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Abstract. This paper introduces a safe language binding for CSP multiway events
(barriers— both static and mobile) that has been built intooccam-π (an extension of
the classicaloccam language with dynamic parallelism, mobile processes and mobile
channels). Barriers provide a simple way for synchronisingmultiple processes and are
the fundamental control mechanism underlying both CSP (Communicating Sequential
Processes) and BSP (Bulk Synchronous Parallelism). Formal semantics (through mod-
elling in classical CSP), implementation details and earlyperformance benchmarks
(16 nanoseconds per process per barrier synchronisation on a 3.2 GHz Pentium IV)
are presented, along with some likely directions for futureresearch. Applications are
outlined for the fine-grained modelling of dynamic systems,where barriers are used
for maintainingsimulation timeand thephased executionof time steps, coordinating
safe and desired patterns of communication between millions (and more) of processes.
This work forms part of ourTUNA project, investigating emergent properties in large
dynamic systems (naniteassemblies).
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Introduction

This paper describes the addition of multiwaybarrier synchronisation to the KRoC [1,2]
occam-π system.occam-π [3,4,5] extends classicaloccam [6], including mechanisms for
data, channel and process mobility (taken from Milner’sπ-calculus [7]), dynamic parallelism,
extended rendezvous and process priority.Static barriers foroccam-π were first reported
in [8] — for completeness, some of that information is repeated here. The barriers presented
in this paper may also bemobile, allowing them to be communicated to newly forked pro-
cesses, as well as between processes. This lets us experiment with novel modelling tech-
niques that closely follow real-world systems — such as the merging of biological organelles
represented by clusters of parallel processes controlled through synchronisation on internal
barriers.

Barriers are a synchronisation primitive on which parallelprocessesenrol, synchronise
andresign. When a process synchronises on a barrier, it is blocked until all other processes
enrolled on the barrier have also synchronised. Once the barrier is completed, all blocked pro-
cesses are rescheduled. The semantics of barrier synchronisation are exactly those of anevent
in Communicating Sequential Processes(CSP) [9,10]. However, the dynamics of barriermo-
bility, construction, enrolmentandresignationhave no immediate counterparts in terms of
CSP events. Nevertheless, we present a full CSP formalisation, modelling each barrier as
a processrather than, directly, as anevent. This occam-π language binding issafe in the
sense that enrolment and resignation are automatically coordinated and that a process can
synchronise on a barrier if, and only if, it is enrolled.
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Barriers are used for a variety of purposes and with varying granularity in parallel pro-
grams. For example, theBulk Synchronous Parallelism(BSP) [11] model describes paral-
lel processes that run (mostly) independently on separate processors, but periodically syn-
chronise on a single global barrier to exchange data. Such models will be supported by the
networked version ofoccam-π (not yet released [12]). In this paper, we are concerned with
much finer levels of control, with processes enrolling, synchronising and resigning dynam-
ically on multiple barriers. We are particularly interested in applying these mechanisms to
the design and implementation of highly dynamic massively parallel systems, such as those
being investigated in ourTUNA [13] project.

A previous implementation of barriers in KRoC [14] provideduser-definedabstract data
types [15]. ‘BARRIER’ variables could be declared, explicitly flagged asshared(through the
use of compiler directives which overrode parallel usage checks) and operated via a number
of procedure-calls (‘initialise.barrier’, ‘ synchronise.barrier’, etc.) implemented
in ETC (Extended Transputer Code[16]) assembler. This was functional and fast, but the
programmer had to ensure that barriers were initialised correctly, that only enrolled processes
could synchronise or resign and that barriers were not assigned or communicated (the seman-
tics of which were undefined).

In the language binding presented here, barriers may be declaredstatic or mobile, in
line with occam-π data types and channels. Static barriers arefixed — they may not be
communicated or assigned. Mobile barriers may be communicated, assigned andcloned(so
that the source variable of the communication or assignmentdoes not lose it). All barriers
may be renamed through parameter passing and abbreviation.

Any process that declares a static barrier, or constructs a mobile one, is automatically en-
rolled on that barrier. Only processes enrolled on a barriercan synchronise on it. If an enrolled
process itself goes parallel, there is a default constraintthat at most one of its sub-processes
inherits the enrolment — this is checked at compile time. However, an enrolled process may
override this constraint by explicitly enrollingall parallel sub-processes on specific barrier(s)
at the relevantPAR.

An enrolled process automatically resigns from its barrierif it loses it (through com-
munication, exit from scope of the variable referencing it or, sometimes, on termination), so
that other processes may continue to synchronize on it. A process automatically enrols on a
barrier if it gains it (through communication).

An enrolled process may temporarilyresignfrom a barrier — crucial for the‘lazy’ ex-
ecution of simulation processes that are idle for long periods of ‘time’ (see [17]). This is
expressed through an explicitRESIGN block, with automatic re-enrolment at the end of the
block. Often, such re-enrolment needs careful synchronisation and language support is pro-
posed.

Theseoccam-π barriers are more general than those of BSP (anoccam-π system can
contain any number of barriers, with some processes ignoring them and some registered with
many). They are also more general than CSP events, incorporating ideas ofmobility from
the π-calculus and higher-level design patterns for processresignation. On the other hand,
they are also, currently, less general than those of CSP (occam-π processes mustcommitto
barrier synchronisation — which cannot, therefore, be usedas a guard in achoiceor ALT).

The language binding and informal semantics foroccam-π barriers is covered in Sec-
tion 1. A formal semantics is given in Section 2. An implementation outline is in Section 3,
together with some early benchmarking results. Sample applications follow in Section 4.
Finally, Section 5 summarises and discusses future work.
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1. Language Binding and Informal Semantics

1.1. Static Barriers: Declaration

Barriers are declared in the same way as ordinary channels and variables, with the process
following the declaration automatically enrolled. For example:

BARRIER b: -- declaration of ‘b’

... process(es) synchronising on ‘b’

1.2. Static Barriers: Parallel Enrolment

To enrol all sub-processes on a barrier, the parallel composition must explicitly declare this.
For example:

PAR ENROLL b

P (b) -- all these

Q (b) -- sub-processes

R (b) -- are enrolled on ‘b’

A replicated parallel may also enrol its sub-processes:

PAR i = 0 FOR n ENROLL b

worker (i, b) -- all enrolled on ‘b’

In network diagrams, we represent a barrier as a ‘bar’, connected to all enrolled pro-
cesses. Figure 1 shows the process network for the above ‘worker’ fragment.

worker (n−1)worker (0) worker (1)

b

Figure 1. Barrier synchronised worker processes

1.3. Static Barriers: Synchronisation

Barrier synchronisation is expressed through a newSYNC primitive. For example:

PROC worker (VAL INT id, BARRIER x)

SEQ

... phase 0 computation

SYNC x

... phase 1 computation

:

The execution of the aboveSYNC line blocks untilall other processes enrolled on the
barrier similarlySYNC. It divides the global (parallel) computation of the systemin Figure 1
into two time-separated phases (or‘supersteps’, in BSP terminology).

Note that if a process has a barrierparameter, any invocation must have passed a barrier
argumenton which the invoking process was enrolled. Hence, we (and the compiler) may
assume that a process with a barrier parameteris enrolled on whatever barrier is passed and
that it is legal to synchronise.
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1.4. Static Barriers: Parallel Non-Enrolment

An enrolled process that goes parallel in the normal way (i.e. without explicitly enrolling its
barrier) passes its enrolment toat most oneof its sub-processes. For example:

PROC worker (VAL INT id, BARRIER x)

PAR

A () -- not enrolled

B (x) -- enrolled on ‘x’

C () -- not enrolled

:

For a normal non-enrollingPAR such as this, exactly which (if any) of its sub-processes
takes the enrolment does not matter. The compiler checks that no more than one enrols.

