
Communicating Process Architectures 2005 109
Jan Broenink, Herman Roebbers, Johan Sunter, Peter Welch, and David Wood (Eds.)
IOS Press, 2005

jcsp.mobile: A Package Enabling
Mobile Processes and Channels

Kevin CHALMERS and Jon KERRIDGE
School of Computing, Napier University, Edinburgh EH10 5DT

{k.chalmers, j.kerridge}@napier.ac.uk

Abstract. The JCSPNet package from Quickstone provides the capability of
transparently creating a network of processes that run across a TCP/IP network. The
package also contains mechanisms for creating mobile processes and channels
through the use of filters and the class Dynamic Class Loader, though their precise
use is not well documented. The package jcsp.mobile rectifies this position and
provides a set of classes and interfaces that facilitates the implementation of systems
that use mobile processes and channels. In addition, the ability to migrate processes
and channels from one processor to another is also implemented. The capability is
demonstrated using a multi-user game running on an ad-hoc wireless network using
a workstation and four PDAs.

Keywords. JCSP, JCSPNET, Mobile Processes and Channels, Dynamic Class
Loading, Migratable Processes and Channels, Location Aware Computing

Introduction

The motivation for the work reported in this paper came from the desire to modify an
existing multi-player maze game that ran on a network of PC workstations to a version that
used PDAs for the player processes and a wireless enabled laptop for the display process.
The initial reason for building the game was to demonstrate the use of JCSPNet [1] in a
manner that would motivate students to better understand the concepts of concurrency,
parallelism and the benefits of the JCSP approach. In the event, the project went far
beyond this initial goal and resulted in the creation of a package that enables the design and
implementation of systems that use mobile processes and channels. The JCSPNet package
already contained the basic mechanisms for achieving this but was somewhat tortuous in
the way that such processes were created and incorporated into a complete system. The
jcsp.mobile package brings together a number of the existing JCSPNet features and
capabilities into a framework that makes such systems easier to design, implement and use.

In the next section we shall present the justification for the design of jcsp.mobile
and describe the main components from which it is constructed. Section 2 will describe the
relevant mobile parts of the maze game and it will also show how the concepts can be
utilized in the implementation of a home consumer electronics remote control that requires
just one controller for all such devices. In the next section we shall show how migratable
processes and channels can be implemented using a simple producer-consumer based
example. Finally, the package is evaluated, some conclusions are drawn and areas for
future work identified.

110 K. Chalmers and J. Kerridge / jcsp.mobile

1. Overview of jcsp.mobile

JCSPNet does include classes and interfaces associated with Dynamic Class Loading.
However the API documentation provided does not give any indication of how these
classes and interfaces should be used. Initial attempts to understand the problem involved
sending objects that implemented the CSProcess interface across channels and though
initially this gave the impression of working it soon became apparent that the problem was
far more complicated than such a simple approach permits. It is in fact necessary to
understand how Java loads classes and any other classes contained within a class that is
executed on a processor and furthermore to understand the problems that can occur if the
designer does not fully appreciate the intricacies of the mechanism. Given that the ability
to transmit Applets around the web was one of the design principles of Java it is somewhat
surprising that this capability is so opaque.

The jcsp.mobile package creates a new concept called a Process Channel which
hides both the class DynamicClassLoader and the class Filter [1] that has to be added to
a channel so that it can communicate class objects. The various types of Process Channel
are defined as interfaces within Mobile and instances of these Process Channels are created
in a manner analogous to ordinary channel creation in a Channel Name Server (CNS) [1].
An abstract class MobileProcess is provided which the user simply extends to create their
own mobile process. A mobile device has to run a process called MobileProcessClient
that initializes itself with a call to Mobile.init() as a node in a mobile network, which
then gives it access to all the facilities of the jcsp.mobile package. The initialization
mechanism mimics that used to initialize a node of an ordinary CNS style network.

Mobile processes within CSP are first described within the occam language by Barnes
as a proposal [2], after developing some of the necessary functionality required for the
language. This proposal, although more applicable for a different platform, can be tailored
for use within JCSP, particularly the concept of one process (a server) transferring another
process (the mobile process) to another process (the client). Within the Java language, the
functionality that required development for the occam language is not necessary, because
Java uses references to objects (if an object is said to equal another, only one such object
exists) as opposed to occam’s use of copy semantics (when an object is said to equal
another, two unique objects are in existence) [3] as well as the Java language’s interpreted
nature

1.1 Dynamic Class Loading

Due to the interpreted nature of the Java language, it is possible to load new classes into the
runtime environment as required by the system. Basically, this means that it is possible to
send a class description to an executing process (e.g. read from a file, sent over a network)
and for that process to create new instances of the class as required. How this works is not
clearly described, although there are some attempts [4] that claim a clear definition ,
mentioning the already poor documentation issues. However, these do not accurately give
a description either.

Figure 1 illustrates how class loading operates within Java. In this system, three class
loaders are defined, the System Class Loader (started when the JRE starts) and two
developed class loaders, Class Loader 1 and Class Loader 2. These both have the System
Class Loader as a parent. These developed class loaders have information relating to
loading specific classes, and if they cannot load a class, they call the System Class Loader
to load it for them. The System Class Loader has no knowledge of its child class loaders.

 K. Chalmers and J. Kerridge / jcsp.mobile 111

Looking at each of the class loaders in turn, the System Class Loader knows about
Class A and Class B and can only use these classes within its context. For example, if
Class A were to try and create an instance of Class C or Class D, an exception would be
raised relating to the class definition not being found.

