Communicating Process Architectures 2006 13
Peter Welch, Jon Kerridge, and Fred Barnes (Eds.)

I0S Press, 2006

(© 2006 The authors. All rights reserved.

An Introduction to CSP.NET

Alex A. LEHMBERG and Martin N. OLSEN

Department of Computer Science, University of Copenhagen,
Universitetsparken 1, 2100, Copenhagen, Denmark.

{alex ,nebelong} @diku.dk

Abstract. This paper reports on CSP.NET, developed over the last theghs at
the University of Copenhagen. CSP.NET is an object orie8@ library designed
to ease concurrent and distributed programming in MictdS&T 2.0. The library
supports both shared memory multiprocessor systems atnitbdied-memory multi-
computers and aims towards making the architecture tragsp# the programmer.
CSP.NET exploits the power of .NET Remoting to provide thariiuted capabili-
ties and like JCSP, CSP.NET relies exclusively on operatystem threads. A Name
Server and a workerpool are included in the library, bothlamented as Windows
Services. This paper presents CSP.NET from a users peikapatl provides a tuto-
rial along with some implementation details and perforneaests.

Keywords. CSP library, Microsoft. NET, CSP.NET

I ntroduction

In as little as one year from now it will be very hard to get hofccomputers with only one
core. In order to increase performance significantly inreigeneration microprocessors all
major manufacturers are taking the road of multiple corea ohip, and multiple chips in a
machine. These multi-chip multi-core machines will prdlgaiot run at much higher clock
speeds than current machines, meaning that programs wel toause multiple threads of
execution for any significant performance improvements abemalise.

As any skilled programmer will testify writing large erraiee concurrent programs in
any mainstream programming language is extremely diff@uliest. Threads, and various
locks and synchronisation mechanisms, are the commonrootstised to achieve concur-
rency, but they are all low level constructs unable to exptbe complex interactions in
concurrent programs in a simple and secure manner.

Communicating Sequential Processes (CSP) [5] as a progregnmodel builds on the
CSP algebra and provides a series of higher level constiluatsolves many of the prob-
lems inherent in traditional thread programming. CSP makeasy to distinguish between
deterministic and nondeterministic parts of concurrengpams, and makes synchronisation
and concurrent execution relatively simple.

occam [9] is a language inspired by CSP, but CSP-like libesior more widespread lan-
guages also exist. They include JCSP [4], JCSP.NET [6], CTL++CSP [3] and C++CSP
Networked [2]. This paper describes a new CSP library d@eslcas a graduate student
project at the University of Copenhagen under the supenvisf Brian Vinter. The back-
ground was a graduate course in practical CSP programmughtaluring the spring of
2006.

CSP.NET is written for the Microsoft .NET platform, which principle makes CSP
available to programmers using any CLS-compliant langu@@.NET is designed to run
equally well on shared memory multiprocessor systems asitlilslited memory architec-

14 A.A. Lehmberg and M.N. Olsen / An Introduction to CSP.NET

tures. It is designed to abstract away the underlying systahprovides distributed versions
of most of the implemented CSP operators. It is based onoregsD of the .NET framework
and thus supports generics throughout. Remoting - the .Njivalent of Java RMI - is used
to provide the distributed capabilities of CSP.NET.

This paper describes CSP.NET from a users perspective anitips some insight into
the implementation. Section 1 is a brief overview of theati#ht elements in CSP.NET. Sec-
tion 2 is a tutorial that demonstrates the use of CSP.NETutiir@ series of examples. Sec-
tion 3 provides some technical insight into the implemeatabf CSP.NET and finally sec-
tion 4 demonstrates a CSP.NET implementation of the Mormte®a algorithm along with
some interesting performance figures. Readers are assorhagld knowledge of program-
ming and CSP.

CSP.NET can be downloaded fromww.cspdotnet.corand we must stress that cur-
rently, not all features have been thoroughly tested. Thasstate of the program can best
be described as a work in progress - we did say that threadgmoging was hard - and
feedback is most welcome.

1. Library Details

CSP.NET is an object oriented implementation of CSP, desiga simplify concurrent and
parallel programming on a Microsoft.NET 2.0 platform.

The API of CSP.NET is inspired by JCSP.NET, but the impleragon is completely
original. CSP.NET offers constructs likearrier, bucketand parallel but in contrast to
JCSP.NET, CSP.NET provides both local and distributedemgintations of these constructs.
Furthermore the distributed channel ends and timers of ESPdiffers from their counter-
parts in JCSP.NET. Every method in CSP.NET has been selyatested and the authors
have used the library in several minor applications.

The entire documentation of CSP.NET is availablevatwv.cspdotnet.comnd this sec-
tion gives a brief introduction to the main constructs inlibeary.

1.1. Processes

The object oriented approach implies that every CSP coartsgumplemented as a class in
CSP.NET and hence a new process is constructed by creatilegsatbat implements the
ICSProcesterface.

Processes may be executed in parallel by using an instartbe Bérallel class. Since
all processes in a given instanceRdrallel are executed locally, true parallelism will only
occur on a multiprocessor machine. Otherwise the procegiids interleaved.

To ease distributed programming, CSP.NET provides a diged Parallel class similar
to the standar@arallel class, buDistParallelseeks to execute processes on remote machines
by utilising the CSP.NET workerpools, see section 3.5.

