Communicating Process Architectures 2005 289
Jan Broenink, Herman Roebbers, Johan Sunter, Peter WaichDavid Wood (Eds.)
IOS Press, 2005

Mobile Barriersfor occam-pi: Semantics,
| mplementation and Application

Peter WELCH and Fred BARNES

Computing Laboratory, University of Kent,
Canterbury, Kent, CT2 7NF, England.

{P.H.Welch,F.R.M.Barnes} @kent.ac.uk

Abstract. This paper introduces a safe language binding for CSP naytievents
(barriers— both static and mobile) that has been built int@am-1t (an extension of
the classicabccam language with dynamic parallelism, mobile processes artuileno
channels). Barriers provide a simple way for synchronisiudtiple processes and are
the fundamental control mechanism underlying both GS¢h{municating Sequential
Processesand BSP Bulk Synchronous Parallelisim=ormal semantics (through mod-
elling in classical CSP), implementation details and epdyformance benchmarks
(16 nanoseconds per process per barrier synchronisation ch@Hz Pentium V)
are presented, along with some likely directions for funesearch. Applications are
outlined for the fine-grained modelling of dynamic systemere barriers are used
for maintainingsimulation timeand thephased executioaf time steps, coordinating
safe and desired patterns of communication between nslljand more) of processes.
This work forms part of oulrUNA project, investigating emergent properties in large
dynamic systems@niteassemblies).

Keywor ds. Barriers, events, processes, mobility, occam-pi, CSEalulus

I ntroduction

This paper describes the addition of multiwagrrier synchronisation to the K&C [1,2]
occam-Tt system.occam-1t[3,4,5] extends classicalccam [6], including mechanisms for
data, channel and process mobility (taken from Milnersalculus [7]), dynamic parallelism,
extended rendezvous and process priofatic barriers foroccam-1t were first reported
in [8] — for completeness, some of that information is repddtere. The barriers presented
in this paper may also bmobilg allowing them to be communicated to newly forked pro-
cesses, as well as between processes. This lets us expevittemovel modelling tech-
niques that closely follow real-world systems — such as tkeging of biological organelles
represented by clusters of parallel processes contrdiledigh synchronisation on internal
barriers.

Barriers are a synchronisation primitive on which parghelcessegnrol, synchronise
andresign When a process synchronises on a batrrier, it is blockedlalhtither processes
enrolled on the barrier have also synchronised. Once tiebercompleted, all blocked pro-
cesses are rescheduled. The semantics of barrier synsationiare exactly those of anent
in Communicating Sequential Proces$€SP) [9,10]. However, the dynamics of barneo-
bility, construction enrolmentandresignationhave no immediate counterparts in terms of
CSP events. Nevertheless, we present a full CSP formalsatiodelling each barrier as
a processrather than, directly, as asvent This occam-1t language binding isafein the
sense that enrolment and resignation are automaticallydowied and that a process can
synchronise on a barrier if, and only if, it is enrolled.

290 P.H.Welch and F.R.M.Barnes / Mobile Barriers fmccam-1t

Barriers are used for a variety of purposes and with varynaggjarity in parallel pro-
grams. For example, thBulk Synchronous ParallelisfBSP) [11] model describes paral-
lel processes that run (mostly) independently on separaiepsors, but periodically syn-
chronise on a single global barrier to exchange data. Suatelmnaevill be supported by the
networked version obccam-T1t (not yet released [12]). In this paper, we are concerned with
much finer levels of control, with processes enrolling, $yoaising and resigning dynam-
ically on multiple barriers. We are particularly interektia applying these mechanisms to
the design and implementation of highly dynamic massivalajel systems, such as those
being investigated in OUNUNA [13] project.

A previous implementation of barriers in KIE [14] provideduser-define@dbstract data
types [15]. BARRIER' variables could be declared, explicitly flaggedsdmared(through the
use of compiler directives which overrode parallel usageckl) and operated via a number
of procedure-calls {nitialise.barrier’, ‘synchronise.barrier’, etc.) implemented
in ETC (Extended Transputer Cod#&6]) assembler. This was functional and fast, but the
programmer had to ensure that barriers were initialiseecty, that only enrolled processes
could synchronise or resign and that barriers were notmasdigr communicated (the seman-
tics of which were undefined).

In the language binding presented here, barriers may baréedtatic or mobilg in
line with occam-1t data types and channels. Static barriersfesed — they may not be
communicated or assigned. Mobile barriers may be commtaucassigned ancloned(so
that the source variable of the communication or assignmees not lose it). All barriers
may be renamed through parameter passing and abbreviation.

Any process that declares a static barrier, or constructstal@eone, is automatically en-
rolled on that barrier. Only processes enrolled on a bataersynchronise onit. If an enrolled
process itself goes parallel, there is a default constthattat most one of its sub-processes
inherits the enrolment — this is checked at compile time. E\®v, an enrolled process may
override this constraint by explicitly enrollirgl parallel sub-processes on specific barrier(s)
at the relevanPAR.

An enrolled process automatically resigns from its barifier loses it (through com-
munication, exit from scope of the variable referencing jtsometimes, on termination), so
that other processes may continue to synchronize on it. Aga®automatically enrols on a
barrier if it gains it (through communication).

An enrolled process may temporarigsignfrom a barrier — crucial for thdazy’ ex-
ecution of simulation processes that are idle for long mkiof ‘time’ (see [17]). This is
expressed through an expli®ESIGN block, with automatic re-enrolment at the end of the
block. Often, such re-enrolment needs careful synchrtaisand language support is pro-
posed.

Theseoccam-1t barriers are more general than those of BSPo@ram-1t system can
contain any number of barriers, with some processes iggdhnem and some registered with
many). They are also more general than CSP events, incoirnppideas ofmobility from
the tecalculus and higher-level design patterns for progesgnation On the other hand,
they are also, currently, less general than those of @8&a(n-1t processes musbommitto
barrier synchronisation — which cannot, therefore, be @sea guard in ahoiceor ALT).

The language binding and informal semanticsdocam-Tt barriers is covered in Sec-
tion 1. A formal semantics is given in Section 2. An implenaioin outline is in Section 3,
together with some early benchmarking results. Sampleiagtjons follow in Section 4.
Finally, Section 5 summarises and discusses future work.

P.H.Welch and F.R.M.Barnes / Mobile Barriers fmecam-1t 291
1. Language Binding and I nformal Semantics
1.1. Static Barriers: Declaration

Barriers are declared in the same way as ordinary channdlsarables, with the process
following the declaration automatically enrolled. For exae:

BARRIER b: -- declaration of ‘b’
process(es) synchronising on ‘b’

1.2. Static Barriers: Parallel Enrolment

To enrol all sub-processes on a batrrier, the parallel cormiposnust explicitly declare this.
For example:

PAR ENROLL b

P (b) -- all these
Q (b) -- sub-processes
R (b) -— are enrolled on ‘b’

A replicated parallel may also enrol its sub-processes:

PAR i = O FOR n ENROLL b
worker (i, b) -- all enrolled on ‘b’

In network diagrams, we represent a barrier as a ‘bar’, cttedeto all enrolled pro-
cesses. Figure 1 shows the process network for the akovkér’ fragment.

worker (0) worker (1) - - - | worker (n—1)

I ib

Figure 1. Barrier synchronised worker processes

1.3. Static Barriers: Synchronisation

Barrier synchronisation is expressed through a BgNMC primitive. For example:

PROC worker (VAL INT id, BARRIER x)
SEQ
phase O computation
SYNC x
phase 1 computation

The execution of the abow&¥NC line blocks untilall other processes enrolled on the
barrier similarlySYNC. It divides the global (parallel) computation of the systenkigure 1
into two time-separated phases (®upersteps’in BSP terminology).

Note that if a process has a barn@rametey any invocation must have passed a barrier
argumenton which the invoking process was enrolled. Hence, we (aacctimpiler) may
assume that a process with a barrier paranistenrolled on whatever barrier is passed and
that it is legal to synchronise.

292 P.H.Welch and F.R.M.Barnes / Mobile Barriers fmccam-1t

1.4. Static Barriers: Parallel Non-Enrolment

An enrolled process that goes parallel in the normal way\{iignout explicitly enrolling its
barrier) passes its enrolmentabmost onef its sub-processes. For example:

PROC worker (VAL INT id, BARRIER x)

PAR
A O -- not enrolled
B (x) -- enrolled on ‘x’
c O -- not enrolled

For a normal non-enrollingAR such as this, exactly which (if any) of its sub-processes
takes the enrolment does not matter. The compiler checksthaore than one enrols.