Figure 1. Class Loading in Java

For Class Loader 1, as well as the classes available from the System Class Loader, and
Class C, a further version of Class B is available. This can lead to versioning problems
between classes, i.e. Class C may expect the system defined version of Class B yet receive
the one defined by Class Loader 1. This may also occur with Class A as well. Class A will
use the System Class Loader to load itself and any classes within itself, and the problem of
a Class Loader 1 version of Class B being passed into Class A and causing the versioning
problem can arise.

Class Loader 2 only knows how to define Class D and the system classes, and
therefore any attempt to create an instance of Class C will fail with the class not defined
exception. If Class D should need instances of Class A or Class B, it would call upon the
System Class Loader to load them.

Classes are generally defined using an array of bytes equivalent to the data normally
stored within the class file. These bytes can obviously be sent across a communications
medium such as the channels being used within JCSP, and initially this was the route taken
when examining sending class data with an object. It is hinted at, however, that it is
possible to set channels to send this data automatically [5], although how is not well
documented. This led to an investigation as to how to achieve class loading over channels.

The first point of investigation was the documentation available for the package. The
two overview documents provide little in depth discussion of how to use anything but the
most basic features, and suggests the API specification as a point of reference for more
advanced features. The problem here is that API specifications provide descriptions of all
the classes available within the package, and have one starting access point available. It is
a matter of guess work where to start the search from here. Examination of the factory
methods associated with channel creation and the specialization required to create these
class-loading channels was fruitless. In the end a text search for “class loading” in the
documentation located a starting point.

This, however, did not clear up how to implement class loading easily, and still
expected some further knowledge before it could be used. What the documentation
describes is the creation of service - an instance of DynamicClassLoader - that needs to be

System Class
Loader

Class Loader 1 Class Loader 2

Class B

Class A Class B

Class C Class D

112 K. Chalmers and J. Kerridge / jcsp.mobile

installed onto a Node using its Service Manager. This simply runs services available on the
Node and is of no concern here. When the class loading service is started, it creates two
new processes a JFTP Server (there is no mention what JFTP stands for) and a Class
Manager. Exactly how these operate is not described. It was deduced that when an object
is sent across the channel, the Class Manager attempts to load the class data from its
available class definitions. If it should fail it will request the class definition from the
sending process’s JFTP, and when received, uses this to load the class data for the object it
has just received.

Although the creation and running of the DynamicClassLoader service may appear to
solve the problem, the little documentation available does mention attaching filters to the
channel ends to allow the sending and receiving of class data down the declared channels.
This led an investigation of exactly how filtered channels operate, and fortunately the
documentation for this feature is more concise.

JCSP allows the creation of a FilteredChannel object from other channel ends
(FilteredChannelInput and FilteredChannelOutput respectively) and then the
addition of filters to these FilteredChannel objects as required. This channel type has the
same functionality externally as the channel used to create it. Internally, when the relevant
operation (read or write) is called, it uses the filters added to it to modify the message in
some way. What happens with the Dynamic Class Loading filter is that the location of the
sending Node’s JFTP is attached. When the receiving Node reads the object from the
channel, the Class Manager is passed this location. Then, if class definitions are required
for the object received, the Class Manager can request it from the sending location’s JFTP.
This leads to the breakdown of Dynamic Class Loading given in Figure 2.

Figure 2. Dynamic Class Loading Using Filters

This model demonstrates how the Filter adds the JFTP location to the object being sent
by the Send process, and then sending it down the channel. At the receiving end, the Filter
takes the message, extracts the JFTP location and sends it on to the Class Manager. The
original object is passed to the Receive process, which can then use the object, even if it
had no prior knowledge as to what the object was.

Although this may seem quite a trivial concept when described here (start a service,
add filter to the channel then read from channel as normal), the lack of good documentation
created a situation where much searching and experimentation was involved. This could
have been avoided. However, the simplicity of the approach does mean it can be started
and used easily, with little modification to an existing system. One of the primary reasons
for this complexity is to deal with the case where a process uses other classes within its
definition and it would not be immediately obvious that these other classes would be
required. The mechanism implemented ensures that such additional class definitions are
obtained automatically.

The result of this experimentation is a package, jcsp.mobile, the components of
which are now described.

SEND RECEIVE

JFTP CLASS
MANAGER

FILTER FILTER

 K. Chalmers and J. Kerridge / jcsp.mobile 113

1.2 Mobile

The class Mobile captures the basic functionality of the mobile capability. It defines a
DynamicClassLoader {2}1 and it is presumed that only one such instance per node of
Mobile is initialized, in a similar manner to the creation of CNS in JCSPNet. A
ServiceManager {8, 9} is created into which theClassLoader is installed {10}, named
and then started in the method init {5-17}. The NodeKey for the init method is
generated by a call to the TCPIPNodeFactory in a similar manner to that used by CNS {8}.
01 public class Mobile {
02 protected static DynamicClassLoader theClassLoader;
03 private static boolean isInitialised = false;
04
05 public static void init(NodeKey thisNode) {
06 if (!isInitialised) {
07 theClassLoader = new DynamicClassLoader();
08 ServiceManager theServiceManager = Node.getInstance().
09 getServiceManager(thisNode);
10 theServiceManager.installService
11 (theClassLoader, "Class Loader");
12 theServiceManager.startService("Class Loader");
13 isInitialised = true;
14 }
15 else
16 System.out.println("Mobile already initialised");
17 }
18
19 public static ProcessChannelOutput createOne2Net (
20 NetChannelLocation channelLocation)
21 {
22 return ProcessChannelEndFactory.
23 createOne2Net(channelLocation);
24 }
25 public static ProcessChannelOutput createOne2Net
26 (String channelName)
27 {
28 return ProcessChannelEndFactory.createOne2Net(channelName);
29 }
30 public static ProcessChannelOutput createOne2Net
31 (NetChannelOutput netOut)
32 {
33 return ProcessChannelEndFactory.createOne2Net(out);
34 }
35 ... plus other shared output and input variants
36 public static AltingProcessChannelInput createNet2One()
37 {
38 return ProcessChannelEndFactory.createNet2One();
39 }
40 public static AltingProcessChannelInput createNet2One
41 (String channelName)
42 {
43 return ProcessChannelEndFactory.createNet2One(channelName);
44 }
45 public static AltingProcessChannelInput createNet2One
46 (NetAltingChannelInput netIn)
47 {
48 return ProcessChannelEndFactory.createNet2One(in);
49 }
50 }