1.5. Static Barriers: Resign Blocks

An enrolled process may temporarilyresignfrom a barrier through the use of aRESIGN-block.
For example:

PROC worker (VAL INT id, BARRIER x)

SEQ

P (x) -- enrolled on ‘x’

RESIGN x

A () -- not enrolled on (and cannot reference) ‘x’

R (x) -- enrolled on ‘x’

:

Whilst executing process ‘P(x)’, this ‘worker’ must synchronise on the barrier (or it
will block other enrolled processes thatare synchronising). However, whilst executing the
RESIGN-block ‘A()’, it plays no part in the barrier and other enrolled processes can synchro-
nise amongst themselves freely. After theRESIGN-block, it is back in the barrier.

Note that some care must be taken to avoid non-determinism after exit from aRESIGN-
block, since the precise time of that exitand consequent re-enrolment in the barrieris
scheduling dependent. This is considered further in Section 1.9 below.

1.6. Static Barriers: Usage Rules

Processenrolmenton a barrier is determined by the scope of its declaration,PAR ENROLL

compositions andRESIGN blocks. The following usage rules for barriers are enforcedby
compiler checks:

• a process may only reference a barrier (i.e.SYNC, RESIGN or pass to a procedure) if,
and only if, it isenrolledon that barrier;

• at most onecomponent process of a non-enrollingPAR remains enrolled on any barrier
for which thePAR, as a whole, is enrolled;

• an individual barrier may be passed toonly oneparameter of aPROC. Strict anti-
aliasing laws apply:differentbarrier names always refer todifferentbarriers.

1.7. Parallel Enrolment with Multiple Barriers

We may enrol multiple barriers in the samePAR construct. In the following example, the
‘*.timer’ processes controls the timing of ‘process.a’ and ‘process.b’ by synchro-
nising on their respective barriers regularly (at ‘long’ or‘short’ time intervals). Processes
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‘process.a’ and ‘process.b’ (which may resign from either or both time-slicing controls
from time to time) also use a private barrier, ‘b’, to synchronise between themselves:

BARRIER long, short:

PAR ENROLL long, short

PAR

long.timer (long)

short.timer (short)

BARRIER b:

PAR ENROLL b, long, short

process.a (long, short, b)

process.b (long, short, b)

1.8. Parallel Enrolment, Termination and Auto-Resignation

Each component process of aPAR ENROLL construct resigns from its so-enrolled barrier(s)
just before it terminates, apart from thelastone to finish.

This means that all components do not have to terminate in thesamebarrier cycle to
avoid deadlock (as would be the case ifoccam-π barriers were direct reflections of CSP
multiway events). Consider the example given in section 1.2:

PAR i = 0 FOR n ENROLL b

worker (i, b) -- all enrolled on ‘b’

Any worker process may terminate early, leaving its companion processes running and
synchronising with each other successfully on ‘b’ — the early-terminated process has re-
signed from the barrier.

In CSP, termination of components of a parallel compositionhappens simultaneously.
If one component is ready to terminate, it commits exclusively to that and refuses all other
events. So, if other components have not terminated and continue to try to synchronise on a
multiway event bound to that parallel, there would be deadlock.

For occam-π, we want to be able to build collections of processes disciplined by com-
mon synchronisation on barrier(s); but which do not have to be kept running and synchronis-
ing when their job is done, just so that they may terminate together. The chosen semantics
give us this directly.

If we really need the raw CSP semantics, we just declare and enrol an extra barrier and
synchronise on itonce:

BARRIER alldone:

PAR i = 0 FOR n ENROLL b, alldone

SEQ

worker (i, b)

SYNC alldone

Now, when oneworker terminates, its driving process commits to engage in ‘alldone’
and refuses ‘b’, on which it is still enrolled. All otherworker processes must also terminate
without further engagement on ‘b’ — else deadlock.

Another nice property from theseoccam-π semantics is thatSKIP is aunitof all versions
of its PAR operator:

PAR = PAR ENROLL b = P (b)

P (b) P (b)

SKIP SKIP
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In the first system, ‘b’ must be a global barrier andSKIP is not enrolled. Hence,SKIP’s
existence and termination have no impact on the continuing operation ofP(b).

In the second system,SKIP is enrolled on ‘b’. UnlessP(b) finishes first, all thisSKIP
does is resign from ‘b’ and wait to terminate. Otherwise, it just terminates (together with
P(b)). If P(b) synchronises on ‘b’, it cannot finish first and blocks until theSKIP has resigned
(which will happen) and, then, continues as normal. If/whenP(b) terminates, it does so with
the waitingSKIP. Either way, theSKIP has no impact and we are left withP(b).

In CSP,SKIP is a unit only of parallelinterleaving. It is not a unit of any parallel operator
bound to an event.

1.9. Controlled Exit from Resign Blocks

A subtle problem can arise through the careless exit fromRESIGN blocks. Consider:

PROC always (BARRIER a, b)

WHILE TRUE

SEQ

SYNC a

... phase A compute (no SYNCs)

SYNC b

... phase B compute (no SYNCs)

:

PROC sometimes (BARRIER a, b)

WHILE TRUE

SEQ

SYNC a

... phase A compute (no SYNCs)

SYNC b

... phase B compute (no SYNCs)

IF

... decide on a holiday

RESIGN a, b

... enjoy holiday (e.g. sleep)

TRUE

SKIP

:

PAR ENROLL a, b

always (a, b)

sometimes (a, b)

So long as ‘sometimes’ stays enrolled in its barriers, all goes well — ‘sometimes’ and
‘always’ will continue their respective phased computations in parallel, keeping in step with
each other as each phase ends.

If ‘ sometimes’ decides to go on holiday, it resigns from its barriers and does other things
(like sleep), leaving ‘always’ to continue on its own — all is still well.

The problem arises if ‘sometimes’ decides to come back. When it exits itsRESIGN
block, it re-enrols on its barriers and waits toSYNC on ‘a’. If ‘ always’ is in its phase B when
this happens, we are lucky and the two processes resume in perfect synchronisation. But if
‘always’ is in phase A, its nextSYNC is on ‘b’ and the system will deadlock.

To do this safely, ‘sometimes’ must coordinate its return with ‘always’. One way to do
this is for ‘sometimes’ to request permission from ‘always’ to return to their joint compu-
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tations. The ‘always’ process only grants this permission in its phase B and, then, waits for
confirmation that ‘sometimes’ has re-enrolled (i.e. has left itsRESIGN block).

This behaviour is easy to manage by signalling and polling over standard channels:

PROC sometimes (BARRIER a, b, CHAN BOOL signal!)

WHILE TRUE

SEQ

SYNC a

... phase A compute (no SYNCs)

SYNC b

... phase B compute (no SYNCs)

IF

... decide on a holiday

SEQ

RESIGN a, b

SEQ

... enjoy holiday

signal ! TRUE -- request comeback

signal ! TRUE -- confirm comeback

TRUE

SKIP

:

PROC always (BARRIER a, b, CHAN BOOL signal?)

