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Abstract. This paper presents ‘occwserv’, the occam web-server. This is a highly
concurrent web-server, written in the occam multi-processing language, that supports
the majority of the HTTP/1.1 protocol. Dynamic process and channel creation mecha-
nisms are used to create scalable ‘server-farms’, each responsible for a particular web-
server function — for example, reading client requests or running CGI processes. The
design of the web-server is presented, along with some early performance benchmark
results. Although performance may appear a limiting factor (when compared to other
web-servers such as Apache), much is gained from the simplicity and security of oc-
cam. Extending the web-server with new functionality, for example, is intuitive and
largely trivial — with the guarantees that code is free from race-hazard and aliasing
errors. An experimental non-standard addition, the OGI (occam Gateway Interface),
is also presented. This provides a mechanism for dynamically loading and attaching
pre-compiled occam processes to the running web-server, that can then handle one
or multiple client connections. A text-based style adventure game is examined briefly,
that allows multiple clients to interact within a “multi-user dungeon” (MUD) style
environment.

1 Introduction

Web-servers are naturally concurrent applications — they must be capable of processing
more than one client connection/request simultaneously, if to be of any practical use. Theo-
retically, from the web-server viewpoint, serial processing of clients would provide the great-
est degree of efficiency. However, this requires that clients (and the network) are capable of
absorbing data at the maximum rate generated by the web-server — rarely the case in prac-
tice. A more typical situation is one in which the web-server writes data simultaneously to
multiple ‘slow’ clients, and this model reflects the typical ‘real world’ situation, where the
bandwidth available to end-users (using web-clients) is generally significantly less than the
bandwidth available to web-servers (often housed in dedicated ‘server warehouses’).

Thus, concurrency is a requirement, but may be provided for in several different ways.
For web-servers written in C, such as Apache [1], handling of multiple clients is performed
using a mixture of threads and the ‘select()’ system-call (that performs I/O multiplexing).
The cost of ‘select()’ is generally O(n), where n is the number of descriptors involved.
At some point, this overhead becomes significant, hence the use of multiple threads, each
performing ‘select()’ on a manageable number of descriptors. An extensive overview of
the ‘event-dispatch’ mechanisms of Linux (as of 2001) can be found in [2].

However, programming concurrency this way is neither intuitive nor easy, and has a huge
potential for error. The occam multi-processing language [3], based on the CSP process
algebra [4, 5], provides the ideal environment for developing concurrent applications — par-
ticularly in that it safeguards against common aliasing and race-hazard errors.

The KRoC/Linux [6] system, on which this work is based, was initially unable to provide
general socket I/O — due to a lack of support for handling multiple blocking system-calls
(because KRoC runs as a single UNIX process, any blocking call performed by an occam
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process would suspend the entire program). The addition of blocking system-call support [7]
has removed this limitation and provides a general mechanism for executing C code in an-
other thread, thereby allowing the scheduling of occam processes to continue normally.

An initial version of the occam web-server was presented during a fringe session at the
CPA-2001 conference in Bristol [8]. This version of the web-server was entirely functional,
but somewhat limited. In particular, it lacked the ability to scale dynamically, using fixed-
size process farms. Additionally, the sharing of channels was handled using a user-defined
‘SEMAPHORE’ type [9] combined with explicit suppression of aliasing and race-hazard checks
for the shared channel.

This paper presents version 2 of the occam web-server, that makes extensive use of new
language features that provide the missing functionality. Particular use is made of mobile
channel-types and dynamic process creation using the ‘FORK’ mechanism [10, 11]. The new
version is a significant step forward from the original, now providing a highly concurrent
dynamic web-server, that scales automatically with demand (and whose implementation re-
mains secure against aliasing and race-hazard errors).

The web-server supports the HTTP/1.0 and HTTP/1.1 protocols [12, 13], but lacks sup-
port for HTTP over SSL — due largely to the lack of an (Open)-SSL [14] (secure sockets
layer) binding for occam.

1.1 Related Work

The quality of a web-server is typically measured in terms of its performance at processing
client requests. This represents a very real-world requirement — web-servers are expected to
be able to handle the demand placed on them. The effect of this is that producing web-servers
that are able to compete in the same league as Apache (the web-server which most will be
benchmarked against), is hard. In particular, implementations in interpreted languages suffer
enormously when placed under high-load.

Two web-servers that are of interest are the Haskell Web-Server [15], and YAWS [16],
a concurrent web-server written in Erlang. Both of these present novel approaches to web-
server implementation, in the typically functional languages Haskell and Erlang. A signifi-
cant gain comes from the functional abstraction of these languages — code is automatically
safe from race-hazard and aliasing errors, and the necessary concurrency mechanisms are
provided by the run-time systems [17, 18].

However, for both these web-servers, there is quite some distance between design and
implementation — particularly in concurrent Haskell. This is largely due to the fact that
these languages were originally designed to be functional, not concurrent languages. occam,
on the other hand, was designed to be concurrent (using the CSP model), and thus makes a
significantly more natural language for expressing concurrent systems such as web-servers
(provided they can be modelled in CSP).