1 The notation {n} in the text refers to a line number in a program listing

114 K. Chalmers and J. Kerridge / jcsp.mobile

The static methods of Mobile can then be called in manner analogous to CNS to create
various types of Process Channels. Each of these static calls results in the calling of a
similar method in a ProcessChannelEndFactory. Some of these static methods are shown
{19-49}. Those omitted simply create the shared versions of the channels. Three versions
of the channel creation method are provided, the first takes a NetChannelLocation
parameter, used in the creation of anonymous channels or when a channel end is
communicated over a channel {22}. The second takes a String parameter that is used in
the same manner as creating a named network channel using the CNS {28}. The third
creates a Process Channel from an existing Net Channel {33}, which is necessary to allow
simple creation of Migratable Channels with class loading capabilities (see section 3).

1.3 Process Channels

The Process Channels are simply an extension of the existing NetChannel interfaces
provided within JCSPNet. In order that we can use ProcessChannelInputs in an
alternative, an abstract class AltingProcessChannelInput is created {58-69} that
provides the required functionality.

51 public interface ProcessChannelInput extends NetChannelInput
52 {
53 }
54 public interface ProcessChannelOutput
55 extends NetChannelOutput
56 {
57 }
58 public abstract class AltingProcessChannelInput
59 extends NetAltingChannelInput
60 implements ProcessChannelInput
61 {
62 public AltingProcessChannelInput()
63 {
64 }
65 public AltingProcessChannelInput(AltingChannelInput alt)
66 {
67 super(alt);
68 }
69 }

The ProcessChannelEndFactory provides factory methods for creating instances of
the Process Channels using the same method names as those used in the CNS. These are
the methods called from the singleton class Mobile described previously. Variants are
provided that manipulate a NetChannelLocation {72}, or will invoke a call to the
corresponding CNS method using a character string identifier for the channel being created
{76}, or create a Process Channel from an existing Net Channel {79}.

70 class ProcessChannelEndFactory {
71 protected static One2Process createOne2Net(
72 NetChannelLocation channelLocation){
73 return new One2Process(channelLocation);
74 }
75 protected static One2Process createOne2Net(String channelName){
76 return new One2Process(channelName);
77 }
78 protected static One2Process createOne2Net
79 (NetChannelOutput netOut){
80 return new One2Process(netOut);
81 }

 K. Chalmers and J. Kerridge / jcsp.mobile 115

82
83 protected static Process2One createNet2One(){
84 NetAltingChannelInput netIn = NetChannelEnd.createNet2One();
85 return new Process2One(netIn);
86 }
87 protected static Process2One createNet2One(String channelName){
88 NetAltingChannelInput netIn = CNS.createNet2One(channelName);
89 return new Process2One(netIn);
90 }
91 protected static Process2One createNet2One
92 (NetAltingChannelInput netIn){
93 return new Process2One(netIn);
94 }
95 ... plus other variants
96 }

The class Process2One references the DynamicClassLoader (theClassLoader) created
in the singleton class Mobile. From theClassLoader it obtains the read filter {105}, which
it attaches to the process channel {106}.

97 class Process2One extends AltingProcessChannelInput {
98 private FilteredAltingChannelInput filterIn;
99 private NetAltingChannelInput netIn;
100 private static DynamicClassLoader theClassLoader =
101 Mobile.theClassLoader;
102 protected Process2One(NetAltingChannelInput netIn) {
103 super(netIn);
104 this.netIn = netIn;
105 filterIn = FilteredChannelEnd.createFiltered(netIn);
106 filterIn.addReadFilter(theClassLoader.getChannelRxFilter());
107 }
108 ... plus some other methods not required for the discussion
109 }

The class One2Process undertakes the complimentary operation to that just described

except that it adds a write filter to an output channel. An output channel can be created
either using a NetChannelLocation {114}, a string reference to a Net Channel {119} or by
using an existing Net Channel {124} as shown below.

110 class One2Process implements ProcessChannelOutput {
111 private NetChannelOutput netOut;
112 private FilteredChannelOutput filterOut;
113 private DynamicClassLoader theClassLoader = Mobile.theClassLoader;
114 protected One2Process(NetChannelLocation channelLocation){
115 netOut = NetChannelEnd.createOne2Net(channelLocation);
116 filterOut = FilteredChannelEnd.createFiltered(netOut);
117 filterOut.addWriteFilter(theClassLoader.getChannelTxFilter());
118 }
119 protected One2Process(String channelName){
120 netOut = CNS.createOne2Net(channelName);
121 filterOut = FilteredChannelEnd.createFiltered(netOut);
122 filterOut.addWriteFilter(theClassLoader.getChannelTxFilter());
123 }
124 protected One2Process(NetChannelOutput netOut){
125 this.netOut = netOut;
126 filterOut = FilteredChannelEnd.createFiltered(netOut);
127 filterOut.addWriteFilter(theClassLoader.getChannelTxFilter());
128 }
129 ... plus some other methods not required for the discussion
130 }

116 K. Chalmers and J. Kerridge / jcsp.mobile

1.4 MobileProcess

MobileProcess is an abstract class {131-156} that is extended by a concrete
implementation of a class that is to be made mobile. The class has a number of methods
that permit the connection of arrays of input and output channels that the mobile process
can use. There are a number of such methods that permit a variety of operation on the
channels, enabling the attachment and detachment of channels dynamically.

