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Abstract. Although concurrency is generally perceived to be a ‘hautbjsct, it can

in fact be very simple — provided that the underlying modeliieple. Theoccam-1t
parallel processing language provides such a simple ye¢goirconcurrency model
that is based on CSP and treealculus. This paper presentsry, theoccam-1t Net-
work Environmentoccam-1t and pny provide a new, unified, concurrency model
that bridges inter- and intra-processor concurrency. €hables the development of
distributed applications in a transparent, dynamic anthlizigcalable way. The first
part of this paper discusses the philosophy behmaypexplains how it is used, and
gives a brief overview of its implementation. The second paaluates pny’s perfor-
mance by presenting a number of benchmarks.
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Introduction

Concurrency has traditionally been seen as an ‘advancégedu It is taught late (if at all)
in computer science curricula, because it is seen as a al-&xtension of the ‘basic’
sequential computing. In a way, this is surprising, sin@‘teal world’ around us is highly
concurrent. It consists of entities that are communicatity each other; entities that have
their own internal lives and that are exchanging informabetween each other.

Process calculi such as CSP [1] and thealculus [2], with their notion of processes
and channels, are particularly suited to model the ‘realldtoespecially since there is a
programming language available that is based on those faatali, but still easy to under-
stand and to use. This languageotcam-T1, the new dynamic version of the classical-
cam? [3]. Originally targeted at transputer [4] platforms, it svspecifically designed for the
efficient execution of fine-grained, highly concurrent piaogs. Still, most people associate
concurrency with the traditional approach of threads, $oakd semaphores rather than with
the much more intuitive one of a process algebra.

Networking is increasingly important in today’s world. @nally a merely academic
topic, it has gained significant importance since the 1968gecially due to the advent of
the internet as an everyday ‘commodity’ on the consumer ataflhe development of large
distributed applications is one of the modern challenge®mputer science. Infrastructures

loccam is a trademark of ST Microelectronics. The origimaicam language was based on CSP only;
features from thet-calculus, particularly the notion of channel and procesbility, have been incorporated in
occam-Ttrecently.
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such as the Grid [5,6,7] are specifically designed for theidigion of large computational
tasks onto decentralised resources.

Distributed applications are typicaltyesignedo be distributed right from the start —
the mechanisms used for distribution must be specificaltressed by the developer. The
pony? project [8] is targeted towards bringing concurrency antWoeking together in a
transparentand dynamic yet efficient way, using tbecam-ttlanguage as the basis for the
development of distributed applications. This is possildeause, as stated above, the world
is concurrent by nature, which includes networks of comfsut& programming language
such asoccam-1t, which by design captures this ‘natural’ concurrency, idipalarly suited
as the basis for a unified concurrency model.

1. Background and Motivation
1.1. The Need for a Unified Concurrency Model

Concurrency is simple — provided that the underlying moslsimple.occam-ttoffers just
that, a concurrency model that is simple to use, yet baseldeofotmal algebras of CSP and
the -calculus. One of the major advantagesootam-Ttis that it encourages component-
based programming. Eadtcam-Tt process is such a component, which can communicate
with other componentsccam-1t applications may be highly structured, since a group of
processes running in parallel can be encapsulated intghehievel’'occam-1t process, and
so on.

This component-based approach is the particular charotcdm-1t programming. It
allows the development of sub-components independertdiy ®ach other, as long as the
interface for communication between those sub-componggtsarly defined. Ioccam-,
this interface is provided (primarily) by channels; thislindes both the ‘classicabccam
channels and the new dynamic channel-tyg8% Once all components of anccam-Tt
application have been developed, they just need to be ‘pllitmgether’ via their interfaces.

We want to utilise the advantagesaxfcam-1t's concurrency model for the development
of distributed applications. In order to do this succedgfiilis necessary to extermtcam-Tt
in such a way that the distribution of components is trarsmato the components’ devel-
opers. As long as the interface between components (i.eegses) is clearly defined, the
programmer should not need to distinguish whether the gsoe the ‘other side’ of the
interface is located on the same computer or on the otherfeheé globe.

1.2. Aspects of Transparency

pony, the occam-1t Network Environment, extendsccam-tt in such a transparent way.
There are two aspects of transparency that are impodantantidransparency angdrag-
matictransparency.

1.2.1. Semantic Transparency

occam was originally developed to be executed on transputersiréingputer was a micro-
processor with a built-in micro-coded scheduler, allowing parallel execution abccam
processeccam channels were either emulated within a single transputkeif ends were
held by processes on the same transputer (‘soft channetsijiplemented using the trans-

2The name ‘pny’ is an anagram of the first letters af]gcam, [pli and [n]etwork; plus a [y] to make it a
word that is easy to remember.

3Channel-types are bundles of channels. The ends of chiypes-are mobile and may be communicated
between processes.
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puter’s links. Each transputer had four links by which it kcblhe connected to other trans-
puters (‘hard channels’). The late T9000 transputer [1@jctvwas the last transputer being
developed and which went out of production shortly afteritgbeen introduced by Inmos,
additionally offered a/irtual Channel Processor (VCH)L1] which allowed many logical
occam channels to be multiplexed over the same physical link.

This approach allowed the simple construction of netwofksamsputers offering large
computing power, despite the (comparatively) low procegsapabilities of a single trans-
puter. The great advantage of this approach was that thegmoger of aroccam process
did not have to care whether a specific channel was a soft aidachannel. This distinction
was transparent from the programmer’s point of view — theas#ros of channel communi-
cation was identical for atbccam channels.

After the decline of the transputer, thectam For All’ [12] project successfully saved
theoccam language from early retirement. Althougbcam was originally targeted at trans-
puters, the aim was to bring the benefits of its powerful comeicy model to a wide range
of other platforms. This was achieved by developingdlR the Kent Retargetableccam
Compiler [13]. What had been lost, however, was the suppohdrd channels, since without
transputers there were no transputer links anymore.

The pny environment re-creates the notion of semantic trangpgeom the old trans-
puter days. pny enables the easy distribution of accam-ttapplication across several pro-
cessors — or back to a single processor — without the needdngehthe application’s
components.

With the constant development of KR, occam has been developed intccam-Tr,
which offers many new, dynamic, features [14,9,15Jnyp takes into account and exploits
this development. In the classicatcam of the transputer days, channels were the basic
communication primitive, and semantic transparency edibetween soft and hard channels.
pony’s basic communication primitive aoecam-1ts new channel-types, and there is seman-
tic transparency between non-networked channel-typesatwdork-channel-types (NCTS)
This transparency includes the new dynamic featuresxocam-1t

All occam-1t PROTOCOLS can be communicated over NCTs. Mobile semantics are pre-
served as well, both when mobile data [14] is communicatest BICTs, and when ends
of (networked or non-networked) channel-types are comoated over other channel-types.
The semantics is always the same, and the developer af¢@m-Tt process does not have
to care whether a given channel-type is networked or not.eSohpony’s general routing
mechanisms are similar to the Virtual Channel Processdnef®000 transputer; however,
routing in pony is dynamic, rather than static like on the transputer.

1.2.2. Pragmatic Transparency

When achieving semantic transparency, we do not want toquay Wwith bad performance.
For instance, a system that uses sockets for every singlenooration, including local
communication, would still be semantically transparent iees the developer would not
have to distinguish between networked and non-networkethuaication — but it would
be hugely inefficient. Here the other important aspect be&soralevant, namely pragmatic
transparency. This essentially means that the infrastre¢hat is needed for network com-
munication is set uputomaticallyby the pny environment when necessary. Due tmp's
dynamic routing, it is used if and only if needed.

Local communication over channel-types is implementeche ttaditionaloccam-Tt
way, involving access to the channel-word only. In this vihg, ppony environment preserves
one of the key advantagesadécam-mtand KRoC, namely high performance and lightweight,
fine-grained concurrency. Only when the two ends of an NCThatdocated on the same
node of a distributed application, communication betwdemt goes through the infrastruc-
ture provided by pny. But also for this case, high performance was one of theakpgcts
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during pny’s development; the network communication mechanismsiiy are specifically
designed to reduce network latency.

This pragmatic transparency approach, together with alsisgtup and configuration
mechanism, makes thepy environment very dynamic and highly scalable. The togplo
of a distributed application written iaccam-1tand pny is constructed at runtime and can
be altered by adding or removing nodes when needed or whgib&dm®me available.

1.3. History

The development ofgny and its predecessors has gone through a number of staggs. O
inally, it started as an undergraduate student project 01206]. In autumn 2001, the first
major version was released as part of an MSc dissertatioarihd name ‘Distributedc-
cam Protocol’ [17]. This version was implemented fully@cam and offered a certain de-
gree of transparency. Due to the limitations of teeam language at that time, it was far
from being fully semantically transparent, however.

Since then, the gny project has continued as part of a Ph08,19,8]. During this
time, theoccam language was extended significantlgdding many dynamic features. This
affected the pny project two-fold. Firstly, the new dynamic featurectam-mtenabled the
pony environment to be implemented in a semantically and pedigailly transparent way;
being implemented almost entirely accam-1t, with a small part implemented in C, as well
as some compiler-level support built-in directly in K. Secondly, features such as the new
dynamic channel-types were themselves incorporated ipdhg environment.