From another viewpoint, functional languages are generally highly dynamic, utilising
mechanisms such as lazy evaluation and garbage-collection [19]. A comparable level of dy-
namic behaviour has only recently been added to occam, largely in the form of dynamic
process and network creation/re-configuration. Digressing slightly, this leads to an interest-
ing question: is a dynamic occam useful for implementing run-time systems for functional
languages ? — with extensive use being made of dynamic processes and mobile channel-
ends.

Another type of web-server, that is becoming increasingly common (largely through its
inclusion in Linux), is the TUX Linux-kernel embedded web-server [20, 21]. This uses
optimised (and direct) interaction with the Linux file-system and networking code, resulting
in significant performance gains. An analysis of TUX (1.0) is given in [22].
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1.2 Paper Overview

Section 2 describes the design (and parts of the implementation) of ‘occwserv’, with each
core component of the web-server examined separately. The performance of the web-server is
examined in section 3. It should be noted, however, that performance is not the only objective
of the occam web-server — clarity of design and simplicity of implementation are of equal
importance, since these affect the long-term maintainability of the software (scalability in
particular).

Section 4 presents some initial conclusions and discusses future avenues of research. Of
particular interest is improving the performance of the web-server, that is bottle-necked in
several critical places.

2 Design and Implementation

Figure 1 shows the top-level design of the occam web-server — a network of concurrent
components that communicate client ‘connections’. Also shown are the socket interactions
performed on connected clients.

acceptor

fe.farm

be.proc

static.farm

cgi.farm

ogi.farm

cache.hash.
request

cache.control
and processes

(tcp accept)

(tcp read)

(tcp close)

(tcp read/write)

(tcp write)

(tcp write)

(tcp write)

Figure 1: occam web-server main top-level processes

New connections originate in the ‘acceptor’ process and are communicated to the front-
end process farm, ‘fe.farm’. The function of the front-end is to simply read the client
request, then pass the connection on to another part of the web-server based on the request.

Requests for static content are passed through the ‘cache.hash.request’ process (that
may divert them to a cache-handling process), into the ‘static.farm’. Processes within
the ‘static’ process farm simply copy the contents of a file to the client, before passing the
connection to the back-end (‘be.proc’).

The back-end process either closes the connection or, if marked as ‘keep-alive’, sends the
connection back into the front-end farm for another request. Statistics are also collected at
this point, and communicated to a separate process (not shown).
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Requests for CGI scripts (the execution of a process whose output is returned to the
client), are sent to the ‘cgi.farm’ process. The operation of this is similar to the ‘static’
farm, where a separate ‘worker’ process exists for each active client connection.

The ‘ogi.farm’ process network is used to handle requests for OGI (‘occam gateway
interface’) modules — deliberately similar in name to ‘CGI’ (common gateway interface).
OGIs are an experimental addition that enable pre-compiled occam processes to be dynam-
ically loaded and attached to the running web-server. Furthermore, an OGI module can
specify that all requests for a particular URL should be directed to that instance of itself.
This has several significant advantages over the CGI and similar mechanisms, discussed in
section 2.4.

2.1 Front-End Farm

The front-end farm is responsible for reading client requests, that determines where the con-
nection will be sent next. The process ‘pool’ is managed by the ‘fe.farm’ process, whose
purpose is to ensure a readily available supply of ‘fe.process’ worker processes, as shown
in figure 2. Note that the incoming connection channel (from the ‘acceptor’) is given to
the worker processes directly — i.e. connections are not farmed out by ‘fe.farm’, it simply
ensures that enough free worker processes are available.

fe.farm

fe.process fe.processfe.process

from acceptor

to back−end

static farm
to cache/

to cgi farm

to ogi farm

Figure 2: Front-end process farm

The ‘fe.farm’ process maintains a count of the number of idle worker processes, initially
zero. Following an idea suggested by Welch and presented in [23], the body of ‘fe.farm’
is simply a loop — that first makes sure that there are n idle workers (FORKing more if
necessary), then performs an input from the shared channel connecting it to the workers.
When a worker process starts processing a request, it communicates the value −1 on the
shared channel. When it finishes processing a request, +1 is communicated. The value input
inside ‘fe.farm’ is added to the idle-worker count. Thus, whenever a worker process starts,
this count is decremented, and incremented again when the worker finishes, with ‘fe.farm’
constantly ensuring the availability of n workers.

Internally, the ‘fe.process’ worker process invokes ‘line.reader’ — a PROC whose
purpose is to read lines of data (the request) from the client socket. Parts of the request that
are of interest (specifically the ‘action’) are stored within the mobile connection structure,
passed as a parameter.

Once the request has been read, the ‘fe.process’ passes the connection to another part
of the web-server, based on the file (name and path) requested. Requests that contain the
sub-string ‘/../’ are dropped, as are those that time-out (if read timeouts are enabled).
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Requests whose path starts with the configured ‘CGI’ path (typically ‘/cgi-bin/’) are
passed to the ‘cgi.farm’. Similarly, requests that start with the configured ‘OGI’ path (cur-
rently just ‘/ogi/’) are passed to the ‘ogi.farm’ process for handling. All other requests
are passed towards the ‘static.farm’, via ‘cache.hash.request’.