131 public abstract class MobileProcess implements
132 CSProcess, Serializable {
133 protected ChannelInput[] in = null;
134 protected ChannelOutput[] out = null;
135
136 public final void init(ChannelInput[] in, ChannelOutput[] out) {
137 this.in = in;
138 this.out = out;
139 }
140 public final void remove() {
141 this.in = null;
142 this.out = null;
143 }
144 public final void attachInputChannels(ChannelInput[] in) {
145 this.in = in;
146 }
147 public final void attachOutputChannels(ChannelOutput[] out) {
148 this.out = out;
149 }
150 public final void detachInputChannels() {
151 in = null;
152 }
153 public final void detachOutputChannels() {
154 out = null;
155 }
156 }

1.5 Mobile Process Server

MobileProcessServer is the process used by an application’s server to send mobile
processes to the client processors. The application’s server will in fact be the parallel
composition of the MobileProcessServer and a sender process. The sender process
creates the Mobile Processes and when required outputs these to the MobileProcessServer,
which then sends them over the network to a client process. The MobileProcessServer has
no knowledge of the process it is sending.

MobileProcessServer inputs the mobile process from sender on the internal channel
processIn {180}. The mobile process is output on the ProcessChannelOutput
processOut {181}, which will have all the required filters and access to theClassLoader
automatically provided. The NetChannelInput processRequest {160} is used by the
MobileProcessServer to receive requests from client processes for a mobile process. The
MobileProcessServer is implemented as a singleton with an empty constructor.

The init method {169-172} is passed the name of the network channel,
serviceName, upon which it will receive requests for client processes and uses this name
to create the only named network channel in the system. The init method is also passed
the internal channel by which it is connected to the sender process. In due course, the
process’s run method is invoked by the application’s server (see 2.1.1 for an example
description).

 K. Chalmers and J. Kerridge / jcsp.mobile 117

The run method reads the location of a network input channel {177} that will read the
mobile process from the server using the previously created processRequest net channel.
The MobileProcessServer then creates {179} an anonymous network output channel
using a call to the Mobile class, which connects the MobileProcessServer to the
MobileProcessClient that requested the mobile process. The server then reads {180} the
MobileProcess from the sender using the internal channel, processIn, and then writes
theProcess to the network channel connected to the client processor {181}.

157 public class MobileProcessServer implements CSProcess {
158 private ChannelInput processIn;
159 private ProcessChannelOutput processOut;
160 private NetChannelInput processRequest;
161 private static MobileProcessServer theServer =
162 new MobileProcessServer();
163 private MobileProcessServer()
164 {
165 }
166 public static MobileProcessServer getServer() {
167 return theServer;
168 }
169 public void init(String serviceName, ChannelInput processIn) {
170 processRequest = CNS.createNet2One(serviceName);
171 this.processIn = processIn;
172 }
173 ... some other access processes
174
175 public void run() {
176 while (true) {
177 NetChannelLocation clientLocation =
178 (NetChannelLocation)processRequest.read();
179 processOut = Mobile.createOne2Net(clientLocation);
180 MobileProcess theProcess = (MobileProcess)processIn.read();
181 processOut.write(theProcess);
182 }
183 }
184 }

1.6 Mobile Process Client

The MobileProcessClient is the only process that has to run on a client processor and is
typically invoked by a call to main(). An extension does allow the process to be invoked
as part of a parallel compilation if the client side needs to receive more than one process or
is itself part of another network. The process invokes itself and then enters the main()
method. The user {195} is asked for IP address of the CNS applicable to the network and
the name {196} of the network channel by which the client process will communicate with
the server process. This must be exactly the same character string as used by the server
process in its init() method. These values could be passed as arguments to the main()
method if the code were modified appropriately.

The client process initializes itself as part of a mobile system {200} and connects itself
to the same network by means of identifying the IP address of the CNS Server. The client
then uses CNS.resolve {202} to connect itself to the CNS. This is used so that many
clients can use the same network channel in sequence. Once the network channel has been
resolved the connection to the server can be created as a net output channel {203}. The
client then creates a net input channel (processReceive) by means of a call {205} to the
static method Mobile.createOne2Net. The location of this channel is then communicated
to the server by writing its channel location to the server {206} using the only named

118 K. Chalmers and J. Kerridge / jcsp.mobile

network channel that was previously resolved. The mobile process is then read {207} from
the anonymous network channel processReceive. The received mobile process is then
executed by means of constructing a ProcessManager and thereby invoking the mobile
process run() method {208}.

185 public class MobileProcessClient implements CSProcess {
186 private static SharedChannelInput serviceNameInput;
187 private static ProcessChannelInput processReceive;
188 private static SharedChannelOutput processOut;
189 private static MobileProcessClient theClient =
190 new MobileProcessClient();
191 private MobileProcessClient()
192 {
193 }
194 public static void main(String[] args) {
195 String CNS_IP = Ask.string("Enter IP address of CNS: ");
196 String processService =
197 Ask.string("Enter name of process service: ");
198 try
199 {
200 Mobile.init(Node.getInstance().init(
201 new TCPIPNodeFactory(CNS_IP)));
202 NetChannelLocation serverLoc = CNS.resolve(processService);
203 NetChannelOutput toServer =
204 NetChannelEnd.createOne2Net(serverLoc);
205 processReceive = Mobile.createNet2One();
206 toServer.write(processReceive.getChannelLocation());
207 MobileProcess theProcess =(MobileProcess)processReceive.read();
208 new ProcessManager(theProcess).run();
209 }
210 catch (NodeInitFailedException e)
211 {
212 System.out.println("Failed to connect to CNS");
213 System.exit(-1);
214 }
215 }
216 ... plus some other access methods and a run()
217 }

