
Communicating Process Architectures 2006
Peter Welch, Jon Kerridge, and Fred Barnes (Eds.)
IOS Press, 2006
c© 2006 The authors. All rights reserved.

203

TCP Input Threading in High
Performance Distributed Systems

Hans H. HAPPE

Department of Mathematics and Computer Science,
University of Southern Denmark, DK-5230 Odense M, Denmark

hhh@imada.sdu.dk

Abstract. TCP is the only widely supported protocol for reliable communication.
Therefore, TCP is the obvious choice when developing distributed systems that need
to work on a wide range of platforms. Also, for this to work a developer has to use the
standard TCP interface provided by a given operating system.

This work explores various ways to use TCP in high performance distributed sys-
tems. More precisely, different ways to use the standard Unix TCP API efficiently are
explored, but the findings apply to other operating systems as well. The main focus is
how various threading models affect TCP input in a process that has to handle both
computation and I/O.

The threading models have been evaluated in a cluster of Linux workstations and
the results show that a model with one dedicated I/O thread generally is good. It is at
most 10% slower than the best model in all tests, while the other models are between
30 to 194% slower in specific tests.

Keywords. Distributed systems, HPC, TCP

Introduction

The Transmission Control Protocol (TCP) has become the de facto standard for reliable In-
ternet communication. As a result, much work has gone into improving TCP at all levels
(hardware, kernel, APIs, etc.). This makes TCP the only viable choice for distributed appli-
cations that need to be deployed outside the administrativedomain of the deployer. I.e., one
might have gained access to a remote cluster, but this does not mean that the administrator
is willing to meet specific communication requirements (protocols, operating systems). Grid
and peer-to-peer are other examples of environments with this nature.

TCP was designed as a reliable connection-oriented client-server protocol. From the
users point of view, TCP provides a way to stream bytes between two endpoints. Therefore,
the user has to provide a stream encoding mechanism that ensures separation of individual
messages (message framing). Encoding and decoding streamsmake TCP development more
complicated and it can lower performance.

Message framing and other issues have been addressed in emerging protocols like the
Stream Control Transmission Protocol (SCTP) [1] and the Datagram Congestion Control
Protocol (DCCP) [2]. These protocols still need to mature and become generally available.
This leaves TCP as the only choice.

This work describes and evaluates various ways to use TCP communication in high
performance distributed systems. Particularly in systemswhere nodes act as both client and
server. In this context a node is a Unix user-process that uses the kernel TCP API for com-
munication. This duality raises the question of threading.If a client is I/O-bound, with re-
gards to communication, it can take on the role as server while waiting. This will avoid the



204 H.H. Happe / TCP Input Threading in High Performance Distributed Systems

kernel

user process

I/O library

TCP sockets

services client

Figure 1. System overview.

overhead of context switching. In other scenarios multiplethreads could be a better option.
These different threading models are the main focus of this work.

The work generally applies to a wide range of distributed systems that are based on TCP
communication. Especially systems where nodes concurrently have to handle tasks outside
the communication context, might benefit from this work. High performance message passing
[3,4] and software-based distributed shared memory [5,6] systems fit into this category. Grid
and peer-to-peer based systems could also benefit from this work.

1. System Overview

Basically a distributed system consists of multiple interacting nodes. Each node is responsible
for a subset of the system and might be a client entry point to the system.

In the context of this paper a node is a process in an operatingsystem, which can have
multiple threads of execution all sharing its address space. An I/O library will handle TCP
communication with other processes.

Figure 1 gives a simple overview of the different componentsin a process. Services han-
dle the distributed system responsibilities of the process. This includes communication, pro-
tocols, storage, etc. In some cases it is convenient that clients can become part of the process.
In these cases performance and/or simplicity are more important than client separation.

2. Unix TCP Communication

The basis for TCP communication in Unix is the socket, which is a general abstraction for
all types of network related I/O. As most kernel resources, asocket is referenced from user-
space by a file descriptor that is valid until the user explicitly closes the socket. Before actual
communication can start a TCP socket has to be connected to the other end. Now data can be
streamed between the endpoints by reading and writing to thesockets.