1.2. Channels

So far we have discussed how to define and run several diffprenesses, each containing
sequential code, but as the name CSP implies processes enaistehbto interact. Interaction

or process communication is managed by channels, whichsihken a central part of any

CSP implementation.

CSP.NET provides four distinct channel®re20neAny20neOne2AnyandAny2Any
These are all well known rendezvous channels that may badsdewith buffers. The library
comes with two predefined buffers and additional buffers lmamefined by implementing
thelBufferinterface. The available buffers are the standard FIFGebaffid an infinite buffer
which, in theory, is able to hold an infinite number of elensent

A.A. Lehmberg and M.N. Olsen / An Introduction to CSP.NET 15

1.2.1. Anonymous and Named Channels

CSP.NET channels are either anonymous or named. Named ethaame by default dis-
tributed but can be declared as local while anonymous chsane always local. Distributed
channel ends allow communication between processesmgsdi different machines or in
different application domains on the same machine. Locahnokls only allow communi-
cation between processes in the same application domastrilidited channel ends may be
used for local communication but local channels are prbferdue to their more efficient
implementation, see section 3.2.

We have chosen not to implement a nami@ay2Anychannel, but an anonymous
Any2Anychannel is available - see section 3.1.

1.2.2. Name Server

To use distributed channel ends a Name Server must be deadlalbhe network. The Name
Server distinguishes channels by name, thus every namedehaust have a unique name.
Violations of this rule are not necessarily recognised leyNlame Server but may result in
erroneous programs.

The Name Server is provided as both a standard console appfi@and as a Windows
Service. The console version is configured though the cordriia@ while the service uses
an XML configuration file.

1.2.3. Channel Communication

Channels in CSP.NET are generic and may be of any seriadizdih type, thus making
it possible to send almost everything through a channel.ddution must be exercised -
CSP.NET channels don’t necessarily copy the data like tHe-@Badigm demands.

Distributed channels are call-by-value while local chdsaee call-by-reference. This is
a tradeoff between safety and efficiency and, if preferregdies can be made before sending
data through a local channel.

1.3. Alternative

Alternatives permit the programmer to choose between plalévents - in CSP.NET known
as guards. Four types of guards are available in CSP.NBhe20nechannel, Any20ne
channel,CSTimerand Skip Skips are always ready, timers are ready whenever a timeout
occurs and the channels are ready if they contain data. Taenels may be distributed
channels residing on remote machines, while the timers kipd sust be local.

To choose between ready guaAdternativeprovides two methodsRriSelectandFairS-
elect The former always selects the guard with the highest pyiarile the latter guaranties
a fair selection, meaning that every ready guard will bectetewithinn calls to FairSe-
lect, wheren is the number of ready guards. Like JCSP, C++CSP and KIRait$Selectin
CSP.NET delivers unit time for each choice, regardless efmiimber of guards, provided
that at least one guard is always pending. In CSP.NET the appiees toPriSelect

1.4. Barriers and Buckets

CSP.NET providebarriersandbucketgo synchronise multiple processes. Any process syn-
chronising on darrier will be blocked until all processes enrolled on therier has called
the Synemethod and any process falling intdacketwill be blocked until another process
call thebuckets Flushrmethod.

Barriers andbucketsare either anonymous or named and just like channels, armumgym
barriers andbucketsare local while namedarriers andbucketscan be local or distributed.
Distributedbarriersandbucketaise the Name Server, meaning that every nabb@eder and
bucketmust have a unique name.

16 A.A. Lehmberg and M.N. Olsen / An Introduction to CSP.NET
1.5. Workerpool Service

CSP.NET includes a workerpool Service along with the stahtilarary. It's a Windows Ser-
vice capable of running on any Microsoft.NET 2.0 platforrmd® installed every CSP.NET
program can use the service, by using BistParallel class, which may be convenient, e.g.
in grid-like programming.

The workerpool service needs information about port nusid€raddresses etc. and to
that end an XML configuration file is supplied. The configuatfile is read each time the
service is started.

2. Tutorial

This section demonstrates how to write some fairly simplaymms using the CSP.NET
library. We will start by implementing a workerpool and thaonve on to demonstrate the use
of alternatives and distributed parallels in CSP.NET.

2.1. Workerpool

Our First CSP.NET program shows how to implement a workdrdmie that the workerpool
in this example has no relation to the workerpool Serviceigied by CSP.NET.

(Machine \

Read process
Run process
Write process
(Workerpool \
One2Any
Any20ne . channel
ch);nnel > E:::ess Write Read process
process Run process
(Machine \
Write process —

Read process
Run process

—

Figure 1. Workerpool structure

Figure 1 illustrates that we need a workerpool process aiaddo some worker pro-
cesses through a@ne2Anychannel and we also need Any20Onechannel connecting the
workerpool to the outside world. Translating the figure i@t©@SP.NET program is very easy.
All we need is a workerpool process, some workers and of ecairaain method.

2.1.1. Workerpool Process

The workerpool process is shown in listing 1.

The implementation demonstrates process creation, chaoneection/creation and
channel communication in CSP.NET. Defining a process is semple, just implement the
Runmethod on théCSProcesiterface.