2. Using jcsp.mobile

2.1 Maze Game

The maze game is itself quite simple and can be played by up to four players. Each player
receives a copy of the same random maze. The goal of the game is to move the player’s
token from one corner of the maze to the opposite corner. The effects of each player’s
moves are shown on a central display. The players can only see their own token on their
display. Because the maze is generated randomly it is possible that a player could be
completely blocked in by walls. Thus each player is given the ability to clear a limited
number of walls in order to make progress to their goal. As players move they can erect
walls in their wake to block their opponents. The user interface provides buttons for
moving in all four directions. Additionally, there are two further buttons that permit the
clearing of a wall or the erection of a new blocking wall. As the players achieve their goal
they are informed of their finishing position.

The sequence of interactions between the processes is as follows. The display process
acts as the server. It creates the random maze and then sends this maze to each of the

 K. Chalmers and J. Kerridge / jcsp.mobile 119

players indicating their starting position and hence implicitly their goal. Thereafter, the
player process sends the moves the player has requested to the display process. The display
process obtains a move from each player at every step regardless of whether the player has
made a move or not. The display process then updates its maze accordingly and then
communicates the new state of the maze to each player process. If the display process
detects that a player has reached their goal an appropriate indication is sent to that player
only. This set of channels is captured in Figure 3.

In constructing the system as a set of mobile processes, the input ends of channels are
created first, so that the input end location can be sent to processes that output on a network
channel. Hence the Display process will create all the input ends of the fromPlayer
channels, which will be communicated as part of the mobile Player process to each of the
players. The Player process will then create the input ends for the init and toPlayer
channels, which it will send back to the Display process using the fromPlayer channel.
All these channels are created anonymously, which removes the complexity of creating a
universal naming convention for mobile systems.

Figure 3. Network Channel Structure for the Maze Game

2.1.1 MazeServer

The MazeServer process is the main entry point on the server side of the system. It is used
to implement the process Display in Figure 3. The user is asked for the CNS Server’s IP
address {226} and also the name of the service required {227}, which must be the same as
that specified in the MobileProcessClient processes that request and then run each of the
Player processes shown in Figure 3. Additionally, parameters that specify the number of
players and the size of the maze are requested {228-230}.

The server process then initializes itself as Mobile connected to the identified CNS
Server {231}. The channel (toServer) that connects the server to the sender is then
declared {233}. The sender process is then declared {234} as an instance of MazeServer
and its constructor {247-253} is passed the output end of the toServer channel and the
parameters of the game. The server process is then declared {236} as an instance of
MobileProcessServer and initialized {237} with the input end of the toServer channel
and the name of the service that is provided. Recall that this serviceName is that of the
only network channel that is created using a character string to identify the channel and
provides the initial connection between any client and the server. A Parallel is then
constructed {238} comprising theServer and sender and their run methods invoked.

The run method of the sender process is then defined as part of the MazeServer class
{255}. An array of ProcessInputChannels is declared that implements the fromPlayer
channels {256}. An array of MobileMazePlayers (see the next section) is then declared
{258}. For each of the players, a MobileMazePlayer is defined with the required
parameters, the identifier of the player and the channel location of the fromPlayer net input

fromPlayer
toPlayer

init
Player

Player

Display

120 K. Chalmers and J. Kerridge / jcsp.mobile

channel {259-263}. As requests are received from the client processes the next mobile
player process is sent to the client process. Thus a client does not know which player
process they will receive.

Once all the player processes have been sent to each of the client processes an instance
of the MazeDisplayMain process is declared {265} and executed by passing it as a
parameter to the ProcessManager constructor {267}. We shall not describe the detail of
the MazeDisplayMain process but its first stage is to read in the net channel locations of the
input ends of the init and toPlayer channels.
218 public class MazeServer implements CSProcess {
219 private int noPlayers;
220 private ChannelOutput out;
221 private int rows, columns;
222 public static void main(String[] args)
223 {
224 try
225 {
226 String CNS_IP = Ask.string("Enter IP of CNS: ");
227 String serviceName = Ask.string("Enter unique service name: ");
228 int noPlayers = Ask.Int("Enter number of players: ", 1, 4);
229 int rows = Ask.Int("Rows: ", 5, 20);
230 int columns = Ask.Int("Columns: ", 6, 20);
231 Mobile.init(Node.getInstance().init(
232 new TCPIPNodeFactory(CNS_IP)));
233 One2AnyChannel toServer = Channel.createOne2Any();
234 MazeServer sender = new
235 MazeServer(toServer.out(), noPlayers, rows, columns);
236 MobileProcessServer theServer =MobileProcessServer.getServer();
237 theServer.init(serviceName, toServer.in());
238 new Parallel(new CSProcess[] {theServer, sender}).run();
239 }
240 catch (NodeInitFailedException e)
241 {
242 System.out.println("Error connecting to CNS");
243 System.exit(-1);
244 }
245 }
246
247 private MazeServer(ChannelOutput out, int noPlayers,
248 int rows, int columns) {
249 this.out = out;
250 this.noPlayers = noPlayers;
251 this.rows = rows;
252 this.columns = columns;
253 }
254
255 public void run() {
256 ProcessChannelInput[] fromPlayers = new
257 ProcessChannelInput[noPlayers];
258 MobileMazePlayer[] players = new MobileMazePlayer[noPlayers];
259 for (int i = 0; i < noPlayers; i++) {
260 fromPlayers[i] = Mobile.createNet2One();
261 players[i] = new MobileMazePlayer(i,
262 fromPlayers[i].getChannelLocation());
263 out.write(players[i]);
264 }
265 MazeDisplayMain theMaze = new MazeDisplayMain(noPlayers,
266 fromPlayers, rows, columns);
267 new ProcessManager(theMaze).run();
268 }
269 }

