
Communicating Process Architectures 2005 147
Jan Broenink, Herman Roebbers, Johan Sunter, Peter Welch, and David Wood (Eds.)
IOS Press, 2005

Fast Data Sharing within
a Distributed, Multithreaded

Control Framework for Robot Teams
Albert SCHOUTE a 1, Remco SEESINK b, Werner DIERSSEN c and Niek KOOIJ d

a University of Twente, b Atos Origin NL, c Triopsys NL, d Qmagic NL

Abstract. In this paper a data sharing framework for multi-threaded, distributed
control programs is described that is realized in C++ by means of only a few,
powerful classes and templates. Fast data exchange of entire data structures is
supported using sockets as communication medium. Access methods are provided
that preserve data consistency and synchronize the data exchange. The framework
has been successfully used to build a distributed robot soccer control system running
on as many computers as needed.

Keywords. robot soccer, control software, distributed design, data sharing, multi-
threading, sockets

Introduction

This paper describes the control software framework of the robot soccer team Mobile
Intelligence Twenty (MI20). Many different types of robot soccer competitions are
organized by international associations [1], [2] with varying game and hardware rules. Our
team competes in the FIRA MiroSot league, in which small-sized, wheeled robots are
controlled based on localization by a central camera system. The application is
representative for control systems that heavily rely on globally shared sensor information.

In contrast to the centralized way of robot localization the team control system is
designed in a distributed way, where separate single- or multi-threaded programs control
distinct parts of the system. The big advantage of this design is that we can run our system
on as many computers as we think is necessary. So if some tasks are very computationally
demanding, for instance robots tracking, path planning or playing strategy, we can run the
programs on separate computers.

Distributed software design has many more advantages, but also one big disadvantage:
it complicates data sharing. Because many threads have to share common data, they will
communicate quite intensively. Therefore we need to find a very fast way of exchanging
data. We chose to use sockets as a communication medium, because they can provide fast
communication. The second important issue in our design is that we exchange entire data
structures. Because the layout of the data structure is known on both sides of the
communication channel, we can address members of the structured data without using
functions, which provides good speed performance. Functionality is added to automatically
maintain data consistency between application threads that access the data structures and
communication threads that exchange the data. The application programmer can use safe

1 Corresponding Author: University of Twente, Dept. of Computer Science, Postbox 217, 7500 AE Enschede
The Netherlands, Email: a.l.schoute@utwente.nl

148 A.L. Schoute et al. / Fast Data Sharing in a Control Framework for Robot Teams

access methods without having to bother about thread interference. This way we have
achieved a fast and reliable system that we can expand or change, without the need of
redesigning the system.

1. Application

1.1 The Robot Soccer Game Environment

Figure 1. MiroSot League competition set-up

In the MiroSot league the robot size is limited to cubes with maximum measure 7.5 cm.
Competition categories differ with respect to robot team sizes (3, 5, 7 or 11 players) and the
matching dimensions of the playground. Our robots have an onboard DSP-processor that
takes care of wheel velocity control and wireless communication. A digital camera above
the playground captures images that are processed by the team computer(s) that steer(s) the
team of robots. Robots are recognized by means of colour patches on their top surface. The
game is played with an orange golf ball. Wheel velocity set-points are sent to the robots by
a radio link, each team using a different frequency.

Figure 2. Impression of the real game situation

1.2 Requirements

The design of the data sharing framework has been influenced to a large extend by the
requirements of the robot soccer application. Let us consider the main aspects.

First of all, in a game situation it is important to continue under all circumstances even
if certain robots are not functioning properly, if disturbing events happen on the play
ground or processes deteriorate. Only a human arbiter may interrupt - according to the

 A.L. Schoute et al. / Fast Data Sharing in a Control Framework for Robot Teams 149

playing rules - the fully computer-controlled game. A distributed, concurrent design with
independently operating components will contribute to the robustness of the system.

Furthermore, the application must be highly reactive and requires fast responsiveness
to the actual situation. Image data need to be processed at the camera frame rate (30 frames
per second). Due to many circumstantial influences, for example lighting conditions, data
may be unreliable and must be filtered. State information should reflect the real-time
situation as close as possible. The rate at which robots receive control data depends on the
team size and typically lies in between 10 to 20 set-points per second.

For the application it is important that the most recent sensor data and updated state
information is made available throughout the system as fast as possible. State information
in this kind of application has a permanent structure and is maintained in globally known
data types. Sharing of state information in a flexible way implies that arbitrary many
concurrently running threads can access common data structures asynchronously. If the
system is distributed over multiple programs, possibly running on different computers, we
still want to be able to share common data structures. The data content has to be
proliferated to “mirror” the same data at different places.