1.5. Static Barriers: Resign Blocks

An enrolled process may temporansignfrom a barrier through the use oR&SIGN-block.
For example:

PROC worker (VAL INT id, BARRIER x)

SEQ
P (x) -- enrolled on ‘x’
RESIGN x
A QO -- not enrolled on (and cannot reference) ‘x’
R (x) -- enrolled on ‘x’

Whilst executing proces®(x)’, this ‘worker’ must synchronise on the barrier (or it
will block other enrolled processes thae synchronising). However, whilst executing the
RESIGN-block ‘A ()’, it plays no part in the barrier and other enrolled processa synchro-
nise amongst themselves freely. After RBSIGN-block, it is back in the barrier.

Note that some care must be taken to avoid non-determinismeafit from aRESIGN-
block, since the precise time of that edhd consequent re-enrolment in the barrier
scheduling dependent. This is considered further in Sedti® below.

1.6. Static Barriers: Usage Rules

Processenrolmenton a barrier is determined by the scope of its declarat@f, ENROLL
compositions an®ESIGN blocks. The following usage rules for barriers are enforbgd
compiler checks:

e a process may only reference a barrier $¥IC, RESIGN or pass to a procedure) if,
and only if, it isenrolledon that barrier;

e at most oneomponent process of a non-enrollibkR remains enrolled on any barrier
for which thePAR, as a whole, is enrolled;

e an individual barrier may be passed @aaly oneparameter of @R0OC. Strict anti-
aliasing laws applydifferentbarrier names always refer tlifferentbarriers.

1.7. Parallel Enrolment with Multiple Barriers

We may enrol multiple barriers in the sarB&R construct. In the following example, the
“*.timer’ processes controls the timing oprocess.a’” and ‘process.b’ by synchro-
nising on their respective barriers regularly (at ‘long’‘short’ time intervals). Processes

P.H.Welch and F.R.M.Barnes / Mobile Barriers fmccam-1t 293

‘process.a’ and ‘process.b’ (which may resign from either or both time-slicing consol
from time to time) also use a private barriar, to synchronise between themselves:

BARRIER long, short:
PAR ENROLL long, short
PAR
long.timer (long)
short.timer (short)
BARRIER b:
PAR ENROLL b, long, short
process.a (long, short, b)
process.b (long, short, b)

1.8. Parallel Enrolment, Termination and Auto-Resignatio

Each component process oPAR ENROLL construct resigns from its so-enrolled barrier(s)
just before it terminates, apart from tteest one to finish.

This means that all components do not have to terminate irsaheebarrier cycle to
avoid deadlock (as would be the casendficam-Tt barriers were direct reflections of CSP
multiway event$. Consider the example given in section 1.2:

PAR i = 0 FOR n ENROLL b
worker (i, b) -- all enrolled on ‘b’

Any worker process may terminate early, leaving its companion presassining and
synchronising with each other successfully eh— the early-terminated process has re-
signed from the barrier.

In CSP, termination of components of a parallel compositiappens simultaneously.
If one component is ready to terminate, it commits exclugite that and refuses all other
events. So, if other components have not terminated anéhocento try to synchronise on a
multiway event bound to that parallel, there would be decldlo

For occam-11, we want to be able to build collections of processes diswplby com-
mon synchronisation on barrier(s); but which do not haveet&dpt running and synchronis-
ing when their job is done, just so that they may terminatetiogy. The chosen semantics
give us this directly.

If we really need the raw CSP semantics, we just declare arad @n extra barrier and
synchronise on ibnce

BARRIER alldone:
PAR i = O FOR n ENROLL b, alldone
SEQ
worker (i, b)
SYNC alldone

Now, when onevorker terminates, its driving process commits to engageindone’
and refusest’, on which it is still enrolled. All othefvorker processes must also terminate
without further engagement oh’*— else deadlock.

Another nice property from thesecam-rtsemantics is tha&kIP is aunit of all versions
of its PAR operator:

PAR = PAR ENROLL b
P (b) P (b)
SKIP SKIP

P (b)

294 P.H.Welch and F.R.M.Barnes / Mobile Barriers fmccam-1t

In the first system,b” must be a global barrier ar@KIP is not enrolled. HenceSKIP’s
existence and termination have no impact on the continyiregagion ofP (b).

In the second systenSKIP is enrolled on b’. UnlessP (b) finishes first, all thiSKIP
does is resign fromb” and wait to terminate. Otherwise, it just terminates (tbge with
P(b)). If P(b) synchronises orv’, it cannot finish first and blocks until tr&XIP has resigned
(which will happen) and, then, continues as normal. If/whéb) terminates, it does so with
the waitingSKIP. Either way, theSKIP has no impact and we are left wiBt{b) .

In CSP,SKIP is a unit only of paralleinterleaving It is not a unit of any parallel operator
bound to an event

1.9. Controlled Exit from Resign Blocks

A subtle problem can arise through the careless exit #®881GN blocks. Consider:

PROC always (BARRIER a, b)
WHILE TRUE
SEQ
SYNC a
phase A compute (no SYNCs)
SYNC b
phase B compute (no SYNCs)

PROC sometimes (BARRIER a, b)
WHILE TRUE
SEQ
SYNC a
phase A compute (no SYNCs)
SYNC b
phase B compute (no SYNCs)
IF
decide on a holiday
RESIGN a, b
enjoy holiday (e.g. sleep)
TRUE
SKIP

PAR ENROLL a, b
always (a, b)
sometimes (a, b)

So long assometimes’ stays enrolled in its barriers, all goes well -sometimes’ and
‘always’ will continue their respective phased computations irafial, keeping in step with
each other as each phase ends.

If ‘ sometimes’ decides to go on holiday, it resigns from its barriers andsdother things
(like sleep), leavingalways’ to continue on its own — all is still well.

The problem arises ifsometimes’ decides to come back. When it exits RESIGN
block, it re-enrols on its barriers and waitsXeNC on ‘a’. If * always’ is in its phase B when
this happens, we are lucky and the two processes resumefacipgynchronisation. But if
‘always’ is in phase A, its nexgYNC is on ‘b’ and the system will deadlock.

To do this safely,sometimes’ must coordinate its return withalways’. One way to do
this is for ‘sometimes’ to request permission fromalways’ to return to their joint compu-

P.H.Welch and F.R.M.Barnes / Mobile Barriers fmccam-1t 295

tations. The always’ process only grants this permission in its phase B and,, tvaits for
confirmation that$ometimes’ has re-enrolled (i.e. has left iIBESIGN block).
This behaviour is easy to manage by signalling and pollirey standard channels:

PROC sometimes (BARRIER a, b, CHAN BOOL signal!)
WHILE TRUE
SEQ
SYNC a
phase A compute (no SYNCs)
SYNC b
phase B compute (no SYNCs)
IF
decide on a holiday
SEQ
RESIGN a, b
SEQ
enjoy holiday
signal ! TRUE -- request comeback
signal ! TRUE -- confirm comeback
TRUE
SKIP

PROC always (BARRIER a, b, CHAN BOOL signal?)
WHILE TRUE
SEQ
SYNC a
phase A compute (no SYNCs)
SYNC b
phase B compute (no SYNCs)
PRI ALT
BOOL any:
signal ? any —-- grant comeback
signal ? any -- wait for confirm
SKIP
SKIP

and where the system is now:

CHAN BOOL signal:

PAR ENROLL a, b
always (a, b, signal?)
sometimes (a, b, signall)

In a larger system, there may be many processes, sikeetimes’, that retire from
the computation from time to time. Examples arise in largadessimulations of dynamic
systems, where not all processes need to be continuallyegtiecause nothing is changing
in their neighbourhood) but need to rejoin some barrier Byoaisation (e.g. for managing
simulation ‘time’) when something happens close to them e{%&].

