes automatically is called init
and this must be declared explicitly in every Promela specification2. Thus, the smallest
possible Promela specification is:

62b hSmallest possible Promela specification 62bi� (61a)
init { skip }

Furthermore, the init process can initialise global variables and instantiate other pro-
cesses. Thus, an init declaration using chunk 62a could be:

62c hLonger init proctype 62ci� (61a)
init
{
run A(); run A() /* two instances of ‘A’ running concurrently */
}

where run is a unary operator that takes the name of a process and, providing it is executable,
instantiates it. A process may not be instantiated if the number of processes running on the
system exceeds a maximum threshold. Note that run may also pass parameters to processes.

3.4 Message Passing

Channels are used to model the transfer of data from one process to another. They can be
declared either locally or globally in the manner shown in the following example:

62d hChannel: qname 62di� (61a)
chan qname = [16] of { int }

This declares an asynchronous channel since its buffer size is greater than 0. The corre-
sponding send and receive operations exhibit the same notation as used in CSP. For example,
the statements:

62e hCommunication 62ei� (61a)
qname!expr; qname?msg

would send the value of expr on the channel qname, receive that value from the same
channel and store it in a variable called msg. If qname was full, a send statement will either
block or discard the message depending on a selection made by the user.

2In newer versions of Spin, a proctype declaration may be prefixed with the active keyword to signify
that it should be automatically instantiated at the start of each Spin run.
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3.5 Control Flow

Implicitly, two notions of control flow have been introduced: concatenation of statements
within a process and concurrent execution of processes. There are two other control flow
constructs in Promela that require discussion and these are case selection and repetition.
Promela also supports unconditional jumps through the infamous ‘goto’ statement, but due
to the familiarity of this concept, it is not discussed further. Case selection is the simplest
control flow structure. Given the relative values of two variables a and b, a choice between
two options can be expressed as:

63a hCase selection 63ai� (61a)
if
:: (a != b) -> /* execute option 1 */
:: (a == b) -> /* execute option 2 */
fi

In this instance, the guards are mutually exclusive but this is not mandatory. If more than
one guard is executable, one of the corresponding outcomes is selected non-deterministically.
If none of the guards are executable, the process will block until at least one can be selected.

An extension of the selection construct is the repetition structure. In Promela, this is
achieved through the do statement, which in the following example, will repeatedly incre-
ment or decrement the variable count and non-deterministically exit the loop when the
value of count is 0.

63b hRepetition 63bi� (61a)
byte count; /* global variable */

proctype counter()
{

do
:: count = count + 1
:: count = count - 1
:: (count == 0) -> break /* non-deterministically exit the loop */
od

}

3.6 Verification Constructs

When used as a verification language, Promela facilitates assertions to be made about the
model’s behavior. As in C, Promela supports the assert statement which allows devel-
opers to insert propositions into the Promela code. In Promela, assert statements are
always executable and providing they hold, have no effect. If however, the condition does
not hold, the statement produces an error report and aborts the run.

Alternatively, if a Promela specification is to be checked for the presence of deadlocks,
the verifier must be able to distinguish a normal end state from an abnormal one. A typical
example of a normal end state is when all Promela processes have reached the end of their
execution and there are no outstanding messages.

However, not all Promela processes are designed to reach the end of their program body
e.g. protocols often remain in an ‘idle’ state, or they may wait in a loop ready to engage
in some action when new input arrives. Thus, end states are denoted in Promela by the
prefix end followed by an individual label. Combinations such as end protocol 1 and
end state number 2 are valid end state labels.
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As a full example of the concepts introduced this far, consider the model of a Dijkstra
binary semaphore:

64 hDijkstra Semaphore 64i� (61a)
#define p 0 /* Spin uses the C pre-processor */
#define v 1 /* so statements such as these are valid */

chan sema = [0] of { bit }; /* synchronous channel */

proctype dijkstra()
{
byte count = 1;

end: do
:: (count == 1) -> sema!p; count = 0
:: (count == 0) -> sema?v; count = 1
od

}

proctype user()
{
do
:: sema?p -> /* critical section */
sema!v -> /* non critical section */

od
}

init
{ run dijkstra(); run user(); run user() }

It is not an error for process dijkstra to have not reached its closing brace at the end
of an execution sequence. Note that such a state could still be part of a deadlock, but if so,
the deadlock is not caused by this process. The final notion introduced in this overview is
the progress state label which marks a state that must be executed for the protocol to make
progress. Any infinite cycles in the protocol execution that do not pass through at least one
progress state are potentially starvation loops. As with end state labels, progress labels are
prefixed with the progress keyword.