WHILE TRUE

SEQ

SYNC a

... phase A compute (no SYNCs)

SYNC b

... phase B compute (no SYNCs)

PRI ALT

BOOL any:

signal ? any -- grant comeback

signal ? any -- wait for confirm

SKIP

SKIP

:

and where the system is now:

CHAN BOOL signal:

PAR ENROLL a, b

always (a, b, signal?)

sometimes (a, b, signal!)

In a larger system, there may be many processes, like ‘sometimes’, that retire from
the computation from time to time. Examples arise in large scale simulations of dynamic
systems, where not all processes need to be continually active (because nothing is changing
in their neighbourhood) but need to rejoin some barrier synchronisation (e.g. for managing
simulation ‘time’) when something happens close to them — see [17].

In such cases, the abovecomeback/confirmprotocol may be used between each resigning
process and justonespecialised process, like the above ‘always’, that isalwayscycling and
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synchronising (and which need do nothing else). Separatecomebackandconfirmchannels
will be needed,SHARED at the resigning process ends. We are considering language support
for such a protocol. For example, the resigning processes execute:

RESIGN b

... resign block (may not reference ‘b’, ‘c’ or ‘d’)

RESUME c! d!

where ‘c’ and ‘d’ areSHARED CHAN BOOLs. In the correct phase, the resuming process exe-
cutes:

RESUME c? b?

where this may be used as anALT (or PRI ALT) guard.

1.10. Mobile Barriers: Declaration

Mobile barriers follow the same general rules for declaration, construction, communication
and assignment as mobile channels and processes. The declaration introduces the variable
name but leaves itundefined. Barrier variables becomedefinedeither through construction,
communication or assignment. The compiler tracksdefined-statusand prevents use of unde-
fined variables. Explicit run-time checks (using theDEFINED prefix operator) are forced for
cases where the compiler cannot deduce thedefined-status.

MOBILE BARRIER b:

... process (initially, ‘b’ is undefined)

At the end of scope of a mobile barrier declaration, if the variable ended up asdefined,
the process automatically resigns from the referenced barrier.

1.11. Mobile Barriers: Construction

Construction and assignment to a mobile variable are bound together:

b := MOBILE BARRIER

where ‘b’ must be aMOBILE BARRIER variable. If ‘b’ were currently defined, the executing
process would first resign from the currently referenced mobile barrier. After this statement,
‘b’ is now defined and references anewmobile barrier and the executing process is enrolled.

Note that a mobile barrier may be declared and constructed inone line with the standard
(though, in this case, rather unusual looking) initialising declaration:

INITIAL MOBILE BARRIER b IS MOBILE BARRIER:

... process (enrolled on ‘b’)

1.12. Mobile Barriers: Communication

Communication follows the same semantics for alloccam-π mobiles: the itemmovesto the
new place, leaving the source variable undefined. For mobilebarriers, there are additional
rules about enrolment and resignation.

In the following, ‘a’ and ‘b’ areMOBILE BARRIER variables, ‘b’ must bedefinedand‘c’
is aCHAN MOBILE BARRIER (i.e. a channel carrying mobile barriers).

c ? a
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If ‘ a’ is defined, the receiving process first resigns from the heldbarrier and, then, receives
the new reference. Otherwise, it just receives the new reference. Either way, it is now enrolled
on the received barrier.

c ! b

This moves the barrier to another process, leaving ‘b’ undefined. This sending process resigns
from the barrier. If we didn’t want to lose it, we must send a clone:

c ! CLONE b

In this case, the sending process remains enrolled on the barrier. All relevant enrols and
resignsof the processes happen automatically and atomically with the communication.

1.13. Mobile Barriers: Assignment

Assignment follows the same mobility and enrol/resign rules. Again, suppose ‘a’ is a
MOBILE BARRIER and ‘b’ is a definedMOBILE BARRIER.

a := b

If ‘ a’ were defined, the process first resigns from that barrier. The barrier referencemoves
from ‘b’ to ‘ a’ and the process remains enrolled on it. Such assignments cannot introduce
aliasing. However:

a := CLONE b -- this may get banned!

alwaysintroduces aliasing. As before, if ‘a’ were defined, the process resigns from that bar-
rier. The barrier reference iscopiedfrom ‘b’ to ‘ a’ — variables ‘a’ and ‘b’ now reference the
same barrier and the process is enrolled twice!

This aliasing may not be as bad as it seems. For example, the code on the left below is
safe and may serve some purpose:

SEQ PAR ENROLL b

a := CLONE b P (b)

PAR Q (b)

P (a)

Q (b)

It is almostthe same as the code on the right, but omits the auto-resignation semantics (see
Section 1.8).

To remain compatible with the rest ofoccam-π and to satisfy our intuition, assignment
and communication should be related by laws that, in these cases, take the form:

a := b = CHAN MOBILE BARRIER c:

PAR

c ? a

c ! b

and:

a := CLONE b = CHAN MOBILE BARRIER c:

PAR

c ? a

c ! CLONE b
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We definitely need to allow the cloned output mechanism — so simply banning cloned as-
signments is not enough to prevent aliasing.

1.14. Mobile Barriers: Forking

Passing arguments toforkedprocesses inoccam-π means communicating them — see [3].
Hence, forked processes may take mobile barrier parameters. If ‘ b’ is a defined mobile barrier,
then:

FORK P (b)

movesthe barrier to the new process. The forking process resigns from the barrier and ‘b’ be-
comes undefined. More usually, of course, the forking process retains the barrier (for passing
to processes it may fork in the future) by passing a clone and remaining enrolled:

FORK P (CLONE b)

Either way, the forked process is enrolled on the barrier. Just before the forked process ter-
minates, it automatically resigns from whatever barrier (if any) its parameter is referencing.
We need this for the same reason that auto-resignation was specified for parallel enrolled
processes (1.8).

Note that the forking process must be enrolled on the barrierto be able to pass it to its
forked processes. This enables the release of forked processes in the correct phase of barrier
synchronisation with existing processes holding that barrier. Enrolment of the forked process
happens atomically with its forking.

1.15. Mobile Barriers: Synchronisation, Parallel Enrolment and Resign Blocks

Synchronisation, parallel enrolment, parallel non-enrolment and resign blocks for mobile
barriers have the same syntax and semantics as those for static barriers.

The usual parallel usage rules for read/write access to variables apply to mobile barrier
variables. A process enrolled on a mobile barrier is considered to haveread access on the
variable — i.e. its value cannot be changed in parallel. Marrying this with the usage rules for
static barriers (Section 1.6), we note one extra rule:

• component processes in aPAR ENROLL construct whose bound barrier(s) is mobile
may not change the held reference (e.g. by assignment, inputor non-cloned output).

That also means that such component processes may only pass aPAR-ENROLL-bound
mobilebarrier to astaticbarrier parameter/abbreviation.

2. A CSP Model for Mobile and Static Barriers

Our original approach was to modeloccam-π barriers directly as CSP multiway events. The
dynamics of mobility, resignation and enrolment was to be handled with auxiliaryspinner
processes, interleaving with the application processes onthe barriers and taking over syn-
chronisation on them when the application process was not enrolled. This worked well for
static barriers, but managing the infinite sets ofspinnersneeded to explainmobilebarriers
was proving troublesome (and would be hard for model checkers to accommodate).