The mobility of ends of network-channel-types was inspivgdhe mobile channels in
Muller and May’s Icarus language [20]. However, implemegtmobility for pony’s NCT-
ends is substantially more complex because it needs tortakag¢count the special properties
of channel-types compared to plain channels. This incltldedgact that channel-types are
bundles of channels, as well as that channel-type-ends mahdred and that shared ends
must be claimed before they can be used. All these featuteohee incorporated into NCTs
as well, in order to achieve semantic transparency.

1.4. Structure of This Paper

Section 2 introduces the terminology used in this paper aedents the architecture of
the pny environment. Sections 3 through 5 discuss the charatitsriof ppny nodes, their
startup, and the startup of the Application Name Server.alloeation of NCTs is covered in
Section 6, the shutdown obpy in Section 7. Section 8 is concerned with the configuration
of the pony environment.

Section 9 outlines a samplempy application. A brief overview of the implementation of
pony is given in Section 10. Section 11 presents a number offtvearks that were carried
out to examine pny’s performance. Section 12 concludes with a discussioth@fwork
presented in this paper, along with an outline of possiltieréuresearch.

2. Architecture and Terminology

2.1. Applications and Nodes

A group ofoccam-ttprograms which are interconnected by tlapinfrastructure is called a
pony application Each application consists of sevenaldes— onemastemode and several
slavenodes.

“4partly under the provisional name ‘Ki€.net’
Sand renamed tasccam-Tt
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The term ‘node’ refers to anccam-1t program which is using thegmy environment.
That is, there may be several nodes on the same physical temghese nodes may belong
to the same application or to different applications. In tlo@-networked world, node and
application would be congruent. In the networked world, ppligation is made up of several
nodes; the master is the logical equivalent of the main @®0oéa non-networkedccam-T1t
program (in the sense that all the ‘wiring’ of the applicatmriginates from there).

2.2. Network-channel-types

A network-channel-type (NCT§ a channel-type that may connect several nodes, i.e. whose
ends may reside on more than one node. An individual NCT-émdya resides on a sin-
gle node, and like any channel-type, an NCT may have many andbles if one or both
of its ends are shared. NCTs are the basic communicatioritpmenfior pony applications.
Nodes communicate with each other over NCTs, using the samargics as for conven-
tional channel-types. This includes the protocol semartithe items that are communicated
over the NCT's channels as well as the semantics of NCT-ends.

Like any other channel-type-end, NCT-ends may be commtedeaver channels, which
includes channels of other NCTs. Also, if an NCT-end is sthaitenust be claimed before
it can be used, and it is ensured by thenyp infrastructure interconnecting the application
that every shared NCT-end can only be claimed once at any ginee across the entire
application. Practically, the master node queues claimesis for each end of each NCT and
ensures that each NCT-end is only claimed once at any given ti

NCTs are either allocateskplicitly, under a name that is unique within the application,
or implicitly by moving ends of locally allocated channel-types to a renmnoide.

2.3. The Application Name Server

An Application Name Server (ANB)an external server that administrates applicationsh Eac
application has a name that is unique within the ANS by whiégh administrated. Nodes of
the application find each other by contacting the ANS. Thizept is similar to the ‘Channel
Name Server’ in JCSP.net [21,22], only on the level of agpions rather than channels
(respectively NCTs for gny). This allows a better abstraction, as well as a simpleraia
spacing.

With pony, NCTs are still allocated by using names, but this is maddyy the master
node of the application to which the NCT belongs, rather ttyathe ANS. This two-level
approach makes it simpler to have a single ANS for many agptins. In JCSP.net, it is also
possible to administrate network-channels of many sepd@8P.net applications within the
same Channel Name Server; however, avoiding naming canifidhe programmer’s task
there.

The ANS stores the location of the master node of an appdicat’hen a slave node
wants to join the application, it would contact the ANS anduest the master’s location.
Then the slave would contact the master node itself. Easle slade of an application has a
networklink to the master node. Links between slave nodes are only estattiwhen this
becomes necessary, namely when an NCT is stretched bethasnttvo slave nodes for the
first time.

2.4. Network-types

The pny environment has been designed to support potentiallyymatwork infrastruc-
tures. These are referred torastwork-typesn the following. Currently, the only supported
network-type is TCP/IP. However, adding support for othemork-types in the future would
be easy because the internal structureasfypis modular.
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In order to add support for a new network-type, modified wersiof the network drivers
and the ANS would have to be added ting. These only comprise a relatively small part of
the pony infrastructure. The non-network-type-specific compas®f ppny would interact
with the new network drivers using the existing interface.

2.5. Variants of Channel-types and Their Graphical Représt#on

For the remainder of this paper, we will refer to the follogrimariants of channel-types:
one2onechannel-types have an unshared client-end and an unshamest-end.any2one
channel-types have a shared client-end and an unsharest-se.one2anychannel-types
have an unshared client-end and a shared server-end.,laastBanychannel-types have a
shared client-end and a shared server-end. This propelitheviceforth be called the2x-
typeof the channel-type. Please note that the x2x-type is a psopeconcrete instances of
a channel-type, not of its type declaration.

Figure 1 shows how channel-types are depicted in this p@perclient-end of a channel-
type is represented by a straight edge, the server-end byg@dge. Shared ends are dark-
ened. So, for instance a one2one channel-type has no ddrkdges, whereas an any2one
channel-type has the straight edge darkened and the padginot darkened. The other
channel-type variants are depicted accordingly.

one2one > I any2one >

Figure 1. Channel-type variants

3. Running pony on a Node

On each node of agmy application, the pny environment must be active. This section
describes the general mechanisms of hawypoperates on a node and how it interacts with
the user-level code.

3.1. pony-enabled occam-pi Programs

The pony environment mainly consists of ascam-ttlibrary incorporating pny’s function-
ality. In order to achieve full semantic transparency, haavea small amount of supportive
code had to be integrated directly into the ®&compiler. The compiler support foopy in-
troduces a minor overhead to the handling of channel-typesdam-1t programs. Although
the additional cost is reasonably small, we waeitam-1t programmers to be able to choose
whether or not to introduce this overhead to their prografosthis, a new build-time option
has been added to KiK.

If KRoC is built with the ~-with-pony’ option, the compiler support forgmy is en-
abled foroccam-ttprograms compiled with this K&C build; otherwise traditionalccam-Tt
programs are compiled. In the following, we will referaocam-tt programs that are com-
piled by a =-with-pony’ KR0OC build aspony-enabled programs

Currently, pny-enabled programs and traditiomalcam-1t programs are incompatible
as far as the handling of channel-types is concerned. Ftanos, a library compiled by a
traditional KRoC build could not be used by apy-enabled program, unless the library uses
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no channel-types. This is no major drawback at the momertesany traditionabccam-T1t
program (or library) can be re-compiled by eny-enabled KRC build without changing its
functionality. Only the pny support for handling channel-types, with the small extat,
would be introduced.

In the future, it would be desirable to makeny-enabled and traditional K&C builds
more compatible. A possible approach is outlined in [8].

3.2. The pony Library

In order to make the gny environment available on a node, the node must use dhg p
library. This is done in the usuakccam-ttway by adding the following compiler directives
to the source code:

#INCLUDE "ponylib.inc"
#USE "pony.lib"

When the program is being compiled, the following linkeriops:
-lpony -1lcif -lcourse -lsock -1lfile -lproc

must be given to KBC in order to link the program with theopy library as well as with
all libraries that the pny library itself use$.pony uses the C Interface (CIF) library [23] for
its protocol-converters, and KIC’s course, socket, file and process libraries [24] for nglli
various routines that are needed for its functionality.

3.3. Public pony Processes and Handles

There is a runtime system which handles the internal funstiof pony, called thepony
kernel The user-level code of a node interacts with tbheykernel through a set of public
pony processes. The number of public processes has been kbptriecessary minimum in
order to make the usage obipy as simple and intuitive as possible.

There are public processes for starting tlb@ykernel, allocating ends of NCTs, shut-
ting down the pny environment, as well as for error- and message-handtimgr-handling
is used for the detection of networking errors iony; message-handling is used for out-
putting status and error messages. In order to preventdpisrgrom getting too large, error-
and message-handling will not be discussed here, sinceatteepot part of pny’s basic
functionality. Details aboutgny’s error- and message-handling are given in [8].

The startup process will return a given sethaindles A handle is the client-end of a
channel-typé which is used by the user-level code to interact with tbaypkernel. This
is done by calling the relevant public process and passiagctihiresponding handle as a
parameter.

Handles returned by the startup process may be shared istfeguested by the user-
level code. The user-level code may pass a shared handledmkef its sub-processes,
which then need to claim the handle before they can use itdiing a public pny process.
This conforms with the general rules for shared channet-gpds, which makes sense since
the handlesre normaloccam-1t channel-type-ends.

Apart from the tasks covered by the public processes, ataction between the user-
level code of a node and the@py kernel running on that node isiplicit. This includes the

8]t is planned to enable K&C to recognise the linker options automatically so that thewld not have to be
given as parameters anymore; this has not been implemeetgaopvever.

’Please note that in this paper, the term ‘handle’ may refeeeto the channel-type as such, or to its client-
end. Typically, itis clear from the context which of them isamt; in case of doubt, we will refer to ‘the handle
channel-type’ or to ‘the client-end of the handle’ specifica he server-end will always be explicitly referred
to as ‘the server-end of the handle’.
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communication via NCTs between processes on differentgydtle claiming and releasing
of shared NCT-ends, as well as the movement of NCT-ends ketwedes of an application.
All these things are done by the user-level code in exacystime way as in a traditional
(non-networkedpccam-ttapplication, which gives us semantic transparency.