A.A. Lehmberg and M.N. Olsen / An Introduction to CSP.NET 17

cl ass Worker Pool : | CSProcess

{
private | Channel | n<l CSProcess> | i stenChannel;
private | Channel Qut <l CSPr ocess> wor kers;

publ i ¢ Wor ker Pool (1 Channel Qut <I CSProcess> wor ker Channel)

{

}
public void Run()

wor kers = wor ker Channel ;

|'i stenChannel = Factory. CGet Any20nel n<l CSProcess>("Wr ker Pool ") ;
while (true)

| CSProcess p = listenChannel . Read();
wor kers. Wite(p);

Listing 1. Workerpool process code

The first thing to notice about the channels in WerkerPoolclass is that they are de-
clared agChannellnandiChannelOutchannels. All CSP.NET channels implement these in-
terfaces and hence théorkerPoolconstructor will accept any of the four available channels.
This is the standard way to declare channels in CSP.NET.

Connecting to a channel or creating a channel is often daweigh the statid-actory
class like thdistenchanneln listing 1. In this particular case a namady20Onechannel is
created but th&actoryclass includes get-methods for every available channel.

Creating named channels involves two steps - creating taengi object, and connect-
ing to the channel object. As explained in section 3.1 thenohkis always created on the
Oneend of channels. That means thatAmy20Onechannel is created by the reader and an
One2Anychannel is created by the writer. TRe20nechannel has tw@®neends and is,
by definition, created by the writer. The other end of the clehsimply has to connect to the
channel object. If it tries to connect to a channel beforea heen created the process will
block until the channel object is created by another prodesavoid deadlock when creating
and connecting to named channels, it is recommended onketdecnamed channels in the
run-method of CSP processes.

Another notable point in listing 1 is the channel communaratThe Write-method is
used for writing data to a channel and tReadmethod is used for reading data from a
channel. Every channel in CSP.NET ha#/dte- and aReadmethod.

2.1.2. Workers

With the workerpool process in place we move on to the implaaten of the workers,
which is shown in listing 2. Th&Vorkerprocess is similar to thé/orkerpoolprocess and this
is the typical appearance of processes in CSP.NET.

A Workersimply reads a process from a channel before executing ialing it's Run
method. The process will run in thdorkers thread of execution and no new processes will
be accepted until the current process is done.

2.1.3. Main Method

The only thing left is our main program shown in listing 3.
Thelnit-method informs CSP.NET about the location of the Name $¢paat number
and IP-address) and registers the port number and IP-addfdke current program. The

18

A.A. Lehmberg and M.N. Olsen / An Introduction to CSP.NET

class Worker : | CSProcess

{

private | Channel | n<l CSProcess> processes;
private | CSProcess process;

publ i c Wor ker (I Channel | n<l CSProcess> | i st enChannel)

{
}

processes = |istenChannel;

public void Run()

while (true)

process = processes. Read();
process. Run();

Listing 2. Worker process code

cl ass Program

{

static void Main(string[] args)

{

CspManager. | nit("9091", "9090");
One2AnyChannel <l CSProcess> chan = new One2AnyChannel <I CSProcess>();

Worker[] workers = new Worker[3];

for (int i =0; i <3; i++)
wor kers[i] = new Worker (chan);
Wor ker Pool wor ker Pool = new Wbr ker Pool (chan) ;

new Paral | el (new | CSProcess[] {workers[0], workers[1], workers[2],
wor ker Pool }) . Run();

Listing 3. Main program code

Init-method must be called in the beginning of every CSP.NET narag In this case the
Name Server is running on the local machine and we only hasapply the port numbers.

As opposed to th&Vorkerpoolprocess that created a named channel the main program
creates an anonymous channel. It's possible to create arars/channels through thac-

tory class but normal instantiation is often used instead.

To get our workerpool running we simply instantiate the vesgool process and the
worker processes in listing 1 and 2 before usingPaeallel class to run them in parallel.
Note that theParallel class doesn’t run processes on remote machines, but omijyloc

2.2. Alternative and Distributed Parallel

Our second CSP.NET program demonstrategMternativeclass and th®istParallel class.

It contains twoAddIntegergrocesses that repeatedly add a sequence of numbers amd retu
the result, and arltReaderprocess that reads and process the results. The processes ar
shown in listing 4 and 5.

Again we notice the familiar pattern of a CSP.NET processwadotice theserializ-

able attribute used to make a class serializable. This is negessarder to distribute the
processes to remote machines.

A.A. Lehmberg and M.N. Olsen / An Introduction to CSP.NET 19

[Serializabl e]
cl ass Addl ntegers : | CSProcess

{

private int nunber;
private string channel Nang;

public Addlntegers(int num string nane)

{

nunber = num
channel Nane = nane;

}
public void Run()

| Channel Qut<i nt> result = Factory. Get One20neQut<i nt >(channel Nane) ;

for(int j =0; jJ < 100; j++)
{
int res = 0;
for (int i =1; i < nunber; i++)
res += i;

result. Wite(res);

Listing 4. AddIntegers process code

Listing 5 demonstrates the use of tAlternativeclass described in section 1.3. Notice
the presence of thESTimey causing the program to terminate if new data isn’t avadabl
within one second.

The main program, shown in listing 6, is trivi@istParallel distributes the processes to
available remote machines running the CSP.NET workerpenli. Like therun-method
in Parallel, DistParallels run-method blocks until all processes has been executed once.

It's appropriate to use thBistParallel in a lot of applications, but there is of course a
number of problems where automatic distribution of the psses aren’t appropriate, e.g.
peer two peer applications. CSP.NET includesDitParallel class to be used when appro-
priate.