2.2 Serving and Caching Static Pages

The original version of the occam web-server had no support for page caching. For fre-
quently accessed files, caching can be an advantage, up to the point where the frequently
requested set of files exceeds the cache size (where cache effectiveness starts to degrade, and
may even become an overhead — if pages are repeatedly cached and un-cached).

Before sending a connection to the ‘cache.hash.request’ process, the front-end farm
generates a hash-code for the request URI, that it stores inside the connection structure.
The ‘cache.hash.request’ process maintains an array of hash-codes for currently cached
pages, and is connected to a fixed number of ‘cache.process’s. When a connection is re-
ceived, the hash-code array is scanned to find a match. If found, the connection is sent to the
appropriate ‘cache.process’, otherwise the connection is forwarded to the ‘static.farm’
for ordinary processing.

The ‘cache.process’ processes and ‘cache.hash.request’ process are managed by
the ‘cache.control’ process, as shown in figure 3. The ‘cache.control’ process con-
trols what particular pages get cached, based on information sent from the ‘static.farm’
(requests for pages that were not cached) and the cache processes themselves (requests for
pages that were cached).

cache.hash.
request

cache.
process

cache.
process

farm
static.

cache.control

to be.proc

from fe.farm
(and others)

Figure 3: Cache control and processes

Internally, ‘cache.control’ maintains an array of cache-entry information, twice as big
as the number of actual ‘cache.process’ processes. The entries are sorted (via a separate
‘lookup’ array) based on a ‘count’. This value is incremented by page hits and reduced over
time, but is always kept between 1 and the number of cache processes — that prevents evic-
tion through aging alone. The top-half of the sorted array maintained by ‘cache.control’
contains pages that are actually cached. The bottom-half of the array contains pages that are
not currently cached, and acts as a ‘buffer’ area where pages compete before being loaded
into the cache proper. Whenever a page joins or leaves the ‘top-half’ (cached pages), appro-
priate messages are sent to the cache processes and ‘cache.hash.request’ process. The
implementation of this is done particularly carefully, in order to avoid deadlock and to pre-
vent connections being sent to cache processes that are unable to handle them. Some use of
the extended-rendezvous [10] is made by various components to achieve this.
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Pages that are not cached are simply passed to the ‘static.farm’. This is a process farm
that operates in very much the same way as the ‘fe.farm’, but with incoming connections
being shared amongst ‘get.page’ processes. The job of ‘get.page’ is to simply open the
requested file and send the contents back to the client (prefixed with standard headers), before
closing the file and passing the connection to the back-end (‘be.proc’). The Linux-specific 1

‘sendfile()’ system-call is used to transfer file-contents to the client, that performs the
transfer in the OS (Linux) kernel to avoid the unnecessary copying of data to and from user-
space.

static.
farm

get.page get.page get.page

to be.proc

to cache.control

hash / fe.farm
from cache−

Figure 4: Static-page process farm

The ‘get.page’ processes are also connected back to the ‘cache.control’ processes,
to which they send information about missed cache requests, as shown in figure 4. If the re-
quested file cannot be opened (in ‘get.page’), the request is re-written to ‘/error....html’,
with the dots replaced by the appropriate error-code (404 for ‘file not found’, for example).

2.3 Running CGI Scripts

CGI (Common Gateway Interface) [24] provides a mechanism for running programs, scripts
in particular, from within a web-server whose output is returned to the (remote) client. This
can be used from anything such as interfacing legacy applications via shell-scripts or C pro-
grams, to generating dynamic content from databases using PHP [25]. Interaction is still
strictly request-response, but the response may contain substantial amounts of embedded
code (such as Java-Script [26]).

The ‘cgi.farm’ process-farm is constructed in the same way as the ‘fe.farm’ and
‘static.farm’ networks, using ‘cgi.page’ processes to handle individual requests. The
occam ‘process’ library [27] is used to execute CGI processes, that have their ‘standard-
output’ connected directly to the client socket.

If the requested program/script cannot be run (because it does not exist or cannot be
executed), the connection is passed to the static handlers (via the cache), with the request
modified to return an error-file.

A reasonable amount of effort is involved in setting up environment for a CGI script
(as per the CGI specification), but is relatively straight-forward. The occam process li-
brary handles the execution and termination of other programs transparently. All the applica-
tion (‘occwserv’ in this case) need do is call ‘proc.run’, giving the path to the executable,
an environment array and a set of file-descriptors for communication (one for each of the
streams ‘stdin’, ‘stdout’ and ‘stderr’). A more occam-friendly interface is available
through ‘proc.wrapper’, that uses BYTE channels for communication instead of UNIX file-
descriptors.