Of course updating and exchanging shared data must be organized in a sensible way.
So, the application programmer is responsible of defining data structures as being common
and establishing communication processes that create a “refreshment chain” by which
updates are proliferated. We require that the content of shared data structures is “near-time
equivalent”, which means that reading threads obtain a recently written data content. A
reading process may also require getting the next refreshed data instance.

1.3 Solution Approach

The framework presented provides the tools to manage the shared data access and
proliferation in an easy, efficient and safe way. Several practical implementation decisions
are made to make the data sharing as fast as possible in the context of C++ based
programming and Linux based multithreading. The main approach could be stated as a
combination of:

1. a shared memory access model within a single multithreaded program
2. a socket communication model to exchange common data structures (in binary

form) between program variables of compatible type

Ease of programming is reached by making the access to shared data structures
transparent to the fact whether a common data structure is accessed by threads within only
one or within multiple programs. In the latter case the same data structure is defined in each
program and the content is mirrored in some sense. But the access method of remotely
operating threads remains the same.

We do not intend to introduce a new concurrency concept. Nor do we claim that our
implementation presents a unique, novel solution. Similar distributed data sharing facilities
can be provided by using other programming concepts and tools. In this respect, a
comparison with other approaches has to be made yet.

Our purpose is to offer a fast and practical solution in the given object-oriented context
for distributed software development while preserving efficient ways of data sharing. In
object-oriented programming environments like Java and .Net so-called “object streams”
are supported. Complete objects are “serialized” into a string representation to be
transported over a network. The associated overhead, however, does not comply with the
needs of real-time control applications.

150 A.L. Schoute et al. / Fast Data Sharing in a Control Framework for Robot Teams

2. Framework Components

The distributed data sharing framework is realized in C++ by means of only a few,
powerful classes and templates:

• a super-class Cthread that enables threads to start, stop, pause and resume
• a class Cmutex to exclusively lock data and wait on or signal data presence or

renewal
• a template class Csafe usable for any type of shared, structured variable to

enforce safe access
• a super-class Csocket to instantiate threads that operate on sockets
• template classes Ccommunication_sender and Ccommunication_receiver to

instantiate communication threads that send or receive the content of a “safe
variable” over a socket

• a super-class Cexception to keep error management simple while acting
appropriately on different sorts of exceptions

Thread instances of Cthread are actually based on Posix compliant threads, known as
pthreads [3]. Linux supports multithreading by running pthreads as kernel processes [4].
The pthread-package supplies synchronization functions for exclusive access to class
objects according to the monitor concept [5].

The power of the framework doesn’t result from each of the classes alone. It results
from their combined use by fully exploiting all the nice features of C++ like function
inheritance, type-independent template-programming and function overloading.

For example the template declaration Csafe, being a derived class of Cmutex, creates
exclusive access to arbitrarily typed variables. Basically it adds a “value” of any type to an
instance of class Cmutex. This “mutex” instance functions as exclusion and synchronization
monitor for the added “value”. The template declaration of Csafe is contained in nothing
more than a two-page header file. This provides the basic locking mechanism to preserve
data consistency of shared variables accessed by multiple threads. Moreover, the wait and
signal functions of class Cmutex (again based on the pthread-package) automatically take
care of condition synchronization between asynchronously reading and writing threads. In
the Cmutex class a single private condition variable is defined on which threads will block
when calling the wait function. The solution resembles object synchronization as made
implicitly available in Java [6].

By defining any variable as “Csafe” and obeying the usage protocol as shown in the
next section, the programmer can rely on the mechanism to guarantee safe and
synchronized access.

The safe access mechanism is applied to the framework itself to extend its power even
more. Thread instances of class Cthread are represented by underlying pthreads that can be
created, paused or stopped. Their state can be dynamically changed by other threads and
hence the state variable is implemented as a Csafe object. Only if a thread of class Cthread
is executing its “run-function” the underlying pthread is needed and actually present as a
Linux process. The introduction of a function run() as “actual body” of a thread is
borrowed from Java.

3. Framework Usage

When reading or writing a Csafe-variable X exclusive access needs to be established by
explicitly calling locking and unlocking functions as follows:

 A.L. Schoute et al. / Fast Data Sharing in a Control Framework for Robot Teams 151

 X.lock();
 /* now X.value can be read or written safely */
 X.unlock();

It has been considered to perform locking implicitly and hide it from the programmer.
However, this is rather a burden than an advantage if accesses are more complex. A mixture
of both explicit and implicit locking would be even more confusing. So explicit locking is
required as being the most transparent, flexible and efficient solution, although it is not
enforced automatically. If it is important to keep the locking period short the programmer
can make a local copy.