2.3. Transparency

As pointed out earlier one of the main objectives in CSP.N&Toikeep the architecture
transparent to the programmer and the last example progrhibits this transparency. The
programmer doesn’t have to pay any attention to the architedecause thBistParallel
class will utilise remote workers if they are available, aterwise create and use local
workers.

3. Implementation Details
3.1. Distributed Applications and .NET Remoting

In CSP.NET distributed applications are not only applmagiresiding on different machines
and communicating through the network. They can also baegtjgns that consist of mul-
tiple communicating programs on a single machine, or theybeaa combination of the two.
Regardless of the number of machines and programs invailechmmunication between
distributed applications is done through .NET remoting.

20 A.A. Lehmberg and M.N. Olsen / An Introduction to CSP.NET

[Serializabl e]
cl ass Al tReader : | CSProcess

public void Run()

{
Al tingChannel | n<i nt> plus = Factory. Get One20nel n<i nt >("pl us");
Al ti ngChannel | n<i nt> m nus = Factory. Get One20nel n<i nt >("m nus");
CSTimer tinmer = new CSTiner();
Alternative alt = new Alternative(new Guard[] { plus, mnus,
timer });
int result = 0;
bool done = fal se;
while (!done)
timer. Rel ati veTi neCut (1000);
switch (alt.FairSelect())
{
case O:
result += plus.Read();
br eak;
case 1:
result —= m nus. Read();
br eak;
case 2:
done = true;
br eak;
}
}
}

Listing 5. AltReader process code

class Al tProgram

{
static void Main(string[] args)
CspManager. I ni t("9092", "9090", "192.0.0.1","192.0.0.2");
new Di st Paral | el (new | CSProcess[] {new Al t Reader (),
new Addl nt egers(100, "plus"),
new Addl nt eger s(100, "mi nus")
B . Run();
}
}

Listing 6. Distributed-parallel program code

Remoting is a simple way for programs running in one processake objects accessi-
ble to programs in other processes, whether they resideeosaime machine or on another
machine on the network. Remoting is similar to Java RMI angery easy to customise and
extend. That is exactly what is done in CSP.NET in order tdifate code transfer between
machines. The structure of the remoting system in CSP.NEShasvn in figure 2. In the
CSP.NET case the formatter sink is a binary formatter thadlszes all messages into a rel-
atively compact binary format for efficient transport asrtise wire. The transport sink uses
a simple TCP-channel which is fast and reliable.

Given the flexibility of Remoting it would be trivial to repta the Binary formatter with
a SOAP formatter or the Transport sink with a HTTP channek TISP.NET sink and the
CSP.NET proxy are discussed in section 3.3. All construc®SP.NET, that are in some way
distributed, uses remoting behind the scenes. That goesmfoed channels lik®ne20ne

A.A. Lehmberg and M.N. Olsen / An Introduction to CSP.NET 21

Client object
CSP.NET proxy Seiver object
FormaItter sink Formatter sink
CSP.NET sink ‘
Network
Transport sink | |- »|| Transport sink
Process 1 Process 2

Figure2. The remoting system structure in CSP.NET

Any20neandOne2Anyas well as for the named versionsiBdrrier andBucket With regard
to the channels the real object - the server object - is alyw&ced on th@©Oneend and the
proxies are created on tiay-ends. That means that processes orAtmeend can go out of
scope without problems, as they only contain a proxy andheoteéal object. Only when the
"One” end goes out of scope does the channel cease to fun@ioohannels where one
end exists it is impossible to know where best to put the regad and the user runs the risk
of breaking the channel every time a process using the chgoas out of scope. It's possible
to implement arAny2Anychannel through a combination of &my20Onechannel and an
One2Anychannel but the performance of such a channel would not beowigh the other
channels in CSP.NET. That is the reason no naA@AnyChannel exists in CSP.NET.

While remoting has many advantages it is probably not aseftias a tailor-made so-
lution. In order to minimise the performance overhead weetehosen the fastest combina-
tion of formatter sink and transport sink. To further makeesihat optimal speed is obtained
wherever possible, CSP.NET offers a few mechanisms thahigget named constructs that
do not cross process boundaries - see section 3.2.

3.2. Standalone Applications

When programming applications that are designed to run a® than one processor or ma-
chine, it is often impossible to know the exact runtime eswinent in advance. If a program
is designed never to be run on multiple machines or commtenmaer the network there is
no need to use named channels, barriers or buckets.

If it is uncertain whether the application will run on one oo machines it is wise
to take that fact into consideration when designing theiagpbn. That would typically be
done by using processes communicating through named dsaame using named barriers
and buckets in the parts of the program most likely to be ruseparate machines. Alterna-
tively it could mean using workerpools to offload heavy comagions to other machines if
present. Under normal circumstances that would mean pperésrmance given the over-
head incurred by the use of Remoting.

To ensure that all applications that use named constructsvarkerpools run at opti-
mum speed CSP.NET features a method callsgManager.InitStandAlone

By calling CspManager.InitStandAlora the beginning of a program you tell CSP.NET
that the application does not share named CSP.NET corsinittt other applications. Nor
will there be any remote workerpools available at runtinred bocal workerpools will be
used instead. That means that neither a stand-alone Nawer 8er the use of Remoting is
necessary, which results in maximum performar@@gpManager.InitStandAlone particu-
larly useful when the program is designed for both distedutnd non-distributed environ-
ments. In the non-distributed case the us€gihManager.InitStandAloneill yield the same
performance as if the application had been written spetifit@ a single machine.