2.1. Sending

Sending a message is very simple because the decision to sendimplies that the content and
context of the message is known. Basically the content just needs to be encoded into a mes-
sage format that can be decoded at the receiver. Then the message can be written to the socket
that represents the destination.

Writing to a TCP socket will copy the data to an in-kernel TCP buffer, but in case this
buffer is full the connection is saturated. Obviously, thiscould result in deadlocks if not
handled carefully. Avoiding deadlocks in distributed systems is a system design issue that



H.H. Happe / TCP Input Threading in High Performance Distributed Systems 205

can not universally be solved by a communication abstraction (I/O library). Features like
buffering can help to avoid deadlocks, but in the end it is thesystem design that should
guarantee deadlock-free operation based on these features.

2.2. Receiving

It is a general fact in communication that the receiving sideis harder to handle. Initially the
receiver is notified about pending input, but only after the input is read can its context be
determined. I.e., the kernel needs to process IP and TCP headers in order to route input to the
correct destination socket. A similar kind of input processing has to be done in user-space in
order to route data to the correct subsystem of an application.

2.3. Monitoring Multiple TCP Sockets

The fact that each TCP connection is represented by one file descriptor, poses the question of
how to monitor multiple connections simultaneously.

Having one thread per socket to handle input is a simple way tomonitor multiple sockets.
This trades thread memory overhead for simplicity. While this memory overhead might be
acceptable it can also result in context switching overhead, which in turn pollutes the CPU
cache and TLB (multiple stacks). In practice a thread waits for input by doing a blocking
read system call on the socket. When the kernel receives datafor the socket, it copies it to the
buffer provided by the read call and wakes up the thread that now can return to user-space.
This ”half” system call (return from kernel) is a short wakeup path and the input data will be
available upon return.

Most operating systems provide a way for a single thread to monitor multiple sockets
simultaneously. Unix systems generally provide the systemcalls[poll() andselect(), but these
has scalability issues [7]. Therefore, various other scalable and non-standard methods has
been invented. Linux provide theepoll [8] mechanism which is a general way to wait for
events from multiple file descriptors. Basically, a thread can wait for multiple events in a
single system call (epoll wait()). The call returns with a list of one or more ready events that
need to be handled. In the socket input case an event is handled by doing a read on the ready
socket. Compared to the multi threaded model described above this is a whole system call
per socket in addition to theepoll wait() system call. This overhead should be smaller than
the context switching overhead in the multi threaded model for this single threaded method
to be an advantage. With a low input rate or single socket activity this will not be the case.

3. Input Models

Both services and clients can start large computations as a result of new input. If communi-
cation should continue asynchronously during these computations, multiple threads are re-
quired. The best way to assign threads depends on the specificdistributed system.

The focus of this paper is a system where clients has their ownthread. The thread might
do communication or service work, but only when the client calls into the I/O library or a
service. From the client’s point view this is a natural design, because it controls when to
interact with the distributed system.

Another characteristic is that services are I/O bound. Basically they function as state
machines acting on events from the I/O library and/or the client, without doing much com-
putation. Extra threads could be added to handle service computations, but this will not be
addressed in this paper.

Figure 2 illustrates common input cases. Case a) is input directed to a service or a client
without producing new output (response/forward). This canbe handled in the context of the



206 H.H. Happe / TCP Input Threading in High Performance Distributed Systems

client

a)

b)

serviceI/O

Figure 2. Input scenarios. Dashed arrows indicate events that might follow.

client thread when it is ready, because the input event does not affect other parts of the system.
In case b) a service produces new output as a result of the input. This output could be a
response to a request or some sort of forwarding and might be important for other nodes. The
input should therefore be handled as soon as possible and nothave to wait for the client to be
available for communication. This requires at least one extra thread for input handling.

The following sections describe the threading models that will be evaluated in section 4.
Only the input path is described, while details about sending and setting up connections are
left out.

