
Communicating Process Architectures 2006
Peter Welch, Jon Kerridge, and Fred Barnes (Eds.)
IOS Press, 2006
c© 2006 The authors. All rights reserved.

77

pony – Theoccam-π
Network Environment

Mario SCHWEIGLER and Adam T. SAMPSON

Computing Laboratory, University of Kent,
Canterbury, Kent, CT2 7NF, UK

ms44@kent.ac.uk

research@informatico.de

ats1@kent.ac.uk

ats@offog.org

Abstract. Although concurrency is generally perceived to be a ‘hard’ subject, it can
in fact be very simple — provided that the underlying model issimple. Theoccam-π
parallel processing language provides such a simple yet powerful concurrency model
that is based on CSP and theπ-calculus. This paper presents pony, theoccam-π Net-
work Environment.occam-π and pony provide a new, unified, concurrency model
that bridges inter- and intra-processor concurrency. Thisenables the development of
distributed applications in a transparent, dynamic and highly scalable way. The first
part of this paper discusses the philosophy behind pony, explains how it is used, and
gives a brief overview of its implementation. The second part evaluates pony’s perfor-
mance by presenting a number of benchmarks.

Keywords. pony, occam-pi, KRoC, CSP, concurrency, networking, unified model,
inter-processor, intra-processor, benchmarks

Introduction

Concurrency has traditionally been seen as an ‘advanced’ subject. It is taught late (if at all)
in computer science curricula, because it is seen as a non-trivial extension of the ‘basic’
sequential computing. In a way, this is surprising, since the ‘real world’ around us is highly
concurrent. It consists of entities that are communicatingwith each other; entities that have
their own internal lives and that are exchanging information between each other.

Process calculi such as CSP [1] and theπ-calculus [2], with their notion of processes
and channels, are particularly suited to model the ‘real world’, especially since there is a
programming language available that is based on those formal calculi, but still easy to under-
stand and to use. This language isoccam-π, the new dynamic version of the classicaloc-
cam1 [3]. Originally targeted at transputer [4] platforms, it was specifically designed for the
efficient execution of fine-grained, highly concurrent programs. Still, most people associate
concurrency with the traditional approach of threads, locks and semaphores rather than with
the much more intuitive one of a process algebra.

Networking is increasingly important in today’s world. Originally a merely academic
topic, it has gained significant importance since the 1990s,especially due to the advent of
the internet as an everyday ‘commodity’ on the consumer market. The development of large
distributed applications is one of the modern challenges incomputer science. Infrastructures

1occam is a trademark of ST Microelectronics. The originaloccam language was based on CSP only;
features from theπ-calculus, particularly the notion of channel and process mobility, have been incorporated in
occam-π recently.

78 M. Schweigler and A.T. Sampson / pony – Theoccam-π Network Environment

such as the Grid [5,6,7] are specifically designed for the distribution of large computational
tasks onto decentralised resources.

Distributed applications are typicallydesignedto be distributed right from the start —
the mechanisms used for distribution must be specifically addressed by the developer. The
pony2 project [8] is targeted towards bringing concurrency and networking together in a
transparentand dynamic yet efficient way, using theoccam-π language as the basis for the
development of distributed applications. This is possiblebecause, as stated above, the world
is concurrent by nature, which includes networks of computers. A programming language
such asoccam-π, which by design captures this ‘natural’ concurrency, is particularly suited
as the basis for a unified concurrency model.

1. Background and Motivation

1.1. The Need for a Unified Concurrency Model

Concurrency is simple — provided that the underlying model is simple.occam-π offers just
that, a concurrency model that is simple to use, yet based on the formal algebras of CSP and
the π-calculus. One of the major advantages ofoccam-π is that it encourages component-
based programming. Eachoccam-π process is such a component, which can communicate
with other components.occam-π applications may be highly structured, since a group of
processes running in parallel can be encapsulated into a ‘higher level’occam-π process, and
so on.

This component-based approach is the particular charm ofoccam-π programming. It
allows the development of sub-components independently from each other, as long as the
interface for communication between those sub-componentsis clearly defined. Inoccam-π,
this interface is provided (primarily) by channels; this includes both the ‘classical’occam
channels and the new dynamic channel-types3 [9]. Once all components of anoccam-π
application have been developed, they just need to be ‘plugged together’ via their interfaces.

We want to utilise the advantages ofoccam-π’s concurrency model for the development
of distributed applications. In order to do this successfully, it is necessary to extendoccam-π
in such a way that the distribution of components is transparent to the components’ devel-
opers. As long as the interface between components (i.e. processes) is clearly defined, the
programmer should not need to distinguish whether the process on the ‘other side’ of the
interface is located on the same computer or on the other end of the globe.

1.2. Aspects of Transparency

pony, the occam-π Network Environment, extendsoccam-π in such a transparent way.
There are two aspects of transparency that are important:semantictransparency andprag-
matictransparency.

1.2.1. Semantic Transparency

occam was originally developed to be executed on transputers. Thetransputer was a micro-
processor with a built-in micro-coded scheduler, allowingthe parallel execution ofoccam
processes.occam channels were either emulated within a single transputer iftheir ends were
held by processes on the same transputer (‘soft channels’),or implemented using the trans-

2The name ‘pony’ is an anagram of the first letters of [o]ccam, [p]i and [n]etwork; plus a [y] to make it a
word that is easy to remember.

3Channel-types are bundles of channels. The ends of channel-types are mobile and may be communicated
between processes.

M. Schweigler and A.T. Sampson / pony – Theoccam-π Network Environment 79

puter’s links. Each transputer had four links by which it could be connected to other trans-
puters (‘hard channels’). The late T9000 transputer [10], which was the last transputer being
developed and which went out of production shortly after having been introduced by Inmos,
additionally offered aVirtual Channel Processor (VCP)[11] which allowed many logical
occam channels to be multiplexed over the same physical link.

This approach allowed the simple construction of networks of transputers offering large
computing power, despite the (comparatively) low processing capabilities of a single trans-
puter. The great advantage of this approach was that the programmer of anoccam process
did not have to care whether a specific channel was a soft or a hard channel. This distinction
was transparent from the programmer’s point of view — the semantics of channel communi-
cation was identical for alloccam channels.

After the decline of the transputer, the ‘occam For All’ [12] project successfully saved
theoccam language from early retirement. Althoughoccam was originally targeted at trans-
puters, the aim was to bring the benefits of its powerful concurrency model to a wide range
of other platforms. This was achieved by developing KRoC, the Kent Retargetableoccam
Compiler [13]. What had been lost, however, was the support for hard channels, since without
transputers there were no transputer links anymore.

The pony environment re-creates the notion of semantic transparency from the old trans-
puter days. pony enables the easy distribution of anoccam-π application across several pro-
cessors — or back to a single processor — without the need to change the application’s
components.

With the constant development of KRoC, occam has been developed intooccam-π,
which offers many new, dynamic, features [14,9,15]. pony takes into account and exploits
this development. In the classicaloccam of the transputer days, channels were the basic
communication primitive, and semantic transparency existed between soft and hard channels.
pony’s basic communication primitive areoccam-π’s new channel-types, and there is seman-
tic transparency between non-networked channel-types andnetwork-channel-types (NCTs).
This transparency includes the new dynamic features ofoccam-π.

All occam-π PROTOCOLs can be communicated over NCTs. Mobile semantics are pre-
served as well, both when mobile data [14] is communicated over NCTs, and when ends
of (networked or non-networked) channel-types are communicated over other channel-types.
The semantics is always the same, and the developer of anoccam-π process does not have
to care whether a given channel-type is networked or not. Some of pony’s general routing
mechanisms are similar to the Virtual Channel Processor of the T9000 transputer; however,
routing in pony is dynamic, rather than static like on the transputer.

1.2.2. Pragmatic Transparency

When achieving semantic transparency, we do not want to pay for it with bad performance.
For instance, a system that uses sockets for every single communication, including local
communication, would still be semantically transparent — since the developer would not
have to distinguish between networked and non-networked communication — but it would
be hugely inefficient. Here the other important aspect becomes relevant, namely pragmatic
transparency. This essentially means that the infrastructure that is needed for network com-
munication is set upautomaticallyby the pony environment when necessary. Due to pony’s
dynamic routing, it is used if and only if needed.

Local communication over channel-types is implemented in the traditionaloccam-π
way, involving access to the channel-word only. In this way,the pony environment preserves
one of the key advantages ofoccam-π and KRoC, namely high performance and lightweight,
fine-grained concurrency. Only when the two ends of an NCT arenot located on the same
node of a distributed application, communication between them goes through the infrastruc-
ture provided by pony. But also for this case, high performance was one of the keyaspects

80 M. Schweigler and A.T. Sampson / pony – Theoccam-π Network Environment

during pony’s development; the network communication mechanisms inpony are specifically
designed to reduce network latency.

This pragmatic transparency approach, together with a simple setup and configuration
mechanism, makes the pony environment very dynamic and highly scalable. The topology
of a distributed application written inoccam-π and pony is constructed at runtime and can
be altered by adding or removing nodes when needed or when they become available.

1.3. History

The development of pony and its predecessors has gone through a number of stages. Orig-
inally, it started as an undergraduate student project in 2001 [16]. In autumn 2001, the first
major version was released as part of an MSc dissertation under the name ‘Distributedoc-
cam Protocol’ [17]. This version was implemented fully inoccam and offered a certain de-
gree of transparency. Due to the limitations of theoccam language at that time, it was far
from being fully semantically transparent, however.

Since then, the pony project has continued as part of a PhD4 [18,19,8]. During this
time, theoccam language was extended significantly5, adding many dynamic features. This
affected the pony project two-fold. Firstly, the new dynamic features inoccam-π enabled the
pony environment to be implemented in a semantically and pragmatically transparent way;
being implemented almost entirely inoccam-π, with a small part implemented in C, as well
as some compiler-level support built-in directly in KRoC. Secondly, features such as the new
dynamic channel-types were themselves incorporated in thepony environment.