By design rule, handles are not allowed to leave their notat iE, they may not be sent
to other nodes over NCTs, since this would result in undefbvedthviour.

4. The Startup Mechanism

The pony environment is started on a node by calling oneafyps startup processesf the
startup process completes successfully, it forks off theykernel and returns the handles
that are needed to call the other publany processes.

4.1. Different Versions of the Startup Process

There are several startup processes with different narapsnding on the needs of the node.
The name of the startup process specifies which handlesupgosed to return. The follow-
ing signaturé describes the naming of the startup processes:

pony.startup. (uls)nh[. (uls)eh[.iep]] [.mh]

If the name of the startup process containsh’, an unsharedetwork-handles returned. If

it contains snh’, the startup process returns a shared network-handlen@&tveork-handle
can then be used for callingpy’s allocation and shutdown processes; these are dedanbe
Sections 6 and 7. The other parts of the name of the startuegsa@re optional and used for
error- and message-handling, for which the startup proetesns arerror-handleand/or a
message-handiérequired.

4.2. Parameters of the Startup Processes

The different startup processes have different parametepending on which handles they
are supposed to return. The following parameter list is @t of all possible parameters:

(VAL INT msg.type, net.type,

VAL []BYTE ans.name, app.name, node.name,
VAL INT node.type,

RESULT INT own.node.id,

RESULT [SHARED] PONY.NETHANDLE! net.handle,
RESULT [SHARED] PONY.ERRHANDLE! err.handle,
RESULT INT err.point,

RESULT PONY.MSGHANDLE! msg.handle,

RESULT INT result)

The order of the parameters is the same for all startup psese®epending on the name of
the startup process, certain parameters may be unusedydéroW&HARED]’ means that it
depends on the startup process whether the parame$&ARBED’ or not.

The following parameters are common to all startup prosesse

e ‘net.type’ is the network-type. At the moment, the only supported reekatype is
TCP/IP.

e ‘ans.name’ is the name of the ANS. The ANS-name determines which ANSIs c
tacted by the node. Details about this are given in Sectidn 8.

8[...1’means optional, |’ is a choice, (. . .)"is for grouping.
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e ‘app.name’ is the name of the pny application to which the node belongs. Under
this name, the application is administrated by the ANS.

e ‘node.name’ isthe name of the node. The node-name determines whichgeoafion
file is used by pny to resolve the network location of the node. Details avemgin
Section 8.1.

e ‘node.type’ is the type of the node, i.e. whether it is the master or aeslav

e ‘result’ is the result returned by the startup process upon congoielf the startup
process completes successfully, thesult’ parameter will return an OK, otherwise
it will return an error. Possible errors that can occur dyistartup are discussed in
detail in [8].

e If the startup process completes successfullyn' node.id’ returns the ID of the
node. Each node of an application is assigned a unique IDépaity environment.
Please note that the knowledge of the own node-ID is not rmkeftehe function of
the pony node; the node-ID is only returned for debugging purposes

e Finally, if the startup process completes successfulbt thandle’ will contain the
network-handle. It will be unshared or shared, dependingluich startup process is
used.

The other parameters of the startup process are used for an message-handling. They
are only part of the parameter list of those startup prosasbese names contain the relevant
options, see above.

4.3. Design Rules

There are certain design rules that must be followed in dalensure the correct function of
pony applications. As mentioned already, none of the handlaBawed to be sent to another
node. Handles are relevant only to the node that has crdated t

As far as the startup ofgmy is concerned, the general design rule is that on each node,
the pony environment is only started once, i.e. that each node belgngs to one gny
application? The reason for this design rule is to avoid cases where N@$-trat belong
to one @ny application are sent to a node that belongs to anotbey ppplication, which
would result in undefined behaviour.

As an exception to this general rulejstpossible to write pny-enabledccam-1t pro-
grams that act as a ‘bridge’ betweeony applications. Such a program would require extra
careful programming. It would need to start @any environment separately for each appli-
cation, and use separate handles for the different apjpiisatin such a ‘bridging node’ it
would be vital not to mix up NCTs of separate applicationsatTis, no NCT-ends of one
application may be sent to nodes of a different applicat&s long as this is ensured, a
‘bridging node’ will function properly.

Another design rule concerns the general order of eventzrdeyw pny, namely the
startup, the usage and the shutdownafiya This will be examined in detail in Section 7.

5. Starting the ANS

As discussed in Section 2.3, the ANS may administrate malffigreint applications. Each
node of a given application must know the network locationhef ANS by which the ap-
plication is administrated. The ANS itself is a pre-com@itecam-1t program coming with
KRoC. Itis placed in thebin’ directory of the KRoC distribution; the same place where the
‘kroc’ command itself is located. The ANS for TCP/IP can be stabedalling:

9Please recall that by ‘node’ we meanang-enabledccam-miprogram, not a physical computer. The latter
may run many nodes at the same time.
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ponyanstcpip

provided that KRC’s ‘bin’ directory is in the path of the current shell. The ANS can be
configured with its own configuration file; see Section 8.3dertails.

6. Allocating NCT-ends

The basic communication paradigm iony are network-channel-types, i.e. channel-types
whose ends may reside on more than one node. The procesaldfsgtshg a new NCT in a
pony application is callecllocation There are two ways of allocating NCTs. The first pos-
sibility is to allocate the ends of an NG¥plicitly, using one of pny’s allocation processes.
The other possibility is to send an end of a previously nanvaeked channel-type to another
node. By doing this, the channel-type becomes networkedarsda new NCT is established
in the pony applicationmplicitly.

6.1. Explicit Allocation

NCT-ends are allocated explicitly by using a name that isjuaifor the NCT across the
entire pny application. This name is a string under which the masiderof the application
administrates the NCT. The several ends of an NCT can beasdldoon different nodes
using this unique NCT-name. Please note that the NCT-namstisng which is passed as a
parameter to gny’s allocation processes. Itiwtthe variable name of the channel-type-end
that is allocated. The variable name may be different fdedéht ends of the NCT, and may
change over time (by assignment and communication) — as fsuaccam-rtvariables.
There are four different allocation processes whose namesthe following signature:

pony.alloc. (uls) (cls)

If the name of the allocation process contains,' it is the process for allocating an unshared
client-end of an NCT. The names of the allocation processeshared client-ends, unshared
and shared server-ends contain’; ‘us’ or ‘ss’ accordingly. Please note that any end of an
NCT may be allocatedt any time There is no prerequisite (such as for instance in JCSP.net)
that a client-end may only be allocated when a server-enthéas allocated first, or similar
restrictions'® In pony, this characteristic has been ‘moved up’ to the appbecatével and
now applies to the slaves and to the master. That is, the nrasie must be up and running
before slave nodes can connect to it (althoughypprovides a mechanism to start a slave
node before the master; it just waits in this case, see [8]d¢tails).

The parameters of the allocation processes are essetiialsame; the only difference
is the channel-type-end that is to be allocated. This is #rarpeter list of the allocation
processes:

(PONY.NETHANDLE! net.handle,
VAL [IBYTE nct.name, VAL INT other.end.type,
RESULT <alloc-type> chan.type.end, RESULT INT result)

e ‘net.handle’ is the network-handle.

e ‘nct.name’ is the name of the NCT to which the end belongs that is to bhecatked.
Under this name, the NCT is administrated by the master nbthee@pplication.

e ‘other.end.type’ is the share-typeof the other end of the NCT, i.e. of the server-
end if a client-end is to be allocated and vice versa. Thiampater declares whether

101n JCSP.net, this prerequisite would apply to writing-eads reading-ends of network-channels rather
than client-ends and server-ends of NCTs.
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the other end is meant to be unshared, shared, or whether wetdoow or do not
care about the other end’s share-type. Any mismatches wathqusly allocated ends
of the NCT will cause the allocation process to return anreanal fail.

e ‘chan.type.end’ is the variable that is to be allocatedalloc-type>’ is a wild-
card for the type of the variable. It would bBOBILE.CHAN!’ for the ‘uc’ version,
‘SHARED MOBILE.CHAN! for the ‘sc’ version, MOBILE.CHAN? for the ‘us’ version,
or ‘SHARED MOBILE.CHAN? for the ‘ss’ versionl!

e ‘result’ is the result returned by the allocation process. If theadtion is success-
ful, the ‘result’ parameter will return an OK, otherwise it will return an @rrPos-
sible errors are mismatches in the x2x-type of the NCT asaded!during previous
allocations of NCT-ends of the same NCT-name. A detailedusdision of possible
errors is given in [8].

6.2. Usage of NCTs and Implicit Allocation

Once an NCT-end variable has been allocated, it may be ugedny other channel-type-end
variable. From the point of view of the user-level code, thage is semantically transparent.
This includes the possibility to send a channel-type-end@h channel.

If the channel over which we want to send a channel-type-eimakside an NCT whose
opposite end is on another node, the channel-type-end thaemd will end up on that node
as well. There are two possibilities now — either the chaityyg¢ to which the end that is to
be sent belongs is already networked, or not. The latter st the channel-type-end was
originally allocated on our node in the traditional way, étiger with its opposite end.

If the channel-type is not yet networked, it becomes netedturing the send opera-
tion. This implicit allocation happens internally and igrisparent to the user-level code. The
pony environment becomes aware of the new NCT and will henttetoeat it just like an
explicitly allocated one. The only difference is that ingily allocated NCTs have no NCT-
name, which means that no other ends of that NCT may be afid@dplicitly. This is not
necessary, however, since the NCT had originally beenatkakin a client-end/server-end
pair anyway. If one or both of its ends are shared, the retalsannel-type-end variable may
be multiplied by simply assigning it to another variable ending it over a channel — as
usual for channel-types.

