
Communicating Process Architectures 2006
Peter Welch, Jon Kerridge, and Fred Barnes (Eds.)
IOS Press, 2006
c© 2006 The authors. All rights reserved.

13

An Introduction to CSP.NET

Alex A. LEHMBERG and Martin N. OLSEN

Department of Computer Science, University of Copenhagen,
Universitetsparken 1, 2100, Copenhagen, Denmark.

{alex , nebelong} @diku.dk

Abstract. This paper reports on CSP.NET, developed over the last threemonths at
the University of Copenhagen. CSP.NET is an object orientedCSP library designed
to ease concurrent and distributed programming in Microsoft.NET 2.0. The library
supports both shared memory multiprocessor systems and distributed-memory multi-
computers and aims towards making the architecture transparent to the programmer.
CSP.NET exploits the power of .NET Remoting to provide the distributed capabili-
ties and like JCSP, CSP.NET relies exclusively on operatingsystem threads. A Name
Server and a workerpool are included in the library, both implemented as Windows
Services. This paper presents CSP.NET from a users perspective and provides a tuto-
rial along with some implementation details and performance tests.

Keywords. CSP library, Microsoft.NET, CSP.NET

Introduction

In as little as one year from now it will be very hard to get holdof computers with only one
core. In order to increase performance significantly in future generation microprocessors all
major manufacturers are taking the road of multiple cores ona chip, and multiple chips in a
machine. These multi-chip multi-core machines will probably not run at much higher clock
speeds than current machines, meaning that programs will have to use multiple threads of
execution for any significant performance improvements to materialise.

As any skilled programmer will testify writing large error free concurrent programs in
any mainstream programming language is extremely difficultat best. Threads, and various
locks and synchronisation mechanisms, are the common constructs used to achieve concur-
rency, but they are all low level constructs unable to express the complex interactions in
concurrent programs in a simple and secure manner.

Communicating Sequential Processes (CSP) [5] as a programming model builds on the
CSP algebra and provides a series of higher level constructsthat solves many of the prob-
lems inherent in traditional thread programming. CSP makesit easy to distinguish between
deterministic and nondeterministic parts of concurrent programs, and makes synchronisation
and concurrent execution relatively simple.

occam [9] is a language inspired by CSP, but CSP-like libraries for more widespread lan-
guages also exist. They include JCSP [4], JCSP.NET [6], CTJ [7], C++CSP [3] and C++CSP
Networked [2]. This paper describes a new CSP library developed as a graduate student
project at the University of Copenhagen under the supervision of Brian Vinter. The back-
ground was a graduate course in practical CSP programming taught during the spring of
2006.

CSP.NET is written for the Microsoft .NET platform, which inprinciple makes CSP
available to programmers using any CLS-compliant language. CSP.NET is designed to run
equally well on shared memory multiprocessor systems and distributed memory architec-

14 A.A. Lehmberg and M.N. Olsen / An Introduction to CSP.NET

tures. It is designed to abstract away the underlying systemand provides distributed versions
of most of the implemented CSP operators. It is based on version 2.0 of the .NET framework
and thus supports generics throughout. Remoting - the .NET equivalent of Java RMI - is used
to provide the distributed capabilities of CSP.NET.

This paper describes CSP.NET from a users perspective and provides some insight into
the implementation. Section 1 is a brief overview of the different elements in CSP.NET. Sec-
tion 2 is a tutorial that demonstrates the use of CSP.NET through a series of examples. Sec-
tion 3 provides some technical insight into the implementation of CSP.NET and finally sec-
tion 4 demonstrates a CSP.NET implementation of the MonteCarlo Pi algorithm along with
some interesting performance figures. Readers are assumed to have knowledge of program-
ming and CSP.

CSP.NET can be downloaded fromwww.cspdotnet.comand we must stress that cur-
rently, not all features have been thoroughly tested. Thus the state of the program can best
be described as a work in progress - we did say that thread programming was hard - and
feedback is most welcome.

1. Library Details

CSP.NET is an object oriented implementation of CSP, designed to simplify concurrent and
parallel programming on a Microsoft.NET 2.0 platform.

The API of CSP.NET is inspired by JCSP.NET, but the implementation is completely
original. CSP.NET offers constructs likebarrier, bucket and parallel but in contrast to
JCSP.NET, CSP.NET provides both local and distributed implementations of these constructs.
Furthermore the distributed channel ends and timers of CSP.NET differs from their counter-
parts in JCSP.NET. Every method in CSP.NET has been separately tested and the authors
have used the library in several minor applications.

The entire documentation of CSP.NET is available atwww.cspdotnet.comand this sec-
tion gives a brief introduction to the main constructs in thelibrary.

1.1. Processes

The object oriented approach implies that every CSP construct is implemented as a class in
CSP.NET and hence a new process is constructed by creating a class that implements the
ICSProcessinterface.

Processes may be executed in parallel by using an instance oftheParallel class. Since
all processes in a given instance ofParallel are executed locally, true parallelism will only
occur on a multiprocessor machine. Otherwise the processeswill be interleaved.