The approach presented here models each barrier as aprocess, rather than an event. It
documents how they are supported by theoccam-π kernel. It captures all the dynamic se-
mantics ofoccam-π mobile barriers: run-time construction, communication and assignment,
cloning, parallel enrolment and non-enrolment, termination resignation and resign blocks,
and passing as arguments to forked processes.
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Initially, we consider mobile barriers — the model for static barriers then follows triv-
ially. A formal semantics foroccam-π barriers then derives from the semantics of CSP.

2.1. Modelling anoccam-π Mobile Barrier with a Process and Shared Channels

The insight is to give up trying to model these dynamic barriers directly with CSP events
and spinner processes (maintaining synchronisation when their buddy application processes
disengage). Instead, we model mobile barriers with processes and shared channels, but with
added flexibility for the dynamic enrolment and resignationof processes.

So, occam-π mobile barrier variables become (mobile) integer variables, holding in-
dices to the actual barriers. The latter are (kernel) processes, running in parallel to all appli-
cation processes, and created dynamically as needed. This means that they are always acces-
sible to all application processes, even though they are triggered within individual ones. So,
we don’t require the awkwardscope extrusionconcept of theπ-calculus.

Table 1. Mobile barrier process fields

Field Name Purpose

b index identification — unique for each barrier

refs reference count the number of mobile barrier variables currently holding a reference to ‘b’

n enrolled count the number of processes currently enrolled on ‘b’

count sync count the number of processes still left to synchroniseon ‘b’ (to complete the barrier)

Table 2. Mobile barrier process events

Event Purpose

enrol.b.p enrol ‘p’ processes on barrier ‘b’

resign.b resign one process from barrier ‘b’

tresign.b temporarily resign one process from barrier ‘b’ (‘ RESIGN’ block)’

tenrol.b re-enrol one (temporarily resigned) process on barrier ‘b’

sync.b offer (committed) to synchronise on barrier ‘b’

ack.b complete synchronisation on barrier ‘b’

A mobile barrier process has four integer fields — shown in Table 1. System constraints
will impose that(b > 0) and(refs > n > count> 0). Index zero is reserved for mobile
barrier variables currently undefined — this is just for convenience in the following model
(not strictly necessary). The mobile barrier process with index ‘b’ engages on the events de-
scribed in Table 2. Here is the process:

BAR(b, refs, n, count) =
(

enrol.b.p → BAR(b, refs+ p, n + p, count+ p)
)

2
(

resign.b → BAR(b, refs− 1, n− 1, count− 1)
)

2
(

tresign.b → BAR(b, refs, n− 1, count− 1)
)

2
(

tenrol.b → BAR(b, refs, n + 1, count+ 1)
)

2
(

sync.b → BAR(b, refs, n, count− 1)
)

, if (count> 0)

BAR(b, refs, n, 0) = BAR ACK(b, refs, n, 0), if (n > 0)

BAR ACK(b, refs, n, count) =

ack.b → BAR ACK(b, refs, n, count+ 1), if (n > count)
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BAR ACK(b, refs, n, n) = BAR(b, refs, n, n)

BAR(b, refs, 0, 0) = tenrol.b → BAR(b, refs, 1, 1), if (refs> 0)

BAR(b, 0, 0, 0) = SKIP

The difference between ‘resign.b’ and ‘tresign.b’ is that the latter does not decrement the
reference count. There is a similar difference between ‘enrol.b.1’ and ‘tenrol.b’. ‘ tresign.b’
and ‘tenrol.b’ will be used to bracketRESIGN blocks, whose existence is the only reason that
reference and enrolled counts may differ.

SYNC operations, in application processes, map to a sequence of a‘sync.b’ immediately
followed by an ‘ack.b’. The former just decrements the synchronisation count. Ifthat reaches
zero, the barrier process locks into a sequence of ‘ack.b’ events with length equal to the
current enrolled count — these will all succeed, since therewill be precisely that number of
application processes blocked and waiting for them.Note: application processesinterleave
amongst themselves for engagement on all these barrier process control events.

Any ‘ resign.b’ event that reduces the reference count to zero will also, given the earlier
constraint, have reduced the enrolled and synchronisationcounts to zero — in which case, the
barrier process simple terminates. Note that ‘tresign.b’ does not change the reference count
and, so, cannot reduce it to zero.

2.2. Kernel and Application Processes

The mobile barrier processes areforkedoff as needed by a generator process:

MB(b) =
(

getMB!b →
(

BAR(b, 1, 1, 1) 9 MB(b + 1)
))

2
(

noMoreBarriers→ SKIP
)

For convenience, we also define:

UNDEFINED BAR=
(

resign.0 → UNDEFINED BAR
)

2
(

noMoreBarriers→ SKIP
)

Now, if SYSTEM is theoccam-π application andSYSTEM′ is the CSP modelling of its
mobile barrier primitives (see below), the full model is:

(

(SYSTEM′ o

9 noMoreBarriers→ SKIP) ‖
{kernelchans}

MobileBarrierKernel
)

\ kernelchans

where:

MobileBarrierKernel= MB(1) ‖
{noMoreBarriers}

UNDEFINED BAR

and:

kernelchans=
{

enrol.b.p, resign.b, tresign.b, tenrol.b, sync.b, ack.b,

getMB, noMoreBarriers| (b> 0), (p> 1)
}
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2.3. Extending CSP with Variables and Assignment

For making precise the semantics of mobile barriers, we shall be using the syntax ofCir-
cus [18]. This introduces, amongst other things, variables andassignment into CSP. It allows
us to work at a slightly higher, and clearer, level than pure CSP.

Such variables and assignments could be removed by introducing parallel terminatable
state-processes for each variable, whose duration matchestheir scope; plus ‘load’, ‘ store’
and ‘kill ’ channels for reading and writing their values and for termination. For example, the
variable declaration and process:

Var x : N • P

becomes:
(

(P′ o

9 killX → SKIP) ‖
{loadX,storeX,killX}

VarX
)

\ {loadX, storeX, killX}

where:

VarX (x) =
(

loadX!x → VarX(x)
)

2
(

storeX?tmp→ VarX(tmp)
)

2
(

killX → SKIP
)

andP′ is the result of removing similar variables fromP. An assignment process:

x := y

becomes:
loadY?tmp→ storeX!tmp→ SKIP

Any expression involving such variables requires prefixingwith a sequence ofloads into
separate registers. For example:

c!(x + y)

becomes:
(

loadX?tmp0 → loadY?tmp1 → c!(tmp0 + tmp1) → SKIP
)

2
(

loadY?tmp1 → loadX?tmp0 → c!(tmp0 + tmp1) → SKIP
)

All occam-π variables — including those for mobile barriers — map to suchCircus
variables. When reasoning formally about such CSP mappings, we should also take into ac-
count thatoccam-π processes are bound by itsparallel usage rules. These need formalising.

2.4. Modelling theoccam-π Primitives for Mobile Barriers

2.4.1. Mobile Barrier Declaration

Mobile barrier variables map into mobile integer (actuallynatural number) variables, holding
indicesto the referenced barrier processes:

MOBILE BARRIER b:

P
 Var b : N • b := undefined o

9 P′ o

9 resign.b → SKIP

whereundefined is zero andP′ is the CSP model ofP. Note that if ‘b’ is undefined whenP′

terminates, the ‘resign.b’ is swallowed harmlessly by theUNDEFINED BAR kernelprocess.