The second possibility is that the channel-type-end thiat e sent belongs to an NCT
already, i.e. the gny environment is already aware of this NCT. This may applypath
explicitly and implicitly allocated NCTs. In this case, nogy implicit allocation is done by
the pny environment before the end is sent to the target node.

When an end of an NCT arrives on a node where no end of that NEHéen before
during the lifetime of the pny application, the NCT-end is established on the targeé oyd
the pony infrastructuré? Again, this may apply to both explicitly and implicitly atated
NCTs.

In summary, apart from the actual explicit allocation itsilere is no difference between
explicitly and implicitly allocated NCTs from the point ofaw of the user-level code. Any
operation that can be done with channel-types can be dohéwih of them as well.

1“‘MOBILE.CHAN' parameters have recently been addeddoam-1t any channel-type-end that fits the spec-
ified client/server direction and share-type may be passeah argument.

2Fyture research may enhanaeng’s performance by not establishing the entire infrastmeneeded for
an NCT-end if the end is just ‘passing through’ a node and mesed for communication on the node itself.
Details are givenin [8].
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7. Shutting Down Nodes

At the end of a pny-enabled program, theopy environment must be shut down. This is
done by calling the gny shutdown process. The only parameter of the shutdowrepsos
the network-handle:

PROC pony.shutdown (PONY.NETHANDLE! net.handle)

By design rule, the gny shutdown process may only be called after all usage oforé&td
(or possibly networked) channel-type-end variables hashigd. ‘Usage’ here means:

e claiming/releasing the channel-type-end if it is shared
e using the channel-type-end for communication over its nbén(either way)

The occam-1t programmer must make sure that none of the above is happenpayallel
with (or after) calling the shutdown process. Of course uber-level code may use channel-
types in parallel with or after callingpony . shutdown’, but the programmer must ensure that
none of these channel-types are networked. Typicallyncglpony . shutdown’ would be the
very last thing the node does, possibly except for tasksa@ k@ error- and message-handling
— which do not involvenetworkedchannel-type-ends.

The shutdown process tells theny kernel to shut down, which includes shutting down
all its components. If our node is the master node of the egiiin, the pny kernel also no-
tifies the ANS about the shutdown, which will then remove thgli@ation from its database.
This will prevent any further slave nodes from connectinthmaster. On slave nodes, the
shutdown process finishes immediately after tbaypinfrastructure on that node has been
shut down. On the master node, theng kernel waits for all slaves to shut down before
shutting down itself.

8. Configuration

The configuration of thegny environment depends on the network-type that is useditApa
from the networking settings, no configuration is neededdayypThis section is concerned
with the configuration for TCP/IP (which is currently the prlupported network-type) on
Linux/x86 (which is currently the only platform on whiclopy runs).

Since a node must be able both to contact other nodes and tB@aAd\do be contacted
by other nodes and the ANS, it is vital that the node can beacted via the same IP address/
port number from all computers involved in theny application (i.e. all computers that are
running nodes or the ANS). This includes the computer on wvthie node itself is running.
Therefore topologies with Network Address Translatiomsetn computers involved in the
application are not supported at the moment. Please natéf thth computers involved in
the application are located on a sub-network that uses NAbemunicate with the outside
world, the NAT has no impact on thepy application. Similarly, if there is only one com-
puter involved in the application (i.e. all nodes and the AN running on the same com-
puter), the loopback IP address may be used to identify ttetitsn of nodes and the ANS;
in this case only the ports would be different.

pony’s network-specific components are configured using snpfdin-text configura-
tion files that contain the relevant settings. Settings mayimitted, in which case either
defaults are used or the correct setting is detected auitatiat There are three different
configuration files, which are discussed in the followingtisers.

8.1. The Node-file

During startup, a node-name must be supplied to the staragegs (cf. Section 4.2). This
name is used to determine the name of the configuration filésthaed to resolve the location
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of the node on the network (threde-filg. In TCP/IP terms, ‘location’ means the IP address
and port number over which the node can be contacted by otitersror by the ANS. If the
node-name is an empty string, the name of the node-filepigny . tcpip.node’. Otherwise
itis‘.pony.tcpip.node.<node-name>’, where <node-name>’ is the name of the node.

The startup process will look for the node-file first in theedbory from which the node is
started; if the node-file is not there, the startup proceidomk in the user's home directory.

If the node-file is found, the startup process will check thdeasfile for the IP address and
the port number under which the node can be contacted. TliddRess/ port number pair is
used as a unique identification for the node’s location acttos entire application.

If no node-file is found, or if one or more of the settings aresitig in the node-file,
the relevant settings will be determined automaticallyl®ydtartup process. If no IP address
is found, the startup process will attempt to resolve thaweéefutgoing IP address of the
computer. If this is not possible, the startup process waill ff no port number is found,gny
will automatically assign the first free port that is greaseequal to port 7500, the default
port number for pny nodes. With this mechanism, it is possible to run severaymodes on
the same physical computer and use the same node-namedbttaim. If the port number
is not specified in the corresponding node-filenp automatically chooses the next free one.

It is possible to run pny nodes on computers which get their IP address via DHCP, as
long as the current IP address can be resolved (which shouhdahly be no problem). Since
the application does not know (and does not need to know)tabedocation of a node until
the node effectively joins the application, computers wahable IP addresses do not present
a problem.

8.2. The ANS-file

Similarly to the node-name, the name of the ANS must be givethé pny startup pro-
cess. The ANS-name is used to determine the name oAlt-file which is used to find
out the location of the ANS. The name of the ANS-file is eithgsony.tcpip.ans’ or
‘.pony.tcpip.ans.<ans-name>’, depending on whether the ANS-name is an empty string
or not — this naming scheme is the same as for the node-file.

Again, the startup process will look for the ANS-file first imetcurrent directory and
then in the user’s home directory. If the ANS-file is foundg gtartup process will check the
ANS-file for the location (hostname or IP address, and pamilver) of the ANS.

If no ANS-file is found, or if one or more of the settings are simg) in the ANS-file, the
startup process will use default settings instead. If narfazse is found, the startup process
will use the loopback IP address to try to contact the ANS —clwhwill fail if the ANS is
not running on the same computer as the node itself. If nomaoriber is found, port 7400
will be used as the default port number for the ANS.

The location of the ANS must be known by all nodes in order t@ablke to start the
pony application. Therefore, running the ANS on a computengi®HCP is not advisable.
An exception might be static DHCP configurations where thamater running the ANS is
always assigned the same hostname/ IP address by the DH@&P. ser

8.3. The ANS-configuration-file

The last file is théANS-configuration-filewhich is used by the ANS to find out its own port
numbert® The name of the ANS-configuration-file ispony . tcpip.ans-conf’.

13The ANS does not need to know its own IP address, since it matiéies any nodes about it at runtime —
nodes find the ANS via the ANS-file.
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Again, the file is searched for in the current and in the homethry. If the file is found,
the ANS looks for the port number under which it is supposelisten for connections. If
the file or the setting are not found, the default ANS port d0#% used.

9. A Sample Application

This section presents a sampleny application in order to enable a better understanding of
what has been discussed so far. This sample applicatiorunpssely been kept simple. The
idea is to draw the attention of the reader to the interplajpefifferent aspects of thepy
environment, rather than presenting a very realistic buegassarily complex application.
Therefore, parts of the code that are not directly relatgobtty are usually foldett in the
sample algorithms.

The sample application consists of three types of nodes.nTdw&er node is aroker
that establishes connections betwa&mnkernodes and@ustomenodes. The workers provide
some service for the customers. Both workers and custonoarsect to the broker via an
explicitly allocated NCT, théoroker-handle When a worker becomes ready, it passes the
client-end of a channel-type (thveorker-handl¢ to the broker; the worker itself holds the
server-end of the worker-handle. When the client-end ofvibeker-handle is sent to the
broker for the first time, it becomes implicitly networked.

The broker keeps the client-ends of the worker-handles etabése. When a customer
needs the service of a worker, it notifies the broker, whigmtbasses a worker-handle from
its database to the customer if there is one available. Teer and the worker can now
communicate over the worker-handle about the service elbgéhe customer. When the
transaction between the customer and the worker is finithedgustomer sends the client-
end of the worker-handle back to the worker over the worlardfe itself. The worker can
then re-register with the broker.

Algorithm 1 shows the declarations of the handles and théopots that are carried
by the channels inside the handles. These declarationsiar include file that will be
included by the three nodes. Algorithms 2 through 4 showrtii@deémentation of the broker,
worker and customer nodes. For the sake of simplicity, tokdarand the worker are running
infinitely. Only the customer node terminates.

Figure 2 shows a possible layout of the sample applicatiorceSthe topology of the
application changes dynamically, the figure can only be agshot’ of a given point in time.
There are seven nodes altogether, namely the broker, tludenrs and three customefsAll
workers and customers are connected to the broker via thebhandle. Customer 1 cur-
rently holds the worker-handle connecting to worker 1; ttieebcustomers have not acquired
a worker-handle yet. Worker 2 may have just started and nateggstered with the broker,
or just finished the service for a customer but not yet resteged with the broker. There-
fore, worker 2 currently holds the client-end of its workexrdle itself. Finally, worker 3 is
currently registered with the broker, which holds the ratewvorker-handle.