 K. Chalmers and J. Kerridge / jcsp.mobile 121

2.1.2 MobileMazePlayer

The MobileMazePlayer class extends MobileProcess and contains a constructor {273}
that is invoked by the MobileProcessServer when the instances of the mobile process are
created. The MobileProcessClient that inputs this process invokes the run method {278-
287}. The run method declares the init and toPlayer channels {279, 282} using a call to
Mobile.createNet2One. The location of the fromPlayer channel is passed as parameter
of the constructor {280}, which is used to create a Mobile One2Net channel. The mobile
player process then writes the locations of the init and toPlayer channels to the Display
process as described above using the fromPlayer channel {283,284}. An instance of a
PlayerFrame process is then run {285}, which has not been modified in any way from the
version that ran in a non-mobile manner.

270 public class MobileMazePlayer extends MobileProcess {
271 private int playerId;
272 private NetChannelLocation fromPlayerLocation;
273 public MobileMazePlayer(int playerNumber,
274 NetChannelLocation fromPlayerLocation) {
275 this.playerId = playerNumber;
276 this.fromPlayerLocation = fromPlayerLocation;
277 }
278 public void run() {
279 NetChannelInput init = Mobile.createNet2One();
280 NetChannelOutput fromPlayer =
281 Mobile.createOne2Net(fromPlayerLocation);
282 NetChannelInput toPlayer = Mobile.createNet2One();
283 fromPlayer.write(init.getChannelLocation());
284 fromPlayer.write(toPlayer.getChannelLocation());
285 new PlayerFrame(playerId, 100, init, fromPlayer, toPlayer).run();
286 }
287 }

2.2 Home Systems Remote Control

Within a current home, with many different electrical consumer products (TV, DVD Player,
Stereo), there may be many different remote controls in use. The user may find it hard to
remember exactly which control operates which product, they may lose a control or they
may have too many controls in general. Using the mobile process technology, it is possible
for an electrical product to contain its own remote control internally, and send it to a
universal, touch screen device when requested. In other words, there is one control for all
devices. This would effectively remove the requirement of product manufacturers
developing remote controls for each device they create in a physical form, only a software
developed system is required. This could be implemented using Bluetooth TCP/IP, or
JCSP could be expanded to use serial connections and thereby allow the use of an infra red
port.

Looking at digital television technology set top boxes currently download new system
software when sent via the communication medium. Applying the concept of internally
stored remote control systems means that they can also update their remote controls. This
allows systems to be updated in ways not normally possible and coupling this with the ease
of buying a new remote control, when one is lost, demonstrates the possibilities of these
systems.

To demonstrate, a simple remote control device system was developed. Three devices
that can be controlled are created, and are virtually demonstrated as three different windows
on a PC. The remote control for each device will be transferred, as a Mobile Process, to a

122 K. Chalmers and J. Kerridge / jcsp.mobile

PDA when requested. To simplify the concept, the PDA has an initial interface consisting
of three buttons named TV, DVD and STEREO. When one of these buttons is pressed, the
relevant control is received from the relevant device server. Figure 4 illustrates the basic
process network design and shows how it relates back to the pattern presented for mobile
processes.

Figure 4. Remote Control System Process Network

3. Migrating Processes and Channels

The first step here is to modify the MobileProcess so it reflects more closely the model
defined by Barnes (Barnes, 2001) by adding a channel that can be used to signal the process
to stop. Originally this was called a kill channel, but reset is probably a more easily
interpreted name, as the process is not necessarily killed. This channel can be used to send
a signal to stop the process, or receive a channel location so that the process can be
redirected to a new Node.

3.1 Migratable Channels

A Migratable Channel is one that can move from one Node to another and continue
communication with its opposite channel end almost seamlessly. At a local level, this type
of operation is easy with Java as a reference to a Channel End can be quite easily passed
from process to process. Doing this at a distributed level is a lot more difficult, as it
requires the opposite channel end to be redirected to the new location.

A Networked Channel operates using client-server style architecture, with the input
end acting as a server, and the output as a client. Because of this it is possible to have
multiple output ends (clients) connected to a single input end (server), and all the output
end needs to know is the location of its relative input end. If this is viewed in the context of
a Migratable Channel, then as long as the migrating output channel retains the location of
the input channel it is using, it can be quite easily sent across a network.

Input channels are a bit more difficult. If it is moved to another location then each of
its relative output ends must be made aware of this. Due to the input channel having no
knowledge of its output channels, the obvious solution of sending the new location to these
channels is not possible. Quickstone have developed a solution to this problem however.

What appears to happen is that when a Migratable Input Channel is moved, it leaves a
small process listening on its original location with a temporary channel name it declares
with the CNS. When the input channel arrives at its new location, it declares this channel
with the CNS. When an output channel then tries to send to the old location, it is told the
name of the channel to resolve with the CNS, which it then uses to reconnect to the
channel. Figure 5 illustrates this concept.

REMOTE
CONTROL
RECEIVER

MOBILE
PROCESS
CLIENT

MOBILE
PROCESS
SERVER

TV
SENDER

TV
SCREEN

1: “TV”

2: Request
3: TV

Remote
Process

4: TV Remote
Process

5: TV Remote
Process

6: Communication

 K. Chalmers and J. Kerridge / jcsp.mobile 123

Figure 5. Migrating Channels

This method works quite well, as long as both Channel Ends are declared as
Migratable. This is so that the output end knows in some cases it may receive a name to
connect to a new channel location. In both instances (input and output), when the channel
is about to move, a prepareToMove() method is called on the channel so that any necessary
actions can be performed on the channel as required before movement. This idea can be
taken further into the concept of a Migratable process also.