1The ‘sendfile’ system-call, that copies data between file-descriptors within the kernel, exists on various
UNIX/POSIX systems, but often with different semantics and restrictions.
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2.4 OGI ‘plug-in’ Modules

Although CGI provides a versatile mechanism for interfacing with arbitrary programs via
a HTTP interface, it does have limitations. The most restrictive of these is performance
— creating and executing a new OS process is expensive. Since this overhead is gener-
ally constant, the impact on small (quick running) CGI scripts is large, particularly notice-
able when benchmarking (section 3). Long-running CGI processes, for example, performing
complex remote database queries that may take several seconds to execute, tolerate the pro-
cess startup/shutdown overhead more readily. For such cases, performance in benchmarking
should depend on the efficiency of the remote server(s) — if the web-server is simply acting
as a ‘gateway’.

For Apache, some of the CGI performance issues are solved by building script interpreters
into Apache run-time loadable modules. Two examples are the Perl and PHP modules, that
interpret those scripting languages from within the web-server, without requiring a separate
OS process. This results in a significant performance improvement when ‘executing’ CGI
scripts of these types. There is, however, no protection between Apache and its modules —
an erroneous module could easily take down the web-server (or more seriously, compromise
the security of the system).

The other significant limitation of CGI scripts is the handling of persistent (client) state.
Many applications interfaced through the CGI mechanism require client state to be main-
tained in some way. For an on-line ordering system, this might be the contents of the remote
client’s ‘shopping-basket’, or the current ‘state’ in an on-line banking transaction. Current
implementations range from storing the whole state in the client (by ping-pong-ing the state
with each request-response), to maintaining the state in the server and providing clients with
a session identifier, that is used to access the server-stored state for subsequent requests. This
state can either be stored on disk between requests, or use can be made of a dedicated back-
end server that retains the state in memory, with CGI scripts that simply communicate data
to and from this server (assuming it generates HTML or other suitable output).

Although these approaches to managing client state do work, they have their own limi-
tations. In a transaction based system, for example, a ‘false’ client could send a number of
requests concurrently, that each modify the server state in a different way. The outcome in
these cases should ideally be predictable — an error message, for instance, or the success-
ful completion of one and appropriate ‘state consistency’ errors generated for the others. In
general, interaction with transaction based systems are (per-client) sequential, and this must
be enforced somehow — by locking the server-held client ‘state’ during the transaction, for
example.

Ultimately, CGI can be complex to program, particularly if separate requests must ‘in-
teract’ with each other (in a real-time on-line transaction, for example). The general non-
concurrent approach to CGI programming introduces its own problems, limited scalability in
particular.

2.4.1 Introduction

For the occam web-server, the OGI (occam Gateway Interface) has been introduced. In-
stead of executing ‘common’ code behind the web-server, pre-compiled occam code is dy-
namically loaded into the web-server — as a concurrent process network in its own right.
In a similar way to Apache modules, ‘occwserv’s OGI modules become part of the web-
server handling connections internally. Furthermore, an OGI can specify (when loading)
that it handles all requests for that OGI — i.e. the OGI can, if it wishes, handle multiple
concurrent connections simultaneously — or it can serialise them (simply by not accepting
a new connection into the OGI until an earlier one has left). Within a concurrent system,
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however, concurrent client interactions are much easier to manage. Furthermore, the OGI
can remain loaded (when it specifies that all requests should be directed to it). This almost
instantly solves much of the state-retaining problem, the OGI simply stores the client state
in variables/processes and clients use a form of ‘session’ identifier to access that state (the
occam web-server currently does not support ‘cookies’ — state that is stored in the client
but transfered in HTTP headers rather than HTML code).

2.4.2 OGI Process Handling

Figure 5 shows the structure of the ‘ogi.farm’ process network in the web-server. Currently,
a fixed-size pool of ‘ogi.handler’ processes is used, but this could be made dynamic in
the future (the required support for some nested MOBILEs has only recently been added to
occam).

ogi.farm

ogi.handlerogi.handler ogi.handler

from fe.farm

dynamically
loaded process(es)

static.farm
to cache/

to be.proc

ogimain

Figure 5: OGI process network

Unlike other process farms, connections are input by the ‘ogi.farm’ process, then passed
to the worker processes. The main body of the ‘ogi.farm’ process, after creating the worker
processes, forever ALTs between incoming connections (from the front-end farm) and ‘sig-
nals’ from the worker processes (using a shared local channel).

The ‘ogi.handler’ worker processes exist in one of three states, that is maintained in
the ‘ogi.farm’ process: idle; busy and not accepting connections; or busy and accepting
connections for the same OGI (matched using the connection’s hash-code).

When a new connection is received by the ‘ogi.farm’ process, the internal state is
scanned to see if any OGI handler is currently accepting all requests for that OGI. If so,
the connection is simply forwarded to that worker process. Otherwise, the internal state is
re-scanned to find an idle worker. If none can be found, the connection is passed to the static
farm (via the cache) to return an error to the client2.