3.1. Model 1: Single Thread

In this model I/O and service processing are only handled when the client thread calls into
these. When such a call can not be served locally the client thread will be directed to the
I/O library in order to handle new input. When input arrives it will be handled and in case it
matches the requirements of the client, control is returnedto the client (Figure 3).

Case a) is handled perfectly because context switches are avoided when input for the
client arrives. However, in case b) progress in the overall system can be stalled if the client is
CPU-bound. Also, this model requires that multiple socketscan be monitored simultaneously
as described in section 2.3.

client services I/O

wait for

service
input

input

Figure 3. Single thread model.



H.H. Happe / TCP Input Threading in High Performance Distributed Systems 207

client services I/O

service
input

input
wait for

Figure 4. Input thread model. The white thread is the input thread.

3.2. Model 2: Input Thread

In this model a thread is used for input handling. The thread starts in the I/O library and when
input arrives it delivers this to one of the services or the client (Figure 4). The exact details
of how this multiplexing is done is not important in this context. In case the client is waiting
for input the input thread must wake up the client when this input arrives. This adds context
switching overhead, but solves the issues with input case b). Again, this model requires that
multiple sockets can be monitored simultaneously.

3.3. Model 3: A Thread per Socket

This model works similarly to M2 except that each socket has adedicated input thread.
This removes the overhead of monitoring multiple sockets, but also introduces new issues as
described in section 2.3.

3.4. Models 1 and 2: Hybrid

Given the cons and pros of the described models a hybrid between M1 and M2 would be
interesting. The idea is to make the client handle I/O eventswhile it is otherwise waiting
for input. This requires a way to stop and restart the input thread by request from the client
thread. While this is possible, it can not be done in a generalway without producing context
switches. The problem is that the input thread has to exit andreenter the event monitoring
system call. New kernel functionality is needed in order forthis model to work and it will
therefore not be evaluated in this paper.

4. Evaluation

The evaluation was done with a software-based distributed shared memory system, which
currently is work in progress. It is based on the PastSet memory model [6] and fits into the
system model described in section 1. The memory subsystem isimplemented as services and
applications act as clients using these services.

The results show the performance of the various models for this specific distributed sys-
tem. Performance variations in these results have not been examined in close detail, but some
hints to why models perform differently are given in the description. Low-level information
about cache misses and context switches would be interesting if the goal was to improve op-
erating systems, but this work targets the use of generally available communication methods.



208 H.H. Happe / TCP Input Threading in High Performance Distributed Systems

4.1. Application

A special evaluation application that can simulate different computation and communication
loads has been developed. Basically each process runs a number of iterations that have a
communication and a computation part. How these parts work in each run are specified by
load-time parameters.

In the communication part one process writes some data to shared memory and all others
read this data (like multicasting). The writer in each iteration is chosen in a round-robin
fashion. A parametercomm defines how much data is written in each iteration.

The computation part does a series of local one byte read/update calculations. A param-
etermem defines how much memory is touched by these calculations and is therefore the
minimum number of read/updates done in each iteration. Thismakes it possible to test the
effect of memory use in computations. Another parametercalc defines a maximum number
of read/updates that will be done, but the actual number of read/updates carried out in each
iteration is chosen randomly from the range[mem; calc]. This makes computations uneven
and ensures that processes are not in sync. A pseudo-random number generator is used to
ensure comparability and the generator is initialized withdifferent seeds on for each process.

4.2. Test Platform

The evaluation was performed on a 32 node Linux cluster interconnected by Gigabit Ethernet.
Each node had an Intel Pentium 4 541 64-bit CPU with Hyper-Threading and ran version
2.4.21 of the Linux kernel. The kernel supported the new Native POSIX Threading Library
(NPTL) [9] and was used in the evaluation.

Hyper-Threading was turned off so that the multi threaded models did not get an advan-
tage. This was done by forcing processes to stay on one CPU with thetaskset(1) tool.