The mobility of ends of network-channel-types was inspiredby the mobile channels in
Muller and May’s Icarus language [20]. However, implementing mobility for pony’s NCT-
ends is substantially more complex because it needs to take into account the special properties
of channel-types compared to plain channels. This includesthe fact that channel-types are
bundles of channels, as well as that channel-type-ends may be shared and that shared ends
must be claimed before they can be used. All these features had to be incorporated into NCTs
as well, in order to achieve semantic transparency.

1.4. Structure of This Paper

Section 2 introduces the terminology used in this paper and presents the architecture of
the pony environment. Sections 3 through 5 discuss the characteristics of pony nodes, their
startup, and the startup of the Application Name Server. Theallocation of NCTs is covered in
Section 6, the shutdown of pony in Section 7. Section 8 is concerned with the configuration
of the pony environment.

Section 9 outlines a sample pony application. A brief overview of the implementation of
pony is given in Section 10. Section 11 presents a number of benchmarks that were carried
out to examine pony’s performance. Section 12 concludes with a discussion ofthe work
presented in this paper, along with an outline of possible future research.

2. Architecture and Terminology

2.1. Applications and Nodes

A group ofoccam-π programs which are interconnected by the pony infrastructure is called a
pony application. Each application consists of severalnodes— onemasternode and several
slavenodes.

4partly under the provisional name ‘KRoC.net’
5and renamed to ‘occam-π’

M. Schweigler and A.T. Sampson / pony – Theoccam-π Network Environment 81

The term ‘node’ refers to anoccam-π program which is using the pony environment.
That is, there may be several nodes on the same physical computer; these nodes may belong
to the same application or to different applications. In thenon-networked world, node and
application would be congruent. In the networked world, an application is made up of several
nodes; the master is the logical equivalent of the main process of a non-networkedoccam-π
program (in the sense that all the ‘wiring’ of the application originates from there).

2.2. Network-channel-types

A network-channel-type (NCT)is a channel-type that may connect several nodes, i.e. whose
ends may reside on more than one node. An individual NCT-end always resides on a sin-
gle node, and like any channel-type, an NCT may have many end variables if one or both
of its ends are shared. NCTs are the basic communication primitive for pony applications.
Nodes communicate with each other over NCTs, using the same semantics as for conven-
tional channel-types. This includes the protocol semantics of the items that are communicated
over the NCT’s channels as well as the semantics of NCT-ends.

Like any other channel-type-end, NCT-ends may be communicated over channels, which
includes channels of other NCTs. Also, if an NCT-end is shared, it must be claimed before
it can be used, and it is ensured by the pony infrastructure interconnecting the application
that every shared NCT-end can only be claimed once at any given time across the entire
application. Practically, the master node queues claim requests for each end of each NCT and
ensures that each NCT-end is only claimed once at any given time.

NCTs are either allocatedexplicitly, under a name that is unique within the application,
or implicitly by moving ends of locally allocated channel-types to a remote node.

2.3. The Application Name Server

An Application Name Server (ANS)is an external server that administrates applications. Each
application has a name that is unique within the ANS by which it is administrated. Nodes of
the application find each other by contacting the ANS. This concept is similar to the ‘Channel
Name Server’ in JCSP.net [21,22], only on the level of applications rather than channels
(respectively NCTs for pony). This allows a better abstraction, as well as a simpler name-
spacing.

With pony, NCTs are still allocated by using names, but this is managed by the master
node of the application to which the NCT belongs, rather thanby the ANS. This two-level
approach makes it simpler to have a single ANS for many applications. In JCSP.net, it is also
possible to administrate network-channels of many separate JCSP.net applications within the
same Channel Name Server; however, avoiding naming conflicts is the programmer’s task
there.

The ANS stores the location of the master node of an application. When a slave node
wants to join the application, it would contact the ANS and request the master’s location.
Then the slave would contact the master node itself. Each slave node of an application has a
network link to the master node. Links between slave nodes are only established when this
becomes necessary, namely when an NCT is stretched between those two slave nodes for the
first time.

2.4. Network-types

The pony environment has been designed to support potentially many network infrastruc-
tures. These are referred to asnetwork-typesin the following. Currently, the only supported
network-type is TCP/IP. However, adding support for other network-types in the future would
be easy because the internal structure of pony is modular.

82 M. Schweigler and A.T. Sampson / pony – Theoccam-π Network Environment

In order to add support for a new network-type, modified versions of the network drivers
and the ANS would have to be added to pony. These only comprise a relatively small part of
the pony infrastructure. The non-network-type-specific components of pony would interact
with the new network drivers using the existing interface.

2.5. Variants of Channel-types and Their Graphical Representation

For the remainder of this paper, we will refer to the following variants of channel-types:
one2onechannel-types have an unshared client-end and an unshared server-end.any2one
channel-types have a shared client-end and an unshared server-end.one2anychannel-types
have an unshared client-end and a shared server-end. Lastly, any2anychannel-types have a
shared client-end and a shared server-end. This property will henceforth be called thex2x-
typeof the channel-type. Please note that the x2x-type is a property of concrete instances of
a channel-type, not of its type declaration.

Figure 1 shows how channel-types are depicted in this paper.The client-end of a channel-
type is represented by a straight edge, the server-end by a pointed edge. Shared ends are dark-
ened. So, for instance a one2one channel-type has no darkened edges, whereas an any2one
channel-type has the straight edge darkened and the pointededge not darkened. The other
channel-type variants are depicted accordingly.

one2one any2one

one2any any2any

Figure 1. Channel-type variants

3. Running pony on a Node

On each node of a pony application, the pony environment must be active. This section
describes the general mechanisms of how pony operates on a node and how it interacts with
the user-level code.

3.1. pony-enabled occam-pi Programs

The pony environment mainly consists of anoccam-π library incorporating pony’s function-
ality. In order to achieve full semantic transparency, however, a small amount of supportive
code had to be integrated directly into the KRoC compiler. The compiler support for pony in-
troduces a minor overhead to the handling of channel-types in occam-π programs. Although
the additional cost is reasonably small, we wantoccam-π programmers to be able to choose
whether or not to introduce this overhead to their programs.For this, a new build-time option
has been added to KRoC.

If KRoC is built with the ‘--with-pony’ option, the compiler support for pony is en-
abled foroccam-π programs compiled with this KRoC build; otherwise traditionaloccam-π
programs are compiled. In the following, we will refer tooccam-π programs that are com-
piled by a ‘--with-pony’ KRoC build aspony-enabled programs.

Currently, pony-enabled programs and traditionaloccam-π programs are incompatible
as far as the handling of channel-types is concerned. For instance, a library compiled by a
traditional KRoC build could not be used by a pony-enabled program, unless the library uses

M. Schweigler and A.T. Sampson / pony – Theoccam-π Network Environment 83

no channel-types. This is no major drawback at the moment, since any traditionaloccam-π
program (or library) can be re-compiled by a pony-enabled KRoC build without changing its
functionality. Only the pony support for handling channel-types, with the small extracost,
would be introduced.

In the future, it would be desirable to make pony-enabled and traditional KRoC builds
more compatible. A possible approach is outlined in [8].

3.2. The pony Library

In order to make the pony environment available on a node, the node must use the pony
library. This is done in the usualoccam-π way by adding the following compiler directives
to the source code:

#INCLUDE "ponylib.inc"

#USE "pony.lib"

When the program is being compiled, the following linker options:

-lpony -lcif -lcourse -lsock -lfile -lproc

must be given to KRoC in order to link the program with the pony library as well as with
all libraries that the pony library itself uses.6 pony uses the C Interface (CIF) library [23] for
its protocol-converters, and KRoC’s course, socket, file and process libraries [24] for calling
various routines that are needed for its functionality.

3.3. Public pony Processes and Handles

There is a runtime system which handles the internal functions of pony, called thepony
kernel. The user-level code of a node interacts with the pony kernel through a set of public
pony processes. The number of public processes has been kept tothe necessary minimum in
order to make the usage of pony as simple and intuitive as possible.

There are public processes for starting the pony kernel, allocating ends of NCTs, shut-
ting down the pony environment, as well as for error- and message-handling.Error-handling
is used for the detection of networking errors in pony; message-handling is used for out-
putting status and error messages. In order to prevent this paper from getting too large, error-
and message-handling will not be discussed here, since theyare not part of pony’s basic
functionality. Details about pony’s error- and message-handling are given in [8].

The startup process will return a given set ofhandles. A handle is the client-end of a
channel-type7 which is used by the user-level code to interact with the pony kernel. This
is done by calling the relevant public process and passing the corresponding handle as a
parameter.

Handles returned by the startup process may be shared if thisis requested by the user-
level code. The user-level code may pass a shared handle to several of its sub-processes,
which then need to claim the handle before they can use it for calling a public pony process.
This conforms with the general rules for shared channel-type-ends, which makes sense since
the handlesarenormaloccam-π channel-type-ends.

Apart from the tasks covered by the public processes, all interaction between the user-
level code of a node and the pony kernel running on that node isimplicit. This includes the

6It is planned to enable KRoC to recognise the linker options automatically so that theywould not have to be
given as parameters anymore; this has not been implemented yet, however.

7Please note that in this paper, the term ‘handle’ may refer either to the channel-type as such, or to its client-
end. Typically, it is clear from the context which of them is meant; in case of doubt, we will refer to ‘the handle
channel-type’ or to ‘the client-end of the handle’ specifically. The server-end will always be explicitly referred
to as ‘the server-end of the handle’.

84 M. Schweigler and A.T. Sampson / pony – Theoccam-π Network Environment

communication via NCTs between processes on different nodes, the claiming and releasing
of shared NCT-ends, as well as the movement of NCT-ends between nodes of an application.
All these things are done by the user-level code in exactly the same way as in a traditional
(non-networked)occam-π application, which gives us semantic transparency.

By design rule, handles are not allowed to leave their node. That is, they may not be sent
to other nodes over NCTs, since this would result in undefinedbehaviour.