The introduction of the progress state label concludes this introduction to the basic fea-
tures of Promela. More detailed tutorials are available in [24, 23, 11]. As a consolidation of
these ideas, a detailed worked example of a literate verification is presented in [15].

4 The APPROVE Architecture Revisited

At the highest level, the architecture of APPROVE consists of three components (see Figure
1). Each of these is discussed below with the exception of the test protocol, that is, a Promela
model of the proposed algorithm. Although inherently this component can not be provided,
APPROVE offers a template and guidance for its construction. As one of the primary benefits
of APPROVE lies in its reconfigurability, extensive investigation of a test protocol is made
simple. For example, it is trivial to reconfigure the model to examine the consequences of
employing a different failure detector. Using APPROVE, this is a matter of toggling a boolean
flag, whereas manual methods would require extensive alterations.
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Client Processes
  − behaviour
  − message exchanges

Failure Definition
  − model
  − detection

  − virtual sync.
Membership

  − gbcast

Protocol

  − termination
  − agreement
  − validity
  − irrecoverability

Invariants

Test

   − Global channels
Environment

   − Configuration options

Figure 1: The High Level APPROVE Architecture

4.1 The Environment

The environment is the collective term for the entities required to support the simulation and
verification of the test protocol. At this level, global channels facilitate message passing
for the various sub-entities are declared as are a suite of options which can be used to con-
figure APPROVE for a specific scenario. Possibly the most complex component is the Group
Membership Service (GMS). The GMS in APPROVE is virtually synchronous and so it is
generally accepted that it has at least the following responsibilities [25]:

1. Providing an interface for group membership changes – the GMS furnishes processes
with a means to create or remove process groups and to join or leave process groups;

2. Notifying members of view changes – all members of a process group are notified when
a view change occurs, that is, all processes are informed when hosts join and leave the
group or are evicted because they have failed.

As with the GMS, client processes exhibit a specific behavior in relation to their opera-
tion. Before being admitted to the group, a client must send a join request message to the
GMS. Recall that in a virtually synchronous system, view change operations are dealt with
differently than in weak group communication systems. In order to guarantee virtual syn-
chrony, messages transmitted in one view must be delivered in the same view, so the GMS
responds to a view change operation by broadcasting a flush message. On reception of a
flush message, each client consumes its outstanding message queues before signaling the
GMS of the flush protocols completion. On receiving an acknowledgment from all of the
group members, the GMS adds the joining process to the membership and the new view is
broadcast. Once part of the group, an APPROVE client is free to transmit an arbitrary number
of messages to other clients. In APPROVE, two group communication primitives are mod-
eled: reliable FIFO multicast and atomic multicast. The motivation for selecting this pair of
primitives is that FIFO multicast forms the basis of the CGM quiescent failure detector and
atomic ordering is frequently used to transmit the results of agreement algorithms. For now,
causal ordering is left as an avenue for future work. Also, at any time a client may request to
leave the group (by performing a protocol symmetric to the join) or it can fail.

In some systems, a further responsibility of the GMS is to provide failure detection and
implicitly, a model of failure. In APPROVE, the conventional fail-stop model of failure is
adopted and processes fail by either halting prematurely or being irrecoverably partitioned
away. APPROVE models three failure detection mechanisms, two in an independent heart-
beat process and the third as part of the client. Moving failure detection from the GMS
proctype and into the client not only reduces complexity, but is also more realistic.



66 J. S. Pascoe and R. J. Loader / The Agreement Problem Protocol Verification Environment

FIFO / Atomic
Multicast

Join

GMS

Client 1

Client 2

Client N

Leave

Fail

Client
New

Process group

...
Figure 2: The APPROVE Concept of a Group

5 Modeling APPROVE : Phase 1 (An Ideal System)

The initial APPROVE modeling phase developed an ideal model, that is, nothing was permit-
ted to fail. The first phase developed models for the global aspects, the GMS and the client
entities. This section describes each of these presenting select fragments of Promela code
as the following noweb chunks:

66 h* APPROVE: Modeling phase 1 66i�
hGlobal channel definitions 67i
hModeling the view 68ai
hJoin protocol 68bi
hFlush protocol 69i

5.1 Global Considerations: Channel and Message Definitions

Based on the conclusions of Ruys [15], APPROVE uses a matrix of nine channels to model
communication between the various entities. Each client process indexes into the channel
matrix by using an identification number assigned to it at instantiation by the init process.
Individually, each of the APPROVE channels can be classified into one of the following three
categories:

1. General channels – to facilitate communication amongst the group entities;

2. Message guarantees – channels that model delivery ordering semantics;

3. Failure channels – for coordinating failure resolution.

Channels of the first group conform to the labeling convention entity ‘2’ entity, where an
entity can be one of: cli = client, gms = group membership service, hfd = heartbeat
failure detector, eh = error handler and em = error master.