2.4.2. Mobile Barrier Construction

b := MOBILE BARRIER  getMB?tmp→ (b := tmp)
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2.4.3. Mobile Barrier Synchronisation

SYNC b  sync.b → ack.b → SKIP

2.4.4. Mobile Barrier Send (Uncloned)

c ! b  c!b → (b := undefined)

2.4.5. Mobile Barrier Send (Cloned)

c ! CLONE b  enrol.b.1 → c!b → SKIP

2.4.6. Mobile Barrier Receive

c ? b  c?tmp→ resign.b → (b := tmp)

2.4.7. Mobile Barrier Assign (Uncloned)

a := b  resign.a → (a := b) → (b := undefined)

2.4.8. Mobile Barrier Assign (Cloned)

a := CLONE b  

(

(enrol.b.1 → SKIP) 9 (resign.a → SKIP)
)

o

9

(a := b)

2.4.9. Mobile Barrier Resign Block (Uncontrolled Resume)

RESIGN b

P
 tresign.b → P′ o

9 tenrol.b → SKIP

2.4.10. Mobile Barrier Resign Block (Controlled Resume)

RESIGN b

P

RESUME c! d!

 tresign.b → P′ o

9 c → tenrol.b → d → SKIP

To coordinate resumption in the rightphase, the resuming process should be enrolled on ‘b’.
It executes:

RESUME c? d?  c → d → SKIP

Note: one resuming process can manage many resign-block processes. The latter inter-
leave amongst themselves on the ‘c’ and ‘d’ channels, but synchronise on them with the for-
mer. We call them ‘channels’ since only two-way synchronisation is involved. No values are
communicated over them.

2.4.11. Mobile Barrier Parallel Enrolment

PAR i = start FOR n ENROLL b

P (i, b)

 ParCount(n) ‖
{down}

(

enrol.b.(n−1) → |||
start+ (n− 1)

i = start

(

P′ (i, b) o

9 down?n →
(

SKIP◭ (n=0) ◮ resign.b→SKIP
))

)

whereP′ (i, b) is the CSP model ofP (i, b) and:

ParCount(n) = down!(n− 1) → ParCount(n− 1), if (n > 0)

ParCount(0) = SKIP
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The usualoccam-π parallel usage rules apply for the barrier variable ‘b’ here. So, the repli-
cated process may use ‘b’ but may not change it. All it may do isSYNC on it, RESIGN from it
and releaseCLONEs.

Note that this captures the required semantics (Section 1.8) that each component process
of thePAR ENROLL resigns from the barrier as it terminates, apart from the last one to finish.

2.4.12. Mobile Barrier Parallel Non-Enrolment

No special semantics are needed in this case: the parallel just maps to a CSP parallel con-
struction. Theoccam-π parallel usage rules apply — i.e. only (at most) one of the component
processes may change the barrier variable. However,occam-π imposes a stricter constraint:
only (at most) one of the component processes may reference the barrier at all (i.e.SYNC on
it, RESIGN from it, CLONE it, change it).

2.4.13. Mobile Barrier Passing to a Forked Process

FORK P (b)  forkP!b → (b := undefined)

where ‘forkP’ is a channel specific for forking instances ofP.
More usually, of course, the forking process retains the barrier (for passing to processes

it may fork in the future) by passing a clone and remaining enrolled:

FORK P (CLONE b)  enrol.b.1 → forkP!b → SKIP

Note that, either way, synchronisation on the barrier referenced by ‘b’ cannot afterwards
complete without participation by the forked process (e.g.by synchronisation or resignation).

To fork a process, we must be running in aFORKING block (which, by default, is the
whole system). An explicit such block, that forks only instances ofP(b) for some mobile
barrier variable ‘b’:

FORKING

X
 

(

(X′ o

9 done→ SKIP) ‖
{forkP,done}

ForkP
)

\ {forkP, done}

whereX′ is the CSP model ofX, ‘done’ is chosen so that it does not occurfree in X or P(b),
and:

ForkP =
(

forkP?b →
(

(P′(b) o

9 resign.b → done→ SKIP)‖
{done}

ForkP
)

)

2
(

done→ SKIP
)

andP′(b) is the CSP model ofP(b).
Note that forked processes — like components of aPAR ENROLL construct — resign

from whatever barriers (if any) are referenced by their parameters as they terminate. Note
also that termination of the forking block waits for all forked processes to terminate.

2.5. Modelling theoccam-π Primitives for Static Barriers

The semantics ofstaticbarriers did work out with the spinner mechanism previouslyconsid-
ered. However, static barriers can always be replaced by mobile barriers that take no advan-
tage of their mobility (i.e. communication and assignment). So, we may as well go with these
new semantics!
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To transform static barriers into mobiles, their declarations:

BARRIER b:

simply become the combined mobile declaration and initialisation:

INITIAL MOBILE BARRIER b IS MOBILE BARRIER:

All BARRIER parameters/abbreviations becomeMOBILE BARRIERs. No other transfor-
mations are needed, so we have their semantics.

Note: with static barriers, all we can do is synchronise, parallel enrol and resign block. If
that is sufficient, use them rather than mobiles. There can beno aliasing problems with static
barriers and their run-time overheads (memory and execution) are slightly lower.

3. Implementation and Benchmarking

Implementation follows all the mechanisms documented in the formal semantics given in
Section 2. However, scheduling of the barrier processes is automatically serialised with in-
line instructions generated by theoccam-π compiler, supported by its kernel — no actual
processes or channels are introduced.

Each barrier is managed though just five words of memory: three for thereference, en-
rolled andsynchronisationcounts (see Section 2.1) and two holding the front and back point-
ers to aqueueholding processes blocked on the barrier. Barrier variables hold the start address
(index) of this structure. Formobilebarriers, the space is allocated dynamically inoccam-
π mobile-space(see [19]); forstatic barriers, the space lives on the stack of the declaring
process.

A process synchronising on a barrier, unless the last to synchronise, is held on the barrier
queue (rather than on an ‘ack.b’ channel) and the next process is scheduled. A process com-
pleting a barrier (i.e. reducing the synchronisation countto zero) releases all the others —
this is done in unit time by simply appending the barrier queue to the run queue, leaving the
former empty. All adjustments to the barriercountsfollow the rules defined in Sections 2.1
and 2.4 for modelling all theoccam-π primitives in CSP.

Figure 2 shows the results of a benchmark that measures the time per barrier synchroni-
sation for increasing numbers of concurrent processes, runon 3.2 GHz Pentium IV machines.
Each process synchronises a fixed number of times, from whichthe average individual syn-
chronisation time is calculated. Astridelength is used to control the start-up (and subsequent
scheduling) order of parallel sub-processes, demonstrating the effect of the processor’s cache
pre-fetching. Each curve in the figure reflects a different stride.

The memory foot-print for the 16 million process benchmark (actually224) was just over
700 mega-bytes (approximately 44 bytes per process), so cache-misses will be heavy. The
processes are allocated their workspaces contiguously according to their index. Thestride
forces their scheduling so that consecutively run process workspaces are (44*stride) bytes
apart. For small strides, the Pentium IV cache pre-fetchingeliminates the problem of cache
miss. For largerstrides, and especially for therandomisedstriding, the pre-fetching is de-
feated and cache miss penalties are felt.