22 A.A. Lehmberg and M.N. Olsen / An Introduction to CSP.NET

In distributed applications whex@spManager.Iniis called at the beginning of the pro-
gram all named CSP.NET constructs are by default distréb(tkat means that they are cre-
ated through the use of the stand-alone Name Server and coicateithrough Remoting.
There might be situations, even in distributed applicajon which local named CSP.NET
constructs are desirable. To accommodate such needs abn@®P.NET constructs can be
created with a parameter specifying that they should bypassting and the Name Server
Service.

3.3. Remote Code Transfer

The distributed nature of CSP.NET means that it is possdil@fprogram on one machine
to send an object over a distributed channel for another madb use. If the object is an
instance of an ordinary class any program that sends owvescthat object would need the
correct assembly, in order to compile. It is another mattée channel is defined to transport
objects implementing a specific interface and the programestber side only invokes meth-
ods that are defined on that interface. Only the interfacdseebe known for the program
to compile - that would be the case with a channel transpp@i8P processes implementing
the ICSProcessnterface. Even though the program may compile it will cettathrow an
exception when run if the code that implements the interfaoaissing.

We want CSP.NET to handle exceptions thrown because ofmgissisemblies without
the user noticing that anything is amiss. One way to solvetbblem would be to continu-
ously monitor objects sent through named channels. If tde éar the object was unavailable
on the other end of the channel the missing code would be sentlze channel prior to the
actual object. Another possibility would be to always sdmel ielevant code along with the
object. The first option would mean a lot of unnecessary comaoation over the network
and the second would mean sending a lot of redundant code.

To avoid chatty interfaces and redundant code transferdNESRemploys the flexibility
of the Remoting system to deal with missing assembly filesillastrated in figure 2 a
custom proxy and a custom sink are inserted into the Remsyisigm on the client side. Any
exception thrown because of missing code is caught in ettieeproxy or the sink. When
that happens a recursive check is made of the missing asgamdlany other referenced
assemblies. All the missing assemblies are then copiedetandichine on which they are
needed. They are placed in a special location that CSP.NEdyalchecks when looking for
assemblies.

3.4. ThreadPool

At the heart of any implementation of CSP lies the managemethie threads used when a
set of CSP Processes are run in Bagallel construct. How the thread management is im-
plemented depends on various considerations: how mangdsm@o we want running con-
currently, how transparent should the thread managemeamdbevhat limitations do the OS
impose on the use of threads.

The design of the thread management system in CSP.NET isweci dictated by the
fact that it is meant to be a native .NET implementation of ASghtweight threads - in
Windows called fibers - are not available in the .NET API, whiceans that CSP.NET uses
real heavyweight OS threads.

As thread creation and destruction are relatively heavyaijmns, CSP.NET implements
a threadpool to manage busy and free threads.Pdrallel class and th&€ SPThreadPool
class are closely connected, as the threadpool makes siraltlCSP processes run in a
Parallel are allocated a free thread. After a parallel run completikshreads are returned
to the threadpool but they are not released, unless the groger explicitly requests the
threadpool to do so. The principle of always freeing, butmet¢asing, threads that are not

A.A. Lehmberg and M.N. Olsen / An Introduction to CSP.NET 23

currently executing means that a CSP.NET program will neger more threads than are
executing concurrently.

The default, and recommended, stack size of threads in .NETMB. That means
that programs with many CSP processes executing conclyrnerguires lots of memory to
run, compared to sequential programs. In CSP.NET it is ptessd manually control the
maximum stack size of new threads. That means that proctsstesre known to be frugal
in their use of stack memory can be allocated less memory.

It would have been entirely possible to use the existing dtiiPool class in .NET but that
would have meant less flexibility. The .NET threadpool doatsatiow for the programmer to
specify neither maximum stack size nor thread prioritystmaking it impossible to assign
individual priorities to individual threads. By managingraown threadpool none of those
limitations apply to CSP.NET.

3.5. Workerpool and Distributed Parallel

Workpools are often used in distributed applications tdaahload balancing and the work-
erpoot in CSP.NET is very similar to a standard centralised workfb@). It's implemented
as a Windows Service and once started the Service will ergadistenchannel and the num-
ber of available workers on the Name Server. The Name Sesvesponsible for manag-
ing the workers and hence every process in need of a workdrcontact the Name Server,
which is done implicitly through thBistParallel class.

Whenever distParallel object requests a worker from the Name Server a listenchanne
connecting the object to a workerpool with free workersetsimed and the number of avail-
able workers on the specific workerpool is decremented. Tor&ew itself will read and run
onelCSProcesdefore informing the Name Server that it is ready for new jpticesses.
At the same time, the worker informs tligstParallel object that it is done, hence allow-
ing theRunmethod to return when all processes have executed onceéNdine Server will
increment the number of available workers for the given wqukol.

By keeping score of available workers we ensure that presessly connect to work-
erpools with free workers thereby avoiding starvation. @ibe/nside of this approach is that
we have to contact the Name Server in order to get free woeddedsve can only write one
process to each worker.