4. The Startup Mechanism

The pony environment is started on a node by calling one of pony’s startup processes. If the
startup process completes successfully, it forks off the pony kernel and returns the handles
that are needed to call the other public pony processes.

4.1. Different Versions of the Startup Process

There are several startup processes with different names, depending on the needs of the node.
The name of the startup process specifies which handles it is supposed to return. The follow-
ing signature8 describes the naming of the startup processes:

pony.startup.(u|s)nh[.(u|s)eh[.iep]][.mh]

If the name of the startup process contains ‘unh’, an unsharednetwork-handleis returned. If
it contains ‘snh’, the startup process returns a shared network-handle. Thenetwork-handle
can then be used for calling pony’s allocation and shutdown processes; these are described in
Sections 6 and 7. The other parts of the name of the startup process are optional and used for
error- and message-handling, for which the startup processreturns anerror-handleand/or a
message-handleif required.

4.2. Parameters of the Startup Processes

The different startup processes have different parameters, depending on which handles they
are supposed to return. The following parameter list is a superset of all possible parameters:

(VAL INT msg.type, net.type,

VAL []BYTE ans.name, app.name, node.name,

VAL INT node.type,

RESULT INT own.node.id,

RESULT [SHARED] PONY.NETHANDLE! net.handle,

RESULT [SHARED] PONY.ERRHANDLE! err.handle,

RESULT INT err.point,

RESULT PONY.MSGHANDLE! msg.handle,

RESULT INT result)

The order of the parameters is the same for all startup processes. Depending on the name of
the startup process, certain parameters may be unused, however. ‘[SHARED]’ means that it
depends on the startup process whether the parameter is ‘SHARED’ or not.

The following parameters are common to all startup processes:

• ‘net.type’ is the network-type. At the moment, the only supported network-type is
TCP/IP.

• ‘ans.name’ is the name of the ANS. The ANS-name determines which ANS is con-
tacted by the node. Details about this are given in Section 8.2.

8‘[...]’ means optional, ‘|’ is a choice, ‘(...)’ is for grouping.

M. Schweigler and A.T. Sampson / pony – Theoccam-π Network Environment 85

• ‘app.name’ is the name of the pony application to which the node belongs. Under
this name, the application is administrated by the ANS.

• ‘node.name’ is the name of the node. The node-name determines which configuration
file is used by pony to resolve the network location of the node. Details are given in
Section 8.1.

• ‘node.type’ is the type of the node, i.e. whether it is the master or a slave.
• ‘result’ is the result returned by the startup process upon completion. If the startup

process completes successfully, the ‘result’ parameter will return an OK, otherwise
it will return an error. Possible errors that can occur during startup are discussed in
detail in [8].

• If the startup process completes successfully, ‘own.node.id’ returns the ID of the
node. Each node of an application is assigned a unique ID by the pony environment.
Please note that the knowledge of the own node-ID is not needed for the function of
the pony node; the node-ID is only returned for debugging purposes.

• Finally, if the startup process completes successfully, ‘net.handle’ will contain the
network-handle. It will be unshared or shared, depending onwhich startup process is
used.

The other parameters of the startup process are used for error- and message-handling. They
are only part of the parameter list of those startup processes whose names contain the relevant
options, see above.

4.3. Design Rules

There are certain design rules that must be followed in orderto ensure the correct function of
pony applications. As mentioned already, none of the handles is allowed to be sent to another
node. Handles are relevant only to the node that has created them.

As far as the startup of pony is concerned, the general design rule is that on each node,
the pony environment is only started once, i.e. that each node onlybelongs to one pony
application.9 The reason for this design rule is to avoid cases where NCT-ends that belong
to one pony application are sent to a node that belongs to another pony application, which
would result in undefined behaviour.

As an exception to this general rule, itis possible to write pony-enabledoccam-π pro-
grams that act as a ‘bridge’ between pony applications. Such a program would require extra
careful programming. It would need to start a pony environment separately for each appli-
cation, and use separate handles for the different applications. In such a ‘bridging node’ it
would be vital not to mix up NCTs of separate applications. That is, no NCT-ends of one
application may be sent to nodes of a different application.As long as this is ensured, a
‘bridging node’ will function properly.

Another design rule concerns the general order of events regarding pony, namely the
startup, the usage and the shutdown of pony. This will be examined in detail in Section 7.

5. Starting the ANS

As discussed in Section 2.3, the ANS may administrate many different applications. Each
node of a given application must know the network location ofthe ANS by which the ap-
plication is administrated. The ANS itself is a pre-compiled occam-π program coming with
KRoC. It is placed in the ‘bin’ directory of the KRoC distribution; the same place where the
‘kroc’ command itself is located. The ANS for TCP/IP can be startedby calling:

9Please recall that by ‘node’ we mean a pony-enabledoccam-π program, not a physical computer. The latter
may run many nodes at the same time.

86 M. Schweigler and A.T. Sampson / pony – Theoccam-π Network Environment

ponyanstcpip

provided that KRoC’s ‘bin’ directory is in the path of the current shell. The ANS can be
configured with its own configuration file; see Section 8.3 fordetails.

6. Allocating NCT-ends

The basic communication paradigm in pony are network-channel-types, i.e. channel-types
whose ends may reside on more than one node. The process of establishing a new NCT in a
pony application is calledallocation. There are two ways of allocating NCTs. The first pos-
sibility is to allocate the ends of an NCTexplicitly, using one of pony’s allocation processes.
The other possibility is to send an end of a previously non-networked channel-type to another
node. By doing this, the channel-type becomes networked andthus, a new NCT is established
in the pony applicationimplicitly.

6.1. Explicit Allocation

NCT-ends are allocated explicitly by using a name that is unique for the NCT across the
entire pony application. This name is a string under which the master node of the application
administrates the NCT. The several ends of an NCT can be allocated on different nodes
using this unique NCT-name. Please note that the NCT-name isa string which is passed as a
parameter to pony’s allocation processes. It isnot the variable name of the channel-type-end
that is allocated. The variable name may be different for different ends of the NCT, and may
change over time (by assignment and communication) — as usual for occam-π variables.

There are four different allocation processes whose names have the following signature:

pony.alloc.(u|s)(c|s)

If the name of the allocation process contains ‘uc’, it is the process for allocating an unshared
client-end of an NCT. The names of the allocation processes for shared client-ends, unshared
and shared server-ends contain ‘sc’, ‘ us’ or ‘ ss’ accordingly. Please note that any end of an
NCT may be allocatedat any time. There is no prerequisite (such as for instance in JCSP.net)
that a client-end may only be allocated when a server-end hasbeen allocated first, or similar
restrictions.10 In pony, this characteristic has been ‘moved up’ to the application level and
now applies to the slaves and to the master. That is, the master node must be up and running
before slave nodes can connect to it (although pony provides a mechanism to start a slave
node before the master; it just waits in this case, see [8] fordetails).

The parameters of the allocation processes are essentiallythe same; the only difference
is the channel-type-end that is to be allocated. This is the parameter list of the allocation
processes:

(PONY.NETHANDLE! net.handle,

VAL []BYTE nct.name, VAL INT other.end.type,

RESULT <alloc-type> chan.type.end, RESULT INT result)

• ‘net.handle’ is the network-handle.
• ‘nct.name’ is the name of the NCT to which the end belongs that is to be allocated.

Under this name, the NCT is administrated by the master node of the application.
• ‘other.end.type’ is the share-typeof the other end of the NCT, i.e. of the server-

end if a client-end is to be allocated and vice versa. This parameter declares whether

10In JCSP.net, this prerequisite would apply to writing-endsand reading-ends of network-channels rather
than client-ends and server-ends of NCTs.

M. Schweigler and A.T. Sampson / pony – Theoccam-π Network Environment 87

the other end is meant to be unshared, shared, or whether we donot know or do not
care about the other end’s share-type. Any mismatches with previously allocated ends
of the NCT will cause the allocation process to return an error and fail.

• ‘chan.type.end’ is the variable that is to be allocated. ‘<alloc-type>’ is a wild-
card for the type of the variable. It would be ‘MOBILE.CHAN!’ for the ‘uc’ version,
‘SHARED MOBILE.CHAN!’ for the ‘sc’ version, ‘MOBILE.CHAN?’ for the ‘us’ version,
or ‘SHARED MOBILE.CHAN?’ for the ‘ss’ version.11

• ‘result’ is the result returned by the allocation process. If the allocation is success-
ful, the ‘result’ parameter will return an OK, otherwise it will return an error. Pos-
sible errors are mismatches in the x2x-type of the NCT as declared during previous
allocations of NCT-ends of the same NCT-name. A detailed discussion of possible
errors is given in [8].

6.2. Usage of NCTs and Implicit Allocation

Once an NCT-end variable has been allocated, it may be used like any other channel-type-end
variable. From the point of view of the user-level code, the usage is semantically transparent.
This includes the possibility to send a channel-type-end along a channel.

If the channel over which we want to send a channel-type-end is inside an NCT whose
opposite end is on another node, the channel-type-end that we send will end up on that node
as well. There are two possibilities now — either the channel-type to which the end that is to
be sent belongs is already networked, or not. The latter means that the channel-type-end was
originally allocated on our node in the traditional way, together with its opposite end.

If the channel-type is not yet networked, it becomes networked during the send opera-
tion. This implicit allocation happens internally and is transparent to the user-level code. The
pony environment becomes aware of the new NCT and will henceforth treat it just like an
explicitly allocated one. The only difference is that implicitly allocated NCTs have no NCT-
name, which means that no other ends of that NCT may be allocated explicitly. This is not
necessary, however, since the NCT had originally been allocated in a client-end/server-end
pair anyway. If one or both of its ends are shared, the relevant channel-type-end variable may
be multiplied by simply assigning it to another variable or sending it over a channel — as
usual for channel-types.