To ease distributed programming, CSP.NET provides a distributed Parallel class similar
to the standardParallelclass, butDistParallelseeks to execute processes on remote machines
by utilising the CSP.NET workerpools, see section 3.5.

1.2. Channels

So far we have discussed how to define and run several different processes, each containing
sequential code, but as the name CSP implies processes must be able to interact. Interaction
or process communication is managed by channels, which makes them a central part of any
CSP implementation.

CSP.NET provides four distinct channels -One2One, Any2One, One2AnyandAny2Any.
These are all well known rendezvous channels that may be extended with buffers. The library
comes with two predefined buffers and additional buffers canbe defined by implementing
theIBuffer interface. The available buffers are the standard FIFO buffer and an infinite buffer
which, in theory, is able to hold an infinite number of elements.

A.A. Lehmberg and M.N. Olsen / An Introduction to CSP.NET 15

1.2.1. Anonymous and Named Channels

CSP.NET channels are either anonymous or named. Named channels are by default dis-
tributed but can be declared as local while anonymous channels are always local. Distributed
channel ends allow communication between processes residing on different machines or in
different application domains on the same machine. Local channels only allow communi-
cation between processes in the same application domain. Distributed channel ends may be
used for local communication but local channels are preferable due to their more efficient
implementation, see section 3.2.

We have chosen not to implement a namedAny2Anychannel, but an anonymous
Any2Anychannel is available - see section 3.1.

1.2.2. Name Server

To use distributed channel ends a Name Server must be available on the network. The Name
Server distinguishes channels by name, thus every named channel must have a unique name.
Violations of this rule are not necessarily recognised by the Name Server but may result in
erroneous programs.

The Name Server is provided as both a standard console application and as a Windows
Service. The console version is configured though the command line while the service uses
an XML configuration file.

1.2.3. Channel Communication

Channels in CSP.NET are generic and may be of any serializable data type, thus making
it possible to send almost everything through a channel. Butcaution must be exercised -
CSP.NET channels don’t necessarily copy the data like the CSP-paradigm demands.

Distributed channels are call-by-value while local channels are call-by-reference. This is
a tradeoff between safety and efficiency and, if preferred, copies can be made before sending
data through a local channel.

1.3. Alternative

Alternatives permit the programmer to choose between multiple events - in CSP.NET known
as guards. Four types of guards are available in CSP.NET -One2Onechannel,Any2One
channel,CSTimerandSkip. Skips are always ready, timers are ready whenever a timeout
occurs and the channels are ready if they contain data. The channels may be distributed
channels residing on remote machines, while the timers and skips must be local.

To choose between ready guardsAlternativeprovides two methods -PriSelectandFairS-
elect. The former always selects the guard with the highest priority while the latter guaranties
a fair selection, meaning that every ready guard will be selected withinn calls toFairSe-
lect, wheren is the number of ready guards. Like JCSP, C++CSP and KRoC,FairSelectin
CSP.NET delivers unit time for each choice, regardless of the number of guards, provided
that at least one guard is always pending. In CSP.NET the sameapplies toPriSelect.

1.4. Barriers and Buckets

CSP.NET providesbarriersandbucketsto synchronise multiple processes. Any process syn-
chronising on abarrier will be blocked until all processes enrolled on thebarrier has called
theSync-method and any process falling into abucketwill be blocked until another process
call thebucket’s Flush-method.

Barriersandbucketsare either anonymous or named and just like channels, anonymous
barriers andbucketsare local while namedbarriers andbucketscan be local or distributed.
Distributedbarriersandbucketsuse the Name Server, meaning that every namedbarrier and
bucketmust have a unique name.

16 A.A. Lehmberg and M.N. Olsen / An Introduction to CSP.NET

1.5. Workerpool Service

CSP.NET includes a workerpool Service along with the standard library. It’s a Windows Ser-
vice capable of running on any Microsoft.NET 2.0 platform. Once installed every CSP.NET
program can use the service, by using theDistParallel class, which may be convenient, e.g.
in grid-like programming.

The workerpool service needs information about port numbers, IP addresses etc. and to
that end an XML configuration file is supplied. The configuration file is read each time the
service is started.

2. Tutorial

This section demonstrates how to write some fairly simple programs using the CSP.NET
library. We will start by implementing a workerpool and thenmove on to demonstrate the use
of alternatives and distributed parallels in CSP.NET.

2.1. Workerpool

Our First CSP.NET program shows how to implement a workerpool. Note that the workerpool
in this example has no relation to the workerpool Service provided by CSP.NET.

Figure 1. Workerpool structure

Figure 1 illustrates that we need a workerpool process connected to some worker pro-
cesses through anOne2Anychannel and we also need anAny2Onechannel connecting the
workerpool to the outside world. Translating the figure intoa CSP.NET program is very easy.
All we need is a workerpool process, some workers and of course a main method.

2.1.1. Workerpool Process

The workerpool process is shown in listing 1.
The implementation demonstrates process creation, channel connection/creation and

channel communication in CSP.NET. Defining a process is verysimple, just implement the
Run-method on theICSProcessinterface.