An error handler is a process that embodies an instance of the protocol under test. The
error master is a term used to address the coordinator of a protocol, viz. the process which
collates and determines the algorithm’s result3. Typically, this is then sent to the GMS (using
the em2gms channel) which evicts any failures and distributes the new view.

3In the interests of consistency, the term error master is used here, however, as APPROVE is suitable for
any agreement algorithm, it may be pertinent to opt for a more general term in future releases.
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The second group of channels form the basis of the delivery ordering guarantees. Note
that the gbcast channel is synchronous and only carries a single byte. In practice, the only
messages to be sent using the globally ordered message passing primitive is the instruction
to flush and symmetrically, the acknowledgment from a client that it has completed the pro-
tocol. Thus, in APPROVE, the gbcast channel is only permitted to carry the FLUSH and
FLUSH ACK messages. Conversely, the failure channels provide facilities for announcing
failures and serve as a modeling interface to the developer. Other channels in this category
deal with communication between the error handlers and provide the error master with a
means of informing the GMS of those processes deemed to have failed. All of the APPROVE
channels are defined with a maximum of three fields where the first is the message type (e.g.
JOIN) and the others are values. Thus, the message exchange cli2gms[2]!JOIN would
correspond to a request from client 2 to join the group.

67 hGlobal channel definitions 67i� (66)
chan cli2gms[NUM_CLIENTS] = [BUFFER_SIZE] of { byte }
chan gms2cli[NUM_CLIENTS] = [BUFFER_SIZE] of { byte, int }
/* Channels for communicating primarily outside of the group */

chan cli2hfd[NUM_CLIENTS] = [BUFFER_SIZE] of { byte }
chan hfd2cli[NUM_CLIENTS] = [BUFFER_SIZE] of { byte, int }
/* Channels for querying the heartbeat failure detector */

chan fbcast[NUM_CLIENTS] = [BUFFER_SIZE] of { byte, byte, byte }
chan abcast[NUM_CLIENTS] = [BUFFER_SIZE] of { byte, byte, byte }
chan gbcast[NUM_CLIENTS] = [0] of { byte }
/* Delivery ordering channels */

chan fail = [BUFFER_SIZE] of { byte, int }
chan eh2eh[NUM_CLIENTS] = [NUM_CLIENTS] of { byte, int, int }
chan em2gms = [BUFFER_SIZE] of { byte, int }
/* Failure channels */

5.1.1 The APPROVE Message Types

In conjunction with the CGM exemplar, APPROVE defines sixteen messages which are again
split into several sub-groups:

1. Membership messages – voluntary membership operations;

2. Data messages – quiescent reliable failure detection;

3. Failure messages – querying heartbeat failure detectors and announcing failures to the
error handler;

4. CGM messages – coordinating CGM.

As the role of each message is inferrable, the topic is not discussed further.

5.2 The Group Membership Service

Apart from the roles discussed above, the GMS is also responsible for modeling the view.
As Spin opts to convert bit arrays into arrays of bytes, APPROVE models the view using the
more efficient bit vector representation.
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Through the unsigned keyword, the size of each value can be set to the number of
clients and so an optimal amount of memory is used. Manipulation is performed using bit-
wise operators wrapped in macros.

68a hModeling the view 68ai� (66)
unsigned view:NUM_CLIENTS=0;

The GMS executes continuously and is instantiated by the init process. In its idle
state, the GMS waits for a message to arrive on one of its input channels. Regardless of
whether a client wishes to join, leave or the error master is reporting evictions, the GMS
behaves in essentially the same manner. On reception of a message, the GMS initially updates
its internal view. Then, the FLUSH message is sent to all operational clients instructing
them to execute the flush protocol (see chunk 69). Each client delivers all of its outstanding
messages before returning a FLUSH ACK to the GMS. Once all of the clients have completed
the flush, the GMS distributes the new view and the operation is complete. Note that priority
is given to dealing with membership changes originating from the error master, that is, the
GMS explicitly checks for messages on the em2gms channel before dealing with voluntary
membership operations. As the length of the GMS model prevents its inclusion as a chunk
here, a Promela Pseudo Code outline is given in Algorithm 1.