If a free worker is found, the connection is forwarded to that worker, but instead of looping
back to the ALT, the ‘ogi.farm’ process waits for a response from the worker to which the
connection was sent. The response is only sent by a worker after it has started the actual
OGI process, and indicates whether the OGI will handle the single connection given to it
only, or will handle all requests for that OGI. This information is used to update the internal
state of ‘ogi.farm’, that then loops back to the ALT. If the OGI failed to load (signalled

2With an unbounded dynamic OGI process farm, the error of ‘no free slots’ will not occur — until memory
or other system resources are exhausted.
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in this response), the connection is passed to the static farm (to return an error) and the
‘ogi.handler’ process returns to its idle state.

The shared ‘signal’ channel is used by the ‘ogi.handler’ processes to notify ‘ogi.farm’
when they have finished/terminated, sending their ‘ID’ (allocated from zero upwards). When
communicated, the ‘ogi.farm’ process simply changes its internal state for that worker to
‘idle’. Before it returns to the idle state internally, the ‘ogi.handler’ process communicates
the connection to the back-end of the web-server (section 2.5).

2.4.3 OGI Modules

OGI modules are pre-compiled occam processes (or networks of processes), accessed using
a PROC named “ogimain”, with the following signature:

PROC ogimain (VAL DPROCESS me, []CHAN ANY x.in?, x.out!)

This is the generic interface used by the “dynamic loadable processes” extension to KRoC/-
Linux [28]. The actual interface used by the web-server for OGIs is recovered using channel
RETYPEs:

CHAN OGI.LINK.IN in? RETYPES x.in[0]?:
CHAN OGI.LINK.OUT out! RETYPES x.out[0]!:
CHAN SHARED LOG! log.in? RETYPES x.in[1]?:

Where the ‘OGI.LINK.IN’ and ‘OGI.LINK.OUT’ protocols are defined by:

PROTOCOL OGI.LINK.IN IS D.CONN; MOBILE []BYTE:

PROTOCOL OGI.LINK.OUT
CASE
persist; BOOL
conn; D.CONN

:

The ‘D.CONN’ structure is the mobile ‘connection’ record, passed into the OGI module thr-
ough ‘OGI.LINK.IN’ and retrieved from the ‘conn’ variant of the ‘OGI.LINK.OUT’ proto-
col. The following ‘MOBILE []BYTE’ (dynamic BYTE array) on ‘OGI.LINK.IN’ contains the
‘query-string’ from the request, with appropriate de-mangling of encoded characters, “%20”
meaning ‘space’ for example3. The third channel, ‘log.in’, is used to communicate a shared
(client) channel-end to the OGI, that is remotely connected to the system ‘log’ (described in
section 2.6).

When an OGI starts up (run in parallel within an ‘ogi.handler’ process), it inputs its
first connection, then responds with a ‘persist’ message. Ideally, this should be done as
quickly as possible, since the ‘ogi.farm’ will not accept any more new connections until it
has received this response. If ‘TRUE’, the ‘ogi.farm’ will re-direct all requests for that OGI
into the newly activated handing process. If ‘FALSE’, other requests for the same OGI will
result in new handlers being activated.

The code within ‘ogi.handler’ communicates on all three channels in parallel, so an
OGI module can send the ‘persist’ message first (if no interaction with the remote client is
required first). As soon as this is received, the response is relayed to the ‘ogi.farm’ process
so it can continue accepting connections.

3The first 128 characters are typically ASCII, the rest depend on the character-set used by the server (and
are interpreted appropriately) — generally one of the extended ASCII character sets.
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As far as error-handling is concerned, the dynamic processes extension ‘catches’ errors
from loaded process networks. This stops an erroneous module from bringing down the
web-server, but at the expense of possibly ‘losing’ system resources (for the web-server,
dynamic memory and file-descriptors). The connection itself can be recovered (by copying,
with CLONE, the connection structure before it is passed to ‘ogimain’). This is indicated to
the ‘ogi.handler’ locally, when the call that ‘runs’ the dynamic process returns:

ccsp.run ("ogimain", libhandle, [xx.in,xx.log], [xx.out], res)

The ‘libhandle’ is a reference to the dynamically loaded library that contains an ‘ogimain’
process. ‘xx.in’ and ‘xx.out’ are the reverse RETYPEs for the channel connections. The
‘xx.log’ channel is used to communicate the shared mobile channel-end (connected to the
system ‘log’) to the OGI process. The result is left in the INT parameter ‘res’. On successful
termination, this will hold the constant ‘DPROCESS.FINISHED’, or ‘DPROCESS.FAULTED’ if
a run-time error occurred4.

Five OGI modules have currently been implemented — mostly for demonstration pur-
poses. Two of the modules are simple tests, one persistent (with a ‘hit-counter’) and one non-
persistent (handling only one connection then terminating). The traditional ‘finger’ script has
also been OGI’d. This uses the occam socket library to open a connection to the requested
machine (given as the query-string), and then returns the information sent back — or an error
message if the connection times out (after 5 seconds) or is refused.

Another OGI module is one simply designed to crash in various ways — to test the
dynamic process crash-handling mechanism as well as the web-server. Supported errors
range from simple STOPs to array-bounds and floating-point errors. The final OGI is the
“occam adventure game”, described in the following section.