The second possibility is that the channel-type-end that isto be sent belongs to an NCT
already, i.e. the pony environment is already aware of this NCT. This may apply toboth
explicitly and implicitly allocated NCTs. In this case, no prior implicit allocation is done by
the pony environment before the end is sent to the target node.

When an end of an NCT arrives on a node where no end of that NCT has been before
during the lifetime of the pony application, the NCT-end is established on the target node by
the pony infrastructure.12 Again, this may apply to both explicitly and implicitly allocated
NCTs.

In summary, apart from the actual explicit allocation itself, there is no difference between
explicitly and implicitly allocated NCTs from the point of view of the user-level code. Any
operation that can be done with channel-types can be done with both of them as well.

11‘MOBILE.CHAN’ parameters have recently been added tooccam-π; any channel-type-end that fits the spec-
ified client/server direction and share-type may be passed as an argument.

12Future research may enhance pony’s performance by not establishing the entire infrastructure needed for
an NCT-end if the end is just ‘passing through’ a node and never used for communication on the node itself.
Details are given in [8].

88 M. Schweigler and A.T. Sampson / pony – Theoccam-π Network Environment

7. Shutting Down Nodes

At the end of a pony-enabled program, the pony environment must be shut down. This is
done by calling the pony shutdown process. The only parameter of the shutdown process is
the network-handle:

PROC pony.shutdown (PONY.NETHANDLE! net.handle)

By design rule, the pony shutdown process may only be called after all usage of networked
(or possibly networked) channel-type-end variables has finished. ‘Usage’ here means:

• claiming/releasing the channel-type-end if it is shared
• using the channel-type-end for communication over its channels (either way)

The occam-π programmer must make sure that none of the above is happeningin parallel
with (or after) calling the shutdown process. Of course, theuser-level code may use channel-
types in parallel with or after calling ‘pony.shutdown’, but the programmer must ensure that
none of these channel-types are networked. Typically, calling ‘pony.shutdown’ would be the
very last thing the node does, possibly except for tasks related to error- and message-handling
— which do not involvenetworkedchannel-type-ends.

The shutdown process tells the pony kernel to shut down, which includes shutting down
all its components. If our node is the master node of the application, the pony kernel also no-
tifies the ANS about the shutdown, which will then remove the application from its database.
This will prevent any further slave nodes from connecting tothe master. On slave nodes, the
shutdown process finishes immediately after the pony infrastructure on that node has been
shut down. On the master node, the pony kernel waits for all slaves to shut down before
shutting down itself.

8. Configuration

The configuration of the pony environment depends on the network-type that is used. Apart
from the networking settings, no configuration is needed by pony. This section is concerned
with the configuration for TCP/IP (which is currently the only supported network-type) on
Linux/x86 (which is currently the only platform on which pony runs).

Since a node must be able both to contact other nodes and the ANS and to be contacted
by other nodes and the ANS, it is vital that the node can be contacted via the same IP address/
port number from all computers involved in the pony application (i.e. all computers that are
running nodes or the ANS). This includes the computer on which the node itself is running.
Therefore topologies with Network Address Translation between computers involved in the
application are not supported at the moment. Please note that if all computers involved in
the application are located on a sub-network that uses NAT tocommunicate with the outside
world, the NAT has no impact on the pony application. Similarly, if there is only one com-
puter involved in the application (i.e. all nodes and the ANSare running on the same com-
puter), the loopback IP address may be used to identify the location of nodes and the ANS;
in this case only the ports would be different.

pony’s network-specific components are configured using simple plain-text configura-
tion files that contain the relevant settings. Settings may be omitted, in which case either
defaults are used or the correct setting is detected automatically. There are three different
configuration files, which are discussed in the following sections.

8.1. The Node-file

During startup, a node-name must be supplied to the startup process (cf. Section 4.2). This
name is used to determine the name of the configuration file that is used to resolve the location

M. Schweigler and A.T. Sampson / pony – Theoccam-π Network Environment 89

of the node on the network (thenode-file). In TCP/IP terms, ‘location’ means the IP address
and port number over which the node can be contacted by other nodes or by the ANS. If the
node-name is an empty string, the name of the node-file is ‘.pony.tcpip.node’. Otherwise
it is ‘.pony.tcpip.node.<node-name>’, where ‘<node-name>’ is the name of the node.

The startup process will look for the node-file first in the directory from which the node is
started; if the node-file is not there, the startup process will look in the user’s home directory.
If the node-file is found, the startup process will check the node-file for the IP address and
the port number under which the node can be contacted. This IPaddress/ port number pair is
used as a unique identification for the node’s location across the entire application.

If no node-file is found, or if one or more of the settings are missing in the node-file,
the relevant settings will be determined automatically by the startup process. If no IP address
is found, the startup process will attempt to resolve the default outgoing IP address of the
computer. If this is not possible, the startup process will fail. If no port number is found, pony
will automatically assign the first free port that is greateror equal to port 7500, the default
port number for pony nodes. With this mechanism, it is possible to run several pony nodes on
the same physical computer and use the same node-name for allof them. If the port number
is not specified in the corresponding node-file, pony automatically chooses the next free one.

It is possible to run pony nodes on computers which get their IP address via DHCP, as
long as the current IP address can be resolved (which should normally be no problem). Since
the application does not know (and does not need to know) about the location of a node until
the node effectively joins the application, computers withvariable IP addresses do not present
a problem.

8.2. The ANS-file

Similarly to the node-name, the name of the ANS must be given to the pony startup pro-
cess. The ANS-name is used to determine the name of theANS-file, which is used to find
out the location of the ANS. The name of the ANS-file is either ‘.pony.tcpip.ans’ or
‘.pony.tcpip.ans.<ans-name>’, depending on whether the ANS-name is an empty string
or not — this naming scheme is the same as for the node-file.

Again, the startup process will look for the ANS-file first in the current directory and
then in the user’s home directory. If the ANS-file is found, the startup process will check the
ANS-file for the location (hostname or IP address, and port number) of the ANS.

If no ANS-file is found, or if one or more of the settings are missing in the ANS-file, the
startup process will use default settings instead. If no hostname is found, the startup process
will use the loopback IP address to try to contact the ANS — which will fail if the ANS is
not running on the same computer as the node itself. If no portnumber is found, port 7400
will be used as the default port number for the ANS.

The location of the ANS must be known by all nodes in order to beable to start the
pony application. Therefore, running the ANS on a computer using DHCP is not advisable.
An exception might be static DHCP configurations where the computer running the ANS is
always assigned the same hostname/ IP address by the DHCP server.

8.3. The ANS-configuration-file

The last file is theANS-configuration-file, which is used by the ANS to find out its own port
number.13 The name of the ANS-configuration-file is ‘.pony.tcpip.ans-conf’.

13The ANS does not need to know its own IP address, since it nevernotifies any nodes about it at runtime —
nodes find the ANS via the ANS-file.

90 M. Schweigler and A.T. Sampson / pony – Theoccam-π Network Environment

Again, the file is searched for in the current and in the home directory. If the file is found,
the ANS looks for the port number under which it is supposed tolisten for connections. If
the file or the setting are not found, the default ANS port of 7400 is used.

9. A Sample Application

This section presents a sample pony application in order to enable a better understanding of
what has been discussed so far. This sample application has purposely been kept simple. The
idea is to draw the attention of the reader to the interplay ofthe different aspects of the pony
environment, rather than presenting a very realistic but unnecessarily complex application.
Therefore, parts of the code that are not directly related topony are usually folded14 in the
sample algorithms.

The sample application consists of three types of nodes. Themaster node is abroker
that establishes connections betweenworkernodes andcustomernodes. The workers provide
some service for the customers. Both workers and customers connect to the broker via an
explicitly allocated NCT, thebroker-handle. When a worker becomes ready, it passes the
client-end of a channel-type (theworker-handle) to the broker; the worker itself holds the
server-end of the worker-handle. When the client-end of theworker-handle is sent to the
broker for the first time, it becomes implicitly networked.

The broker keeps the client-ends of the worker-handles in a database. When a customer
needs the service of a worker, it notifies the broker, which then passes a worker-handle from
its database to the customer if there is one available. The customer and the worker can now
communicate over the worker-handle about the service needed by the customer. When the
transaction between the customer and the worker is finished,the customer sends the client-
end of the worker-handle back to the worker over the worker-handle itself. The worker can
then re-register with the broker.

Algorithm 1 shows the declarations of the handles and the protocols that are carried
by the channels inside the handles. These declarations are in an include file that will be
included by the three nodes. Algorithms 2 through 4 show the implementation of the broker,
worker and customer nodes. For the sake of simplicity, the broker and the worker are running
infinitely. Only the customer node terminates.

Figure 2 shows a possible layout of the sample application. Since the topology of the
application changes dynamically, the figure can only be a ‘snapshot’ of a given point in time.
There are seven nodes altogether, namely the broker, three workers and three customers.15 All
workers and customers are connected to the broker via the broker-handle. Customer 1 cur-
rently holds the worker-handle connecting to worker 1; the other customers have not acquired
a worker-handle yet. Worker 2 may have just started and not yet registered with the broker,
or just finished the service for a customer but not yet re-registered with the broker. There-
fore, worker 2 currently holds the client-end of its worker-handle itself. Finally, worker 3 is
currently registered with the broker, which holds the relevant worker-handle.

14Lines starting with ‘...’ denote parts of the code that have been folded. This notation is used by origami
and other folding editors.

15For the sake of simplicity, nodes and processes are depictedas a single box, because in this sample appli-
cation, on each node there is only the main process. Generally, it is important to distinguish between nodes and
processes, since many processes may run on the same node.

M. Schweigler and A.T. Sampson / pony – Theoccam-π Network Environment 91

-- Filename: ‘decls.inc’

-- Forward declaration

CHAN TYPE WORKERHANDLE:

-- To broker

PROTOCOL BROKERHANDLE.TO.BROKER

CASE

-- Register worker

reg.worker; WORKERHANDLE!