The less scalablepoll() system call was used to monitor multiple sockets, because the
kernel did not supportepoll (available in versions 2.6.x). This could have a negative effect on
the performance of the M1 and M2 models.

4.3. Results

The tests were done by running a series of communicate/compute iterations (see section 4.1)
and hereby measure the average iteration time. Each test were run three times to test for
variations between runs. The variations were insignificantand therefore the average of these
three runs are used in the following results.

4.3.1. I/O-bound

Figures 5 and 6 show the scalability of the different models without computation. M1 per-
forms better than the other two threaded models, as expected. It is only marginally better
than M2 and the difference is not even visible when communication increases (Figure 6).
Therefore, M2 only imposes a small context switching overhead compared to M1. The many
threads in M3 give even more overhead as the number of nodes increase (Figure 5). With
added communication and therefore higher memory utilization the overhead of threading re-
ally decreases performance (Figure 6). With 32 nodes M3 almost triples the completion time
compared to the other models. These observations indicate that thread memory overhead
(stacks and task descriptors) is the cause of M3’s performance issue.

When plotting time as a function of communication load, the poor performance of M3
becomes even more apparent (Figure 7). M1 and M2 do equally well, while there is an
anomaly starting at 16KB. M3 does not have this anomaly whichindicates that the monitor-
ing of multiple sockets (poll()) is the cause. Longer I/O-burst increases the chance that there



H.H. Happe / TCP Input Threading in High Performance Distributed Systems 209

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0.0008

 0.0009

 0.001

 32 16 8 4 2

tim
e 

(s
)

nodes

mem=1B, comm=32B, calc=1

M1
M2
M3

Figure 5. Scalability with 32B read/write and no computation.

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0.0045

 32 16 8 4 2

tim
e 

(s
)

nodes

mem=1B, comm=16KB, calc=1

M1
M2
M3

Figure 6. Scalability with 16KB read/write and no computation.

are multiple sockets with input whenpoll() is called. This reduces the number of calls and
therefore the total overhead ofpoll().



210 H.H. Happe / TCP Input Threading in High Performance Distributed Systems

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 65536 32768 16384 8192 4096 2048 1024 512 256 128 64 32

tim
e 

(s
)

comm (B)

32 nodes, mem=1B, calc=1

M1
M2
M3

Figure 7. Different read/write sizes and no computation.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 2e+06 1e+06 100000 10000

tim
e 

(s
)

calc iterations

32 nodes, mem=1B, comm=32B

M1
M2
M3

Figure 8. Different computation loads and 32B read/write.

4.3.2. CPU-bound

Figures 8 and 9 show how the models perform with different levels of computation in the
clients. Remember that the actual number of iterations is random, but the displayed values
are maximums. As expected M1 does not perform well when computation is increased, while
M3 becomes the best model. The long computation periods spread communication events in



H.H. Happe / TCP Input Threading in High Performance Distributed Systems 211

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 2e+06 1e+06 100000 10000

tim
e 

(s
)

calc iterations

32 nodes, mem=1B, comm=16KB

M1
M2
M3

Figure 9. Different computation loads and 16KB read/write.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 2048 1024 512 256 128 64

tim
e 

(s
)

memory (KB)

32 nodes, comm=32B, calc=1

M1
M2
M3

Figure 10. Client memory utilization test with 32B read/write.

time. The short wakeup path in M3 benefits from this, while theoverhead ofpoll() is not
amortized by handling multiple events per call. Consequently, M2 is slower than M3, but this
might be resolved by using a more scalable monitoring methodsuch asepoll.

When the computations touch memory M2 wins, while M3 now becomes second best
(Figure 10). This is presumed to be caused by the larger working set of M3.



212 H.H. Happe / TCP Input Threading in High Performance Distributed Systems

5. Related Work

Much work addresses TCP kernel interfaces [10,8,11,7] and revolves around monitoring mul-
tiple sockets. The general conclusion is that the performance of event-based interfaces are
superior to threading. For CPU-bound workloads threading is needed, though. This is in line
with the findings of this paper, because the best overall model (M2) combines event-based
I/O and threads.