2.4.4 The occam Adventure Game

The occam adventure game is a basic “multi-user dungeon” (MUD), that allows (multiple)
users to login and interact via the web. Rather than being a pure client to web-connections,
the adventure game is an autonomous process network, with built-in ‘bots’ that randomly
wander around the game.

The current design is fairly static, using a centralised ‘game’ process that manages lo-
cations, objects and users. Processes representing objects and users (either internal ‘bots’
or remote web-clients) are connected to the game process using a shared channel-type. The
client used for interacting with such environments is typically ‘telnet’, or a similar text-based
TCP/IP clients. The client/server interaction is largely asynchronous — the server may send
data to the client whenever it wishes; the client to server data is provided by the user.

This presents a slight problem when interfacing with remote web-clients, whose interac-
tion with the web-server is strictly request-response. The solution is to introduce of buffering
and polling — the returned web-page instructs the client to auto-refresh after 30 seconds, that
will then collect up any game ‘events’ received since the last request-response.

In addition to the web-interface, the game also offers an interface through the IRC (Inter-
net Relay Chat) protocol [29, 30]. With this interface, the game connects to an IRC server
and registers itself as a user (currently ‘occgam’). Users (on the same IRC network) inter-
act with the game using IRC ‘private messages’ (to and from ‘occgam’). IRC supports the
asynchronous behaviour of the game more naturally than HTTP, with ‘events’ sent directly
to remote clients (instead of being queued, as they are for web-clients).

4There is a third possibility for dynamically loaded processes, ‘DPROCESS.SUSPENDED’. This is not cur-
rently supported by the web-server, however.
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Figure 6 shows the game process network. Web-clients are handled within the ‘ogimain’
process only. The main ‘game’ process maintains internal arrays of users ‘logged in’ to the
game, that are either web-clients or IRC clients. Each interacting IRC client is handled by
an individual ‘irc.client’ process, controlled through the ‘irc.interface’ process. The
‘game’ process generates a potentially infinite stream of ‘events’ (for example, “person X
entered room Y”). The ‘event.filter’ process receives these events and selects only those
which are relevant to connected IRC clients. These events are passed through an overwriting-
buffer (within the ‘irc.interface’ process) to the ‘irc.client’ processes, that handle
them — either by discarding (if the user just left a room for which an event was received) or
reporting back to the remote IRC user (again via the ‘irc.interface’ process).

game

object object

event.filter

ogimain

irc.client irc.client

irc.interfaceout!

in?

to IRC server

TCP/IP connection

Figure 6: occam ‘adventure game’ process network

The other entities within the game are ‘object’s. These can either be ‘held’ by a user,
or ‘free’ in a room. The particular state of objects is maintained by the ‘game’ process, that
controls user interactions with those objects.

The current implementation, of ‘object’s in particular, is somewhat unsatisfactory — par-
ticularly in scalability. With the recently added support for basic nested MOBILE types (par-
ticularly dynamic arrays of mobile channel-ends), the opportunity for a more natural imple-
mentation arises: with rooms, users and objects as individual processes connected by mobile
channel-types. The existing implementation converges in the ‘game’ process, that maintains
the global state. In a future implementation (already begun), this state is recorded by the
run-time connectivity of the network, and no longer centralised. Figure 7 shows an example
of the proposed process network.

Such a network, besides being easier to implement, also provides the opportunity for
dynamic re-configuration. This is already used in some respect, to move objects and users
between rooms. But it also allows the layout of rooms to be changed at run-time — the
inserting of new rooms or removal of existing rooms, or even more exotic, the migration of
rooms (that can be used to implement fun features such as ‘lifts’).

The proposed implementation, unlike the existing network, uses ‘web.client’ processes
to handle individual web-clients. Previously, the functionality of these was handled within
the ‘game’ process (for instance, the queueing of messages for clients). Internally, the rooms
in the game see only ‘users’ and ‘objects’, in addition to their immediate neighbours. They
are not aware of whether a particular user is interacting through the web-server, the IRC
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ogimain
irc.interface

web.clientweb.client

object object object

irc.client irc.client

out!

in?
TCP/IP connection

to IRC server

start

Figure 7: New ‘adventure game’ process network

interface, or through any other interface that may be introduced at a later date.
The ‘start’ client-shared channel is connected to the ‘ogimain’ and ‘irc.interface’

processes (not shown). This is used to feed ‘user’ channel-ends into the network when they
first connect to the game (when the appropriate client process is FORKed to handle them).

2.5 Back-end Processing

The back-end of the web-server consists of the single process ‘be.proc’. This acts as a
drain for ‘used’ connections from various processes within the network. If the client request
resulted in an error being returned, or the connection was not marked as ‘keep-alive’, then
the connection to the client is terminated. Connections marked as ‘keep-alive’ (and that did
not cause an error), have their internal state cleared and are output into the front-end farm to
wait for another request.