In the context of a dynamic application like robot soccer fast asynchronous updating of
state information is an important issue. The synchronization properties inherited from the
Cmutex class make the signaling of and waiting on data renewal very straightforward. The
program sequences in Table 1 show how a reading thread waits for renewed data to become
available and a writing thread signals the renewal of it.

Table 1. Reader / Writer Synchronisation

Reader Writer
X.lock();
X.wait();
/* reading of X.value */
X.unlock();

X.lock();
/* writing of X.value */
X.signal();
X.unlock();

On this schema many variations are possible. If multiple threads possibly wait on
reading the same variable X the writer should issue X.broadcast() instead of
X.signal(). In the former case any waiting thread is signaled, in the latter case only a
single one is signaled. In fact, the most robust way of programming is to use always
X.broadcast().

A thread may also read or write a new value only if the variable X is not locked by
using the function X.try_lock() instead of X.lock(). This could be desirable in order to
avoid locking delays when data has to be captured and distributed in real-time. Figure 3
reflects the case where a camera thread distributes images to multiple “subscriber threads”
by writing a new image to each of their “safe” image variables. By using try_lock the
variable is refreshed only if the reading thread is not yet busy with processing an earlier
image.

image buffer
grab frame

subscriber
image variable

camera thread distributes new images
by “try_lock & signal” subscriber threads get recent

images by “lock & wait”

subscriber
image variable

subscriber
image variable

Figure 3. Camera images are copied to multiple Csafe variables as an example of safe data distribution

The simple data exchange concept provided by Csafe variables has been extended to a
distributed environment by means of the communication classes Ccommunication_sender
and Ccommunication_receiver of the framework. As these classes are derived from the
classes Csocket and Cthread respectively, instances of the communication classes become
sender and receiver threads capable of communicating through sockets. If a thread has

152 A.L. Schoute et al. / Fast Data Sharing in a Control Framework for Robot Teams

modified a Csafe variable in a program on one computer, it has only to signal this variable
to activate an associated chain of sender and receiver threads to transport the modified
content to another computer. Finally, the receiver thread will update a similar variable in a
program that runs on the other computer. Any thread waiting on this variable is notified.
Dedicated sender and receiver threads have to be defined to couple a pair of distributed
Csafe variables. An example related to the robot soccer application is given in the next
section.

Note that distributed Csafe variables are automatically updated by chains of sender
and receiver threads. Updating on demand would avoid unnecessary traffic, but induces
extra delay time.

Due to the general nature of sockets, the framework allows for interoperability
between Linux, Solaris or Windows. There is however a prerequisite to be made with
respect to compatibility of the compilers used. Apart from byte-order conversion (big/little-
endian) that is automatically detected and corrected, the variables must be mapped on
memory identically on all machines.

4. MI20 Software Architecture

The framework facilities have been used extensively in the MI20 control software. Due to
the distributed design there is no essential difference in controlling a single robot team or
controlling both teams of a robot game. In the latter case the global vision system tracking
the robots consists of a single program for image processing and two separate programs for
the state estimation as viewed by each team. The image-processing program contains
multiple threads interpreting the images: for each team a vision thread together with threads
that display images on the user interface. A camera thread distributes images to all of these
image processing threads in a way as described in the previous section.

Also the “soccer playing intelligence” of the system is distributed over multiple agent
threads. Each team consists of player agents, one for each robot, and a single coach agent.
When controlling two teams the system has the multi-agent architecture as shown in Figure
4. Each of the robots is steered by its player agent. This agent actually sends control
commands to a thread that drives the radio-frequency link.

Figure 4. Controlling a complete robot match with two teams using a single camera system

Let us take the player agent as an example to see how data is exchanged in the system.
State information is maintained in several globally known data structures like “world data”,

coach
agent

RF RF

camera

robots robots

image processing

world state
estimator

coach
agent player

agents
player
agents

Team A Team B

world state
estimator

 A.L. Schoute et al. / Fast Data Sharing in a Control Framework for Robot Teams 153

“player data”, “coach data”, “wheel data”, etc.. In the main program of the player agent,
Csafe-variables are defined for all of the data structures needed – for example:

 Csafe<Tworld_data> world_data;
 Csafe<Tplayer_data> player_data[PLAYERS];

The player agent will typically read the world data produced by the state estimator and
write player data and wheel data. The interconnection structure for a player agent is
established by defining its communication servers. For example, to receive world data and
send player data to the coach agent:

 Ccommunication_receiver_thread<Tworld_data>
 Iworld(&world_data, P2W_PORT[robot_id]);

 Ccommunication_sender_thread<Tplayer_data>
 Iplay(&player_data, P2C_PORT[robot_id]);

Then the communication threads only have to be started by calling Iworld.start();
Iplay.start(); etc. Thereafter the distributed data exchange will proceed automatically
through the locking and synchronization protocol as described in the previous section.