1 ines starting with : . .” denote parts of the code that have been folded. This notéiased by origami
and other folding editors.

15For the sake of simplicity, nodes and processes are degstadsingle box, because in this sample appli-
cation, on each node there is only the main process. Gepétalimportant to distinguish between nodes and
processes, since many processes may run on the same node.
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-— Filename: ‘decls.inc’

-- Forward declaration
CHAN TYPE WORKERHANDLE:

-- To broker
PROTOCOL BROKERHANDLE.TO.BROKER
CASE
-- Register worker
reg.worker; WORKERHANDLE!
-- Get worker
get.worker

-— From broker
PROTOCOL BROKERHANDLE.FROM.BROKER
CASE
—-- No worker available
no.worker.available
-— Return worker-handle
get.worker.confirm; WORKERHANDLE!

—- Broker-handle
CHAN TYPE BROKERHANDLE
MOBILE RECORD
CHAN BROKERHANDLE.TO.BROKER to.broker?:
CHAN BROKERHANDLE.FROM.BROKER from.broker!:

-— To worker
PROTOCOL WORKERHANDLE.TO.WORKER
CASE
Stuff dealing with the service provided by the worker
—- Finish transaction and return worker-handle
finish; WORKERHANDLE!

-- From worker
PROTOCOL WORKERHANDLE.FROM.WORKER
CASE
Stuff dealing with the service provided by the worker

-— Worker-handle
CHAN TYPE WORKERHANDLE
MOBILE RECORD
CHAN WORKERHANDLE.TO.WORKER to.worker?:
CHAN WORKERHANDLE.FROM.WORKER from.worker!:

Algorithm 1. Sample application: declarations

10. Implementation Overview
10.1. NCTs and CTBs

There are two important terms related tngy which are vital not to get confused: network-
channel-types and channel-type-blocks. As already defaeetwork-channel-type (NCT) is
a channel-type that may connect several nodes. An NCTogieal construct that comprises
a networked channel-type across the entarypapplication. Each NCT has a unique ID, and
a unique name if it was allocated explicitly, across the i@pfibn.
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#INCLUDE "decls.inc"
#INCLUDE "ponylib.inc"
#USE "pony.lib"

PROC broker (CHAN BYTE key?, scr!, err!)
INT own.node.id, result:
PONY.NETHANDLE! net.handle:
BROKERHANDLE? broker.handle.svr:
SEQ
-- Start pony
pony.startup.unh (PONYC.NETTYPE.TCPIP, "", "sample-app",
"""  PONYC.NODETYPE.MASTER,
own.node.id, net.handle, result)
ASSERT (result = PONYC.RESULT.STARTUP.OK)
—— Allocate server—-end of broker-handle
pony.alloc.us (net.handle, "broker-handle", PONYC.SHARETYPE.SHARED,
broker.handle.svr, result)
ASSERT (result = PONYC.RESULT.ALLOC.OK)
-- Start infinite loop (therefore no shutdown of pony kernel later)
WHILE TRUE
-- Listen to requests from broker-handle
broker.handle.svr[to.broker] ? CASE
-- Register worker
WORKERHANDLE! worker.handle:
reg.worker; worker.handle
Store ‘worker.handle’ in database
-- Get worker
get.worker

IF

Worker available

WORKERHANDLE! worker.handle:

SEQ

. Retrieve ‘worker.handle’ from database
broker.handle.svr[from.broker] ! get.worker.confirm;
worker.handle
TRUE

broker.handle.svr[from.broker] ! no.worker.available

Algorithm 2. Sample application: the broker

A channel-type-block (CTB¥ the memory block of a channel-type on an individual
node. This memory structure holds all information that ieded for the function of the
channel-type. CTBs are located in the dynamic mobilesp&teeaode. All channel-type-
end variables belonging to a certain channel-type are @ainib that channel-types’s CTB.
Details about the layout of a CTB can be found in [15].

In the pny environment, we distinguish betweran-networkedndnetworkedCTBs.
A traditional (intra-processor) channel-type is made upxaictly one, non-networked, CTB.
An NCT is made up of several, networked, CTBs, namely one CiEach node where
there are (or have been) ends of that NCT. The CTBs of an NCinteeonnected by the
pony infrastructure. Non-networked CTBs can become netwbleimplicit allocation, cf.
Section 6.2.

In pony-enabled programs, the memory layout of CTBs is sligtgtgér than in tradi-
tionaloccam-ttprograms. This is necessary in order to accommodate the oéadtworked
CTBs (as well as of non-networked CTBs that may become n&wd)r As discussed in
Section 3.1, the@ny-specific compiler support, which includes the modified3dayout, is
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#INCLUDE "decls.inc"
#INCLUDE "ponylib.inc"
#USE "pony.lib"

PROC worker (CHAN BYTE key?, scr!, err!)
INT own.node.id, result:
PONY.NETHANDLE! net.handle:
SHARED BROKERHANDLE! broker.handle:
WORKERHANDLE! worker.handle:
WORKERHANDLE? worker.handle.svr:
SEQ
-- Start pony
pony.startup.unh (PONYC.NETTYPE.TCPIP, "", "sample-app",
"", PONYC.NODETYPE.SLAVE,
own.node.id, net.handle, result)
ASSERT (result = PONYC.RESULT.STARTUP.OK)
-- Allocate shared client-end of broker-handle
pony.alloc.sc (net.handle, "broker-handle", PONYC.SHARETYPE.UNKNOWN,
broker.handle, result)
ASSERT (result = PONYC.RESULT.ALLOC.OK)
-- Allocate worker-handle
worker.handle, worker.handle.svr := MOBILE WORKERHANDLE
-- Start infinite loop (therefore no shutdown of pony kernel later)
WHILE TRUE
SEQ
-- Register with broker
CLAIM broker.handle
broker.handle[to.broker] ! reg.worker; worker.handle
-- Inner loop
INITIAL BOOL running IS TRUE:
WHILE running
-- Listen to requests from worker-handle
worker .handle.svr[to.worker] 7 CASE
Stuff dealing with the service provided by the worker
Deal with it
-- Finish transaction and get worker-handle back
finish; worker.handle
-— Exit inner loop
running := FALSE

Algorithm 3. Sample application: the worker

enabled in KRC ifitis built with the ‘~-with-pony’ option. The pny-specific CTB layout,
as well as the compiler support foopy, are explained in detail in [8].

10.2. Structure of pony

Apart from the compiler support forgmy-enabled CTBs,qny is implemented entirely as an
occam-1t library. Most parts of this library were implementedancam-1. Some auxiliary
functions were implemented in C. The protocol-convertseg (below) were implemented as
CIF [23] processes. Figure 3 shows the layout of the theypenvironment with its various
components and the external and internal harf®llesed for communication between the
individual components.

16Both the external and the internal handles are channebtype
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#INCLUDE "decls.inc"
#INCLUDE "ponylib.inc"
#USE "pony.lib"

PROC customer (CHAN BYTE key?, scr!, err!)
INT own.node.id, result:
PONY.NETHANDLE! net.handle:
SHARED BROKERHANDLE! broker.handle:
SEQ
-- Start pony
pony.startup.unh (PONYC.NETTYPE.TCPIP, "", "sample-app",
"""  PONYC.NODETYPE.SLAVE,
own.node.id, net.handle, result)
ASSERT (result = PONYC.RESULT.STARTUP.OK)
—— Allocate shared client-end of broker-handle
pony.alloc.sc (net.handle, "broker-handle", PONYC.SHARETYPE.UNKNOWN,
broker.handle, result)
IF
result <> PONYC.RESULT.ALLOC.OK
Deal with allocation error
TRUE
BOOL worker.available:
WORKERHANDLE! worker.handle:
SEQ
-— Get worker-handle from broker
CLAIM broker.handle
SEQ
broker.handle[to.broker] ! get.worker
broker.handle[from.broker] ? CASE
no.worker.available
worker.available := FALSE
get.worker.confirm; worker.handle
worker.available := TRUE
IF
worker.available
SEQ
Communicate over worker-handle regarding service
—- Finish transaction and return worker-handle
worker .handle[to.worker] ! finish; worker.handle
TRUE
Deal with absence of workers
-- Shut down pony kernel
pony.shutdown (net.handle)

Algorithm 4. Sample application: the customer

The figure assumes that the network-handle and the erralidhare unshared, the node
is the master, and the network-type is TCP/IP. Please natdrttorder to keep the figure
uncluttered, each component is just depicted once, evemiy occur several times within
the pny environment. Unshared client-ends of internal handteshald by the process in
which the end is located in the figutéShared client-ends of internal handles may be held
by several component processes at the same time. If sucldaxtmnds into another process

"This applies to the internal decode- and encode-handlessevtliient-ends are held by the relevant CTB-
handler.
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Figure 2. Sample application: Possible dynamic layout

(the instant-handler in the CTB-handler or one of the marggthis means that the relevant
process holds the end and will pass it to other componentsquest.

The communication between the individual components ofpthrey environment fol-
lows the principle of cycle-free client/server communigatas set out in [25]. Although the
communication structure between the individual compoherdy change dynamically, it is
guaranteed that at any given time, the client/server digispycle-free; the communication
is therefore deadlock-free.

10.3. Internal Components

This section briefly introduces the individual componerftshe pony environment. A de-
tailed description of their functionality, which includdse usage of the internal handles for
communication between the components, is given in [8].