In addition to recycling connections, ‘be.proc’ uses the information gathered within the
connection structure to update a global ‘stats’ process. This includes the number of bytes
received from and sent to the client, and the time spent in various parts of the web-server.
These run-time statistics can be accessed through the special URL “/stats.html”, that the
‘cache.hash.request’ process intercepts (and re-directs to the ‘stats’ process).

This information is also used to report a ‘hit’ in the web-server log-file, including the
source IP address, client request string and server response code.

2.6 Auxiliary Processes

In addition to the main components shown in figure 1 (page 253) are a number of auxil-
iary processes: the ‘stats’ run-time statistics process; the ‘log’ process; and the ‘config’
process.

The ‘stats’ process collects various run-time statistics, reported by the web-server com-
ponents using a shared channel. The information collected includes general connection statis-
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tics, the sizes of the various process farms and the contents of the page cache (including
non-cached pages). The statistics can be extracted by requesting the page ‘/stats.html’,
that ‘cache.hash.request’ re-directs into ‘stats’. The contents of the page-cache are
retrieved by querying the ‘cache.control’ process, rather than having ‘cache.control’
report the cache state whenever it changes.

The ‘log’ process simply acts a multiplexer between two channels in a channel-type and
the top-level ‘screen’ channel. The input to the ‘log’ process is a server-end of the ‘LOG’
channel-type, defined as:

CHAN TYPE LOG
MOBILE RECORD
CHAN P.LOG log?:
CHAN BYTE c?:

:

The ‘P.LOG’ protocol defines three variants for BYTEs, INT counted BYTE arrays, and mobile
BYTE arrays. Ideally, processes should try to use the mobile variant, since communication
is unit-time. The separate BYTE channel ‘c’ is provided so that the standard (KRoC) library
functions, ‘out.string’ for example, can be used easily.

The ‘config’ process provides the web-server components with their configuration. This
includes, for example, the file-system path for static-pages, prefix for CGI scripts, and any
limits on the sizes of the various dynamic process farms. Currently, this information is pro-
vided statically at compile time (to the ‘config’ process), and typically accessed only once
by the various components as they initialise. Although there is currently no mechanism for
adjusting the configuration (within the ‘config’ process) at run-time, other web-server com-
ponents can be forced to reload their configuration by means of the ‘acceptor’ sending out
a specially marked connection.

3 Performance

This section presents some early performance benchmark results for the occam web-server.
The ‘httperf’ [31] benchmark program is used for the majority of benchmarks. This tries
to ‘hit’ a web-server at a specified rate, by maintaining multiple connections. At a rate of
100 hits/second, for example, ‘httperf’ will attempt a new request every 10 ms. New requests
may create new connections, or re-use old connections that have been marked as ‘keep-alive’.
This reduces some of the TCP overheads (disconnect and reconnect between requests), but
most HTTP clients (web-browsers) do not make sensible use of the functionality (although
this is gradually improving).

Figure 8 shows the request and response rates for Apache and the occam web-server,
with increasing ‘attempted’ requests-per-second. As can be clearly seen in the results, the oc-
cam web-server starts to lose performance at 700 requests/second (175 connections/second).
Apache only starts to lose performance at around 1300 requests/second (325 connections/-
second), at which point the network throughput reaches its limit (approximately 10 mega-
bytes per second).

Figure 9 shows the corresponding network bandwidth and maximum number of concur-
rent TCP connections. As soon as the web-server being benchmarked becomes unable to
satisfy requests, the number of concurrent connections increases sharply — ‘httperf’ opens
more connections and sends more requests in an attempt to maintain the requested rate. The
result of this is that performance is degraded even further, as significantly more connections
must be managed concurrently.

The benchmark results shown here are for a standard Apache installation (without any
specific performance tweaks), and the occam web-server with both statistics-collection and
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Figure 8: Request and response benchmark results (20, 000 hits, 4 requests/connection, 8k static page)
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Figure 9: Network bandwidth and max. concurrent connections benchmark results (20, 000 hits, 4 re-
quests/connection, 8k static page)

post-mortem debugging [32] enabled. This gives a moderate disadvantage to the occam
web-server, but not enough to account for the difference in performance. Furthermore, the
occam web-server was compiled without any inlining optimisations. When enabled, these
improve the performance of communication considerably.

A certain amount of overhead is due to the blocking system-calls mechanism [7], that has
a minimum overhead of 9 us for the dispatch-collect cycle (measured on the same P3-800).
Each connection, with four requests, requires 13 blocking calls — one for the initial ‘accept’
and three for each request (read request, write headers, send data).