In such cases, the abowemeback/confirmprotocol may be used between each resigning
process and jusinespecialised process, like the abow@ways’, that is alwayscycling and

296 P.H.Welch and F.R.M.Barnes / Mobile Barriers fmccam-1t

synchronising (and which need do nothing else). Sepa@tebackand confirmchannels
will be neededSHARED at the resigning process ends. We are considering languaged
for such a protocol. For example, the resigning processssués:

RESIGN b
resign block (may not reference ‘b’, ‘c’ or ‘d’)
RESUME c! d!

where ‘c’ and ‘d’ areSHARED CHAN BOOLS. In the correct phase, the resuming process exe-
cutes:

RESUME c? b7

where this may be used as AL (or PRI ALT) guard.
1.10. Mobile Barriers: Declaration

Mobile barriers follow the same general rules for declaraticonstruction, communication
and assignment as mobile channels and processes. Theatiedlantroduces the variable
name but leaves iindefinedBarrier variables becomgefinedeither through construction,
communication or assignment. The compiler tragkfned-statuand prevents use of unde-
fined variables. Explicit run-time checks (using WEFINED prefix operator) are forced for
cases where the compiler cannot deducedtfened-status

MOBILE BARRIER b:
process (initially, ‘b’ is undefined)

At the end of scope of a mobile barrier declaration, if thealsle ended up adefined
the process automatically resigns from the referencedebarr

1.11. Mobile Barriers: Construction

Construction and assignment to a mobile variable are bougether:
b := MOBILE BARRIER

where b’ must be aMOBILE BARRIER variable. If o’ were currently defined, the executing
process would first resign from the currently referencedifadiarrier. After this statement,
‘b’ is now defined and referencesiawmobile barrier and the executing process is enrolled.

Note that a mobile barrier may be declared and constructederine with the standard
(though, in this case, rather unusual looking) initialgs@reclaration:

INITIAL MOBILE BARRIER b IS MOBILE BARRIER:
process (enrolled on ‘b’)

1.12. Mobile Barriers: Communication

Communication follows the same semantics foroaitam-mtmobiles: the itemmovedo the
new place, leaving the source variable undefined. For malaiteers, there are additional
rules about enrolment and resignation.

In the following, 2’ and ‘b’ are MOBILE BARRIER variables, b’ must bedefinedand‘c’
iS aCHAN MOBILE BARRIER (i.e. a channel carrying mobile barriers).

c7a

P.H.Welch and F.R.M.Barnes / Mobile Barriers fmccam-1t 297

If “a’ is defined, the receiving process first resigns from the beldier and, then, receives
the new reference. Otherwise, it just receives the newearter. Either way, it is now enrolled
on the received barrier.

c!b

This moves the barrier to another process, leawgndefined. This sending process resigns
from the barrier. If we didn’t want to lose it, we must send @nd:

c ! CLONE b

In this case, the sending process remains enrolled on thigeakll relevantenrols and
resignsof the processes happen automatically and atomically wétcommunication.

1.13. Mobile Barriers: Assignment

Assignment follows the same mobility and enrol/resign sul@gain, supposea’ is a
MOBILE BARRIER and b’ is adefinedMOBILE BARRIER.

a :=»>b

If *a’ were defined, the process first resigns from that barriee Bérrier referencenoves
from ‘b’ to ‘a’ and the process remains enrolled on it. Such assignmenttatroduce
aliasing. However:

a := CLONE b -- this may get banned!

alwaysintroduces aliasing. As before, i&*were defined, the process resigns from that bar-
rier. The barrier reference opiedfrom ‘b’ to ‘a’ — variables a2’ and ‘v’ now reference the
same barrier and the process is enrolled twice!

This aliasing may not be as bad as it seems. For example, tieearothe left below is
safe and may serve some purpose:

SEQ PAR ENROLL b
a := CLONE b P (b)
PAR Q (b)
P (a)
Q (b)

It is almostthe same as the code on the right, but omits the auto-reggrsgmantics (see
Section 1.8).

To remain compatible with the rest oEcam-mand to satisfy our intuition, assignment
and communication should be related by laws that, in thesesc@ake the form:

a :=b = CHAN MOBILE BARRIER c:
PAR
c?a
c!D
and:
a := CLONE b = CHAN MOBILE BARRIER c:
PAR
c7a

c ! CLONE b

298 P.H.Welch and F.R.M.Barnes / Mobile Barriers fmccam-1t

We definitely need to allow the cloned output mechanism — splsi banning cloned as-
signments is not enough to prevent aliasing.

1.14. Mobile Barriers: Forking

Passing arguments forkedprocesses imccam-1t means communicating them — see [3].
Hence, forked processes may take mobile barrier param#tes'ss a defined mobile barrier,
then:

FORK P (b)

movesghe barrier to the new process. The forking process resignsthe barrier ancb’ be-
comes undefined. More usually, of course, the forking pmoetsins the barrier (for passing
to processes it may fork in the future) by passing a clone animing enrolled:

FORK P (CLONE b)

Either way, the forked process is enrolled on the barriest Bafore the forked process ter-
minates, it automatically resigns from whatever barrieafy) its parameter is referencing.
We need this for the same reason that auto-resignation vessfisd for parallel enrolled
processes (1.8).

Note that the forking process must be enrolled on the baiwibe able to pass it to its
forked processes. This enables the release of forked mes@sthe correct phase of barrier
synchronisation with existing processes holding thatiearfenrolment of the forked process
happens atomically with its forking.

1.15. Mobile Barriers: Synchronisation, Parallel Enrolnteand Resign Blocks

Synchronisation, parallel enrolment, parallel non-emeait and resign blocks for mobile
barriers have the same syntax and semantics as those foibstaters.

The usual parallel usage rules for read/write access talas apply to mobile barrier
variables. A process enrolled on a mobile barrier is cometléo haveread access on the
variable — i.e. its value cannot be changed in parallel. Miag this with the usage rules for
static barriers (Section 1.6), we note one extra rule:

e component processes iNPAR ENROLL construct whose bound barrier(s) is mobile
may not change the held reference (e.g. by assignment, anmatn-cloned output).

That also means that such component processes may only PA8sESR0LL-bound
mobilebarrier to astaticbarrier parameter/abbreviation.

2. A CSP Model for Mobile and Static Barriers

Our original approach was to modstcam-ttbarriers directly as CSP multiway events. The
dynamics of mobility, resignation and enrolment was to bedhed with auxiliaryspinner
processes, interleaving with the application processethe@rarriers and taking over syn-
chronisation on them when the application process was mrotled. This worked well for
static barriers, but managing the infinite setsspiinnersneeded to explaimobilebarriers
was proving troublesome (and would be hard for model chedikeaccommodate).

The approach presented here models each barriepascass rather than an event. It
documents how they are supported by teeam-rt kernel. It captures all the dynamic se-
mantics ofoccam-ttmobile barriers: run-time construction, communicatiod assignment,
cloning, parallel enrolment and non-enrolment, termoratiesignation and resign blocks,
and passing as arguments to forked processes.

P.H.Welch and F.R.M.Barnes / Mobile Barriers fmccam-1t 299

Initially, we consider mobile barriers — the model for stabarriers then follows triv-
ially. A formal semantics fooccam-ttbarriers then derives from the semantics of CSP.

2.1. Modelling amccam-1tMobile Barrier with a Process and Shared Channels

The insight is to give up trying to model these dynamic basrigirectly with CSP events
and spinner processes (maintaining synchronisation wientiuddy application processes
disengage). Instead, we model mobile barriers with preseasd shared channels, but with
added flexibility for the dynamic enrolment and resignatidprocesses.

So, occam-1t mobile barrier variables become (mobile) integer variablelding in-
dices to the actual barriers. The latter are (kernel) pseEgsunning in parallel to all appli-
cation processes, and created dynamically as needed. €hissthat they are always acces-
sible to all application processes, even though they aggdred within individual ones. So,
we don’t require the awkwarsicope extrusioooncept of tharcalculus.

Table 1. Mobile barrier process fields

Field Name Purpose

b index identification — unique for each barrier

refs reference count the number of mobile barrier variablesetully holding a reference td"

n enrolled count the number of processes currently enrolte'th’'o

count sync count the number of processes still left to synchromis®’ (to complete the barrier)

Table 2. Mobile barrier process events

Event Purpose

enrolb.p enrol ‘p’ processes on barrieb”

resignb resign one process from barridr *

tresignb temporarily resign one process from barrig'r(RESIGN’ block)’
tenrolb re-enrol one (temporarily resigned) process on barber *
syncb offer (committed) to synchronise on barriér *

ackb complete synchronisation on barriéf ‘

A mobile barrier process has four integer fields — shown indabSystem constraints
will impose that(b > 0) and(refs > n > count > 0). Index zero is reserved for mobile
barrier variables currently undefined — this is just for cemence in the following model
(not strictly necessary). The mobile barrier process wittek b’ engages on the events de-
scribed in Table 2. Here is the process:

BAR(b, refs n, count =
(enrolb.p — BAR(b, refs+ p, n+ p, count+ p)
(resignb — BAR(b, refs— 1, n— 1, count— 1

(
()
(tresignb — BAR(Db, refs n—1, count— 1)
(tenrolb — BAR(b, refs n+ 1, count+ 1)
()

(syncb — BAR(b, refs n, count— 1)), if (count> 0)
BAR(b, refs n,0) = BAR ACK (b, refs n, 0), if (n>0)

BAR_ACK (b, refs n, count) =
ackb — BARACK (b, refs n, count+ 1), if (n > count

300 P.H.Welch and F.R.M.Barnes / Mobile Barriers fmccam-1t

BAR ACK (b, refs n,n) = BAR(b, refs n, n)
BAR(b, refs 0,0) = tenrolb — BAR(b, refs 1, 1), if (refs> 0)
BAR(b,0,0,0) = SKIP

The difference betweemesignb’ and ‘tresignb’ is that the latter does not decrement the
reference count. There is a similar difference betwesmdl.b.1’ and ‘tenrolb’. * tresignb’
and tenrol.b’ will be used to brackeRESIGN blocks, whose existence is the only reason that
reference and enrolled counts may differ.