Algorithm (Promela Pseudo Code) 1 Group Membership Service Outline

Initially view = 0, i = 0

1. if
2. :: nempty(em2gms)! em2gms?message ! atomic f update view g; i = 0;
3. do
4. :: ((i < NUM CLIENTS) && (view & (1<<i))) ! gms2cli[i]!FLUSH; i++
5. :: (i == NUM CLIENTS) ! i = 0; break
6. :: else ! i++
7. od;
8. Collect the FLUSH ACK messages ! atomic f broadcast the new view g
9. :: else ! skip
10. fi;
11. do
12. :: (i < NUM CLIENTS) ! repeat lines 1–10, but substitute cli2gms[i] for em2gms
13. :: (i == NUM CLIENTS) ! i = 0; goto line 1
14. od

5.3 The Client Process

The APPROVE client process is intended to model a generic group participant. Each client
process executes a join protocol and once admitted to the group, is free to exchange an arbi-
trary number of messages with the other group members or leave the session and terminate
its execution. The simplistic join protocol is shown in chunk 68b:

68b hJoin protocol 68bi� (66)
cli2gms[id]!JOIN -> gms2cli[id]?eval(VIEW),view ->
printf("APPROVE (client %d): view received %d.\n",id,view);
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Recall that after requesting admission to the group, the GMS broadcasts the instruction
to FLUSH. If the session is empty, a view containing only the joiner is immediately returned.
Otherwise, each client executes the flush protocol:

69 hFlush protocol 69i� (66)
if
:: gbcast[id]?eval(FLUSH) ->
do
:: fbcast[id]?receiver_set,from,msg ->
if
:: (msg != ACK) -> fbcast[from]!from,id,ACK
:: else -> skip

fi /* do the same for the abcast channel */
:: gbcast[id]?_
:: gms2cli[id]?_,_
:: (empty(fbcast[id]) && empty(abcast[id]) && empty(gbcast[id]) &&
empty(gms2cli[id])) -> gbcast[id]!FLUSH_ACK; gms2cli[id]?eval(VIEW),view;
break

od;
printf("APPROVE (client %d): flush completed.\n",id)

:: empty(gbcast[id]) -> skip
fi;

flushing

join protocol

view distribution

Figure 3: A Message Sequence Chart Depicting Virtually Synchronous Operation

Once part of the group, each client is free to either leave the session or exchange an
arbitrary number of f/abcast messages with other processes.
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As it is not meaningful to model message delivery ordering semantics in a failure free
environment, the topic will be addressed in the second modeling stage. Thus, at this point,
APPROVE was tested and debugged before the second phase commenced. Figure 3 shows a
typical Spin simulation using the failure free version of APPROVE. The message sequence
chart depicts a typical interaction where client process 2 sends a join request to the GMS at
time step 25. As client process 2 is the first to join, the GMS immediately returns a view.
Subsequently, client process 3 sends a join request to the GMS and so the flush protocol is
executed before the new joiner is admitted.

6 Modeling APPROVE : Phase 2 (Introducing Failure)

The notion of failure in conventional group communication systems is twofold. In the first
instance, APPROVE must incorporate at least one failure model, that is, a description of
exactly how a process behaves when it fails. The second concept is detection, that is, by what
means are process failures identified. As before, select Promela fragments will be presented
as chunks:

70a h* APPROVE: Modeling phase 2 70ai�
hFail-stop model of failure 70bi
hSelecting a random receiver set 71ai
hFIFO delivery and quiescent failure detection 71bi
hAtomic delivery and quiescent failure detection 71ci

6.1 The Fail-Stop Model of Failure

Modeling fail-stop failures in APPROVE means adding a further non-deterministic clause
to the main do loop in the client process. Clients are only permitted to fail when no other
operation is in progress. The reason for this abstraction is to eliminate failure events that
would not be handled by the protocol under test, for example, a failure during admission
would be dealt with by the join protocol and not the error handler.