-- Get worker

get.worker

:

-- From broker

PROTOCOL BROKERHANDLE.FROM.BROKER

CASE

-- No worker available

no.worker.available

-- Return worker-handle

get.worker.confirm; WORKERHANDLE!

:

-- Broker-handle

CHAN TYPE BROKERHANDLE

MOBILE RECORD

CHAN BROKERHANDLE.TO.BROKER to.broker?:

CHAN BROKERHANDLE.FROM.BROKER from.broker!:

:

-- To worker

PROTOCOL WORKERHANDLE.TO.WORKER

CASE

... Stuff dealing with the service provided by the worker

-- Finish transaction and return worker-handle

finish; WORKERHANDLE!

:

-- From worker

PROTOCOL WORKERHANDLE.FROM.WORKER

CASE

... Stuff dealing with the service provided by the worker

:

-- Worker-handle

CHAN TYPE WORKERHANDLE

MOBILE RECORD

CHAN WORKERHANDLE.TO.WORKER to.worker?:

CHAN WORKERHANDLE.FROM.WORKER from.worker!:

:

Algorithm 1. Sample application: declarations

10. Implementation Overview

10.1. NCTs and CTBs

There are two important terms related to pony which are vital not to get confused: network-
channel-types and channel-type-blocks. As already defined, a network-channel-type (NCT) is
a channel-type that may connect several nodes. An NCT is alogical construct that comprises
a networked channel-type across the entire pony application. Each NCT has a unique ID, and
a unique name if it was allocated explicitly, across the application.

92 M. Schweigler and A.T. Sampson / pony – Theoccam-π Network Environment

#INCLUDE "decls.inc"

#INCLUDE "ponylib.inc"

#USE "pony.lib"

PROC broker (CHAN BYTE key?, scr!, err!)

INT own.node.id, result:

PONY.NETHANDLE! net.handle:

BROKERHANDLE? broker.handle.svr:

SEQ

-- Start pony

pony.startup.unh (PONYC.NETTYPE.TCPIP, "", "sample-app",

"", PONYC.NODETYPE.MASTER,

own.node.id, net.handle, result)

ASSERT (result = PONYC.RESULT.STARTUP.OK)

-- Allocate server-end of broker-handle

pony.alloc.us (net.handle, "broker-handle", PONYC.SHARETYPE.SHARED,

broker.handle.svr, result)

ASSERT (result = PONYC.RESULT.ALLOC.OK)

-- Start infinite loop (therefore no shutdown of pony kernel later)

WHILE TRUE

-- Listen to requests from broker-handle

broker.handle.svr[to.broker] ? CASE

-- Register worker

WORKERHANDLE! worker.handle:

reg.worker; worker.handle

... Store ‘worker.handle’ in database

-- Get worker

get.worker

IF

... Worker available

WORKERHANDLE! worker.handle:

SEQ

... Retrieve ‘worker.handle’ from database

broker.handle.svr[from.broker] ! get.worker.confirm;

worker.handle

TRUE

broker.handle.svr[from.broker] ! no.worker.available

:

Algorithm 2. Sample application: the broker

A channel-type-block (CTB)is the memory block of a channel-type on an individual
node. This memory structure holds all information that is needed for the function of the
channel-type. CTBs are located in the dynamic mobilespace of the node. All channel-type-
end variables belonging to a certain channel-type are pointers to that channel-types’s CTB.
Details about the layout of a CTB can be found in [15].

In the pony environment, we distinguish betweennon-networkedandnetworkedCTBs.
A traditional (intra-processor) channel-type is made up ofexactly one, non-networked, CTB.
An NCT is made up of several, networked, CTBs, namely one CTB on each node where
there are (or have been) ends of that NCT. The CTBs of an NCT areinterconnected by the
pony infrastructure. Non-networked CTBs can become networked by implicit allocation, cf.
Section 6.2.

In pony-enabled programs, the memory layout of CTBs is slightly larger than in tradi-
tionaloccam-π programs. This is necessary in order to accommodate the needs of networked
CTBs (as well as of non-networked CTBs that may become networked). As discussed in
Section 3.1, the pony-specific compiler support, which includes the modified CTB layout, is

M. Schweigler and A.T. Sampson / pony – Theoccam-π Network Environment 93

#INCLUDE "decls.inc"

#INCLUDE "ponylib.inc"

#USE "pony.lib"

PROC worker (CHAN BYTE key?, scr!, err!)

INT own.node.id, result:

PONY.NETHANDLE! net.handle:

SHARED BROKERHANDLE! broker.handle:

WORKERHANDLE! worker.handle:

WORKERHANDLE? worker.handle.svr:

SEQ

-- Start pony

pony.startup.unh (PONYC.NETTYPE.TCPIP, "", "sample-app",

"", PONYC.NODETYPE.SLAVE,

own.node.id, net.handle, result)

ASSERT (result = PONYC.RESULT.STARTUP.OK)

-- Allocate shared client-end of broker-handle

pony.alloc.sc (net.handle, "broker-handle", PONYC.SHARETYPE.UNKNOWN,

broker.handle, result)

ASSERT (result = PONYC.RESULT.ALLOC.OK)

-- Allocate worker-handle

worker.handle, worker.handle.svr := MOBILE WORKERHANDLE

-- Start infinite loop (therefore no shutdown of pony kernel later)

WHILE TRUE

SEQ

-- Register with broker

CLAIM broker.handle

broker.handle[to.broker] ! reg.worker; worker.handle

-- Inner loop

INITIAL BOOL running IS TRUE:

WHILE running

-- Listen to requests from worker-handle

worker.handle.svr[to.worker] ? CASE

... Stuff dealing with the service provided by the worker

... Deal with it

-- Finish transaction and get worker-handle back

finish; worker.handle

-- Exit inner loop

running := FALSE

:

Algorithm 3. Sample application: the worker

enabled in KRoC if it is built with the ‘--with-pony’ option. The pony-specific CTB layout,
as well as the compiler support for pony, are explained in detail in [8].

10.2. Structure of pony

Apart from the compiler support for pony-enabled CTBs, pony is implemented entirely as an
occam-π library. Most parts of this library were implemented inoccam-π. Some auxiliary
functions were implemented in C. The protocol-converters (see below) were implemented as
CIF [23] processes. Figure 3 shows the layout of the the pony environment with its various
components and the external and internal handles16 used for communication between the
individual components.

16Both the external and the internal handles are channel-types.

94 M. Schweigler and A.T. Sampson / pony – Theoccam-π Network Environment

#INCLUDE "decls.inc"

#INCLUDE "ponylib.inc"

#USE "pony.lib"

PROC customer (CHAN BYTE key?, scr!, err!)

INT own.node.id, result:

PONY.NETHANDLE! net.handle:

SHARED BROKERHANDLE! broker.handle:

SEQ

-- Start pony

pony.startup.unh (PONYC.NETTYPE.TCPIP, "", "sample-app",

"", PONYC.NODETYPE.SLAVE,

own.node.id, net.handle, result)

ASSERT (result = PONYC.RESULT.STARTUP.OK)

-- Allocate shared client-end of broker-handle

pony.alloc.sc (net.handle, "broker-handle", PONYC.SHARETYPE.UNKNOWN,

broker.handle, result)

IF

result <> PONYC.RESULT.ALLOC.OK

... Deal with allocation error

TRUE

BOOL worker.available:

WORKERHANDLE! worker.handle:

SEQ

-- Get worker-handle from broker

CLAIM broker.handle

SEQ

broker.handle[to.broker] ! get.worker

broker.handle[from.broker] ? CASE

no.worker.available

worker.available := FALSE

get.worker.confirm; worker.handle

worker.available := TRUE

IF

worker.available

SEQ

... Communicate over worker-handle regarding service

-- Finish transaction and return worker-handle

worker.handle[to.worker] ! finish; worker.handle

TRUE

... Deal with absence of workers

-- Shut down pony kernel

pony.shutdown (net.handle)

:

Algorithm 4. Sample application: the customer

The figure assumes that the network-handle and the error-handle are unshared, the node
is the master, and the network-type is TCP/IP. Please note that in order to keep the figure
uncluttered, each component is just depicted once, even if it may occur several times within
the pony environment. Unshared client-ends of internal handles are held by the process in
which the end is located in the figure.17 Shared client-ends of internal handles may be held
by several component processes at the same time. If such an end extends into another process

17This applies to the internal decode- and encode-handles, whose client-ends are held by the relevant CTB-
handler.

M. Schweigler and A.T. Sampson / pony – Theoccam-π Network Environment 95

broker

worker 1 worker 2 worker 3

customer 1 customer 3customer 2

BROKERHANDLE

W
 O

 R
 K

 E
 R

 H
 A

 N
 D

 L
 E

W
 O

 R
 K

 E
 R

 H
 A

 N
 D

 L
 E

W
 O

 R
 K

 E
 R

 H
 A

 N
 D

 L
 E

Figure 2. Sample application: Possible dynamic layout

(the instant-handler in the CTB-handler or one of the managers), this means that the relevant
process holds the end and will pass it to other components on request.

The communication between the individual components of thepony environment fol-
lows the principle of cycle-free client/server communication as set out in [25]. Although the
communication structure between the individual components may change dynamically, it is
guaranteed that at any given time, the client/server digraph is cycle-free; the communication
is therefore deadlock-free.

10.3. Internal Components

This section briefly introduces the individual components of the pony environment. A de-
tailed description of their functionality, which includesthe usage of the internal handles for
communication between the components, is given in [8].

The Protocol-converters

The purpose of theprotocol-convertersis to enable the pony environment to support net-
worked channels carrying all commonoccam-π protocols. For each networked channel (i.e.
for each channel in a networked CTB), there is one set of protocol-converters, consisting of
a protocol-decoderand aprotocol-encoder.