SYNC operations, in application processes, map to a sequencespiheb’ immediately
followed by an ackb’. The former just decrements the synchronisation counlhafreaches
zero, the barrier process locks into a sequenceadkl’ events with length equal to the
current enrolled count — these will all succeed, since teliebe precisely that number of
application processes blocked and waiting for th&ote: application processédsterleave
amongst themselves for engagement on all these barrieegg@ontrol events.

Any ‘resignb’ event that reduces the reference count to zero will alsgrgthe earlier
constraint, have reduced the enrolled and synchronisationts to zero — in which case, the
barrier process simple terminates. Note thagsignb’ does not change the reference count
and, so, cannot reduce it to zero.

2.2. Kernel and Application Processes

The mobile barrier processes doekedoff as needed by a generator process:
MB (b) = (getMBb — (BAR(b,1,1,1) || MB(b+1))) [(noMoreBarriers— SKIP)
For convenience, we also define:

UNDEFINED_BAR= (resign, — UNDEFINED_BAR) [](noMoreBarriers— SKIP)

Now, if SYSTEM is theoccam-Tt application andSYSTEMIis the CSP modelling of its
mobile barrier primitives (see below), the full model is:

s noMoreBarriers— obileBarrierKerne ernelchans
SYSTEM; noMoreBarri SKIP MobileBarrierK)\ k Ich

{kernelchan}

where:
MobileBarrierKernel= MB (1) ’ UNDEFINED_BAR

{noMoreBarriers

and:

kernelchans= {enrol.b.p, resignb, tresignb, tenrol.b, syncb, ackb,

getMB noMoreBarriers| (b > 0), (p > 1)}

P.H.Welch and F.R.M.Barnes / Mobile Barriers fmecam-Tt 301
2.3. Extending CSP with Variables and Assignment

For making precise the semantics of mobile barriers, we $lealising the syntax ofir-
cus [18]. This introduces, amongst other things, variablesassignment into CSP. It allows
us to work at a slightly higher, and clearer, level than pus®C

Such variables and assignments could be removed by intreggiparallel terminatable
state-processes for each variable, whose duration maticbsscope; plusload, ‘ storé
and kill’ channels for reading and writing their values and for teration. For example, the
variable declaration and process:

Var Xx: NeP
becomes:
((P' 5 killx — SKIP) Vary) \ {loadx, store, Killx }
{loady ,storey kil x }
where:

Vary (x) = (loadk!x — Var(x)) L] (storec?tmp — Vary(tmp))] (killx — SKIP)
andP’ is the result of removing similar variables frdM An assignment process:

X:=Y

becomes:
loady ?tmp — storg/tmp — SKIP

Any expression involving such variables requires prefixith a sequence dbadsinto
separate registers. For example:
cl(x+y)

becomes:
(loady?tmp, — loady?tmp, — c!(tmp, + tmp;) — SKIP) []
(loady?tmp; — loadx?tmp, — c!(tmp, + tmp,) — SKIP)

All occam-Tt variables — including those for mobile barriers — map to sGattus
variables. When reasoning formally about such CSP mappimgshould also take into ac-
count thatoccam-Ttprocesses are bound by tarallel usage rulesThese need formalising.

2.4. Modelling theoccam-Tt Primitives for Mobile Barriers

2.4.1. Mobile Barrier Declaration

Mobile barrier variables map into mobile integer (actualitural numbe) variables, holding
indicesto the referenced barrier processes:

MOBILE BARRIER b:

p Varb : N e b := undefined s P’ s resignb — SKIP

whereundefined is zero and” is the CSP model &f. Note that if b’ is undefined whenP’
terminates, therésignb’ is swallowed harmlessly by tHdNDEFINED_BAR kerneprocess.

2.4.2. Mobile Barrier Construction

b := MOBILE BARRIER ~ getMB/tmp — (b := tmp)

302 P.H.Welch and F.R.M.Barnes / Mobile Barriers fmccam-1t
2.4.3. Mobile Barrier Synchronisation

SYNC b ~ syncb — ackb — SKIP
2.4.4. Mobile Barrier Send (Uncloned)

c!b ~ clb — (b := undefined)
2.4.5. Mobile Barrier Send (Cloned)

c ! CLONE b ~ enrolb.1 — clb — SKIP
2.4.6. Mobile Barrier Receive

c?b ~ c’tmp — resignb — (b := tmp)
2.4.7. Mobile Barrier Assign (Uncloned)

a:=b ~ resign, — (a:= b) — (b := undefined)
2.4.8. Mobile Barrier Assign (Cloned)

((enrolb.1 — SKIP) ||| (resign, — SKIP)) s
(a:=Db)
2.4.9. Mobile Barrier Resign Block (Uncontrolled Resume)

a := CLONE b

REIEIGN b ~ tresignb — P’ s tenrol.b — SKIP
2.4.10. Mobile Barrier Resign Block (Controlled Resume)
RESIGN b
P ~ tresignb — P’ s ¢ — tenrolb — d — SKIP
RESUME c! 4!

To coordinate resumption in the rigbhase the resuming process should be enrolledtgn *
It executes:

RESUME c? d7? ~ ¢ — d— SKIP

Note: one resuming process can manage many resign-blockgses. The latter inter-
leave amongst themselves on thednd ‘d’ channels, but synchronise on them with the for-
mer. We call them ‘channels’ since only two-way synchrotiigais involved. No values are
communicated over them.

2.4.11. Mobile Barrier Parallel Enrolment
PAR i = start FOR n ENROLL b

P (i, b)
~o ParCount(n) ‘
{down}
start+ (n— 1)
(enrol.b.(n—l) — | | | (P’ (i, b) s dowrfn — (SKIP « (n=0) » resignb—>SK|P))>

i = start
whereP’ (i, b) is the CSP model df (i, b) and:

ParCount(n) = dowr(n— 1) — ParCount(n — 1), if (n > 0)
ParCount(0) = SKIP

P.H.Welch and F.R.M.Barnes / Mobile Barriers fmccam-1t 303

The usuabccam-ttparallel usage rules apply for the barrier variakenere. So, the repli-
cated process may us€ but may not change it. All it may do iSYNC on it, RESIGN from it
and release€LONES.

Note that this captures the required semantics (SectigritiaBeach component process
of thePAR ENROLL resigns from the barrier as it terminates, apart from thiedas to finish.

2.4.12. Mobile Barrier Parallel Non-Enrolment

No special semantics are needed in this case: the parateijaps to a CSP parallel con-
struction. Theoccam-ttparallel usage rules apply —i.e. only (at most) one of themament
processes may change the barrier variable. Howeeeam-rtimposes a stricter constraint:
only (at most) one of the component processes may referaedaatrier at all (i.eSYNC on

it, RESIGN from it, CLONE it, change it).

2.4.13. Mobile Barrier Passing to a Forked Process

FORK P (b) ~ forkP!b — (b := undefined)

where forkP is a channel specific for forking instancesrof
More usually, of course, the forking process retains thedraffor passing to processes
it may fork in the future) by passing a clone and remainingked:

FORK P (CLONE b) ~+ enrolb.1 — forkPlb — SKIP

Note that, either way, synchronisation on the barrier ssfeed by®’ cannot afterwards
complete without participation by the forked process (Bygsynchronisation or resignation).