3.2 Migratable Processes

If the Mobile Process class is extended to create a Migratable Process class, it can be seen
that implementing a prepareToMove() on the process is also a good idea. This will allow
any necessary actions to be performed on the process to prepare it to be moved (a prime
example of this is the removal of non-serializable objects as these cannot be sent across
networked channels). This method is declared abstract as each specific process will require
different actions to prepare it for migration.

It is possible to test a basic Migratable Process, and the simplest to use is a Producer-
Consumer system. Due to the simplicity of the system itself, it is not necessary to use the
prepareToMove() function as no real preparation is necessary to move the process. It is
also easier to have the basic processes wrapped inside a parent Migratable Process which
will start them when it arrives at its relevant client location. This parent class will then read
from its reset channel and when it receives a channel location will stop the Producer or
Consumer, create a channel from the channel location received and write itself down the
created channel.

3.3 A Producer-Consumer Example

When this version of the Consumer is created, it is passed a MigratableChannelInput
end, which can be passed in when the server process creates it. This is similar to the idea of
passing in a channel location but a channel does not need to be created by the process as it
is already present. Due to the nature of the Migratable Channel this is perfectly viable
code.

Input Channel
End

Input Channel
End New
Location

CNS

Output Channel
End

temp

temp

temp

Input Channel
End New
Location

Output Channel
End New Channel

124 K. Chalmers and J. Kerridge / jcsp.mobile

When the process is run, it initially declares the reset channel with the CNS {294},
which allows other process to find the reset channel. A new consumer process is then
created {296}, and started within its own ProcessManager {297}. A ProcessManager
allows a single process to be started and for the main process to continue if the start()
method is called instead of run() {298}. Next a channel location is read from the declared
reset channel {299}. When a location is received, the consumer is stopped and the
MigratableChannelInput is informed that it is about to move {300-301}. A
ProcessChannelOutput is then created {302} and the MigratableConsumer is sent down
it {303}. When another client receives the process, this run method is invoked again with
the Producer having no knowledge that the process has relocated, and hence the Consumer
is truly mobile. The Consumer’s input channel can also be made a Process Channel {295},
allowing unknown objects to be sent from the Producer to the Consumer.

288 public class MigratableConsumer extends MigratableProcess {
289 MigratableChannelInput in;
290 public MigratableConsumer(MigratableChannelInput in) {
291 this.in = in;
292 }
293 public void run(){
294 reset = Mobile.createNet2One(“consumer.reset”);
295 ProcessChannelInput processIn = Mobile.createNet2One(in);
296 Consumer consumer = new Consumer(in);
297 ProcessManager pm = new ProcessManager(consumer);
298 pm.start();
299 NetChannelLocation toLocation = (NetChannelLocation)reset.read();
300 pm.stop();
301 in.prepareToMove();
302 ProcessChannelOutput toNext = Mobile.createOne2Net(toLocation);
303 toNext.write(this);
304 }

4. Evaluation

4.1 Embedded Systems

Some of the main issues relating to embedded systems are memory constraints and the
ability to update the systems easily. In general, an embedded system would require all the
necessary class files and resource files before it could be started, and this can be a strain on
storage requirements, especially if some of the class files are rarely used. If the framework
for mobile processes is used, as well as a system that removes unnecessary class definitions
from the Class Manager, the embedded system only requires the basic classes used here,
and this will possibly lead to a smaller memory footprint. Of course, if time constraints are
placed on the embedded system then this method is inefficient.

The other problem associated with embedded systems - that of updating multiple
systems easily - can be implemented quite easily with this framework, and this can even be
done without stopping the systems. By using the reset channel, it is possible to make the
system update itself as necessary by forcing them to access the server process responsible
for the clients.

4.2 Distributed Systems and Mobile Agents

The concept of a mobile agent was first discussed by White as a successor to Remote
Procedure Calling [6]. White points out that the main limitation of RPC for distributed

 K. Chalmers and J. Kerridge / jcsp.mobile 125

systems is that the client requires some knowledge as to the service provided by the server,
and describes the concept of mobile agents to overcome this limitation by allowing a
system to inform a client type application exactly what kind of procedures it provides.

Looking at the framework developed here for mobile processes, it is apparent that a
system that exhibits this kind of functionality has been created. The client side process
does not need any prior knowledge as to what functionality it will have. In effect it is told
exactly what procedures it can use when it requests a service.

Another concept of mobile agents is the ability to send a process from one system to
another so it can execute some functionality and then return. Again, it is quite apparent that
the mobile process framework also provides this functionality quite concisely. It is quite
possible to send processes between systems easily, without either system knowing exactly
what the process needs to do. Of course, there are security constraints that need to be
considered to stop malicious processes being sent into a system, but the basic principle has
been developed.

4.3 Location Aware Computing

Currently, location awareness within systems relates mainly to the availability of different
information being available to the user depending on their current location, coupled with
the ability for users to know each other’s location. Basically the system adapts to offer
different information and services relating to where the user happens to be.

An example of this type of environment can be seen in a museum, where currently
exhibit information is generally contained on a display card next to the exhibit in question.
This may require the onlooker to move away from the exhibit to the card to read
information pertaining to the exhibit, and then back. If a location aware system was
implemented in this situation, these cards could be replaced by information displayed on a
PDA relevant to the exhibit the user is near. Furthermore, it would be possible for the
system to provide links to other relevant information about the exhibit within the PDA, or
externally on a server, with these links possibly being locations of other exhibits, audio,
video or textual information.