The distributed approach forces the separate control parts to communicate through
well-defined interfaces. This has the additional advantage of modular design making
independent development and testing easier. For example, the coach and playing agents can
be tested by using a simulator without changing any of the interfaces. The simulator used
even runs on a Windows machine, whereas all the MI20 control software runs on Linux.

5. Implementation Features

5.1 Coupled Exclusion

In certain cases it is desirable to access multiple Csafe-variables within a single exclusion
regime. For example to read the speed values of both robot wheels consistently. This has
been made possible by the option to supply a common Cmutex variable as argument of the
constructor function of the Cmutex class. Without this argument Csafe-variables use their
private mutex, with this argument given an indirect link is made to the Cmutex-variable
supplied.

5.2 Pausing and Resuming Threads

For efficiency reasons only thread instances that are actually running have underlying
pthreads in operation. Non-running thread instances only exist as class instance, but do not
consume further system resources. The idea is that threads are started or resumed through
the user interface only when necessary and paused or stopped when not needed anymore.
By this way for instance, the actual number of running player threads can be configured
dynamically to match the real world. A drawback is the requirement that threads have to
poll regularly their status to see if they should pause or stop.

5.3 Automatic Connection Recovery

Socket connections may become broken for several reasons. Any sender thread will try to
re-establish the connection. It makes use of type-specific exception classes derived from the
Cexception superclass to catch different exception causes and to take appropriate action.

154 A.L. Schoute et al. / Fast Data Sharing in a Control Framework for Robot Teams

6. Conclusion

In this paper we focused on the additional software “infrastructure” that supports the
distributed design of the robot soccer system MI20. The MI20 system consists of three
major parts that have been designed by master thesis students, e.g. the global vision system
 [7], the intelligent decision engine [8] and the motion planning subsystem [9]. These parts
could not have been developed and glued together so easily without the distributed data
sharing framework. This framework has been designed and implemented at the beginning
of the project to serve as common starting environment. It has been extended gradually
during the subsequent integration stages.

The source code of a simple application example that uses the framework is online
available at the author’s home page [10].

The main objective of the framework was to make distributed system composition easy
without suffering from the overhead, which has been realized successfully. The result
proofs that in a dedicated application like robot soccer both distributed processing and fast
and easy data sharing can go together. Fast data communication is reached by the exchange
of complete, commonly known data structures using sockets. Easy data access is the result
of full exploitation of today’s software facilities as offered by the C++ (template) class
concept, multithreading packages and socket communication.

The flexibility of the distributed control framework has resulted in many blessings not
planned in advance. As mentioned, the system was easily expanded with a duplicate
playing team (and duplicate user interface), allowing us to control a complete robot soccer
match. Whereas the system was initially set up to play with teams of 5 robots, the system is
equally capable of handling larger teams, which made it possible to participate in the
“large” Mirosot league with 7 against 7 robots.

References

[1] RoboCup: www.robocup.org
[2] Federation of International Robosoccer Association: www.fira.net
[3] D.R. Butenhof, Programming with POSIX threads, Addison-Wesley, 1997.
[4] M. Beck et al., Linux Kernel Internals, 2nd Ed., Addison-Wesley, 1997.
[5] A. Silberschatz et al., Applied Operating System Concepts, John Wiley & Sons, 2000.
[6] S. Oaks and H. Wong, Java Threads, 2nd Edition, O’Reilly & Associates, 1999
[7] N.S. Kooij, The development of a vision system for robotic soccer, Masters Thesis, University of

Twente, 2003.
[8] R.A. Seesink, Artificial Intelligence in multi-agent robot soccer domain, Masters Thesis, University of

Twente. 2003
[9] W.D.J. Dierssen, Motion planning in a robot soccer system, Masters Thesis, University of Twente. 2003
[10] wwwhome.cs.utwente.nl/~schoute/ES_files/fc_esi_frame.tar

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