Intuitively, a fail-stop failure could be modeled as a simple termination event. However,
as Promela abstracts away from the low level details of a process’ execution status, some
form of external ‘announcement’ is required as an interface to the failure detectors. This was
incorporated as a global bit vector mask (termed the failed members mask) which operates
in the same manner as the view, but denotes failure rather than membership. Thus, we have:

70b hFailure model 70bi� (70a)

/* main client do loop (other non-deterministic clauses) */
:: (FAIL_MODEL == FAIL_STOP) ->
atomic { failed_members_mask = failed_members_mask | (1<<id); }
printf("APPROVE (client: %d): failed.\n",id); break

6.2 Quiescent Failure Detection and Delivery Ordering Primitives

A quiescent reliable failure detector considers reliable messages as probes of the sessions
liveness. The main advantage being the absence of processing overhead in a failure free
environment and a drawback is the arbitrary detection intervals.

In order to model an arbitrary message exchange, each client must be furnished with the
ability to select a destination set at random. In APPROVE, this is achieved using a rationalised
random number generated by the inline random definition suggested by Ruys [15].
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71a hSelecting a random receiver set 71ai� (70a)
random(receiver_set,(2ˆNUM_CLIENTS)-1);
/* Select a random value between 0 and (2ˆNUM_CLIENTS)-1 */

receiver_set = receiver_set & view;
if
:: (receiver_set & (1<<id)) ->
receiver_set = receiver_set ˆ (1<<id)

:: else -> skip
fi
/* rationalise the value into a valid destination set */

Modeling the reliable FIFO primitive is achieved by selecting a random receiver set and
iteratively inspecting each of its members. If a host is a member of both the receiver set
and the failed members mask, then a new failure has been detected and is announced over
the failchannel. Note that duplicate failure reports are ignored by the error master. If a
recipient has not failed, then a DATA message is exchanged for an acknowledgment.
71b hFIFO delivery and quiescent failure detection 71bi� (70a)
i = 0 ->
do
:: ((i < NUM_CLIENTS) && (receiver_set & (1<<i)) ->
if
:: (failed_members_mask & (1<<i)) ->

fail!FAIL,i; i++ /* announce the failure */
:: else ->

fbcast[i]!DATA,id,receiver_set; fbcast[i]?eval(ACK),_,_; i++
fi

:: (i == NUM_CLIENTS) -> break
:: else -> i++
od

The difference between the model for the reliable FIFO primitive and the atomic algo-
rithm is that the latter will initially check that none of the recipients have failed. If this is
the case, then an atomic message exchange is executed. Conversely, the operation is aborted,
and the failures are reported.
71c hAtomic delivery and quiescent failure detection 71ci� (70a)
i = 0 -> atomic { if
:: (receiver_set & failed_members_mask) ->
do
:: ((i < NUM_CLIENTS) && (receiver_set & (1<<i)) &&

(failed_members_mask & (1<<i))) -> fail!FAIL,i; i++
:: (i == NUM_CLIENTS) -> break
:: else -> i++
od

:: else -> i = 0 ->
do
:: ((i < NUM_CLIENTS) && (receiver_set (1<<i))) ->
abcast[i]!DATA,id,receiver_set; abcast[i]?eval(ACK),_,_; i++

:: (i == NUM_CLIENTS) -> break
:: else -> i++
od

fi }

6.3 Heartbeat Failure Detection

Heartbeat failure detectors (HFDs) are used in many systems (though not in CGM) and so
were deemed essential to the APPROVE catalogue. Heartbeat failure detection differs from
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quiescent mechanisms in one important aspect, namely, HFDs are triggered periodically.
In Spin, the notion of time is implicit, that is, it is not possible to reason about specific
durations and so the Promela model of an HFD has to abstract away from its traditional
implementation. Note that the key distinction preserved by APPROVE is that heartbeat failure
detection is independent of the pattern of communication, that is, an HFD detects failures on
the basis of a loop, whereas quiescent mechanisms detect failures arbitrarily.

In a similar vein, the mechanism by which HFDs detect failure is also modeled differently
from conventional implementations. HFDs can be categorised into two groups: ping (or
explicit acknowledgment) and ‘I’m alive’. When using a ping HFD, each group member will
periodically broadcast a message to all others before awaiting a series of acknowledgments.

If after waiting Æt units of time an acknowledgment has not been received, then the host
it refers to is suspected of failure. Similarly, a process using an ‘I’m alive’ HFD will periodi-
cally broadcast a message announcing its continued presence to the group. If such a message
is not received in Æt units of time, then again the corresponding host becomes a failure sus-
pect. In terms of triggering the HFD, it is not possible to effectively reason about a specific
timeout duration (Æt). In APPROVE, two heartbeat failure detectors are modeled. The first is a
general model which polls the value of the failed members mask for changes, whereas,
the latter pends on the failure event (see Algorithm 2). This triggering abstraction results in
a significant decrease in interleaving and so reduces complexity.