4, Tests

Even though we attempt to demonstrate the performance of sspects of CSP.NET, this
section is by no means intended to be a thorough and commighdaenchmark. No attempt
is made to compare CSP.NET to other paradigms and only onk conaparison is made
with existing CSP libraries.

All single machine performance tests have been run on a madantaining: Pentium
4M 2 GHz processor, 512 MB ram, Windows XP SP2, .NET 2.0, J&¥arhe distributed test
was run on the single machine setup plus a second machingmiogt Pentium M 2GHz, 1
GB ram, Windows XP SP2 and .NET 2.0. The two machines wereamad directly through
a 100 Mbps network.

4.1. Channel Performance

We have not done any extensive performance comparisoneeet@SP.NET and other im-
plementations of CSP like JCSP, C++ CSP and KRoC(occam)tijloscause the main fo-

We are deliberately using the term workerpool instead ofkpool, since it's a pool of workers and not a
pool of work/tasks.

24 A.A. Lehmberg and M.N. Olsen / An Introduction to CSP.NET

cus has been ease of use and transparency rather than highmaerce, but also because
comparing the performance of CSP.NET to C++ CSP and KRo@eiewant given the differ-
ences in functionality, see section 3.4. Given the sintiegiof CSP.NET and JCSP we have
done one small test to illustrate the performance of theouarchannels. The test consist of
three processePRrocess Asend an integer tBrocess Brhich reads the number and sends it
to Process Gwhich in turn reads the number and sends the number baefkottess AThat
means thaProcess Aonly sends another number when the previous one has paseadtih
all the processes in the loop.

Channel type JCSP(jre 5.0) CSP.NET(.NET 2.0)

One20ne 16975 12488
Any20ne 17165 17825
One2Any 16854 12257
Any2Any 17125 17524

Table 1. Comparing the performance of different anonymous charypelstin JCSP and CSP.NET. All times
are in milliseconds.

Table 1 shows the results of the test. The numbers are irsgtthnds and indicates the
time it takes to send 500,000 integers through the loop.

The measurements reveal some clear differences betwedh @@SCSP.NET. For all
channels in JCSP the time is around 17 seconds, which is #imséame as theny20Oneand
Any2Anychannels in CSP.NET. The two remaining chann@ise20neand One2Any are
somewhat faster in CSP.NET. Itis impossible to tell if thiéedlences in performance are due
to the implementation of CSP.NET and JCSP, or if they areezhby differences between
Java and .NET.

4.2. Performance Overhead

To measure the performance overhead incurred by usingpteutireads on a uni-processor
machine we have run a series of tests based on the Monte Gadgdfthm. Monte Carlo
Pi is well suited to measure performance overhead when doimg sequential execution
to concurrent execution because the algorithm can be divide as many, almost indepen-
dent parts, as there are threads of execution. Thus in ahvidela, with zero time context
switches, the sequential and the parallel version shouldequally fast, and the speedup
using multiple processors should be linear or better - takire increased number of cache
hits into consideration. Listing 7 shows the sequentiasiogrand listing 8 shows the parallel
version.

We have run two different Monte Carlo Pi tests. The first omesrivionte Carlo Pi for
a fixed number of iterations, with varying numbers of threadi®m 1 to 600. To fit 600
threads into memory we use a thread stack size of around Rflfytes. Table 2 shows the
rather surprising results.

The concurrent version is consistently marginally fadtantthe sequential version, that
runs in 112242 milliseconds, indicating that running a G&H. program with quite a number
of threads on an idle machine is quite feasible. We shouldfztdhe machine is much more
responsive when running the sequential test, meaning thetimes that has to do other work
than just computing Monte Carlo Pi might benefit from lesgd#als being run.

It seems that the relatively long run time of the test proghashes the overhead of thread
creation and context switching. To better illustrate thatsequential version of Monte Carlo
Pi is much faster at low iteration counts we have done a casgashown in table 3. Here
both the sequential and the parallel version of Monte CarlbaRe been run at varying
iteration counts. The parallel version has the number eftis fixed at 400 in all runs.

A.A. Lehmberg and M.N. Olsen / An Introduction to CSP.NET 25

Iterations Number of threads Par Time

1,200,000,000 1 109371
1,200,000,000 50 110121
1,200,000,000 100 109989
1,200,000,000 200 110092
1,200,000,000 300 110579
1,200,000,000 400 110889
1,200,000,000 600 111480

Table 2. Monte Carlo Pi with fixed number of iterations and variablenn@r of threads. All times are in
milliseconds. Sequential time: 112242 milliseconds.

Iterations Par Time Seq Time

400 225 1
4000 224 1
40000 225 5
400000 262 42
4000000 595 378
40000000 3998 3798

400000000 37062 37258

Table 3. Parallel Monte Carlo Pi versus sequential Monte Carlo Pifdrént iteration counts. Parallel version
fixed at 400 threads. All times are in milliseconds.

Looking at table 3 itis evident that the cost of creating tireads completely dominates
when the number of iterations is low. That makes perfectesesscreating one thread to do
one simple calculation is a complete waste of time. But thalmers also confirm the fact that

when the workload of each thread increases the overheadeziditreation will eventually
become almost invisible.

4.3. Distributed Performance

To illustrate the performance overhead of going distridutee have extended our Monte
Carlo Pitestto run across two machines. The work is dividenltwo parts of equal size. One
part is sent to a second machine for processing and the osinecgmputed locally. When
computation is done on the remote machine the data is sektpacused in the calculation
of Pi.