The Protocol-converters

The purpose of th@rotocol-converterss to enable the gny environment to support net-
worked channels carrying all commoncam-Tt protocols. For each networked channel (i.e.
for each channel in a networked CTB), there is one set of pobiconverters, consisting of
a protocol-decodeand aprotocol-encoder

On the sending node, the decoder decodes the incoming pratée a special protocol
that is used internally by theopy kernel. After something has been sent from one node to
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decode- CTB-instant-
reply-handle handle
protocol-| | decode- decode-
decoder handle handler decode-handle
CTB-main-

protocol- encode- encode- internal

encoder handle handler encode-handle

network-hook- handle
CTB-claim-
handle

handle

CTB-manager-handle CTB-manager

NCT-handler NCT-handle

NCT-manager-handle NCT-manager

TCP/IP _
@ link-handler link-handle
link-manager-handle

TCP/IP TCP/IP
link-manager-handle link-manager

internal internal
message-handle error-handle

message kernel-
handler reply-handle error-handler

error-handle

message- —>— output

message-handle —
outputter —>— error

network-
handle

Figure 3. Layout of the pny environment

another via the pny environment, the encoder on the receiving node takesiteamediary

pony protocol and encodes it back into the user-level protbedbre passing it on to the
receiving user-level process.
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Decode-handler and Encode-handler

The decode-handletakes the data from the decoder and packs it into a suitabieatofor
sending it over the network. On the receiving node, ¢éneode-handletakes the packed
data coming from the network, unpacks it, and passes it onet@ncoder. Additionally, the
decode-handler and the encode-handler deal with the iatfdits arising from the move-
ment of NCT-ends over networked channels and the implitation of NCT-ends where
applicable.

The CTB-handler

The CTB-handlerdeals with the function of a networked CTB. There is a CTBetanfor
each networked CTB on the node. The CTB-handler handlesnimgpclaim and release
requests for the ends of the CTB, as well as the communicatmny its channels. Please
note that the instant-handler, the client-listener andséwwer-listener in the CTB-handler
(cf. Figure 3) are no actual components ohy but just simple sub-processes of the CTB-
handler.

The CTB-manager

The CTB-managels responsible for starting new CTB-handlers when needadn(g ex-
plicit allocation and when making a previously non-netvetiCTB networked). It also keeps
the various internal handles for existing CTB-handlers paskes them to othebpy com-
ponents on request (via ti&r B-manager-hand)e

The NCT-handler

NCT-handlersonly exist on master nodes. There is one NCT-handler for &4Ch in the
application. The NCT-handler is responsible for handlilagne and release requests coming
from the CTB-handlers on the various nodes of the applinafitiis involves queueing claim
requests (if several nodes try to claim the same NCT-endl)they get served.

The NCT-manager

The NCT-manageresides on the master node and starts new NCT-handlers vewseled.
This is the case when the first end of an NCT is allocated eXplior when a previously
non-networked CTB is made networked on a node and a new NCdsreebe allocated
implicitly. The NCT-manager keeps tidCT-handledor existing NCT-handlers and passes
them (via theNCT-manager-hand)eo requesting link-handlet®

The link-handler

Link-handlershandle network links between two nodes of a pony applicatneach node,
there is a link-handler for each link that has been estaddigio another node. The link-
handler takes messages fromng’'s various components and passes them on to the remote
node via the link. When the link-handler on the receivingagdts a network-message over
its link, it passes it on to the component for which the messagntended.

The link-manager

The link-managerestablishes new links (and starts new link-handlers) whesessary. For
TCP/IP, this means that new socket connections to othersnageestablished or incoming
socket connections from other nodes are accepted. Therlarkager keeps tHmk-handles
for existing link-handlers and passes them (vialthke-manager-handlgeto requesting pny
components.

18No other components will ever request an NCT-handle.
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All messages exchanged between two nodes are multiplexadio link between the
nodes. This applies especially to messages sent over rketsvohannels. The multiplexing
of possibly many networked channels over a single link wapined by the Virtual Channel
Processor of the T9000 transputer [10], although the rgutinpony is dynamic because
NCT-ends may move to other nodegng’s routing is a dynamic version of the ‘crossbar’
routing found in JCSP.net [21].

Error-handler and Message-handler

The error-handler and the message-handler are used for @ane message-handling. They
are only active if this has been requested from the startogess when the node was started.

10.4. Modular Design of pony

The structure of thegny environment is modular, which makes it easy to replacepmmants
when needed. The most obvious application for this featuraldvbe adding support for
new network-types togny. This could easily be done by adding new network drivers (a
link-handler and a link-manager), as well as a new ANS, fer nlew network-type. The
other ppny components would not need to be modified and could comratenwith the new
network drivers via the existing interface (the internahdiie@s). During startup, the correct
link-manager is started by th@py environment, depending on the network-type used.

11. Benchmarks

These benchmarks were conducted on the TUNA [26] clustbedthiversity of Kent, which
consists of 30 PCs with 3.2 GHz Intel Pentium IV processamsning Linux 2.6.8, linked
by a reliable switched gigabit Ethernet network. The magbiwere otherwise idle; memory
usage was watched carefully to avoid going into swap. Thehlmeark programs — which
are included in the KBC distribution — were compiled using KIC'’s highest optimisation
options, as was theomy library. Each pny node was run on a dedicated host; the ANS was
also given a dedicated host (for ease of management; the &AN& performance-critical).

All the benchmarks aim to be ‘steady-state’ measuremehésidops are started and
allowed to run for at least two seconds before the timer igestain order to avoid CPU
caching effects; the performance of the loop is then medsaver a period of ten seconds.
Each such measurement was repeated three times and the htleanesults taken. We have
omitted error bars for clarity; the error was within 1% onla@hchmarks.

We emphasise that, to date, very little ‘tuning’ work hasrbéene on pny; these results
should only improve with time. That said, the present ressaiie extremely encouraging, and
we have already built several distributed applicationagigony which perform well on PC
clusters.

11.1. Communication Time

‘commstime’ is a standard benchmark that has traditionally been us#édwarious incarna-
tions ofoccam and similar CSP-based platforms. Its process layout is showigure 4.

The ‘commstime’ benchmark consists of four parallel processes, three aflwdwre run-
ning in a loop. The processes are connected by channelsrgamyTs. The prefix’ pro-
cess first outputs a pre-defined number. Then it inputs inc@aINTs and passes them on.
The ‘delta’ process inputdNTs and passes them on via two output channels. $hec’
process inputdNTs and outputs their successors. Finally, thensume’ process inputs the
INTs from the above circuit and acts as a monitoring process.
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consume

Figure 4. The ‘commstime’ benchmark

Since the processes are effectively only doing communminafithe cycle rate of the
network (i.e. how long it takes for a piece of data to travelusad the loop) can be used to
estimate the overhead of a single communication. For cdioreal occam-1t programs, the
communication time is the context-switch time of the éRschedulet?

The pony version of the éommstime’ benchmark modifies the standard program so that
each of the four processes runs on a separate node. The Ehbetvecen processes become
NCTs containing a singl&éNT channel. Thus, the communication time measured is the time
for a basicnetworkcommunication — which includes not just seveoakcam-1t context-
switches, but also eight pthreads context-switches, fggtiesn calls into the kernel, and two
TCP round-trips across the network.

The standardcommstime’ was compiled using the same KR version and options as
the other benchmarks, and reported a communication tim@ po$ vith CPU usage at 100%.
The pny ‘commstime’ reported a communication time of & with CPU usage on each
node at 3% — approximately fifteen thousand communicatiens@cond.

11.2. Throughput

The ‘bmthroughput’ program is intended to measure the aggregate data ratalaiesacross

a group of networked channels. A collection of worker preess— distributed across a
number of slave nodes — send®BILE [1BYTE' arrays to a master process (on the master
node); the master measures the rate at which it is receidteyfdom the collection of work-
ers. The number of slave nodes, number of workers per slade, mange of message sizes
(fixed or randomly distributed) and transmission rate (irssages per second, or simply ‘as
fast as possible’) can be varied. In this set of benchmahkescode generating messages is
trivial, and there are no oth@ccam-1t processes running to compete witbny for CPU
time.

Using 100 KB° — a message size typical for applications rendering read-tijraph-
ics — the saturation point of the network can be reached weldtively few sending pro-
cesses. Figure 5 shows the throughput available with on® ste2e nodes, each running two
workers; network saturation is just reached at 25 slave :1¢de 50 workers).

Figure 6 shows the throughput available from one slave nadaing 50 workers as
the message size is varied between 1 B and 1 MB. Sioog (ike occam-tt internally)
does approximately the same amount of work per communitcagigardless of the size of
the message, there is an obvious advantage in using largeyages if your application is
optimised for throughput.

Figure 7 shows the throughput available from one slave nsdgb0 KB messages as
the number of workers is varied between 1 and 500ypuses blocking system calls, so other
occam-Tt processes can execute whileny is waiting for network operations to complete;
throughput-sensitive applications should therefore uskiphe processes per node, or have
internal buffering, to ensure that the networked channelays have data available to send.

®°There is also a ‘parallel delta’ version of the original bemark which is used to measure process startup
time; the benchmark used here is the ‘sequential deltalofers which no processes are created or destroyed
while the benchmark is running.