TCP communication latency hiding by overlapping communication with computations is
explored in [12,13]. While the advantages of this overlapping are clear the evaluation is very
limited. Only two nodes is used and the applications have well defined I/O and CPU-bursts.

In [14] an MPI [3] implementation that uses separate communication and computation
threads is compared with a single-threaded implementation. These implementations corre-
spond to models M2 and M1 respectively and the results are similar.

6. Conclusions

Various ways to handle TCP input in high performance distributed systems have been eval-
uated. This was done for a specific case where nodes act as bothclient and server. In this
context a node is a Unix user-process that uses the kernel TCPAPI for communication.

Three input models with different ways of using threads wereevaluated. The exact de-
tails of these models can be found in section 3, but this list gives a short summary:

M1: A single thread handling all work.
M2: A dedicated thread handling all TCP input and a client thread.
M3: A thread per TCP socket and a client thread.

The overall winner of the three models is M2. In cases where M1or M3 are better, M2
is 10% slower at most. M1 wins in I/O-bound tests, because thesingle thread in this case
only has to handle input events. On the other hand, it is the worst model in CPU-bound tests.
M3 only wins in CPU-bound tests with low memory utilization.The short input wakeup
path and large memory working set (thread state) of M3, is believed to be the reason for its
effectiveness in this special case.

M1 and M2 were implemented using thepoll() system call for socket event monitoring.
More scalable methods such asepoll were not available on the test platform. Using such
methods should shorten the wakeup path in these models.

A hybrid between M1 and M2 would be an interesting subject of further research. When
the client is waiting for input it might as well handle input events. At the time the input it
is waiting for becomes available, it can start using it immediately without doing a context
switch.

References

[1] J. Yoakum L. Ong. RFC 3286: An Introduction to the Stream Control Transmission Protocol (SCTP),
2002.

[2] S. Floyd E. Kohler, M. Handley.RFC 4340: Datagram Congestion Control Protocol (DCCP), 2006.
[3] Message Passing Interface Forum. MPI: A message-passing interface standard. Technical Report UT-CS-

94-230, 1994.
[4] V. S. Sunderam. PVM: a framework for parallel distributed computing.Concurrency, Practice and Expe-

rience, 2(4):315–340, 1990.
[5] David Gelernter. Generative communication in linda.ACM Transactions on Programming Languages and

Systems (TOPLAS), 7(1):80–112, 1985.
[6] Brian Vinter. PastSet: A Structured Distributed Shared Memory System. PhD thesis, Department of

Computer Science, Faculty of Science, University of Troms,Norway, 1999.



H.H. Happe / TCP Input Threading in High Performance Distributed Systems 213

[7] Dan Kegel.The C10K problem, 2004. http://www.kegel.com/c10k.html.
[8] L. Gammo, T. Brecht, A. Shukla, and D. Pariag. Comparing and evaluating epoll, select, and poll event

mechanisms.Proceedings of 6th Annual Linux Symposium, 2004.
[9] U. Drepper and I. Molnar. The Native POSIX Thread Libraryfor Linux. White Paper, Red Hat, Fevereiro

de, 2003.
[10] J. Ousterhout. Why threads are a bad idea (for most purposes). Presentation given at the 1996 Usenix

Annual Technical Conference, January, 1996.
[11] J. Lemon. Kqueue: A generic and scalable event notification facility. Proceedings of the USENIX Annual

Technical Conference, FREENIX Track, 2001.
[12] Volker Strumpen and Thomas L. Casavant. Implementing communication latency hiding in high-latency

computer networks. InHPCN Europe, pages 86–93, 1995.
[13] Volker Strumpen. Software-based communication latency hiding for commodity workstation networks. In

ICPP, Vol. 1, pages 146–153, 1996.
[14] S. Majumder, S. Rixner, and V.S. Pai. An Event-driven Architecture for MPI Libraries.Proceedings of

the Los ALamos Computer Science Institute Symposium (LACSI’04),October, 2004.