On the sending node, the decoder decodes the incoming protocol into a special protocol
that is used internally by the pony kernel. After something has been sent from one node to

96 M. Schweigler and A.T. Sampson / pony – Theoccam-π Network Environment

main kernel

CTB-handler

CTB-manager

instant-

handler

decode-

handler

decode-

handle

internal

decode-handle

encode-

handler

internal

encode-handle

protocol-

decoder

protocol-

encoder

decode-

reply-handle

CTB-instant-

handle

network-hook-

handle

client-

listener

server-

listener

CTB-claim-

handle

CTB-claim-

handle

CTB-main-

handle

CTB-manager-handle

encode-

handle

NCT-manager-handle NCT-manager

NCT-handle

link-manager-handle

TCP/IP

link-manager

link-handle

TCP/IP

link-manager-handle

NCT-handler

TCP/IP

link-handler

internal

message-handle

message-

handler

internal

error-handle

error-handler

kernel-

reply-handle

message-

outputter
message-handle

error-handle

network-

handle

error

output

socket

Figure 3. Layout of the pony environment

another via the pony environment, the encoder on the receiving node takes the intermediary
pony protocol and encodes it back into the user-level protocolbefore passing it on to the
receiving user-level process.

M. Schweigler and A.T. Sampson / pony – Theoccam-π Network Environment 97

Decode-handler and Encode-handler

The decode-handlertakes the data from the decoder and packs it into a suitable format for
sending it over the network. On the receiving node, theencode-handlertakes the packed
data coming from the network, unpacks it, and passes it on to the encoder. Additionally, the
decode-handler and the encode-handler deal with the implications arising from the move-
ment of NCT-ends over networked channels and the implicit allocation of NCT-ends where
applicable.

The CTB-handler

TheCTB-handlerdeals with the function of a networked CTB. There is a CTB-handler for
each networked CTB on the node. The CTB-handler handles incoming claim and release
requests for the ends of the CTB, as well as the communicationalong its channels. Please
note that the instant-handler, the client-listener and theserver-listener in the CTB-handler
(cf. Figure 3) are no actual components of pony but just simple sub-processes of the CTB-
handler.

The CTB-manager

The CTB-manageris responsible for starting new CTB-handlers when needed (during ex-
plicit allocation and when making a previously non-networked CTB networked). It also keeps
the various internal handles for existing CTB-handlers andpasses them to other pony com-
ponents on request (via theCTB-manager-handle).

The NCT-handler

NCT-handlersonly exist on master nodes. There is one NCT-handler for eachNCT in the
application. The NCT-handler is responsible for handling claim and release requests coming
from the CTB-handlers on the various nodes of the application. This involves queueing claim
requests (if several nodes try to claim the same NCT-end) until they get served.

The NCT-manager

The NCT-managerresides on the master node and starts new NCT-handlers when needed.
This is the case when the first end of an NCT is allocated explicitly, or when a previously
non-networked CTB is made networked on a node and a new NCT needs to be allocated
implicitly. The NCT-manager keeps theNCT-handlesfor existing NCT-handlers and passes
them (via theNCT-manager-handle) to requesting link-handlers18.

The link-handler

Link-handlershandle network links between two nodes of a pony application. On each node,
there is a link-handler for each link that has been established to another node. The link-
handler takes messages from pony’s various components and passes them on to the remote
node via the link. When the link-handler on the receiving node gets a network-message over
its link, it passes it on to the component for which the message is intended.

The link-manager

The link-managerestablishes new links (and starts new link-handlers) when necessary. For
TCP/IP, this means that new socket connections to other nodes are established or incoming
socket connections from other nodes are accepted. The link-manager keeps thelink-handles
for existing link-handlers and passes them (via thelink-manager-handle) to requesting pony
components.

18No other components will ever request an NCT-handle.

98 M. Schweigler and A.T. Sampson / pony – Theoccam-π Network Environment

All messages exchanged between two nodes are multiplexed over the link between the
nodes. This applies especially to messages sent over networked channels. The multiplexing
of possibly many networked channels over a single link was inspired by the Virtual Channel
Processor of the T9000 transputer [10], although the routing in pony is dynamic because
NCT-ends may move to other nodes. pony’s routing is a dynamic version of the ‘crossbar’
routing found in JCSP.net [21].

Error-handler and Message-handler

The error-handler and the message-handler are used for error- and message-handling. They
are only active if this has been requested from the startup process when the node was started.

10.4. Modular Design of pony

The structure of the pony environment is modular, which makes it easy to replace components
when needed. The most obvious application for this feature would be adding support for
new network-types to pony. This could easily be done by adding new network drivers (a
link-handler and a link-manager), as well as a new ANS, for the new network-type. The
other pony components would not need to be modified and could communicate with the new
network drivers via the existing interface (the internal handles). During startup, the correct
link-manager is started by the pony environment, depending on the network-type used.

11. Benchmarks

These benchmarks were conducted on the TUNA [26] cluster at the University of Kent, which
consists of 30 PCs with 3.2 GHz Intel Pentium IV processors, running Linux 2.6.8, linked
by a reliable switched gigabit Ethernet network. The machines were otherwise idle; memory
usage was watched carefully to avoid going into swap. The benchmark programs — which
are included in the KRoC distribution — were compiled using KRoC’s highest optimisation
options, as was the pony library. Each pony node was run on a dedicated host; the ANS was
also given a dedicated host (for ease of management; the ANS is not performance-critical).

All the benchmarks aim to be ‘steady-state’ measurements: the loops are started and
allowed to run for at least two seconds before the timer is started, in order to avoid CPU
caching effects; the performance of the loop is then measured over a period of ten seconds.
Each such measurement was repeated three times and the mean of the results taken. We have
omitted error bars for clarity; the error was within 1% on allbenchmarks.

We emphasise that, to date, very little ‘tuning’ work has been done on pony; these results
should only improve with time. That said, the present results are extremely encouraging, and
we have already built several distributed applications using pony which perform well on PC
clusters.

11.1. Communication Time

‘commstime’ is a standard benchmark that has traditionally been used with various incarna-
tions ofoccam and similar CSP-based platforms. Its process layout is shown in Figure 4.

The ‘commstime’ benchmark consists of four parallel processes, three of which are run-
ning in a loop. The processes are connected by channels carrying INTs. The ‘prefix’ pro-
cess first outputs a pre-defined number. Then it inputs incoming INTs and passes them on.
The ‘delta’ process inputsINTs and passes them on via two output channels. The ‘succ’
process inputsINTs and outputs their successors. Finally, the ‘consume’ process inputs the
INTs from the above circuit and acts as a monitoring process.

M. Schweigler and A.T. Sampson / pony – Theoccam-π Network Environment 99

prefix (0)

succ

delta
consume

Figure 4. The ‘commstime’ benchmark

Since the processes are effectively only doing communications, the cycle rate of the
network (i.e. how long it takes for a piece of data to travel around the loop) can be used to
estimate the overhead of a single communication. For conventional occam-π programs, the
communication time is the context-switch time of the KRoC scheduler.19

The pony version of the ‘commstime’ benchmark modifies the standard program so that
each of the four processes runs on a separate node. The channels between processes become
NCTs containing a singleINT channel. Thus, the communication time measured is the time
for a basicnetworkcommunication — which includes not just severaloccam-π context-
switches, but also eight pthreads context-switches, four system calls into the kernel, and two
TCP round-trips across the network.

The standard ‘commstime’ was compiled using the same KRoC version and options as
the other benchmarks, and reported a communication time of 19 ns with CPU usage at 100%.
The pony ‘commstime’ reported a communication time of 66µs with CPU usage on each
node at 3% — approximately fifteen thousand communications per second.

11.2. Throughput

The ‘bmthroughput’ program is intended to measure the aggregate data rate available across
a group of networked channels. A collection of worker processes — distributed across a
number of slave nodes — sends ‘MOBILE []BYTE’ arrays to a master process (on the master
node); the master measures the rate at which it is receiving data from the collection of work-
ers. The number of slave nodes, number of workers per slave node, range of message sizes
(fixed or randomly distributed) and transmission rate (in messages per second, or simply ‘as
fast as possible’) can be varied. In this set of benchmarks, the code generating messages is
trivial, and there are no otheroccam-π processes running to compete with pony for CPU
time.

Using 100 KB20 — a message size typical for applications rendering real-time graph-
ics — the saturation point of the network can be reached with relatively few sending pro-
cesses. Figure 5 shows the throughput available with one to 25 slave nodes, each running two
workers; network saturation is just reached at 25 slave nodes (i.e. 50 workers).

Figure 6 shows the throughput available from one slave node running 50 workers as
the message size is varied between 1 B and 1 MB. Since pony (like occam-π internally)
does approximately the same amount of work per communication regardless of the size of
the message, there is an obvious advantage in using larger messages if your application is
optimised for throughput.

Figure 7 shows the throughput available from one slave node using 50 KB messages as
the number of workers is varied between 1 and 500. pony uses blocking system calls, so other
occam-π processes can execute while pony is waiting for network operations to complete;
throughput-sensitive applications should therefore use multiple processes per node, or have
internal buffering, to ensure that the networked channels always have data available to send.

19There is also a ‘parallel delta’ version of the original benchmark which is used to measure process startup
time; the benchmark used here is the ‘sequential delta’ version in which no processes are created or destroyed
while the benchmark is running.

20All byte prefixes used in this paper are decimal, e.g. 1 KB = 1000 B.

100 M. Schweigler and A.T. Sampson / pony – Theoccam-π Network Environment

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25

T
h

ro
u

g
h

p
u

t
[M

B
/s

]

Slave nodes

Figure 5. Throughput: 100 KB messages, two workers per slave

 0

 20

 40

 60

 80

 100

 1 10 100 1000 10000 100000 1e+06

T
h

ro
u

g
h

p
u

t
[M

B
/s

]

Message size [B]

Figure 6. Throughput: Varying message size, one slave with 50 workers

M. Schweigler and A.T. Sampson / pony – Theoccam-π Network Environment 101

 0

 20

 40

 60

 80

 100

 1 10 100 1000

T
h

ro
u

g
h

p
u

t
[M

B
/s

]

Workers

Figure 7. Throughput: 50 KB messages, one slave, varying number of workers

11.3. Network Overhead

In the previous benchmark, the master process’s throughputmeasurement only includes the
data actually being sent by the application (that is, the ‘MOBILE []BYTE’ arrays); the net-
work overhead due to the pony and TCP/IP protocols is not included. It can be estimated by
comparing the measurement with the network data rate reported by the operating system.