Table 4 shows the results of the distributed version contpréhe sequential version

of Monte Carlo Pi. We varied the number of iterations whilepi@ag a the number of threads
fixed at 10 on each machine.

Iterations Dist Time SeqTime

80 497 1

800 782 1
8000 563 2
80000 817 8
800000 953 53
8000000 1214 745
80000000 4279 7281
800000000 38619 73117

Table 4. Distributed Monte Carlo Pi with variable number of iteraiso Each machine in the distributed test
uses 10 threads. All times are in milliseconds.

26 A.A. Lehmberg and M.N. Olsen / An Introduction to CSP.NET

It is not surprising that the sequential version of Montel@€&i is vastly superior when
the number of iterations in each of the 20 processes is low.oMerhead of remoting and
network communication clearly dominates at low iterationmts, but the time is still well
below one second. When the time exceeds a couple of secandisthbuted version comes
into its own and is much faster than the sequential versiasp&edup of 2 is almost achieved
and even though the theoretical maximum speedup is unknthenperformance gain is
significant. We have included the code for the distributechdcCarlo Pi in the appendix
to show an example of a distributed CSP.NET program thatrdioase workerpools and
DistParallel. The program running on the server side is shown in listingh@ the client
program is shown in listing 10.

5. Conclusions

CSP.NET is a new implementation of the CSP paradigm suitableth distributed-memory
multicomputers and shared memory multiprocessor syst@nhst of functionality is pro-
vided in the library but some work remain e.g. robust errardtiag.

Future developments include channel poisoning known frem@SP [3] and JCSP [1],
user definable Name Servers and of course further work needisnie on the workerpool.
DistParallel could also be extended to provide exactly the same methatifuactionality
as the normaParallel class, making the boundary between distributed applicatand lo-
cal applications disappear completely. A thorough benchrmamparing CSP.NET to other
libraries and paradigms would also be a good idea.

We hope that CSP.NET will introduce new programmers to the g&adigm and ad-
vocate CSP as the right choice for parallel and concurresgramming in Microsoft.NET.
The library will be available on the websitavw.cspdotnet.com

References

[1] Alastair R. Allen and Bernhard Sputh. JCSP-Poison: Safamination of CSP Process Networks. In
Communicating Process Architectures 2ppages 71-107. 10S Press, Amsterdam, Sept 2005.

[2] N.C.C. Brown. C++CSP Networked. In I.R. East, D. Duce, Gteen, J.M.R. Martin, and P.H. Welch,
editors,Communicating Process Architectures 20fdges 185-200. IOS Press, Amsterdam, 2004.

[3] N.C.C. Brown and P.H. Welch. An Introduction to the Kent€CSP Library. In J.F. Broenink and G.H.
Hilderink, editors,Communicating Process Architectures 20pages 139-156. I0S Press, Amsterdam,
2003.

[4] Communicating Sequential Processes for Java. wwveos.&c.uk/projects/ofaljcsp/.

[5] C. A. R. Hoare.Communicating sequential processBsentice-Hall, Inc., Upper Saddle River, NJ, USA,
1985.

[6] P.H.Welch, J.R.Aldous, and J.Foster. Csp networkingjdwa (jcsp.net). In P.M.A.Sloot, C.J.K.Tan,
J.J.Dongarra, and A.G.Hoekstra, editd€mputational Science - ICCS 2Q0&lume 2330 of_ecture
Notes in Computer Sciengeages 695-708. Springer-Verlag, April 2002.

[7] Nan C. Schaller, Gerald H. Hilderink, and Peter H. Weldbsing Java for Parallel Computing - JCSP
versus CTJ. In Peter H. Welch and Andre W. P. Bakkers, egi@mmunicating Process Architectures
200Q pages 205-226. 10S Press, Amsterdam, Sept 2000.

[8] Peter H. Welch and Brian Vinter. Cluster Computing anégPQNetworking. In James Pascoe, Roger
Loader, and Vaidy Sunderam, editoBymmunicating Process Architectures 20pages 203-222. 10S
Press, Amsterdam, Sept 2002.

[9] P.H. Welch and D.C. Wood. The Kent Retargetable occam (@ilem In Brian O’Neill, editor,Parallel
Processing Developments, Proceedings of WoTUGv&Rime 47 ofConcurrent Systems Engineering
pages 143-166, Amsterdam, The Netherlands, 1996. Workthoead Transputer User Group, 10S Press.
ISBN: 90-5199-261-0.

[10] Barry Wilkinson and Michael Allen.Parallel Programming: Techniques and Applications Usingt-N
worked Workstations and Parallel Computers (2nd Editidentice-Hall, Inc., Upper Saddle River, NJ,
USA, 2004.