To fork a process, we must be running iIrF@KING block (which, by default, is the
whole system). An explicit such block, that forks only instas ofP (b) for some mobile
barrier variable®’:

FORKING

< ~ ((X’ 3 done— SKIP) H ForkP) \ {forkP, done}

{forkP,donée

whereX’ is the CSP model af, ‘doné is chosen so that it does not ocdueein X or P(b),
and:

ForkP :<forkF’?b — ((P'(b) s resignb — done— SKIP) ForkP))
{dong

[

(done—> SKIP)

andP’(b) is the CSP model df (b).

Note that forked processes — like components AR ENROLL construct — resign
from whatever barriers (if any) are referenced by their peaters as they terminate. Note
also that termination of the forking block waits for all fedk processes to terminate.

2.5. Modelling theoccam-tt Primitives for Static Barriers

The semantics ddtaticbarriers did work out with the spinner mechanism previogslysid-
ered. However, static barriers can always be replaced bylenodrriers that take no advan-
tage of their mobility (i.e. communication and assignmeat), we may as well go with these
new semantics!

304 P.H.Welch and F.R.M.Barnes / Mobile Barriers fmccam-1t

To transform static barriers into mobiles, their declanagi
BARRIER b:

simply become the combined mobile declaration and inszion:
INITIAL MOBILE BARRIER b IS MOBILE BARRIER:

All BARRIER parameters/abbreviations becoM@BILE BARRIERS. No other transfor-
mations are needed, so we have their semantics.

Note: with static barriers, all we can do is synchroniseajparenrol and resign block. If
that is sufficient, use them rather than mobiles. There camlaiasing problems with static
barriers and their run-time overheads (memory and exaguaie slightly lower.

3. Implementation and Benchmarking

Implementation follows all the mechanisms documented enfthmal semantics given in
Section 2. However, scheduling of the barrier processestaatically serialised with in-
line instructions generated by tleecam-1t compiler, supported by its kernel — no actual
processes or channels are introduced.

Each barrier is managed though just five words of memoryetfoethereferenceen-
rolled andsynchronisatiorcounts (see Section 2.1) and two holding the front and bairk{o
ers to agueueholding processes blocked on the barrier. Barrier vargated the start address
(index of this structure. Fomobilebarriers, the space is allocated dynamicallypatam-

Tt mobile-spacegsee [19]); forstatic barriers, the space lives on the stack of the declaring
process.

A process synchronising on a barrier, unless the last tdspnése, is held on the barrier
gueue (rather than on aack.B channel) and the next process is scheduled. A process com-
pleting a barrier (i.e. reducing the synchronisation cdortero) releases all the others —
this is done in unit time by simply appending the barrier queuthe run queue, leaving the
former empty. All adjustments to the barriewuntsfollow the rules defined in Sections 2.1
and 2.4 for modelling all theccam-tt primitives in CSP.

Figure 2 shows the results of a benchmark that measuresrteggr barrier synchroni-
sation for increasing numbers of concurrent processegnmd2 GHz Pentium IV machines.
Each process synchronises a fixed number of times, from whehverage individual syn-
chronisation time is calculated. gridelength is used to control the start-up (and subsequent
scheduling) order of parallel sub-processes, demonsfrie effect of the processor’s cache
pre-fetching. Each curve in the figure reflects a differemtst

The memory foot-print for the 16 million process benchmatijally22*) was just over
700 mega-bytes (approximately 44 bytes per process), seaacsses will be heavy. The
processes are allocated their workspaces contiguoustraing to their index. Thetride
forces their scheduling so that consecutively run procesgspaces are (44tride) bytes
apart. For small strides, the Pentium IV cache pre-fetckinginates the problem of cache
miss. For largestrides, and especially for theandomisedstriding, the pre-fetching is de-
feated and cache miss penalties are felt.

Despite this, Figure 2 shows the implementation to be Uiigtatweight. The time for a
sixteen-million-widdarrier synchronisation was only 16 ns per process in thiecass (163
ms for the whole barrier) and 247 ns per process in the wosst dgpical application mixes
will show somecoherence in memory usage — the worst case above is rea#yl &iso,
applications runningeal processes (with real work to do) will not be able to afford enor
than the order of a million of them (because of memory linotas with current technology).
The barrier mechanisms presented in this paper are usefidan

P.H.Welch and F.R.M.Barnes / Mobile Barriers fmccam-1t 305

250 T T T T T

| 16384 —-—-—-
200 65536 —---—
random -- -- --

150 | e I

100 (- S Do S

sync time per process (ns)
<

.
pyl
50 [e L -
,

e et D

1 16 256 ak 64k iM 16M
number of processes

Figure 2. Synchronisation time for different strides
4. Sample Applications
4.1. TheTUNA Project

This work binding barrier synchronisation safely and eéiintly into theoccam-ttlanguage
was prompted by needs fouUNA (Theory Underpinning Nanite Assemblef$3], a project
involving researchers from the Universities of York, Syraed Kent in the United Kingdom.
This is investigating the emergent properties of systenméatioing millions of interacting
agents — such asanitesor biological organelles Here, goals are achieved by emergent
behaviour from force of numbers, not by complicated programg or external direction.
Such systems are complex, but not complicated. Medium téma are the development of
sufficient theory to enable the design of self-assemblingteaystems with controlled and
predictable properties for application in human medicine.

A working case study looks at mechanisms of blood clottirge Model is loosely based
on the medical process bhemostasisPlateletsare passive quasi-cells carried in the blood-
stream. A platelet becomes active when a balance of chestiocallators and suppressants
changes in favour of activation, usually because of physiamage to the linings of blood
vessels. Activated platelets become sticky, form cludtesrestrict blood flow — a neces-
sary first phase in limiting blood loss, healing of the wound &ecovery.

Unlike systems developed for traditional embedded andlphsapercomputing appli-
cations,TUNA networks will be highly dynamic — with elements, such as ctes and pro-
cesses, growing and decaying in reaction to environmergabpres. Computational network
topologies continually evolve as the organelles/nanigticate, combine and decay.

To model more directly (and, hence, simply) the underlyimgdgical/mechanical in-
teractions, extremely fine-grained concurrency will bedussomplex behaviour will be ob-
tained not by direct programming of individual process gygmit by allowing maximum flex-
ibility for self-organisation following encounters betare mobile processes — randomised
modulo physical constraints imposed by their modelled remvihents. We will need to de-
velop location awareness for the lowest level processetheyomay be aware of other pro-
cesses in their neighbourhood and what they have to offewiWaeed to synchronise the
development of organisms to maintain a common awarenegsaef t

306 P.H.Welch and F.R.M.Barnes / Mobile Barriers fmccam-1t

Barrier mechanisms with user-defined and dynamic bindingdcesses are promising
to be very helpful in this context.

4.2. Static Barrier Application: First Blood Clotting MotléBusy)

The clotting model and implementation described here aressgimplification of what we
will eventually require foITUNA. It is crucial, however, that we have a firm understanding
and confidence in simple models, before attempting moreoedddd models. We would not
wish for any emergent behaviour of the system to be whollgmieihed by implementation-
specific artifacts, such as programming errors arising fadack of understanding.

Spacdas modelled as a one-dimensional pipeline@fl1’ processes representing a sec-
tion of a blood vessePlateletsare in their activated (i.e. sticky) state. They flow through
the cells at (average) speeds inversely proportional teitteeof theclot in which they be-
come embedded — these speeds are randomised slightly.tRddtisump together stay to-
gether, forming larger clots spanning many cells. Eachroalhtains internal state indicating
whether it contains a platelet. The model is time-steppeldawng the cells synchronise on
a barrier [8], which is also used to coordinate safe accesdoed data.

4.2.1. System Network and Two-Phased Cycles

gen [~ --- | cel cell cell |~ -+« hole
v ™ 1 g
I—[display state]—[running]—| draw
keywatch display [—= (screen)

(keyboard)

Figure 3. ‘Busy’ clotting model process network (phase 0)

gen [~ - | cel cell cell [~ -+ <] hole

I—[display state]—[running]—| draw
v

«
keywatch display |—= (screen)

(keyboard)

Figure4. ‘Busy’ clotting model process network (phase 1)

Figures 3 and 4 shows the two computational phases of thegsawtwork used in this
clotting model. Thegenerator’ process determines (stochastically) whether a new gatel
is generated and, if so, injects it. THele’ process just acts assankfor platelets flowing
out of the pipeline. Thedisplay’ process renders the (full or empty) state of the cells for vi
sualisation and shows system parameters (such as plateletagion and display rates). The

P.H.Welch and F.R.M.Barnes / Mobile Barriers fmccam-1t 307

‘keywatch’ process allows user-interaction for setting those patarseand for terminating
the system.