20All byte prefixes used in this paper are decimal, e.g. 1 KB =01B0
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Figure 6. Throughput: Varying message size, one slave with 50 workers
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Figure 7. Throughput: 50 KB messages, one slave, varying number dfever

11.3. Network Overhead

In the previous benchmark, the master process’s throughpasurement only includes the
data actually being sent by the application (that is, MGBILE [1BYTE' arrays); the net-
work overhead due to theopy and TCP/IP protocols is not included. It can be estimated b
comparing the measurement with the network data rate reghost the operating system.

The rightmost data point in figure 5 is 99.1 MB/s; the netwoskge measured at the
same point was 104.9 MB/s. The network overhead was thusxippately 5.8%, or 5.8 KB
for every 100 KB array of data. Since each 1.5 KB Ethernet &anfl contain approximately
60 B of Ethernet, IP and TCP headers, the network overheate&aplit up into some 4%
which are due to the network protocols in use, and 1.8% dueny jiself.

11.4. CPU Overhead

The computational overhead introduced by tlheypenvironment can be evaluated by mea-
suring the CPU time peauser-level communicatiofULC). A ULC is the entire communi-
cation carried by amccam-1t channel, i.e. everything noted after thé or the *?’. So, for
instance:

c ! x;vy; z

would be one ULC. The CPU time per ULC is the time betweenistatb send a ULC
via a networked channel and receiving the acknowledgenhanthe entire ULC has been
received by the remote user-level process, specificalljudktg the network latency from
this measurement. The time measured reflects the CPU odeonglie sending node.

The ‘bmpingpongtime’ benchmark measures the time needed by the ULC, in form of
the special protocol created by the protocol-decoder,aweetrthrough the decoder into the
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pony kernel, and then all the way through theny kernel until the point where it would have
to be outputted to the network. At this point, nothing is senthe network, but a dummy
acknowledgement is sent to the CTB-handler as if an ackmipelment from the remote
pony kernel had just been received from the network. Pleasethat, depending on the user-
level protocol, the measurement for a ULC may include onevorguch ping-pong times.
Details can be found in [8]. After the last acknowledgemeas heen returned, the sending
operation finishes as usual, with the decoder assuminghtbaetmote node has received the
data, and therefore releasing the user-level channel.

‘bmpingpongtime’ sends regular byte arrays in order to exclude any dynaminong
allocation (for instance ofMOBILE []1BYTE' arrays) from the figures. Figure 8 shows the
CPU time per ULC for single byte arrays of varying size. Asented, the CPU time is fairly
constant. This is so because thenpg infrastructure does not copy the user-level data, but
only passes around its address and size.

10 T — 1 T T T T T 1 T 1

CPU time per user-level communication [ps]

0 . N . R . R . N . . . -
1 10 100 1000 10000 100000 1e+06

Array size [B]

Figure 8. CPU overhead: Single byte array of varying size

An interesting phenomenon is that sending one byte of regiala is slower than send-
ing 10 or 1000. An analysis of the bytecode generated by timpder shows that KBC uses
the ‘OUT8’ instruction for the single byte andUT’ for the rest, so presumably those have
different performance characteristics.

Another test measures the CPU time per ULC for sequentiabpots with a varying
number of items. In each sequential protocol, all items agellar byte arrays of the same
size; we have carried out measurements for array sizes ol KB,and 1 MB.

Figure 9 shows the CPU time per ULC for sequential protocbls® arrays. The jump
between the results for one and two items is rather big, Isecaaquential protocols with
two or more items require two ping-pongs, whereas non-sd@le&lata (i.e. one item) only
requires a single ping-pong. The CPU time per ULC then grdincreases due to the fact
that the individual items of the sequential protocol, exdép first and the last, are copied
internally by the decoder, and then the address/size p#ieabpyis passed on; the copying
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takes more time the more items there are in the protocol. ®pgieg is necessary because of
the way the KRC compiler evaluates expressions in non-mobile varialdies¢ each item
of the sequential protocol may have been an evaluated estpr@sso that all items from the
second item onwards can be sent over the network at once8lsee fletails.

25 T T T T T T T T

CPU time per user-level communication [ps]

0 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10

Number of protocol items (1 B arrays)

Figure 9. CPU overhead: Sequential protocol, 1 B arrays

As mentioned above, there are always two ping-pongs foresgtah protocols with two
or more items. Hence, only the copying of protocol items eauke gradual increase, with
(n - 2) copy operations for protocols with n items.

Figure 10 shows the CPU time per ULC for sequential protoabisB, 1 KB and 1 MB
arrays. For sequential protocols with one and two itemsQR& time per ULC is nearly
identical for all three array sizes, since no copying is imed. As expected, from three items
onwards, the results diverge, because the aggregate awiodata that needs to be copied
depends on the length of the protocol and the size of theiohai arrays.

Particularly notable is the big jump between two and thremg for the 1 MB arrays.
This shows the impact of copying large amounts of data — aeddtlvantage of not having
to copy non-sequential regular data or mobile data, whi¢hb&ithe bulk of communication
in a typical pny application.

Nevertheless, network latency always outweighs local capyl herefore, copying items
of a sequential protocol locally and then sending them imglsinetwork operation is still
better than not copying them and sending each item over thereseparately.

11.5. Application Scalability

‘mandelbauer’ is an example of usinggny to make an existing application distributed; in
this case, the original program computes a region of the diandt set. The approach taken
is ‘farming’: the master node generates work requests fangular sections of the region
being computed; a number of slave nodes read the requedtss dppropriate computation
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Figure 10. CPU overhead: Sequential protocol, several array sizes

and send the results back to the master; the master theotsaled displays the results. For
the purposes of this benchmark, the display has been dikahkemaster just measures the
rate at which pixels are being computed.

The ‘mandelbauer’ application can be run in two modes. In shared mode (see Fig-
ure 11), there is a single pair of shared networked regesginse channels (in two sepa-
rate NCTs) used by all the slaves. In multiplexing mode (dgarg 12), each slave has its
own pair of networked request/response channels (in assMGIT), connected to a handler
process on the master node. When a slave is started up, & seaderver-end of its re-
quest/response NCT to the master, which will then set up alvaaaler process. The master
uses local shared channels to distribute work to and callscits from the handler processes.
The slaves have small internal buffers to hold incoming amda@ng messages.

master slave slave slave

— response I

Figure 11. The ‘mandelbauer’ application: Shared mode

Figure 13 shows the rendering performancemahdelbauer’ in both modes. Network
saturation is reached at 25 slaves in multiplexing mode hatiwpoint CPU utilisation on the
slaves in multiplexing mode is approximately 85%; in sharedtle it is approximately 30%.
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Figure 12. The mandelbauer’ application: Multiplexing mode
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Figure 13. Scalability of a distributed application

The scaling performance in multiplexing mode is signifibaitetter than in shared
mode. Since shared NCT-ends must be explicitly claimed tihveenetwork, in shared mode
the master is frequently blocked waiting for one of the woske claim the request channel.
Future research will have to look into ways to improve the na@ism for claiming NCT-ends
— which would narrow the gap between shared mode and muliigenode.

Itis usually considered good practice to run network-bopnotesses at a higher priority
than compute-bound processes, in order to reduce latencyefaork responses. However,
we tried both with and without explicit priorities in this plgcation, and there was no mea-
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surable difference — perhaps because, as there is only ¢méateon process running at a
time on each slave node, theny processes will never be blocked for longer than the time it
takes to process one work request.

12. Conclusions and Future Work

The pony project has succeeded in developing a unified model fer-iaind intra-processor
concurrency. pny has become a robust and scalable platform for the developaf dis-
tributed applications. Thegmy environment expanagcam-1ts concurrency model into the
networked world and achieves semantic and pragmatic taaespy according to our objec-
tives that were expressed in Section 1.2.

The handling of pny for theoccam-ttprogrammer is simple and straightforward. There
is a minimum number of public processes for the basic operaijstartup/shutdown, alloca-
tion, error-/message-handling), providing the interfaegveen pny and the user-level code.
All runtime operations are handled automatically and tpansntly by the pny kernel. The
configuration is easy to understand and minimises the coatplef setting up a distributed
application.

By benchmarking, we have shown thatyy already has acceptable performance for dis-
tributedoccam-ttapplications, and that existirmgcam-ttapplications can easily be adapted
to take advantage ofgmy. We have also identified areas where future work on threy pm-
plementation can improve the performance of distributqaiegtions. We hope to tesopy
in a Grid environment in the future to identify any scalinglplems with larger systems.

As the development abccam-1t progresses in the future, themy environment will
also have to be extended to accommodate support for newogenehts; foremost for mobile
processes [27] and mobile barriers [28]. Integrating tbeypenvironment into RMX, the
occam operating system [29], will be another important aspectheffuture development
of pony. Since RMX is implemented inoccam, an RMoX-integrated pny environment
would be able to utilise RMX'’s native network drivers directly rather than going thgbuan
underlying operating system. This could further enhan¢&ordk performance compared to
versions ofoccam-1tand ny that are running on top of an ‘ordinary’ OS.

Other new features added dacam-1tin the future would gradually have to be incor-
porated into pny as well, so that semantic transparency betwesy gndoccam-mwould
be preserved. Other areas of future work could be the adapfigony for different ar-
chitectures (dealing with endianism etc.), a security rhéatepony (introducing encrypted
network communication), as well as alternative startup @mafiguration models forgny
applications distributed on clusters.

For a detailed discussion on possible future work onyp the reader is referred to [8].
Potential for further development never ceases, justtikike ‘real world’— whichoccam-1t
and pny are designed to model.