The rightmost data point in figure 5 is 99.1 MB/s; the network usage measured at the
same point was 104.9 MB/s. The network overhead was thus approximately 5.8%, or 5.8 KB
for every 100 KB array of data. Since each 1.5 KB Ethernet frame will contain approximately
60 B of Ethernet, IP and TCP headers, the network overhead canbe split up into some 4%
which are due to the network protocols in use, and 1.8% due to pony itself.

11.4. CPU Overhead

The computational overhead introduced by the pony environment can be evaluated by mea-
suring the CPU time peruser-level communication(ULC). A ULC is the entire communi-
cation carried by anoccam-π channel, i.e. everything noted after the ‘!’ or the ‘?’. So, for
instance:

c ! x; y; z

would be one ULC. The CPU time per ULC is the time between starting to send a ULC
via a networked channel and receiving the acknowledgement that the entire ULC has been
received by the remote user-level process, specifically excluding the network latency from
this measurement. The time measured reflects the CPU overhead on the sending node.

The ‘bmpingpongtime’ benchmark measures the time needed by the ULC, in form of
the special protocol created by the protocol-decoder, to travel through the decoder into the

102 M. Schweigler and A.T. Sampson / pony – Theoccam-π Network Environment

pony kernel, and then all the way through the pony kernel until the point where it would have
to be outputted to the network. At this point, nothing is sentto the network, but a dummy
acknowledgement is sent to the CTB-handler as if an acknowledgement from the remote
pony kernel had just been received from the network. Please note that, depending on the user-
level protocol, the measurement for a ULC may include one or two such ping-pong times.
Details can be found in [8]. After the last acknowledgement has been returned, the sending
operation finishes as usual, with the decoder assuming that the remote node has received the
data, and therefore releasing the user-level channel.

‘bmpingpongtime’ sends regular byte arrays in order to exclude any dynamic memory
allocation (for instance of ‘MOBILE []BYTE’ arrays) from the figures. Figure 8 shows the
CPU time per ULC for single byte arrays of varying size. As expected, the CPU time is fairly
constant. This is so because the pony infrastructure does not copy the user-level data, but
only passes around its address and size.

 0

 2

 4

 6

 8

 10

 1 10 100 1000 10000 100000 1e+06

C
P

U
 t

im
e

 p
e

r
u

se
r-

le
ve

l c
o

m
m

u
n

ic
a

ti
o

n
 [

µ
s]

Array size [B]

Figure 8. CPU overhead: Single byte array of varying size

An interesting phenomenon is that sending one byte of regular data is slower than send-
ing 10 or 1000. An analysis of the bytecode generated by the compiler shows that KRoC uses
the ‘OUT8’ instruction for the single byte and ‘OUT’ for the rest, so presumably those have
different performance characteristics.

Another test measures the CPU time per ULC for sequential protocols with a varying
number of items. In each sequential protocol, all items are regular byte arrays of the same
size; we have carried out measurements for array sizes of 1 B,1 KB and 1 MB.

Figure 9 shows the CPU time per ULC for sequential protocols of 1 B arrays. The jump
between the results for one and two items is rather big, because sequential protocols with
two or more items require two ping-pongs, whereas non-sequential data (i.e. one item) only
requires a single ping-pong. The CPU time per ULC then gradually increases due to the fact
that the individual items of the sequential protocol, except the first and the last, are copied
internally by the decoder, and then the address/size pair ofthecopyis passed on; the copying

M. Schweigler and A.T. Sampson / pony – Theoccam-π Network Environment 103

takes more time the more items there are in the protocol. The copying is necessary because of
the way the KRoC compiler evaluates expressions in non-mobile variables (since each item
of the sequential protocol may have been an evaluated expression), so that all items from the
second item onwards can be sent over the network at once; see [8] for details.

 0

 5

 10

 15

 20

 25

 1 2 3 4 5 6 7 8 9 10

C
P

U
 t

im
e

 p
e

r
u

se
r-

le
ve

l c
o

m
m

u
n

ic
a

ti
o

n
 [

µ
s]

Number of protocol items (1 B arrays)

Figure 9. CPU overhead: Sequential protocol, 1 B arrays

As mentioned above, there are always two ping-pongs for sequential protocols with two
or more items. Hence, only the copying of protocol items causes the gradual increase, with
(n - 2) copy operations for protocols with n items.

Figure 10 shows the CPU time per ULC for sequential protocolsof 1 B, 1 KB and 1 MB
arrays. For sequential protocols with one and two items, theCPU time per ULC is nearly
identical for all three array sizes, since no copying is involved. As expected, from three items
onwards, the results diverge, because the aggregate amountof data that needs to be copied
depends on the length of the protocol and the size of the individual arrays.

Particularly notable is the big jump between two and three items for the 1 MB arrays.
This shows the impact of copying large amounts of data — and the advantage of not having
to copy non-sequential regular data or mobile data, which will be the bulk of communication
in a typical pony application.

Nevertheless, network latency always outweighs local copying. Therefore, copying items
of a sequential protocol locally and then sending them in a single network operation is still
better than not copying them and sending each item over the network separately.

11.5. Application Scalability

‘mandelbauer’ is an example of using pony to make an existing application distributed; in
this case, the original program computes a region of the Mandelbrot set. The approach taken
is ‘farming’: the master node generates work requests for rectangular sections of the region
being computed; a number of slave nodes read the requests, dothe appropriate computation

104 M. Schweigler and A.T. Sampson / pony – Theoccam-π Network Environment

 1

 10

 100

 1000

 10000

 1 2 3 4 5 6 7 8 9 10

C
P

U
 t

im
e

 p
e

r
u

se
r-

le
ve

l c
o

m
m

u
n

ic
a

ti
o

n
 [

µ
s]

Number of protocol items

1 B arrays
1 KB arrays

1 MB arrays

Figure 10. CPU overhead: Sequential protocol, several array sizes

and send the results back to the master; the master then collects and displays the results. For
the purposes of this benchmark, the display has been disabled; the master just measures the
rate at which pixels are being computed.

The ‘mandelbauer’ application can be run in two modes. In shared mode (see Fig-
ure 11), there is a single pair of shared networked request/response channels (in two sepa-
rate NCTs) used by all the slaves. In multiplexing mode (see Figure 12), each slave has its
own pair of networked request/response channels (in a single NCT), connected to a handler
process on the master node. When a slave is started up, it sends the server-end of its re-
quest/response NCT to the master, which will then set up a newhandler process. The master
uses local shared channels to distribute work to and collectresults from the handler processes.
The slaves have small internal buffers to hold incoming and outgoing messages.

master slave slave ...

response

request

slave

Figure 11. The ‘mandelbauer’ application: Shared mode

Figure 13 shows the rendering performance of ‘mandelbauer’ in both modes. Network
saturation is reached at 25 slaves in multiplexing mode, at which point CPU utilisation on the
slaves in multiplexing mode is approximately 85%; in sharedmode it is approximately 30%.

M. Schweigler and A.T. Sampson / pony – Theoccam-π Network Environment 105

master

slave

slave

...

farm

request/response

request/response

request/response slave

handler

handler

handler

Figure 12. The ‘mandelbauer’ application: Multiplexing mode

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 5 10 15 20 25

C
o

m
p

u
ta

ti
o

n
 r

a
te

 [
K

p
ix

e
l/

s]

Slave nodes

Ideal performance
Multiplexing mode

Shared mode

Figure 13. Scalability of a distributed application

The scaling performance in multiplexing mode is significantly better than in shared
mode. Since shared NCT-ends must be explicitly claimed overthe network, in shared mode
the master is frequently blocked waiting for one of the workers to claim the request channel.
Future research will have to look into ways to improve the mechanism for claiming NCT-ends
— which would narrow the gap between shared mode and multiplexing mode.

It is usually considered good practice to run network-boundprocesses at a higher priority
than compute-bound processes, in order to reduce latency for network responses. However,
we tried both with and without explicit priorities in this application, and there was no mea-

106 M. Schweigler and A.T. Sampson / pony – Theoccam-π Network Environment

surable difference — perhaps because, as there is only one calculation process running at a
time on each slave node, the pony processes will never be blocked for longer than the time it
takes to process one work request.

12. Conclusions and Future Work

The pony project has succeeded in developing a unified model for inter- and intra-processor
concurrency. pony has become a robust and scalable platform for the development of dis-
tributed applications. The pony environment expandsoccam-π’s concurrency model into the
networked world and achieves semantic and pragmatic transparency according to our objec-
tives that were expressed in Section 1.2.

The handling of pony for theoccam-π programmer is simple and straightforward. There
is a minimum number of public processes for the basic operations (startup/shutdown, alloca-
tion, error-/message-handling), providing the interfacebetween pony and the user-level code.
All runtime operations are handled automatically and transparently by the pony kernel. The
configuration is easy to understand and minimises the complexity of setting up a distributed
application.

By benchmarking, we have shown that pony already has acceptable performance for dis-
tributedoccam-π applications, and that existingoccam-π applications can easily be adapted
to take advantage of pony. We have also identified areas where future work on the pony im-
plementation can improve the performance of distributed applications. We hope to test pony
in a Grid environment in the future to identify any scaling problems with larger systems.

As the development ofoccam-π progresses in the future, the pony environment will
also have to be extended to accommodate support for new developments; foremost for mobile
processes [27] and mobile barriers [28]. Integrating the pony environment into RMoX, the
occam operating system [29], will be another important aspect of the future development
of pony. Since RMoX is implemented inoccam, an RMoX-integrated pony environment
would be able to utilise RMoX’s native network drivers directly rather than going through an
underlying operating system. This could further enhance network performance compared to
versions ofoccam-π and pony that are running on top of an ‘ordinary’ OS.