The ‘display state’ and ‘running’ flag are not actually processes, but variables
sharedbetween thecell’ and ‘display’ processes. (Such variables could, of course, be
made into processes if we were worried about this — see Se218).

Figures 3 and 4 extends the symbology of Figure 1. The shadedied boxes represent
state variables. They are stuck on the barri&ra¥’, to indicate that access to them is con-
trolled through the barrier. The dotted arrows between thegsses and the shared variables
indicate two things: reading/writing (depending on theardirection) and that the processes
must synchronise on the underlying barrier to coordinadé ibading or writing.

Race hazards to shared memory (and consequential losstoflyane avoided normally
by occam-1ts parallel usage rules, which enforce CRE®@bfcurrent Read Exclusive Wrjte
principles. However, these apply between component psesad &AR or between &0RKed
process and the rest of the system. Here, we need a finer griyof enforcement and this
is managed through theraw’ barrier.

All * cell’ processes together witlgénerator’, ‘hole’ and ‘display’ cycle through
two phases, synchronised by thie-aw’ barrier on which they are enrolled. To check CREW
conformance, we just have to check that no read/write oeywiite on shared state happens
in the same phase. In this system, different componentsdfitlsplay state’ are written
by the cells inphase 1they are read by the renderingi'splay’ process inphase 0 The
‘running’ flag is read by all enrolled processesphase Oand written, by display’, in
phase 1

4.2.2. Theéell’ Process

Here is outline code for thee11'. The first tworeferencedata parameters give this process
access to its component of thieisplay state’ (Shared with thedisplay’ process) and the
‘running’ flag (shared with most other processes):

PROC cell (BYTE my.visible.state, BOOL running, BARRIER draw,
CHAN CELL.CELL left.in?, left.out!, right.in?, right.out!)

local declarations / initialisations (phase 0)
WHILE running
SEQ

SYNC draw —-- phase 1
PAR-I/0 exchange of full/empty state with neighbour cells
if full
discover clot size (initiate or pass on count)
if head of clot
decide on move (non-deterministic choice)
if move, tell empty cell ahead (push decision)
else receive decision from cell ahead (pull decision)
if not tail of clot, pass movement decision back (pull)
if tail and movement, become empty
else if clot behind exists and moves (push), become full

SYNC draw —-- phase 0O
update my.visible.state

308 P.H.Welch and F.R.M.Barnes / Mobile Barriers fmccam-T1t
The ‘CELL. CELL’ protocol used for communication between cells is definetthwi

PROTOCOL CELL.CELL

CASE
state; BOOL -- full/empty
push; BOOL -- move/no-move decision
pull; BOOL -- move/no-move decision
size; INT -—- clot size

The barrier synchronisation forces all enrolled processessart theipphase lcomputa-
tions together. The I/O-PAR communications of state betwtbe ‘cell’s, which only use
the abovestate’ variant, cannot introduce deadlock [20].

After that, each cell knows the state of its immediate neaginb and works out what
further communications, using the other variants of ttELL . CELL’ protocol, are needed.
All cells follow the same rules and reach matching decisaiysut those communications —
so there can be no deadlock, despite this part of the logibeiag I/0O-PAR.

The ‘generator’ and ‘hole’ processes are cut-down versions of thell’. Addition-
ally, ‘generator’ polls its input channel fromkeywatch’ for user-updates to the generation
rate and makes decisions, based on that rate, for releasimglatelets (which it does by
appearingemptyor full to the first ‘cell’ process).

The keywatch’ process is lazy and not enrolled on the barrier. It is trigglesolely by
user keystrokes.

It is worth noting that the movement decisions (bycall’ process at the head of a
clot) and the new platelet release decisions (by geérator’) are theonly places in the
system where non-determinism occurs (modelled in CSP agemal choice). The ¢éell’
processes do not even contain a singl@ construct.

4.2.3. Scaling Up

In this system, every cell is always active, regardless adthvbr it contains a platelet —itis a
classicbusyCellular Automaton (CA). It works well for systems with theder of hundreds
of thousands of cells. For TUNA, we will need to be workinghinge dimensions, modelling
many different types of agent all with much richer rules ofj@gement. To enable scaling
up two (and more) orders of magnitude, these automata mastiedazy, whereby only
processes with things to do remain in the computation. Oetenique for achieving this are
given in the next section; another is reported in [17].

4.3. Mobile Barrier Application: Second Blood Clotting MeldLazy)

Something unsatisfactory about the CA approach describélde previous section is that
the logic focusses on theell processes. The rules for different stages in the life cy€le o
platelets or clots are coded into different cycles of thésc&rom the point of view of the
cell, which is what we design and program, we see lotditbérentplatelets — sometimes
bunched together forming clots — passing through. No poossdels the development of
an individual clot.

4.3.1. Mobile Barriers, Mobile Channels and Forking

This model focusses on the life cycle of clots, each one thireepresented by aclot’
process. Initially, these ar®rked off by the ‘generator’ process as singleton platelets,
straggling the first cell in the pipeline. Because theset’s need enrolment on the barrier,

P.H.Welch and F.R.M.Barnes / Mobile Barriers fmccam-1t 309

the barrier must be passed to it by thenerator’. Because passing arguments to forked
processes involves communication, the barrier mustrelaile

As before, space is represented by the pipeline@fl’ processes — but this time they
are not enrolled on the barrier. These cell processes ase/paervers, responding to client
requests on theservice channel bundles- represented in Figures 5-10 by the vertical bi-
directional channels on the top of the cells. Neighbourhtopology is determined by each
cell's (shared) access to the next cell's service chanBe&lsause we only support forward
clot movements in this model, a cell only needs forward azeest would be easy to make
connections in both directions should other models need thi

Cells hold state indicating whether they are being stratlojea passing clot; this state is
shared with thedisplay’ process. They are idle except when the front and rear baiexda
of a clot passes through them.

Each clot’ process connectieelerchannels to the cells immediately before and after
the group of cells currently straddled — see the figuressti abnnects to thiast cell in its
group, in which it deposits theriting endof its tail-channel— that deposition is not shown
in the figures, but left free standing for clarity. All chamsyeapart from those connecting
‘keywatch’ and the generator’ and ‘display’ processes, arsobile

The cell processes are shown underlain by thew’ barrier. This means that processes
connected to them (i.e. the clots and the display) must baledron that barrier and coordi-
nate their interaction with the cells through synchromgsabn the barrier.

4.3.2. Computation Phase 0

gen clot
ﬁ/ﬁ P P
- | ceII cell cell —— cell — cell — cell F—---—
draw
keywatch display = |——— (screen)
(keyboard)
Figure5. ‘Lazy’ clotting model — before move (phase 0)
gen |jm=pp clot
weel— cell — cell cell cell — cell — cell f—--—
draw
keywatch display = ——— (screen)
(keyboard)

Figure 6. ‘Lazy’ clotting model — after move (phase 0)

310 P.H.Welch and F.R.M.Barnes / Mobile Barriers fmccam-1t

Through barrier synchronisation, we maintain the follagvinvariant at the start gfhase
0 of each cycle: for each clot in the system, there are empty oaleither side of the (full)
cells in the clot. This condition is shown in Figure 5. The @uration proceeds by deciding
and, if positive, moving the clot forwards by one cell — Fig@. This requires communi-
cating theclient-endsof the cell service channel-bundles through the existingeations of
the clot process, updating those connections accordidglgging the clot’s tail forward one
cell, marking the old rear cell empty and the new front oné fthis all happens iphase Q
during which the display’ process is not reading the cell states (maintaining CREM&ju

4.3.3. Computation Phase 1

Following another barrier synchronisation, we argimase 1 The invariant here is that no
clots are moving. This allows them to inspect their envirenin— location awareness—

by interrogating through their front and refaelers If other clots are detected, the bumping
clots coalesce — Figures 7-10.

In Figure 7, two clots detect that they have touched. Theole, using its fronteeler,
acquires the writing end of the tail-channel of the one onritjet (which was deposited in
the cell probed by thdtelel). The two clot processes have dynamically set up a conmectio
between them — Figure 8.

gen | A

;

ﬁi/ e

—4 i
werl— cell — cell — cell — cell — cell — cell f—---—
- - draw
keywatch display = |——— (screen)
(keyboard)

Figure 7. ‘Lazy’ clotting model — bump detected (phase 1)

all ng /m

O

sorl—t cell p— cell — cell — cell — cell — cell f=—---—
" draw

RN ISP
keywatch display |——— (screen)

T

(keyboard)

Figure 8. ‘Lazy’ clotting model — communication established (phase 1)

The left clot communicates four items: its size, the reading of its tail-channel and
the client ends of its redeelerand last clot cell services. The right clot increments it si
accordingly and overwrites its corresponding connectiaitisthe three channel/bundle-ends
received — Figure 9. Finally, the left clot terminates, tight clot having taken over the
merger — Figure 10.