Despite this, Figure 2 shows the implementation to be ultra-lightweight. The time for a
sixteen-million-widebarrier synchronisation was only 16 ns per process in the best case (163
ms for the whole barrier) and 247 ns per process in the worst case. Typical application mixes
will show somecoherence in memory usage — the worst case above is really cruel! Also,
applications runningreal processes (with real work to do) will not be able to afford more
than the order of a million of them (because of memory limitations with current technology).
The barrier mechanisms presented in this paper are useful and fast.
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Figure 2. Synchronisation time for different strides

4. Sample Applications

4.1. TheTUNA Project

This work binding barrier synchronisation safely and efficiently into theoccam-π language
was prompted by needs forTUNA (Theory Underpinning Nanite Assemblers) [13], a project
involving researchers from the Universities of York, Surrey and Kent in the United Kingdom.
This is investigating the emergent properties of systems containing millions of interacting
agents — such asnanitesor biological organelles. Here, goals are achieved by emergent
behaviour from force of numbers, not by complicated programming or external direction.
Such systems are complex, but not complicated. Medium term aims are the development of
sufficient theory to enable the design of self-assembling nanite systems with controlled and
predictable properties for application in human medicine.

A working case study looks at mechanisms of blood clotting. The model is loosely based
on the medical process ofhaemostasis. Plateletsare passive quasi-cells carried in the blood-
stream. A platelet becomes active when a balance of chemicalstimulators and suppressants
changes in favour of activation, usually because of physical damage to the linings of blood
vessels. Activated platelets become sticky, form clustersthat restrict blood flow — a neces-
sary first phase in limiting blood loss, healing of the wound and recovery.

Unlike systems developed for traditional embedded and parallel supercomputing appli-
cations,TUNA networks will be highly dynamic — with elements, such as channels and pro-
cesses, growing and decaying in reaction to environmental pressures. Computational network
topologies continually evolve as the organelles/nanites replicate, combine and decay.

To model more directly (and, hence, simply) the underlying biological/mechanical in-
teractions, extremely fine-grained concurrency will be used. Complex behaviour will be ob-
tained not by direct programming of individual process types, but by allowing maximum flex-
ibility for self-organisation following encounters between mobile processes — randomised
modulo physical constraints imposed by their modelled environments. We will need to de-
velop location awareness for the lowest level processes, sothey may be aware of other pro-
cesses in their neighbourhood and what they have to offer. Wewill need to synchronise the
development of organisms to maintain a common awareness of time.
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Barrier mechanisms with user-defined and dynamic binding toprocesses are promising
to be very helpful in this context.

4.2. Static Barrier Application: First Blood Clotting Model (Busy)

The clotting model and implementation described here are a gross simplification of what we
will eventually require forTUNA. It is crucial, however, that we have a firm understanding
and confidence in simple models, before attempting more elaborate models. We would not
wish for any emergent behaviour of the system to be wholly determined by implementation-
specific artifacts, such as programming errors arising froma lack of understanding.

Spaceis modelled as a one-dimensional pipeline of ‘cell’ processes representing a sec-
tion of a blood vessel.Plateletsare in their activated (i.e. sticky) state. They flow through
the cells at (average) speeds inversely proportional to thesize of theclot in which they be-
come embedded — these speeds are randomised slightly. Clotsthat bump together stay to-
gether, forming larger clots spanning many cells. Each cellmaintains internal state indicating
whether it contains a platelet. The model is time-stepped byhaving the cells synchronise on
a barrier [8], which is also used to coordinate safe access toshared data.

4.2.1. System Network and Two-Phased Cycles

cell cell cell holegen

runningdisplay state

keywatch display

draw

(keyboard)

(screen)

Figure 3. ‘Busy’ clotting model process network (phase 0)

cell cell cell holegen

keywatch display

runningdisplay state draw

(keyboard)

(screen)

Figure 4. ‘Busy’ clotting model process network (phase 1)

Figures 3 and 4 shows the two computational phases of the process network used in this
clotting model. The ‘generator’ process determines (stochastically) whether a new platelet
is generated and, if so, injects it. The ‘hole’ process just acts as asink for platelets flowing
out of the pipeline. The ‘display’ process renders the (full or empty) state of the cells for vi-
sualisation and shows system parameters (such as platelet generation and display rates). The



P.H.Welch and F.R.M.Barnes / Mobile Barriers foroccam-π 307

‘keywatch’ process allows user-interaction for setting those parameters and for terminating
the system.

The ‘display state’ and ‘running’ flag are not actually processes, but variables
sharedbetween the ‘cell’ and ‘display’ processes. (Such variables could, of course, be
made into processes if we were worried about this — see Section 2.3).

Figures 3 and 4 extends the symbology of Figure 1. The shaded rounded boxes represent
state variables. They are stuck on the barrier, ‘draw’, to indicate that access to them is con-
trolled through the barrier. The dotted arrows between the processes and the shared variables
indicate two things: reading/writing (depending on the arrow direction) and that the processes
must synchronise on the underlying barrier to coordinate that reading or writing.

Race hazards to shared memory (and consequential loss of control) are avoided normally
by occam-π’s parallel usage rules, which enforce CREW (Concurrent Read Exclusive Write)
principles. However, these apply between component processes of aPAR or between aFORKed
process and the rest of the system. Here, we need a finer granularity of enforcement and this
is managed through the ‘draw’ barrier.

All ‘ cell’ processes together with ‘generator’, ‘ hole’ and ‘display’ cycle through
two phases, synchronised by the ‘draw’ barrier on which they are enrolled. To check CREW
conformance, we just have to check that no read/write or write/write on shared state happens
in the same phase. In this system, different components of the ‘display state’ are written
by the cells inphase 1; they are read by the rendering ‘display’ process inphase 0. The
‘running’ flag is read by all enrolled processes inphase 0and written, by ‘display’, in
phase 1.

4.2.2. The ‘cell’ Process

Here is outline code for the ‘cell’. The first tworeferencedata parameters give this process
access to its component of the ‘display state’ (shared with the ‘display’ process) and the
‘running’ flag (shared with most other processes):

PROC cell (BYTE my.visible.state, BOOL running, BARRIER draw,

CHAN CELL.CELL left.in?, left.out!, right.in?, right.out!)

... local declarations / initialisations (phase 0)

WHILE running

SEQ

SYNC draw -- phase 1

... PAR-I/O exchange of full/empty state with neighbour cells

... if full

... discover clot size (initiate or pass on count)

... if head of clot

... decide on move (non-deterministic choice)

... if move, tell empty cell ahead (push decision)

... else receive decision from cell ahead (pull decision)

... if not tail of clot, pass movement decision back (pull)

... if tail and movement, become empty

... else if clot behind exists and moves (push), become full

SYNC draw -- phase 0

... update my.visible.state

:
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The ‘CELL.CELL’ protocol used for communication between cells is defined with:

PROTOCOL CELL.CELL

CASE

state; BOOL -- full/empty

push; BOOL -- move/no-move decision

pull; BOOL -- move/no-move decision

size; INT -- clot size

:

The barrier synchronisation forces all enrolled processesto start theirphase 1computa-
tions together. The I/O-PAR communications of state between the ‘cell’s, which only use
the above ‘state’ variant, cannot introduce deadlock [20].

After that, each cell knows the state of its immediate neighbours and works out what
further communications, using the other variants of the ‘CELL.CELL’ protocol, are needed.
All cells follow the same rules and reach matching decisionsabout those communications —
so there can be no deadlock, despite this part of the logic notbeing I/O-PAR.

The ‘generator’ and ‘hole’ processes are cut-down versions of the ‘cell’. Addition-
ally, ‘generator’ polls its input channel from ‘keywatch’ for user-updates to the generation
rate and makes decisions, based on that rate, for releasing new platelets (which it does by
appearingemptyor full to the first ‘cell’ process).