Algorithm (Promela Pseudo Code) 2 Pending Heartbeat Failure Detector

Initially old failed members mask = failed members mask, i = 0

1. if
2. :: (old failed members mask != failed members mask) !
3. i = 0;
4. do
5. :: (failed members mask & (1<<i)) && (!(old failed members mask &
6. (1<<i))) ! fail!FAIL,i; i++
7. :: else ! i++
8. od;
9. old failed members mask = failed members mask; goto line 1
10. fi

7 Invariant Specification

The development of the heartbeat failure detectors concluded the APPROVE modeling phases.
Subsequently, the instrumentation of the model for the purposes of verification was consid-
ered. One of the beneficial aspects of the APPROVE project was that the termination, agree-
ment, validity and irrecoverability invariants were known from its inception. Termination is
tested through the introduction of end state labels in combination with an explicit idle state
in the error handler. Thus, if a verification terminates and any of the error handlers are not
idling, then Spin detects and reports the violation. Conversely, the other invariants are inter-
related; thus, these are discussed in combination. Note, that the noweb chunks referred to
throughout the next section are listed below:

72 h* APPROVE: Verification phase 72i�
hAssigning a new result 73ai
hChecking validity 73bi
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7.1 Irrecoverability, Validity and Agreement

The main distinction between termination and the other invariants is that irrecoverability,
validity and agreement are only in question when a new result is assigned, that is, when the
error handler master receives a result from a client and wishes to store it. In this case, testing
for irrecoverability is the same as verifying that a result has not been previously received (and
so set) for a particular client. This is achieved using an assert statement in conjunction with
a bit vector of flags. Thus, the assignment of a new result implies verifying that a result has
not been set previously, before storing the clients input and resultant views in global arrays.
This is encapsulated in the following inline definition which comprises part of the APPROVE
user template model:
73a hInline: result assignment 73ai� (72)
inline ASSIGN_RESULT(input_view,result,id) {
atomic {
assert(!(verification_result_set & (1<<id)));
verification_input_view[id] = input_view;
verification_output_view[id] = result;
verification_result_set = verification_result_set | (1<<id);
CHECK_VALIDITY()
CHECK_AGREEMENT() /* use inlines for validity and agreement */

} }

7.1.1 Inlines vs. Never Claims To Guarantee Validity and Agreement

Note the use of the inline statements CHECK VALIDITY and CHECK AGREEMENT in chunk
73a above. Intuitively, the validity and agreement invariants lend themselves to expression
by a never claim; indeed a significant amount of effort was invested in pursuing this idea.
Spin never claims apply invariants to the global space of the model whereas in this case,
the validity and agreement invariants only apply to the client processes. It is possible for
never claims to inspect variables local to processes suggesting the idea of using a bounded
do loop inside a never claim to cycle through each client in turn checking the invariants.
However, due to the assignment of the counting index, Spin objects warning that the never
claim contains side effects. Although the side effect is known to be safe, it is arguable that
the approach contravenes the philosophy of the never claim and so the alternative method
of using inlines was adopted. Actually verifying validity and agreement is again based on a
bounded do loop. Due to their similarity, only the validity chunk is presented:
73b hChecking validity 73bi� (72)
inline CHECK_VALIDITY() {
i = 0 ->
do
:: ((i < NUM_CLIENTS) && (verification_result_set & (1<<i))) ->
j = 0 ->
do
:: ((j < NUM_CLIENTS) && (verification_result_set & (1<<j)) && (i!=j)
&& (verification_input_view[i] == verification_input_view[j])) ->
assert(verification_output_view[i] == verification_output_view[j]);
j++;

:: (j == NUM_CLIENTS) -> i++; break
:: else -> j++
od

:: (i == NUM_CLIENTS) -> break
od; }

The introduction of the verification constructs concluded the development phase. Next,
consider the application of APPROVE to an exemplar agreement problem, which in this case
is a revisitation of CGM.
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8 Collaborative Group Membership Revisited

The Collaborative Group Membership algorithm provides fault-tolerant group membership
in collaborative systems [4]. At a high level, CGM consists of two complementary entities:
the error monitor which provides first level processing of transport layer fault reports and the
error handler which coordinates two distributed elections to resolve membership.