P.H.Welch and F.R.M.Barnes / Mobile Barriers fmccam-1t 311

o >

G R G

woel— cell — cell — cell — cell — cell — cell f—---H
. draw

keywatch display |—— (screen)

T

(keyboard)

Figure9. ‘Lazy’ clotting model — tail and back legs passed (phase 1)

- > e

weol— cell — cell — cell — cell — cell — cell f—---—
‘ draw

keywatch display = |——— (screen)

(keyboard)

Figure 10. ‘Lazy’ clotting model — clots merged, rear one terminated (phase 1)

During this phase, the (full or empty) state of the cells dbai@mnge and it is safe for
the ‘display’ process to read and render them.

Not shown in these figures is a shareddning’ flag, operated across the phases in the
same way as for the previous model — Section 4.2. Termin#ti@gell processes cannot be
via thisrunning’ flag, since they are not enrolled on the barrier and have ng saely, to
read its value and ensure that all read it in the same cyd&eadd, termination has to be done
in the classical way, using@isonmessage sent through the pipeline — see [21].

4.4. Performance of the Models

For the'busy’ cellular automata of Section 4.2, performance is propoalido the number
of cells since they are all active all the time. It also deead the number of platelets in
the system, since cells holding platelets have additiomakwo do. Further, clot sizes are
recomputed every cycle — so large clumps also increase #te co

For the'lazy’ but dynamic system of Section 4.3, the number of cells onlyaiots on
memory requirements — though that may cause cache-miskeprslat run-time. Otherwise,
its performance depends only on the number of clots in theesys— their size (i.e. the
number of platelets) is irrelevant.

Table 3 gives the cycle times per cell for systems of arouriiddlls, running on a 2.4
GHz Pentium 4-m. The number of platelets in the system dependhe generation rate
— these are given in the first column as fractions of 256 andesgmt the probability of
release in each cycle. Each run, of course, has differepepties but the overall performance
does not change much. These results are averaged over lfor@ash model and for each
generation rate.

312 P.H.Welch and F.R.M.Barnes / Mobile Barriers fmccam-1t

Table 3. Cell cycle times for the two models

Generation Rate (n/ 256) ‘Busy’ (ns) ‘Lazy’ (ns)

0 650 0
1 660 8
2 670 12
4 680 14
8 700 16
16 740 18
32 1070 0

A generation rate of zero implies no work is done by‘thegy’ model. A generation rate
of 32/256 is too much for the bloodstream and causes a totaljdath the vessel containing
one continuous clot. This causes extra work for‘thesy’ model, computing its length each
cycle — as well as cycling all processes. For fagy’ model, there is again nothing to do.

On balance, thdazy’ model is more than 40 times faster than thesy’ cellular au-
tomaton — in some circumstances, it is infinitely more effitidts logic is also simpler,
more directly modelling the players in the system.

4.5. Emergent Behaviour

The clotting model presented here is particularly simpiénals been developed to try out
techniques that need to be matured beforeréta¢ modelling can be attempted. Neverthe-
less, unprogrammed behaviour leamergedhat is encouraging and relevant to our TUNA
investigations.

Considering the 1-dimensional pipeline as a capillary i blood circulation system,
these results reflect certain observed realities. Abovetaingrobability of platelet activa-
tion (resulting, initially, from tissue damage) and lengshich a capillary always becomes
blocked.

Figure 11 shows a screen-shot of a visualisation for ax30Qell grid (arranged as
a 1-dimensionapipe) using 16 pixels-per-cell and with a 4/256 probability obtcplatelet
generation at the start of thpgpe (top-left in the picture).

Figure 11. Clot model visualisation

The pipeline is displayednakingdown the image, with the first cell at the top-left, the
next cells moving right along the first row, then left along gecond row, etc.

In the early rows of Figure 11, only small (mainly singleted) clots are seen. Further
down the pipelinel§lood vess@l small randomised variations in their speed have resuited
them bumping and coalescing into larger and slower moviatscEven so, they manage to
flow away fast enough that the faster moving singletons laktiiam coalesce into similarly
large clots that cannot catch them and the stream contiousit

P.H.Welch and F.R.M.Barnes / Mobile Barriers fmccam-1t 313

With higher probabilities of clot generation (not shownlie above figure), larger clots
are formed that move slower still. Above a threshold (to henfbbyin silico experiment),
these larger clots cannot escape being caught by smaltsragtind them — which leads to
eventual catastrophic clotting of the whole system.

4.6. TUNA Perspective

For the introduction ohanitesimplementing artificial blood platelets, getting the baan
right between the stimulation and inhibition of clottingaotions will be crucial to prevent a
catastrophic runaway chain reaction. This model is a cradg¢t) platform for investigating
the impact of many factors on that balance.

Our ambitions in the TUNA project call for scaling the sizetbése models through
three orders of magnitud@.e. tens of millions of processes) ahdrd-to-quantifyorders
of complexity. We will need to model (and visualise) two ahdee dimensional systems,
factor in a mass of environmental stimulators, inhibitard aecessary supporting materials
(such adibrinogen and distribute the simulation efficiently over many maeisiiito provide
sufficient memory and processor power).

We suspect that simple cellular automata, as describeddtio8et.2, will not be suf-
ficient. We need to develdazyversions, in which cells that are inactive make no demands
on the processor. We also need to concentrate our modetipgaxesses that directly rep-
resent nanites/organelles, that are mobile and that atitechselves to particular locations
in space (which can be modelled passiveserver processes that do not need to be time-
synchronised). Barrigesignationwill be crucial to manage this laziness; but care will need
to be applied to finding design patterns that overcomentiredeterminisnthat arises from
unconstrained use. Such an approach is taken in the moddbged in Section 4.3. Another
is presented in [17].

Achieving this will be a strong testing ground for the dynarmapabilities (e.g. mobile
processes, channels and barriers) built into the o@vam-1tlanguage, its compiler and run-
time kernel. Currentlypccam-ttis the only candidate software infrastructure (of which we
are aware) that offers support for our required scale oflledisan and relevant concurrency
primitives. Further, it is backed up with compiler-checkatks against their misuse. We need
the very high level of concurrency to give a chance for irdeng complex behaviour to
emerge that is not pre-programmed. We need to be able toreapth emergent behaviour
to investigate and develop the necessary theories to uindbgsafe deployment of Nanite
technology in medicine and elsewhere. How those theoriksnaly relate to the process al-
gebra underlyingpccam-1t semantics (i.e. Hoare’s CSP and Milnernigcalculus) is a very
interesting and very open question.

This work will contribute to the (UK) ‘Grand Challenges foo@puter Science’ areas 1
(In Vivo < In Silico) and 7 Non-Standard Computatipn

5. Summary and Future Work

This paper has reported the introductiomadbileBARRIERS into theoccam-Ttmultiprocess-
ing language. These provide an extra synchronisation nmésrnabased upon the concept of
multiway eventrom CSP ananobility from thercalculus. The language binding, rules and
semantics were presented first informally — followed by ctatgpformal semantics through
modelling in standard CSP. The current implementation meisims foroccam-ttwere out-
lined, together with benchmark performance figures (frosteays with up to 16 million pro-
cesses). Finally, an application was described whoseesffigiis transformed through the
use of these barriers and their ability to be communicated.

314 P.H.Welch and F.R.M.Barnes / Mobile Barriers fmccam-1t

The desired semantics foccam-Tt barrier synchronisation are precisely the same as
those for CSP multiway events. Despite this, the former atalimectly modelled by the lat-
ter, because of the need to capture the dynamics of run-timgtrwiction, enrolment, resig-
nation and mobility (which are alien to CSP events). Howgtéurned out surprisingly easy
to capture both the fundamental (CSP) synchronisation ofdoa with their frcalculus)
dynamics — and we didn’t have to step outside of standard CSP.

All that proved necessary was to model the support builtim@ccam-ttkernel and the
code generation sequences from the compiler (that intesigtcthe kernel). Barriers become
kernel processes operated through indexed control chewomel which all application pro-
cesses interleave. It would, perhaps, have been a bettgrtgtsay that this CSP modelling
camefirst (accompanied by some formal sanity check verificationsandbdel checking)
before the kernel and compiler were developed. Alas, weghband did things the other
way around.