The ‘keywatch’ process is lazy and not enrolled on the barrier. It is triggered solely by
user keystrokes.

It is worth noting that the movement decisions (by a ‘cell’ process at the head of a
clot) and the new platelet release decisions (by the ‘generator’) are theonly places in the
system where non-determinism occurs (modelled in CSP as aninternal choice). The ‘cell’
processes do not even contain a singleALT construct.

4.2.3. Scaling Up

In this system, every cell is always active, regardless of whether it contains a platelet — it is a
classicbusyCellular Automaton (CA). It works well for systems with the order of hundreds
of thousands of cells. For TUNA, we will need to be working in three dimensions, modelling
many different types of agent all with much richer rules of engagement. To enable scaling
up two (and more) orders of magnitude, these automata must become lazy, whereby only
processes with things to do remain in the computation. One technique for achieving this are
given in the next section; another is reported in [17].

4.3. Mobile Barrier Application: Second Blood Clotting Model (Lazy)

Something unsatisfactory about the CA approach described in the previous section is that
the logic focusses on thecell processes. The rules for different stages in the life cycle of
platelets or clots are coded into different cycles of the cells. From the point of view of the
cell, which is what we design and program, we see lots ofdifferentplatelets — sometimes
bunched together forming clots — passing through. No process models the development of
an individual clot.

4.3.1. Mobile Barriers, Mobile Channels and Forking

This model focusses on the life cycle of clots, each one directly represented by a ‘clot’
process. Initially, these areforked off by the ‘generator’ process as singleton platelets,
straggling the first cell in the pipeline. Because these ‘clot’s need enrolment on the barrier,
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the barrier must be passed to it by the ‘generator’. Because passing arguments to forked
processes involves communication, the barrier must be amobile.

As before, space is represented by the pipeline of ‘cell’ processes — but this time they
are not enrolled on the barrier. These cell processes are passive servers, responding to client
requests on theirservice channel bundles— represented in Figures 5-10 by the vertical bi-
directional channels on the top of the cells. Neighbourhoodtopology is determined by each
cell’s (shared) access to the next cell’s service channels.Because we only support forward
clot movements in this model, a cell only needs forward access — it would be easy to make
connections in both directions should other models need this.

Cells hold state indicating whether they are being straddled by a passing clot; this state is
shared with the ‘display’ process. They are idle except when the front and rear boundaries
of a clot passes through them.

Each ‘clot’ process connectsfeelerchannels to the cells immediately before and after
the group of cells currently straddled — see the figures. It also connects to thelast cell in its
group, in which it deposits thewriting endof its tail-channel— that deposition is not shown
in the figures, but left free standing for clarity. All channels, apart from those connecting
‘keywatch’ and the ‘generator’ and ‘display’ processes, aremobile.

The cell processes are shown underlain by the ‘draw’ barrier. This means that processes
connected to them (i.e. the clots and the display) must be enrolled on that barrier and coordi-
nate their interaction with the cells through synchronisation on the barrier.

4.3.2. Computation Phase 0

gen clot

cell cell cell cell cell cell

displaykeywatch (screen)

(keyboard)

draw

Figure 5. ‘Lazy’ clotting model — before move (phase 0)

gen

cell cell cell cell

displaykeywatch

clot

cell cell

(screen)

(keyboard)

draw

Figure 6. ‘Lazy’ clotting model — after move (phase 0)
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Through barrier synchronisation, we maintain the following invariant at the start ofphase
0 of each cycle: for each clot in the system, there are empty cells on either side of the (full)
cells in the clot. This condition is shown in Figure 5. The computation proceeds by deciding
and, if positive, moving the clot forwards by one cell — Figure 6. This requires communi-
cating theclient-endsof the cell service channel-bundles through the existing connections of
the clot process, updating those connections accordingly,dragging the clot’s tail forward one
cell, marking the old rear cell empty and the new front one full. This all happens inphase 0,
during which the ‘display’ process is not reading the cell states (maintaining CREW rules).

4.3.3. Computation Phase 1

Following another barrier synchronisation, we are inphase 1. The invariant here is that no
clots are moving. This allows them to inspect their environment — location awareness—
by interrogating through their front and rearfeelers. If other clots are detected, the bumping
clots coalesce — Figures 7-10.

In Figure 7, two clots detect that they have touched. The leftone, using its frontfeeler,
acquires the writing end of the tail-channel of the one on theright (which was deposited in
the cell probed by thatfeeler). The two clot processes have dynamically set up a connection
between them — Figure 8.

gen

cell

clot

cellcell

clot

cellcellcell

displaykeywatch

draw

(keyboard)

(screen)

Figure 7. ‘Lazy’ clotting model — bump detected (phase 1)

gen

cell

clot

cellcell

clot

cellcellcell

displaykeywatch

draw

(keyboard)

(screen)

Figure 8. ‘Lazy’ clotting model — communication established (phase 1)

The left clot communicates four items: its size, the readingend of its tail-channel and
the client ends of its rearfeelerand last clot cell services. The right clot increments its size
accordingly and overwrites its corresponding connectionswith the three channel/bundle-ends
received — Figure 9. Finally, the left clot terminates, the right clot having taken over the
merger — Figure 10.
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Figure 9. ‘Lazy’ clotting model — tail and back legs passed (phase 1)

gen

cell cellcellcell

displaykeywatch
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clot

draw
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Figure 10. ‘Lazy’ clotting model — clots merged, rear one terminated (phase 1)

During this phase, the (full or empty) state of the cells do not change and it is safe for
the ‘display’ process to read and render them.

Not shown in these figures is a shared ‘running’ flag, operated across the phases in the
same way as for the previous model — Section 4.2. Terminatingthe cell processes cannot be
via thisrunning’ flag, since they are not enrolled on the barrier and have no way, safely, to
read its value and ensure that all read it in the same cycle. Instead, termination has to be done
in the classical way, using apoisonmessage sent through the pipeline — see [21].

4.4. Performance of the Models

For the‘busy’ cellular automata of Section 4.2, performance is proportional to the number
of cells since they are all active all the time. It also depends on the number of platelets in
the system, since cells holding platelets have additional work to do. Further, clot sizes are
recomputed every cycle — so large clumps also increase the cost.

For the‘lazy’ but dynamic system of Section 4.3, the number of cells only impacts on
memory requirements — though that may cause cache-miss problems at run-time. Otherwise,
its performance depends only on the number of clots in the system — their size (i.e. the
number of platelets) is irrelevant.

Table 3 gives the cycle times per cell for systems of around 10K cells, running on a 2.4
GHz Pentium 4-m. The number of platelets in the system depends on the generation rate
— these are given in the first column as fractions of 256 and represent the probability of
release in each cycle. Each run, of course, has different properties but the overall performance
does not change much. These results are averaged over 10 runsfor each model and for each
generation rate.
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Table 3. Cell cycle times for the two models

Generation Rate (n / 256) ‘Busy’ (ns) ‘Lazy’ (ns)

0 650 0

1 660 8

2 670 12

4 680 14

8 700 16

16 740 18

32 1070 0

A generation rate of zero implies no work is done by the‘lazy’ model. A generation rate
of 32/256 is too much for the bloodstream and causes a total jam, with the vessel containing
one continuous clot. This causes extra work for the‘busy’ model, computing its length each
cycle — as well as cycling all processes. For the‘lazy’ model, there is again nothing to do.