The CGM model abstracts away from the error monitor and the session (second) election,
focusing on the membership removal (first) election. Recall that when triggered, the error
handler broadcasts an EL START message followed by an EL CALL. This informs the other
group members that an election is pending and that they should refresh their suspect lists.
Using the quiescent failure detector, each client reliably broadcasts an EL PROBE message
to its peers. The underlying reasoning being that this will generate new fault reports for
failures that were not detected previously. Client views based on heartbeat failure detectors
can be refreshed by consulting the failure detector directly. This returns a list of suspects in
the form of a bit vector. Based on its refreshed view, each client votes for the removal of
the members it deems to have failed and sends a digest of the result to the error master via
a point-to-point EL RETURN message. Having received all of the votes, the error master
determines the outcome and instructs the GMS to evict any agreed failures.

8.1 Results

Verifying CGM with APPROVE raised a number of interesting points, though as the CGM de-
sign had already been refined during implementation, no new substantial design errors were
found. However, APPROVE was particularly beneficial in evaluating the semantic implica-
tions of eliminating the probe mechanism which was previously identified as the quadratic
component of the algorithm’s message complexity [4]. A series of experiments was con-
ducted in which this was investigated. In addition, it was decided that these experiments
would quantitatively investigate APPROVE’s performance in relation to larger groups (i.e.
between 4 and 10 clients). The expected result was that there exists a small linear increase
in overhead for each additional client process. A session consisting of two client processes
is an exception to this hypothesis since the system is effectively point-to-point and so has a
significantly simpler interaction.

The experimental environment consisted of one Pentium III desktop machine using a 600
MHz processor and 768 Mb of RAM. In terms of software, the PC is running Linux Mandrake
6.5 and Spin version 3.4.10. Each experiment was conducted using the same compiler and
run-time options. To repeat these experiments, for compilation define:

-D_POSIX_SOURCE -DBITSTATE -DSAFETY -DNOCLAIM -DXUSAFE -DVECTORSZ=4000

For the arguments to pan, define:

-X -m3000000 -w29 -c1

Note the use of the partial search. As is discussed in the APPROVE critique, exhaustive
verifications are possible, but are limited to a smaller number of clients. Thus, studying
APPROVE in the context of larger groups necessitates the use of the partial search. The results
from the experiments are shown in Table 1.

When the model was reconfigured to not probe, Spin did not detect any invariant viola-
tions, suggesting that the probe could be removed from the protocol. In addition, a signifi-
cant decrease in the overhead required to complete the verification (particularly for the larger
groups) was observed. The cause for the sudden increase in verification time (at 8 clients)
has not been determined, but it is conjectured that it is due to a specific pattern of interaction
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Probe enabled / NUM CLIENTS
4 5 6 7 8 9 10

SV 820 1108 1440 1808 2216 2708 3200
DR 1288425 1388202 1227178 1819674 1639334 1244615 1454759
SS 2.10856 2.26861 2.22499 2.12071 3.16569 2.70916 2.23208
T 1:40:50 2:32:17 2:36:55 2:56:02 6:28:39 5:56:39 4:50:41

Probe disabled / NUM CLIENTS
4 5 6 7 8 9 10

SV 724 928 1152 1388 1640 1952 2240
DR 1288748 1464371 1933316 1895244 1312446 1415283 1356739
SS 1.89953 2.07028 2.12812 2.18374 2.25818 2.85684 2.46325
T 1:22:52 1:40:50 1:58:37 2:19:03 2:39:49 4:23:59 3:42:05

Table 1: Quantitative Effect of Toggling the CGM Probe in APPROVE. Note the following key: SV is the
state vector measured in bytes, DR is the depth reached, SS is the number of states stored (the decimals are
e+08) and T is the averaged elapsed time (hours:minutes:seconds). All of the experiments used 219.02 Mb of
memory and no errors were reported at any stage.

that is less amenable to optimisation. However, this anomaly poses only verification perfor-
mance implications. During Spin simulations, it was that further failures would cause the
CGM algorithm to restart. Based on these results, it was confirmed that the probe would not
be removed completely, but its use would be restricted to environments where failures occur
in rapid succession. Normally, the algorithm operates without the probe yielding a linear
message complexity and less overhead in the Promela model, but, where failures occur in
rapid succession, the probe can be employed to avoid multiple iterations of CGM.