A.A. Lehmberg and M.N. Olsen / An Introduction to CSP.NET

A. Monte Carlo Pi Source Code

A.l. Sequential Monte Carlo Pi

27

private static void Cal cMont eCarl oPi Seq()

{

double x, y, area;

int pi =0

int i;

Random r = new Randon();

for (i =0; i < Max; i++4)

X
y

r. Next Double() * 2.0 — 1.0;
r. Next Double() * 2.0 — 1.0;

if ((x * x +y xy) <1)
pi ++;

area = 4.0 x (double)pi / (double)Max;
Consol e. Wi teLine("Seq_Area: _pi/ Max_." + pi + "/" +
Max + "_=_" + area);

Listing 7. Sequential Monte Carlo Pi

A.2. Parallel Monte Carlo Pi

public class Wrker : |CSProcess
{

long iters;

int pi;

Random r;

Barrier ba;

public Worker(long iterNum int seed)

{

iters = iterNum

pi = 0;

r = new Randon(seed);
}

public Worker(long iterNum int seed, Barrier b)

{

iters = iterNum
pi = 0;
r = new Randon(seed);
ba = b;
}
public int getPl()
{
return pi;
}
public void Run()
doubl e x, vy;
if(ba !'=null)
ba. Sync();
for (int i =0; i <iters; i++)
X = r.NextDouble() * 2.0 — 1.0;
y = r.NextDouble() x 2.0 — 1.0;

28 A.A. Lehmberg and M.N. Olsen / An Introduction to CSP.NET

if ((x * x +y xy) <1)
pi ++;
}

private static void Cal cMonteCarl oPi Par(int num

{

Worker[] processes = new Worker[nun;

for (int i =0; i < num i++)
processes[i] = new Worker(Max / num 115 + i % 10);

new Paral | el (processes). Run();

int pi = 0;
for (int i =0; i < num i++)
pi += processes[i].getPl();

doubl e area = 4.0 x (double)pi / (double)Max;
Consol e. Wi teLine("Par _Area: _pi / Max_." + pi + "/" +
Max + "_=_" + area);

Listing 8. Parallel Monte Carlo Pi

A.3. Distributed Monte Carlo Pi — Server

[Serializabl e]
public class DistControl : |CSProcess

{

int nunThreads, pi;
I ong iterNunPer Wor ker;
string channel Nane;

public DistControl (string name, int threads, |ong iterPerWrker)

nuniThr eads = t hr eads;
i ter NunmPer Wor ker = iterPerWrker;
channel Name = nane;

}
public void Run()

Worker[] processes = new Wor ker[nunThr eads] ;

for (int i =0; i < nunThreads; i++)
processes[i] = new Worker (iterNunmPerWorker, 1763 + i x 10);

new Paral | el (processes). Run();

for (int i =0; i < nunThreads; i++)
pi += processes[i].getPl();

| Channel Qut<i nt> resul t Channel =
Fact ory. Get One2OneQut <i nt >(channel Nane) ;
resul t Channel . Wite(pi);

}

public class Local Di stControl : |CSProcess
{

string resultChannel;

i nt nunThreads, pi;

I ong iterNunPer Worker;

Barrier ba;

A.A. Lehmberg and M.N. Olsen / An Introduction to CSP.NET

public Local DistControl (string nane, int threads, long iter, Barrier b)

{
resul t Channel = nane;
nunirhr eads = t hr eads;
i ter NunPer Wrker = iter;
ba = b;
}
public void Run()
{
I Channel Qut <l CSProcess> work =
Fact ory. Get One2OneQut <l CSPr ocess>("wor kchannel ") ;
Di st Control dc = new Di st Control (resultChannel,
nunThr eads, iterNunPer\Wrker);
wor k. Wite(dc);
ba. Sync();
| Channel I n<i nt> result = Factory. Get One20nel n<i nt >(resul t Channel) ;
pi = result.Read();
}
public int getPl()
{
return pi;
}

}

private static void Cal cMonteCarl oPi Di st(int num ocal, int nundist)
{

Worker[] processes = new Worker[num ocal];

Barrier b = new Barrier(numocal + 1);

long |l ocal Wrk = Max [/ 2;
for (int i =0; i < numocal; i++)
processes[i] = new Worker(local Wrk / num ocal, 115 + i * 10, b);

Parallel p = new Parallel();
long iterPerWrker = (Max—l ocal Wor k) / nundi st ;

Local Di st Control dc = new Local Di st Control ("resul tChannel 5", nundi st,

i t er Per Wr ker, b);
p. AddProcess(dc);
p. AddPr ocess(processes);

p. Run();

int pi = 0;

for (int i =0; i < numocal; i++)
pi += processes[i].getPl();

pi += dc.getPl();

doubl e area = 4.0 x (double)pi / (double)Max;
Consol e. WiteLine("Di stPar _Area: _pi /Max." + pi + "/" + Max +
"_=_" + area);

29

Listing 9. Distributed Monte Carlo Pi — server side

A.4. Distributed Monte Carlo Pi — Client

public class runTest : |CSProcess

{

string channel Nane;

public runTest(string nane)

{
}

channel Name = nane;

30

A.A. Lehmberg and M.N. Olsen / An Introduction to CSP.NET

public void Run()

{
| Channel | n<l CSProcess> work =
Fact ory. Get One2Onel n<l CSPr ocess>(channel Nane) ;
| CSProcess p = work. Read();
p. Run();
Consol e. Wit eLi ne("Wrk._done");
}
}
public class Program
{
static void Main(string[] args)
{
CspManager. I ni t ("9097", "9090","192.0.0.1","192.0.0.2");
Consol e. WiteLine("after.lnit");
new Paral |l el (new | CSProcess[] { new runTest ("workchannel ") }). Run();
Consol e. ReadKey() ;
}
}

Listing 10. Distributed Monte Carlo Pi — client side