Other new features added tooccam-π in the future would gradually have to be incor-
porated into pony as well, so that semantic transparency between pony andoccam-π would
be preserved. Other areas of future work could be the adaption of pony for different ar-
chitectures (dealing with endianism etc.), a security model for pony (introducing encrypted
network communication), as well as alternative startup andconfiguration models for pony
applications distributed on clusters.

For a detailed discussion on possible future work on pony, the reader is referred to [8].
Potential for further development never ceases, just like in the ‘real world’ — whichoccam-π
and pony are designed to model.

Acknowledgements

The authors are very grateful to Fred Barnes for his work on the KRoC compiler and his
helpfulness in discussing the various issues arising from the development of pony and its
integration into the KRoC environment.

Thanks also go to Peter Welch and the other members of the University of Kent’s Con-
currency Research Group, as well as the anonymous reviewers. Their advice in reviewing
this paper and their contributions to our many discussions on the project were very valuable.

Finally, the authors would like to acknowledge EPSRC’s support for parts of this work
through a research studentship (EP/P50029X/1) and the TUNAproject (EP/C516966/1), as

M. Schweigler and A.T. Sampson / pony – Theoccam-π Network Environment 107

well as the Computing Laboratory at the University of Kent for supporting parts of this work
through a Brian Spratt Bursary.

References

[1] C.A.R. Hoare.Communicating Sequential Processes. Prentice-Hall, London, 1985. ISBN: 0-13-153271-
5.

[2] R. Milner. Communicating and Mobile Systems: the Pi-Calculus. Cambridge University Press, 1999.
ISBN-10: 0521658691, ISBN-13: 9780521658690.

[3] Inmos Limited. occam 2.1 Reference Manual. Technical report, Inmos Limited, May 1995. Available at:
http://wotug.org/occam/.

[4] Inmos Limited.Transputer Reference Manual. Prentice Hall, March 1988. ISBN: 0-13-929001-X.
[5] I. Foster, C. Kesselman, and S. Tuecke. What is the Grid? AThree Point Checklist.GRIDToday, July

2002. Available at:http://www-fp.mcs.anl.gov/∼foster/Articles/WhatIsTheGrid.pdf.
[6] I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of theGrid: Enabling Scalable Virtual Organizations.

International Journal of Supercomputer Applications, 2001. Available at:http://www.globus.org/
research/papers/anatomy.pdf.

[7] I. Foster, C. Kesselman, J.M. Nick, and S. Tuecke. The Psychology of the Grid: An Open Grid Services
Architechture for Distributed Systems Integration.Global Grid Forum, June 2002. Available at:http:
//www.globus.org/research/papers/ogsa.pdf.

[8] Mario Schweigler.A Unified Model for Inter- and Intra-processor Concurrency. PhD thesis, University
of Kent, UK, Canterbury, Kent, CT2 7NF, August 2006.

[9] F.R.M. Barnes and P.H. Welch. Prioritised Dynamic Communicating Processes: Part I. In James Pascoe,
Peter Welch, Roger Loader, and Vaidy Sunderam, editors,Communicating Process Architectures 2002,
WoTUG-25, Concurrent Systems Engineering, pages 331–361,IOS Press, Amsterdam, The Netherlands,
September 2002. ISBN: 1-58603-268-2.

[10] Inmos Limited.The T9000 Transputer Instruction Set Manual. SGS-Thompson Microelectronics, 1993.
Document number: 72 TRN 240 01.

[11] M.D. May, P.W. Thompson, and P.H. Welch.Networks, Routers and Transputers, volume 32 ofTransputer
andoccam Engineering Series. IOS Press, 1993.

[12] M.D. Poole. Occam for all – two approaches to retargetting the INMOS compiler. In Brian O’Neill,
editor,Parallel Processing Developments, Proceedings of WoTUG 19, volume 47 ofConcurrent Systems
Engineering, pages 167–178, Amsterdam, The Netherlands, March 1996. World occam and Transputer
User Group, IOS Press. ISBN: 90-5199-261-0.

[13] P.H. Welch and D.C. Wood. The Kent Retargetable occam Compiler. In Brian O’Neill, editor,Parallel
Processing Developments, Proceedings of WoTUG 19, volume 47 ofConcurrent Systems Engineering,
pages 143–166, Amsterdam, The Netherlands, March 1996. World occam and Transputer User Group,
IOS Press. ISBN: 90-5199-261-0.

[14] F.R.M. Barnes and P.H. Welch. Mobile Data, Dynamic Allocation and Zero Aliasing: anoccam Exper-
iment. In Alan Chalmers, Majid Mirmehdi, and Henk Muller, editors,Communicating Process Architec-
tures 2001, volume 59 ofConcurrent Systems Engineering, pages 243–264, Amsterdam, The Netherlands,
September 2001. WoTUG, IOS Press. ISBN: 1-58603-202-X.

[15] Frederick R.M. Barnes.Dynamics and Pragmatics for High Performance Concurrency. PhD thesis,
University of Kent, June 2003.

[16] I.N. Goodacre.occam NetChans, 2001. Project report.
[17] M. Schweigler. The Distributedoccam Protocol - A New Layer On Top Of TCP/IP To Serveoccam

Channels Over The Internet. Master’s thesis, Computing Laboratory, University of Kent at Canterbury,
September 2001. MSc Dissertation.

[18] M. Schweigler, F.R.M. Barnes, and P.H. Welch. Flexible, Transparent and Dynamicoccam Network-
ing with KRoC.net. In J.F. Broenink and G.H. Hilderink, editors,Communicating Process Architectures
2003, WoTUG-26, Concurrent Systems Engineering, ISSN 1383-7575, pages 199–224, Amsterdam, The
Netherlands, September 2003. IOS Press. ISBN: 1-58603-381-6.

[19] M. Schweigler. Adding Mobility to Networked Channel-Types. In I. East, J. Martin, P. Welch, D. Duce,
and M. Green, editors,Communicating Process Architectures 2004, volume 62 ofWoTUG-27, Concurrent
Systems Engineering, ISSN 1383-7575, pages 107–126, Amsterdam, The Netherlands, September 2004.
IOS Press. ISBN: 1-58603-458-8.

[20] Henk L. Muller and David May. A simple protocol to communicate channels over channels. InEURO-
PAR ’98 Parallel Processing, LNCS 1470, pages 591–600, Southampton, UK, September 1998. Springer

108 M. Schweigler and A.T. Sampson / pony – Theoccam-π Network Environment

Verlag.
[21] P.H. Welch, J.R. Aldous, and J. Foster. CSP Networking for Java (JCSP.net). In P.M.A. Sloot, C.J.K. Tan,

J.J. Dongarra, and A.G. Hoekstra, editors,Computational Science - ICCS 2002, volume 2330 ofLecture
Notes in Computer Science, pages 695–708. Springer-Verlag, April 2002. ISBN: 3-540-43593-X. See
also:http://www.cs.kent.ac.uk/pubs/2002/1382.

[22] P.H. Welch and B. Vinter. Cluster Computing and JCSP Networking. In James Pascoe, Peter Welch,
Roger Loader, and Vaidy Sunderam, editors,Communicating Process Architectures 2002, WoTUG-25,
Concurrent Systems Engineering, pages 213–232, IOS Press,Amsterdam, The Netherlands, September
2002. ISBN: 1-58603-268-2.

[23] F.R.M. Barnes. Interfacing C and occam-pi. In J. Broenink, H. Roebbers, J. Sunter, P. Welch, and D. Wood,
editors,Communicating Process Architectures 2005, volume 63 ofWoTUG-28, Concurrent Systems En-
gineering, ISSN 1383-7575, pages 249–260, Amsterdam, The Netherlands, September 2005. IOS Press.
ISBN: 1-58603-561-4.

[24] Fred Barnes. Socket, File and Process Libraries foroccam. Computing Laboratory, University of
Kent at Canterbury, June 2000. Available at:http://www.cs.kent.ac.uk/people/staff/frmb/

documents/.
[25] J.M.R. Martin and P.H. Welch. A Design Strategy for Deadlock-free Concurrent Systems. InTransputer

Communications, volume 3 (4), pages 215–232. Wiley and Sons Ltd., UK, October 1996.
[26] S. Stepney, P.H. Welch, F.A.C. Pollack, J.C.P. Woodcock, S. Schneider, H.E. Treharne, and A.L.C. Cav-

alcanti. TUNA: Theory Underpinning Nanotech Assemblers (Feasibility Study), January 2005. EPSRC
grant EP/C516966/1. Available from:http://www.cs.york.ac.uk/nature/tuna/index.htm.

[27] F.R.M. Barnes and P.H. Welch. Communicating Mobile Processes. In I. East, J. Martin, P. Welch, D. Duce,
and M. Green, editors,Communicating Process Architectures 2004, volume 62 ofWoTUG-27, Concurrent
Systems Engineering, ISSN 1383-7575, pages 201–218, Amsterdam, The Netherlands, September 2004.
IOS Press. ISBN: 1-58603-458-8.

[28] P.H. Welch and F.R.M. Barnes. Mobile Barriers for occam-pi: Semntics, Implementation and Application.
In J. Broenink, H. Roebbers, J. Sunter, P. Welch, and D. Wood,editors,Communicating Process Architec-
tures 2005, volume 63 ofWoTUG-28, Concurrent Systems Engineering, ISSN 1383-7575, pages 289–316,
Amsterdam, The Netherlands, September 2005. IOS Press. ISBN: 1-58603-561-4.

[29] F.R.M. Barnes, C.L. Jacobsen, and B. Vinter. RMoX: a Raw Metaloccam Experiment. In J.F. Broenink
and G.H. Hilderink, editors,Communicating Process Architectures 2003, WoTUG-26, Concurrent Sys-
tems Engineering, ISSN 1383-7575, pages 269–288, Amsterdam, The Netherlands, September 2003. IOS
Press. ISBN: 1-58603-381-6.