9 Future Work: Extending APPROVE

The next phase of the work considers the issue of heterogeneity in the context of strong group
communication and as a precursor to this study it was pertinent to formally investigate the
effect of employing strong group communications in a wireless environment. Through the
recent maturation of related technologies, strong wireless group communication (particularly
in the mobile sense) is being suggested as one of the next paradigms in the field. Thus, in
this section, APPROVE is extended to include a wireless model of failure.

The main distinction between the fail-stop and wireless models is the notion of intermit-
tent connectivity. More formally, a wireless model of failure states that in addition to the
fail-stop model, a host may move into a trouble spot, that is, an area of poor (or no) com-
munication before emerging after an arbitrary period of time. Furthermore, it is possible that
whilst in a trouble spot, a host may fail. Thus, a wireless model of failure can be modeled as
follows (where the root chunk is omitted for brevity):

75 hwireless failure 75i� (75)
:: (FAIL_MODEL == WIRELESS) -> atomic {

failed_members_mask = failed_members_mask | (1 << id);
do
:: failed_members_mask = failed_members_mask ˆ (1 << id);

goto end_client_top
/* Recovered */

:: printf("APPROVE (client: %d): failed, failed members mask: %d.\n"
,id,failed_members_mask); goto end_client_done; /* Failed */

od
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Through simulations with the wireless model of failure, it was observed that the system
encountered difficulties, that is, the membership algorithm was erroneously triggered (lead-
ing to the removal of essentially live hosts) and in some cases, the delivery ordering/virtual
synchrony semantics were invalidated. To an extent, this is intuitively expected, however,
the APPROVE simulations neatly distiled two future problems namely: developing a more
insightful model of failure and providing virtual synchrony in the wireless domain. In point-
to-point scenarios, trouble spots may manifest as slow links, stalled web page etc. but, in the
context of strong group communication this perceived joining and leaving compromises the
overall usability of the system. Note that this is not simply an extension of the network par-
tition problem. In providing truly heterogeneous strong group communication trouble spots
and their effect on the system’s semantics must be reconciled to a much greater extent.

10 Conclusion and Critique

In this paper, the Agreement Problem Protocol Verification Environment ( APPROVE) has been
presented. The discussion began with a tutorial on the techniques used to realise APPROVE
and this facilitated a description of the development process. Later, APPROVE was instru-
mented for verification and applied to an exemplar (CGM). APPROVE did not detect any
substantial design errors which is possibly because the CGM design had already been refined
through implementation. However, APPROVE was particularly useful in determining the
semantic implications of removing the probe mechanism. Evidence from a series of exper-
iments suggests that the probe can be safely removed, and so probe optimisation strategies
can be safely investigated. The final consideration was the extension of APPROVE to in-
clude a wireless model of failure. Through this it was suggested that one of the fundamental
problems in directly deploying strong group communication systems in a mobile wireless
environment is the perceived pattern of membership (which is due to trouble spots). This is
discussed in greater depth in [26], however, before closing the discussion on APPROVE, the
approach is critiqued.

10.1 APPROVE Critique

It is tentatively suggested that APPROVE fulfilled all of its design goals and contributed a
compact versatile framework to the community. The reaction from a range of researchers
has been encouraging with APPROVE enjoying moderate usage. However, the approach
embodies several caveats:

� Partial verifications – the state space explosion problem prevents exhaustive verifica-
tion of APPROVE models using machines with memories smaller than 2 Gb. This stems
from an inversely proportional relationship between abstraction and realism, that is, as
the model becomes more abstract (and so has a smaller search space), it also becomes
more difficult for a strong group communications expert to understand and interpret
APPROVE’s operation. However, it should be noted that Spin’s partial searching tech-
niques are particularly extensive and it is postulated that a partial search offers a much
greater degree of confidence than the conventional manual alternatives;

� Bounded verifications – in its present form APPROVE verifications are conducted with
respect to an explicit number of client processes, which for pragmatic reasons, reduces
the size of the state space. In practice the scalability of virtual synchrony is limited,
which means that systems of this nature rarely operate with more than 20 processes
(see Birman [27]). From the results in Table 1, it is clear that APPROVE is capable of
performing verifications at this level. However, one advantage of manual methods is
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that they verify correctness in the absolute sense, that is where NUM CLIENTS =

#(G). In order to achieve this in APPROVE, it would be necessary to adopt a funda-
mentally different technology.

A review of the field has suggested that current emphasis is on scalability. However the
APPROVE work moves orthogonally, investigating the provision for heterogeneity in strong
group communication systems. This is not only in terms of wireless environments, but also
hybrid and multi-characteristic wired networks.
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