This kind of system is being placed as the next generation of application for mobile
devices, but the limitation of providing information relevant to the location is apparent, and
is really only an extension on current browser technology. What the mobile process
technology has shown is that it is possible to change the system itself, to a Location
Adaptive System or Location Context System, where the system itself adapts to the location
of the user.

5. Conclusion and Future Work

The first point to consider when evaluating JCSP is how well it reflects the underlying
principles of Communicating Sequential Processes, and although no thorough investigation
into this has taken place here, it can be deemed by some of the resources used that JCSP
does provide the mechanisms expected [7,8]. Using JCSP is relatively easy, and can be
related back to the basic premise of individual processes sharing resources by the use of
communication channels. JCSP, or more importantly Java, does present some issues
relating to the implementation of a CSP system at a local level, due to the reference
semantics used. This means even though an object is passed from one process to another
over a channel the sending process can still change the shared object [3].

A more accurate evaluation can be made of the networked aspects made available by
JCSP Network Edition, especially in reference to the robustness of the Channel Name

126 K. Chalmers and J. Kerridge / jcsp.mobile

Server and underlying architecture used to implement the networked aspect. During this
work, the CNS has been tested on a number of levels. Firstly, the ease of creating
networked channels given only the IP address of the CNS and a channel name should be
mentioned. This feature creates an almost invisible method of networked channel creation,
with locations of individual processes not being required, just the location of the CNS they
are using. This functionality can be attributed to the implementation of the Broker design
pattern [9].

The second feature of the Network Edition of JCSP is anonymous channels. This
functionality is one of the main reasons that the concept of mobile processes within JCSP is
possible. Using anonymous channels, by passing channel locations within a process,
another layer of transparency is possible, mainly as the CNS does not have to be used to
forward messages. This is where the CNS advances beyond the original Broker pattern
used. In theory it is quite possible to have a system that does not use a CNS after an initial
process transaction as it is never used again. This concept is also the reason why the
Dynamic Class Loading service can be made available, as a process can be given the
location to retrieve class data from, again transparently. The whole transparency and ease
of use of these features truly demonstrates how well the networked features have been
developed.

The final feature of consideration is how the channels have been developed. There
were two choices on how to develop a networked channel, having the underlying server
socket as an input channel end receiving messages, or have the output channel acting as the
server socket. Given that servers generally send information to clients it would seem most
likely that the output channel would act as a server socket. However, had this type of
architecture been implemented, it would not be possible to send channel locations between
distributed processes as the initially declared output channel would only be able to send
locations, not receive them. The designers of JCSP Network Edition took this into
consideration however, and developed the input channels as server sockets, enabling the
development of mobile processes as a whole.

Also due to the good development was the ease with which JCSP could be transferred
onto a mobile platform, although this was mainly because of the underlying Java Runtime
Environment used. A viable version of J2ME Connected Device Configuration Personal
Profile, which acts as Java Standard Edition 1.3.1, was made available by IBM[10]. It was
fairly easy to transfer a basic JCSP system onto a PDA device and it is even possible to use
a PDA device as the CNS.

Currently, we are developing a system for context and location aware computing that
will allow a user to roam around an environment such that their PDA will download
location specific clients to interact with a server depending upon the particular wireless
access point they are using to access the network.

Acknowledgements

Kevin Chalmers acknowledges the support of the Student Award Agency Scotland who
contributed to his tuition fees for the undergraduate degree for which the work reported in
this paper formed part of his final year project. We are grateful for the helpful comments of
the referees.

 K. Chalmers and J. Kerridge / jcsp.mobile 127

References

[1] Quickstone Ltd, web site accessed 4/5/2005, http://www.quickstone.com/.
[2] F.R.M. Barnes and P.H. Welch. Prioritised Dynamic Communicating and Mobile Processes. IEEE

Proceedings – Software, 150(2), 121-136. April 2003.
[3] F.R.M. Barnes and P.H. Welch. Mobile Data, Dynamic Allocation and Zero Aliasing: an occam

Experiment. In A. Chalmers, M. Mirmehdi, and H. Muller (Eds.), Communicating Process Architectures
2001. IOS Press, 2001.

[4] Z. Qian, A. Goldberg, and A. Coglio. A Formal Specification of Java Class Loading. ACM SIGPLAN
Notices, 35(10), 325-336. October 2000.

[5] P.H. Welch. CSP Networking for Java (JCSP.Net). [Electronic Version]. Retrieved January 14, 2005
from http://www.cs.kent.ac.uk/projects/ofa/jcsp/jcsp.ppt. 2002.

[6] J. White, (1996). Mobile Agents White Paper. [Electronic Version]. General Magic. Retrieved March
22, 2005 from http://citeseer.ist.psu.edu/white96mobile.html. 1996.

[7] P.H. Welch (1998). Java Threads in the Light of occam/CSP. In P.H. Welch and A.W.P. Bakkers
(Eds.), Architectures, Languages and Patterns for Parallel and Distributed Applications, WoTUG-21,
pp. 259-284. IOS Press, 1998.

[8] P.H. Welch and J.M.R. Martin, (2000). Formal Analysis of Concurrent Java Systems. In P.H. Welch
and A.W.P. Bakkers, (Eds.), Communicating Process Architectures 2000 (pp 275-301). IOS Press. 2000.

[9] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal (1996). A System of Patterns:
Pattern-Orientated Software Architecture. Chichester: Wiley. 1996.

[10] IBM J2ME, web site accessed 4/5/2005. http://www-106.ibm.com/developerworks/wireless/
library/wi-j2me/.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