The blocking system-calls mechanism is currently undergoing some optimisations, that
should dramatically improve their performance, particularly for the web-server. It is hoped
that these optimisations will be in place before the conference, where new results can be
presented.
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4 Conclusions and Future Work

Although the occam web-server may not perform as well as Apache, there is much value
in the security gained by using occam. In particular, there is no opportunity for ‘buffer-
overflow’ exploits, which have previously been found in Apache and Microsoft’s IIS. Much
effort is often spent in the formal verification of C (and C++) programs, particularly as re-
gards the use of pointers. The purpose of such verification is largely to determine the absence
of buffer-overflow opportunities and ensure the correct use of pointers (that they are ini-
tialised, for example). For occam, verification (of this type) is performed automatically by
the compiler, and is hugely aided by the lack of explicit pointer types. Automatic verification
for C code is difficult, but has been the subject of much research. With particular regard
to internet servers and buffer-overrun possibilities is [33], that advocates the use of static
checking — techniques that the occam compiler already employs, although at a less com-
plex level. occam, however, has only recently become suitable for constructing such server
applications.

There is clearly no functional deficiency from using occam to implement a web-server
— this one works. Performance, however, is a major issue which must be addressed if the oc-
cam web-server is become a viable alternative to servers such as Apache and IIS. Fortunately,
work is underway which should significantly improve the performance of the web-server (that
has, until recently, been constrained by a lack of time).

In providing mechanisms that allow multiple clients to interact, the occam web-server
does particularly well. This is largely the result of utilising concurrency, where creating a pro-
cess that manages multiple client connections is simple — the server can control the clients
(or process representations of those clients). In a non-concurrent web-server, interaction of
this nature will typically be client-driven — driven by the sequential flow-of-control. Con-
current implementations, as demonstrated by the ‘adventure game’ OGI, are largely intuitive
— and are much easier to program.

The use of occam for the construction of a web-server is just one example from a wider
field of application — all ‘internet’ servers. One server type that is planned for implementa-
tion is a mail server, at least RFC-821 [34] (SMTP) compliant and with some local delivery
capability. Mail servers have a less urgent requirement for real-time responses (most con-
nections are automated), but have an equal, if not greater, need for security and reliability.
This can certainly be seen from past failings, particularly in the widely-used ‘sendmail’
mail-server (some of which are examined in [35]).

4.1 Handling Large Numbers of Simultaneous Clients

One area in which the occam web-server suffers slightly is the handling of large numbers of
simultaneous clients. Because each client connection is handled individually, the overheads
increase linearly with the number of simultaneous connections. This is particularly relevant
to the blocking call dispatch/collect mechanism, whose overhead is significant (around 9 us).
A more significant issue, however, is that the number of concurrent blocking-calls supported
is limited (in order to avoid excessive numbers of ‘clone’ processes being created).

Non-concurrent web-servers typically use ‘select()’ to ‘wait’ for activity from a num-
ber of clients (either for reading or writing), an operation that only involves a single blocking
call — and is reasonably efficient for small numbers of ‘clients’ (socket file-descriptors).
Placing the ‘multiple wait and read’ functionality within a single blocking-call offers two
advantages for the occam web-server: reducing the number of simultaneous blocking calls;
and following from that, reducing the impact of the blocking-call overhead itself.

Figure 10 shows an example of how this network might be constructed (for reading client
requests). In principal, the total number of ‘n.select.read’ blocking-call ‘processes’ is
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limited (regardless of the number of connections), but the frequency of their use varies. The
network is constructed using a pipeline of ‘timed.buffer’ processes, with the most-active
process at the left and least-active at the right. Each ‘timed.buffer’ process acts as a
‘collector’ for connections, until a pre-determined timeout is reached. It then makes the
blocking call to wait and read from all connections, until that same timeout is reached again
(if desired). When the blocking-call returns, connections that have remained inactive are
forwarded to the next ‘timed.buffer’ process (with a longer timeout). Connections on
which the entire request has been received are forwarded to a modified front-end farm — for
distribution to the rest of the web-server (this distribution could be done locally, however, to
be efficient). Connections that have only sent a partial request stay put.

timed.buffer timed.buffer timed.buffer

n.select.read n.select.read n.select.read

connections

in

front−end farm

to modified

connections

that timed−out

Figure 10: Example client request-reading process pipeline

In theory, the use of such a connection-handling process pipeline should increase perfor-
mance dramatically. Client connections that are slow (perhaps deliberately — as is the case in
‘denial of service’ attacks), migrate towards the right-hand side of the process pipeline, where
they will not interfere with other clients. Ultimately, inactive connections simply time-out, at
which point they discarded (to avoid wasting resources associated with them).

A similar approach can also be taken for handling multiple client writes. However, the
current implementation makes use of the ‘sendfile()’ system-call, that simply copies data
between descriptors — completely within the OS kernel, making it a very suitable operation
for returning static files to client connections. Whether using a ‘select’ based approach to
writing data to clients instead remains to be investigated.

4.2 Raw-Metal Web-Serving

Currently under development is a CSP based operating-system environment, RMoX [36].
This is programmed in occam and makes extensive use of the same dynamic facilities (par-
ticularly dynamic process creation and channel-end mobility).

Within this environment, blocking system-calls (and their associated overheads) simply
do not exist — any interaction with the operating-system is via a (low-cost) channel commu-
nication. Thus, the full parallelism can remain, resulting in a simpler implementation.

Integrating the web-server into RMoX is expected to be relatively straight-forward, once
the necessary functionality (TCP socket communication) has been implemented.
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