This CSP modelling gives us both denotationalsemantics (through the standard
traces/failures/divergences semantics of CSP) angpanationalsemantics (describing the
implementation). It enables formal verification and (fihiteodel checking fooccam-ttsys-
tems using mobile barriers. The denotational aspect fughpports formal system spec-
ification and development througlefinement The operational aspect provides machine-
independent formal documentation of the necessary comlde generation and run-time
kernel support.

This work has triggered a similar approach for the modelih@ccam-1) mobile chan-
nelsin CSP. Again, kernel processes, rather than channelssaceta capture the synchro-
nisation and dynamic semantics. This is a very recent resultwill have to be reported
elsewhere.

It may now be possible to provide a formal CSP model documgritieentire occam-

T run-time kernel and supporting code generation. That weunklable formal specification,
development and analysis of all application systems, asasgirovide a formal specification
for the porting ofoccam-ttto new target platforms (including the design of directcsifi
support in future microprocessors).

Another development of this work could lead to a completenfarspecification of a
compiler fromoccam-rtdown to a simple register-based machine code — for examgde, s
Section 2.3. Adding in formal constraints imposing the parand anti-aliasingisage rules
of occam-ttwould further permit re-ordering of code sequences, nacgdsr the efficient
operation of many modern microprocessors. Assistancehisrig also given by avoiding
unnecessargerialisationof code sequences in the formal definition — for example, Sec-
tions 2.3 and 2.4.8, where refinement into particular deaibns can be chosen at any stage
(including their deferral till run-time). These re-ordegs would be botksafe(in terms ofse-
guential consistencgnd multiprocessor execution) andderstandabléby mortal systems
designers and coders).

Such work is for the future, but should be relevant and withmtimescale of the UK
‘Grand Challenges in Computer Sciend@2] project onDependable Systenj23]. The
TUNA applications work, described in Section 4, are the begsofgontributions towards
two of the other Grand Challenge arehsVivo < In Silico[24] andNon-Classical Compu-
tation[25].

Acknowledgements

We are grateful to our colleagues on theNA project for insights and much debate. Thanks
especially to Jim Woodcock, Steve Schneider and Ana Cavalfta suggesting the blood
clotting case study and for their own CSP models develogirg and for motivating us to

P.H.Welch and F.R.M.Barnes / Mobile Barriers fmccam-1t 315

the importance of finding a formal semntics for ttcam-mtmobiles. We would also like to
thank the anonymous reviewers for their helpful commentaroearlier version of this work.

References

[1] P.H. Welch and D.C. Wood. The Kent Retargetable occam @lem In Proceedings of WoTUG 19
pages 143-166. I0S Press, March 1996. ISBN: 90-5199-261-0.

[2] P.H. Welch, J. Moores, F.R.M. Barnes, and D.C. Wood. TRe& Home Page, 2000. Available at:
http://www.cs.kent.ac.uk/projects/ofa/kroc/.

[3] P.H. Welch and F.R.M. Barnes. Communicating mobile peses: introducing occam-pi. In A.E.
Abdallah, C.B. Jones, and J.W. Sanders, edifBsyears of CSR/olume 3525 of_ecture Notes in
Computer Sciencgages 175-210. Springer Verlag, April 2005.

[4] Frederick R.M. BarnesDynamics and Pragmatics for High Performance ConcurreriiyD thesis,
University of Kent, June 2003.

[5] F.R.M. Barnes and P.H. Welch. Prioritised dynamic cominating and mobile processd&E
Proceedings — Softwar&50(2):121-136, April 2003.

[6] Inmos Limited. occam 2.1 Reference Manual. Technicpbre Inmos Limited, May 1995. Available at:
http://wotug.org/occam/.

[7]1 R. Milner. Communicating and Mobile Systems: the Pi-CalculDambridge University Press, 1999.
ISBN-10: 0521658691, ISBN-13: 9780521658690.

[8] F.R.M. Barnes, P.H. Welch, and A.T. Sampson. Barriechyanisations for occam-pi. IRroceedings of
the 2005 International Conference on Parallel and DisttimiProcessing Techniques and Applications
(PDPTA’2005) CSREA press, June 2005.

[9] C.A.R. Hoare.Communicating Sequential ProcessBsentice-Hall, London, 1985. ISBN:
0-13-153271-5.

[10] A.W. Roscoe.The Theory and Practice of Concurrendrentice Hall, 1997. ISBN: 0-13-674409-5.

[11] L.G. Valiant. A bridging model for parallel computatioCommunications of the ACN33(8):103-111,
August 1990.

[12] M. Schweigler. Adding Mobility to Networked Channefqdes. InProceedings of Communicating
Process Architectures 200gages 107-126, September 2004. ISBN: 1-58603-458-8.

[13] S. Stepney, P.H. Welch, F.A.C. Pollack, J.C.P. Wooldc8c Schneider, H.E. Treharne, and A.L.C.
Cavalcanti. TUNA: Theory underpinning nanotech assemlffeasibility study), January 2005. EPSRC
grant EP/C516966/1. Available fromttp://www.cs.york.ac.uk/nature/tuna/index.htm.

[14] Peter H. Welch and David C. Wood. Higher Levels of Precggnchronisation. IRroceedings of
WoTUG 20 pages 104-129. 10S Press, April 1997. ISBN: 90-5199-336-6

[15] D.C. Wood and J. Moores. User-Defined Data Types and &erinoccam. In Proceedings of
WoTUG 22 pages 121-146. I0S Press, April 1999. ISBN: 90-5199-480-X

[16] M.D. Poole. Extended Transputer Code - a Target-Inddpet Representation of Parallel Programs. In
Proceedings of WoTUG 2pages 187-198. IOS Press, April 1998. ISBN: 90-5199-391-9

[17] A.T. Sampson, P.H. Welch, and F.R.M. Barnes. Lazy Satioih of Cellular Automata with
Communicating Processes. In J. Broenink, H. Roebbersnle&i. Welch, and D. Wood, editors,
Communicating Process Architectures 2003S Press, September 2005.

[18] J.C.P. Woodcock and A.L.C. Cavalcanti. The SemanticSiiwus. InZB 2002: Formal Specification and
Development in Z and,Bolume 2272 of_ecture Notes in Computer Scienpages 184—-203.
Springer-Verlag, 2002.

[19] F.R.M. Barnes and P.H. Welch. Mobile Data, Dynamic &Hition and Zero Aliasing: anccam
Experiment. In Alan Chalmers, Majid Mirmehdi, and Henk MulleditorsCommunicating Process
Architectures 200lvolume 59 ofConcurrent Systems Engineerjmpges 243—-264, Amsterdam, The
Netherlands, September 2001. WoTUG, IOS Press. ISBN: D5262-X.

[20] P.H. Welch, G.R.R. Justo, and C.J. Willcock. HigherleParadigms for Deadlock-Free
High-Performance Systems. In R. Grebe, J. Hektor, S.ConikM.R. Jane, and P.H. Welch, editors,
Transputer Applications and Systems '93, Proceedingsen1 893 World Transputer Congress
volume 2, pages 981-1004, Aachen, Germany, September [®@9®ress, Netherlands. ISBN
90-5199-140-1. See alsbttp://wuw.cs.kent.ac.uk/pubs/1993/279.

[21] P.H. Welch. Graceful Termination — Graceful ResettihngApplying Transputer-Based Parallel
Machines, Proceedings of OUG Jflages 310-317, Enschede, Netherlands, April 1989. Oceen U
Group, 10S Press, Netherlands. ISBN 90 5199 007 3.

316 P.H.Welch and F.R.M.Barnes / Mobile Barriers fmccam-1t

[22] UKCRC. Grand Challenges for Computing Research, 2004.
http://www.nesc.ac.uk/esi/events/Grand Challenges/.

[23] J.C.P. Woodcock. Dependable Systems Evolution, M&42@vailable from:
http://www.nesc.ac.uk/esi/events/Grand _Challenges/proposals/.

[24] R. Sleep. In Vivos In Silico: High fidelity reactive modelling of developmemdabehaviour in plants
and animals, May 2004. Available from:
http://www.nesc.ac.uk/esi/events/Grand _Challenges/proposals/.

[25] S. Stepney. Journeys in Non-Classical Computatiory B04. Available from:
http://www.nesc.ac.uk/esi/events/Grand Challenges/proposals/.