On balance, the‘lazy’ model is more than 40 times faster than the‘busy’ cellular au-
tomaton — in some circumstances, it is infinitely more efficient. Its logic is also simpler,
more directly modelling the players in the system.

4.5. Emergent Behaviour

The clotting model presented here is particularly simple. It has been developed to try out
techniques that need to be matured before thereal modelling can be attempted. Neverthe-
less, unprogrammed behaviour hasemergedthat is encouraging and relevant to our TUNA
investigations.

Considering the 1-dimensional pipeline as a capillary in the blood circulation system,
these results reflect certain observed realities. Above a certain probability of platelet activa-
tion (resulting, initially, from tissue damage) and length, such a capillary always becomes
blocked.

Figure 11 shows a screen-shot of a visualisation for a 100∗50 cell grid (arranged as
a 1-dimensionalpipe) using 16 pixels-per-cell and with a 4/256 probability of clot platelet
generation at the start of thepipe(top-left in the picture).

Figure 11. Clot model visualisation

The pipeline is displayedsnakingdown the image, with the first cell at the top-left, the
next cells moving right along the first row, then left along the second row, etc.

In the early rows of Figure 11, only small (mainly single-celled) clots are seen. Further
down the pipeline (blood vessel), small randomised variations in their speed have resultedin
them bumping and coalescing into larger and slower moving clots. Even so, they manage to
flow away fast enough that the faster moving singletons behind them coalesce into similarly
large clots that cannot catch them and the stream continues to flow.
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With higher probabilities of clot generation (not shown in the above figure), larger clots
are formed that move slower still. Above a threshold (to be found by in silico experiment),
these larger clots cannot escape being caught by smaller clots behind them — which leads to
eventual catastrophic clotting of the whole system.

4.6. TUNA Perspective

For the introduction ofnanitesimplementing artificial blood platelets, getting the balance
right between the stimulation and inhibition of clotting reactions will be crucial to prevent a
catastrophic runaway chain reaction. This model is a crude (as yet) platform for investigating
the impact of many factors on that balance.

Our ambitions in the TUNA project call for scaling the size ofthese models through
three orders of magnitude(i.e. tens of millions of processes) andhard-to-quantifyorders
of complexity. We will need to model (and visualise) two and three dimensional systems,
factor in a mass of environmental stimulators, inhibitors and necessary supporting materials
(such asfibrinogen) and distribute the simulation efficiently over many machines (to provide
sufficient memory and processor power).

We suspect that simple cellular automata, as described in Section 4.2, will not be suf-
ficient. We need to developlazyversions, in which cells that are inactive make no demands
on the processor. We also need to concentrate our modelling on processes that directly rep-
resent nanites/organelles, that are mobile and that attachthemselves to particular locations
in space (which can be modelled aspassiveserver processes that do not need to be time-
synchronised). Barrierresignationwill be crucial to manage this laziness; but care will need
to be applied to finding design patterns that overcome thenon-determinismthat arises from
unconstrained use. Such an approach is taken in the model developed in Section 4.3. Another
is presented in [17].

Achieving this will be a strong testing ground for the dynamic capabilities (e.g. mobile
processes, channels and barriers) built into the newoccam-π language, its compiler and run-
time kernel. Currently,occam-π is the only candidate software infrastructure (of which we
are aware) that offers support for our required scale of parallelism and relevant concurrency
primitives. Further, it is backed up with compiler-checkedrules against their misuse. We need
the very high level of concurrency to give a chance for interesting complex behaviour to
emerge that is not pre-programmed. We need to be able to capture rich emergent behaviour
to investigate and develop the necessary theories to underpin the safe deployment of Nanite
technology in medicine and elsewhere. How those theories will/may relate to the process al-
gebra underlyingoccam-π semantics (i.e. Hoare’s CSP and Milner’sπ-calculus) is a very
interesting and very open question.

This work will contribute to the (UK) ‘Grand Challenges for Computer Science’ areas 1
(In Vivo⇔ In Silico) and 7 (Non-Standard Computation).

5. Summary and Future Work

This paper has reported the introduction ofmobileBARRIERs into theoccam-π multiprocess-
ing language. These provide an extra synchronisation mechanism, based upon the concept of
multiway eventsfrom CSP andmobility from theπ-calculus. The language binding, rules and
semantics were presented first informally — followed by complete formal semantics through
modelling in standard CSP. The current implementation mechanisms foroccam-π were out-
lined, together with benchmark performance figures (from systems with up to 16 million pro-
cesses). Finally, an application was described whose efficiency is transformed through the
use of these barriers and their ability to be communicated.
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The desired semantics foroccam-π barrier synchronisation are precisely the same as
those for CSP multiway events. Despite this, the former are not directly modelled by the lat-
ter, because of the need to capture the dynamics of run-time construction, enrolment, resig-
nation and mobility (which are alien to CSP events). However, it turned out surprisingly easy
to capture both the fundamental (CSP) synchronisation of barriers with their (π-calculus)
dynamics — and we didn’t have to step outside of standard CSP.

All that proved necessary was to model the support built intotheoccam-π kernel and the
code generation sequences from the compiler (that interactwith the kernel). Barriers become
kernel processes operated through indexed control channels over which all application pro-
cesses interleave. It would, perhaps, have been a better story to say that this CSP modelling
camefirst (accompanied by some formal sanity check verifications and/or model checking)
before the kernel and compiler were developed. Alas, we thought and did things the other
way around.

This CSP modelling gives us both adenotationalsemantics (through the standard
traces/failures/divergences semantics of CSP) and anoperationalsemantics (describing the
implementation). It enables formal verification and (finite) model checking foroccam-π sys-
tems using mobile barriers. The denotational aspect further supports formal system spec-
ification and development throughrefinement. The operational aspect provides machine-
independent formal documentation of the necessary compiler code generation and run-time
kernel support.

This work has triggered a similar approach for the modellingof (occam-π) mobile chan-
nels in CSP. Again, kernel processes, rather than channels, are used to capture the synchro-
nisation and dynamic semantics. This is a very recent resultand will have to be reported
elsewhere.

It may now be possible to provide a formal CSP model documenting theentireoccam-
π run-time kernel and supporting code generation. That wouldenable formal specification,
development and analysis of all application systems, as well as provide a formal specification
for the porting ofoccam-π to new target platforms (including the design of direct silicon
support in future microprocessors).

Another development of this work could lead to a complete formal specification of a
compiler fromoccam-π down to a simple register-based machine code — for example, see
Section 2.3. Adding in formal constraints imposing the parallel and anti-aliasingusage rules
of occam-π would further permit re-ordering of code sequences, necessary for the efficient
operation of many modern microprocessors. Assistance for this is also given by avoiding
unnecessaryserialisationof code sequences in the formal definition — for example, Sec-
tions 2.3 and 2.4.8, where refinement into particular serialisations can be chosen at any stage
(including their deferral till run-time). These re-orderings would be bothsafe(in terms ofse-
quential consistencyand multiprocessor execution) andunderstandable(by mortal systems
designers and coders).

Such work is for the future, but should be relevant and withinthe timescale of the UK
‘Grand Challenges in Computer Science’[22] project onDependable Systems[23]. The
TUNA applications work, described in Section 4, are the beginings of contributions towards
two of the other Grand Challenge areas:In Vivo⇔ In Silico [24] andNon-Classical Compu-
tation [25].
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