Acknowledgements

The authors are very grateful to Fred Barnes for his work @mKRoC compiler and his
helpfulness in discussing the various issues arising frtoendevelopment of gny and its
integration into the KRC environment.

Thanks also go to Peter Welch and the other members of theelditly of Kent's Con-
currency Research Group, as well as the anonymous revielweeg advice in reviewing
this paper and their contributions to our many discussiaonhe project were very valuable.

Finally, the authors would like to acknowledge EPSRC’s supfor parts of this work
through a research studentship (EP/P50029X/1) and the Tphdject (EP/C516966/1), as



M. Schweigler and A.T. Sampson / pony — ®beam-1t Network Environment 107

well as the Computing Laboratory at the University of Kemtgapporting parts of this work
through a Brian Spratt Bursary.

References

[1] C.A.R. Hoare.Communicating Sequential ProcessBsentice-Hall, London, 1985. ISBN: 0-13-153271-
5.

[2] R. Milner. Communicating and Mobile Systems: the Pi-Calcul@ambridge University Press, 1999.
ISBN-10: 0521658691, ISBN-13: 9780521658690.

[3] Inmos Limited. occam 2.1 Reference Manual. Technicpbre Inmos Limited, May 1995. Available at:
http://wotug.org/occam/.

[4] Inmos Limited. Transputer Reference Manudrentice Hall, March 1988. ISBN: 0-13-929001-X.

[5] I. Foster, C. Kesselman, and S. Tuecke. What is the Gridhhfee Point ChecklistGRIDToday July
2002. Available athttp://www-fp.mcs.anl.gov/~foster/Articles/WhatIsTheGrid.pdf.

[6] I. Foster, C. Kesselman, and S. Tuecke. The Anatomy oBitied: Enabling Scalable Virtual Organizations.
International Journal of Supercomputer Applicatio2901. Available athttp://www.globus.org/
research/papers/anatomy . pdf.

[7] 1. Foster, C. Kesselman, J.M. Nick, and S. Tuecke. TheRaslpgy of the Grid: An Open Grid Services
Architechture for Distributed Systems IntegraticBlobal Grid Forum June 2002. Available atittp:
//www.globus.org/research/papers/ogsa.pdf.

[8] Mario Schweigler.A Unified Model for Inter- and Intra-processor ConcurrendyhD thesis, University
of Kent, UK, Canterbury, Kent, CT2 7NF, August 2006.

[9] F.R.M. Barnes and P.H. Welch. Prioritised Dynamic Conmicating Processes: Part I. In James Pascoe,
Peter Welch, Roger Loader, and Vaidy Sunderam, edi@osymunicating Process Architectures 2002
WoTUG-25, Concurrent Systems Engineering, pages 33143&@LPress, Amsterdam, The Netherlands,
September 2002. ISBN: 1-58603-268-2.

[10] Inmos Limited. The T9000 Transputer Instruction Set Manu8IGS-Thompson Microelectronics, 1993.
Document number: 72 TRN 240 01.

[11] M.D. May, P.W. Thompson, and P.H. WeldKetworks, Routers and Transputerslume 32 offransputer
andoccam Engineering SeriedOS Press, 1993.

[12] M.D. Poole. Occam for all — two approaches to retarggtthe INMOS compiler. In Brian O’Neill,
editor, Parallel Processing Developments, Proceedings of WoTUGdl8ime 47 ofConcurrent Systems
Engineering pages 167-178, Amsterdam, The Netherlands, March 1996d\Wocam and Transputer
User Group, 10S Press. ISBN: 90-5199-261-0.

[13] P.H. Welch and D.C. Wood. The Kent Retargetable occamm@ler. In Brian O'Neill, editor,Parallel
Processing Developments, Proceedings of WoTUGv&Rime 47 ofConcurrent Systems Engineering
pages 143-166, Amsterdam, The Netherlands, March 199ddWocam and Transputer User Group,
IOS Press. ISBN: 90-5199-261-0.

[14] F.R.M. Barnes and P.H. Welch. Mobile Data, Dynamic Alition and Zero Aliasing: anccam Exper-
iment. In Alan Chalmers, Majid Mirmehdi, and Henk Muller,jiteds, Communicating Process Architec-
tures 2001volume 59 ofConcurrent Systems Engineerjmgages 243—-264, Amsterdam, The Netherlands,
September 2001. WoTUG, I0S Press. ISBN: 1-58603-202-X.

[15] Frederick R.M. Barnes.Dynamics and Pragmatics for High Performance Concurren®hD thesis,
University of Kent, June 2003.

[16] I.N. Goodacreoccam NetChans, 2001. Project report.

[17] M. Schweigler. The Distributedccam Protocol - A New Layer On Top Of TCP/IP To Sereecam
Channels Over The Internet. Master’s thesis, Computingtatbry, University of Kent at Canterbury,
September 2001. MSc Dissertation.

[18] M. Schweigler, F.R.M. Barnes, and P.H. Welch. Flexibleansparent and Dynamaccam Network-
ing with KRoC.net. In J.F. Broenink and G.H. Hilderink, editoymmunicating Process Architectures
2003 WoTUG-26, Concurrent Systems Engineering, ISSN 1383-7548e® 199-224, Amsterdam, The
Netherlands, September 2003. I0S Press. ISBN: 1-58603381

[19] M. Schweigler. Adding Mobility to Networked Channejqdes. In I. East, J. Martin, P. Welch, D. Duce,
and M. Green, editor ommunicating Process Architectures 200dlume 62 oMoTUG-27, Concurrent
Systems Engineering, ISSN 1383-75Y&4ges 107-126, Amsterdam, The Netherlands, Septembér 200
IOS Press. ISBN: 1-58603-458-8.

[20] Henk L. Muller and David May. A simple protocol to comnioate channels over channels. BURO-
PAR '98 Parallel Processing, LNCS 14 ffages 591-600, Southampton, UK, September 1998. Springer



108

(21]

[22]

(23]

(24]

(25]

(26]

(27]

(28]

(29]

M. Schweigler and A.T. Sampson / pony — ®beam-1t Network Environment

Verlag.

P.H. Welch, J.R. Aldous, and J. Foster. CSP Networkargl&va (JCSP.net). In P.M.A. Sloot, C.J.K. Tan,
J.J. Dongarra, and A.G. Hoekstra, edit@smputational Science - ICCS 200®lume 2330 ol ecture
Notes in Computer Sciencpages 695-708. Springer-Verlag, April 2002. ISBN: 3-38%93-X. See
also:http://wuw.cs.kent.ac.uk/pubs/2002/1382.

P.H. Welch and B. Vinter. Cluster Computing and JCSPwéeking. In James Pascoe, Peter Welch,
Roger Loader, and Vaidy Sunderam, edit@8®smmunicating Process Architectures 200 TUG-25,
Concurrent Systems Engineering, pages 213-232, I0S Pxesterdam, The Netherlands, September
2002. ISBN: 1-58603-268-2.

F.R.M. Barnes. Interfacing C and occam-pi. In J. Bro&nH. Roebbers, J. Sunter, P. Welch, and D. Wood,
editors,Communicating Process Architectures 2008lume 63 ofoTUG-28, Concurrent Systems En-
gineering, ISSN 1383-757pages 249-260, Amsterdam, The Netherlands, Septembsr Press.
ISBN: 1-58603-561-4.

Fred Barnes. Socket, File and Process Libraries foccam. Computing Laboratory, University of
Kent at Canterbury, June 2000. Available Bttp://www.cs.kent.ac.uk/people/staff/frmb/
documents/.

J.M.R. Martin and P.H. Welch. A Design Strategy for Dieatt-free Concurrent Systems. Tmansputer
Communicationsvolume 3 (4), pages 215-232. Wiley and Sons Ltd., UK, OatdB86.

S. Stepney, P.H. Welch, F.A.C. Pollack, J.C.P. Woo#c&c Schneider, H.E. Treharne, and A.L.C. Cav-
alcanti. TUNA: Theory Underpinning Nanotech Assemblerma@ibility Study), January 2005. EPSRC
grant EP/C516966/1. Available fromttp://www.cs.york.ac.uk/nature/tuna/index.htm.

F.R.M. Barnes and P.H. Welch. Communicating Mobiled@sses. In |. East, J. Martin, P. Welch, D. Duce,
and M. Green, editorommunicating Process Architectures 20@dlume 62 oMoTUG-27, Concurrent
Systems Engineering, ISSN 1383-75Y&ges 201-218, Amsterdam, The Netherlands, Septembér 200
IOS Press. ISBN: 1-58603-458-8.

P.H. Welch and F.R.M. Barnes. Mobile Barriers for ocepinSemntics, Implementation and Application.
In J. Broenink, H. Roebbers, J. Sunter, P. Welch, and D. Weditors,Communicating Process Architec-
tures 2005volume 63 ofWoTUG-28, Concurrent Systems Engineering, ISSN 1383 f&afes 289-316,
Amsterdam, The Netherlands, September 2005. IOS Pressl: IEB8603-561-4.

F.R.M. Barnes, C.L. Jacobsen, and B. Vinter. 8 a Raw Metaloccam Experiment. In J.F. Broenink
and G.H. Hilderink, editorsCommunicating Process Architectures 2008 TUG-26, Concurrent Sys-
tems Engineering, ISSN 1383-7575, pages 269-288, Amstertlae Netherlands, September 2003. I0S
Press. ISBN: 1-58603-381-6.