A.A. Lehmberg and M.N. Olsen / An Introduction to CSP.NET 17

class WorkerPool : ICSProcess
{

private IChannelIn<ICSProcess> listenChannel;
private IChannelOut<ICSProcess> workers;

public WorkerPool(IChannelOut<ICSProcess> workerChannel)
{

workers = workerChannel;
}

public void Run()
{

listenChannel = Factory.GetAny2OneIn<ICSProcess>("WorkerPool");

while (true)
{

ICSProcess p = listenChannel.Read();
workers.Write(p);

}
}

}

Listing 1. Workerpool process code

The first thing to notice about the channels in theWorkerPoolclass is that they are de-
clared asIChannelInandIChannelOutchannels. All CSP.NET channels implement these in-
terfaces and hence theWorkerPoolconstructor will accept any of the four available channels.
This is the standard way to declare channels in CSP.NET.

Connecting to a channel or creating a channel is often done through the staticFactory
class like thelistenchannelin listing 1. In this particular case a namedAny2Onechannel is
created but theFactoryclass includes get-methods for every available channel.

Creating named channels involves two steps - creating the channel object, and connect-
ing to the channel object. As explained in section 3.1 the channel is always created on the
One-end of channels. That means that anAny2Onechannel is created by the reader and an
One2Anychannel is created by the writer. TheOne2Onechannel has twoOne-ends and is,
by definition, created by the writer. The other end of the channel simply has to connect to the
channel object. If it tries to connect to a channel before it has been created the process will
block until the channel object is created by another process. To avoid deadlock when creating
and connecting to named channels, it is recommended only to create named channels in the
run-method of CSP processes.

Another notable point in listing 1 is the channel communication. TheWrite-method is
used for writing data to a channel and theRead-method is used for reading data from a
channel. Every channel in CSP.NET has aWrite- and aRead-method.

2.1.2. Workers

With the workerpool process in place we move on to the implementation of the workers,
which is shown in listing 2. TheWorkerprocess is similar to theWorkerpoolprocess and this
is the typical appearance of processes in CSP.NET.

A Workersimply reads a process from a channel before executing it by calling it’s Run-
method. The process will run in theWorker’s thread of execution and no new processes will
be accepted until the current process is done.

2.1.3. Main Method

The only thing left is our main program shown in listing 3.
The Init-method informs CSP.NET about the location of the Name Server(port number

and IP-address) and registers the port number and IP-address of the current program. The

18 A.A. Lehmberg and M.N. Olsen / An Introduction to CSP.NET

class Worker : ICSProcess
{

private IChannelIn<ICSProcess> processes;
private ICSProcess process;

public Worker(IChannelIn<ICSProcess> listenChannel)
{

processes = listenChannel;
}

public void Run()
{

while (true)
{

process = processes.Read();
process.Run();

}
}

}

Listing 2. Worker process code

class Program
{

static void Main(string[] args)
{

CspManager.Init("9091","9090");
One2AnyChannel<ICSProcess> chan = new One2AnyChannel<ICSProcess>();

Worker[] workers = new Worker[3];
for (int i = 0; i < 3; i++)

workers[i] = new Worker(chan);

WorkerPool workerPool = new WorkerPool(chan);

new Parallel(new ICSProcess[]{workers[0], workers[1], workers[2],
workerPool}).Run();

}
}

Listing 3. Main program code

Init-method must be called in the beginning of every CSP.NET program. In this case the
Name Server is running on the local machine and we only have tosupply the port numbers.

As opposed to theWorkerpoolprocess that created a named channel the main program
creates an anonymous channel. It’s possible to create anonymous channels through theFac-
tory class but normal instantiation is often used instead.

To get our workerpool running we simply instantiate the workerpool process and the
worker processes in listing 1 and 2 before using theParallel class to run them in parallel.
Note that theParallel class doesn’t run processes on remote machines, but only locally.

2.2. Alternative and Distributed Parallel

Our second CSP.NET program demonstrates theAlternativeclass and theDistParallelclass.
It contains twoAddIntegersprocesses that repeatedly add a sequence of numbers and return
the result, and anAltReaderprocess that reads and process the results. The processes are
shown in listing 4 and 5.

Again we notice the familiar pattern of a CSP.NET process andwe notice theserializ-
able attribute used to make a class serializable. This is necessary in order to distribute the
processes to remote machines.

A.A. Lehmberg and M.N. Olsen / An Introduction to CSP.NET 19

[Serializable]
class AddIntegers : ICSProcess
{

private int number;
private string channelName;

public AddIntegers(int num, string name)
{

number = num;
channelName = name;

}

public void Run()
{

IChannelOut<int> result = Factory.GetOne2OneOut<int>(channelName);

for(int j = 0; j < 100; j++)
{

int res = 0;
for (int i = 1; i < number; i++)

res += i;

result.Write(res);
}

}
}

Listing 4. AddIntegers process code

Listing 5 demonstrates the use of theAlternativeclass described in section 1.3. Notice
the presence of theCSTimer, causing the program to terminate if new data isn’t available
within one second.

The main program, shown in listing 6, is trivial.DistParalleldistributes the processes to
available remote machines running the CSP.NET workerpool Service. Like therun-method
in Parallel, DistParallel’s run-method blocks until all processes has been executed once.

It’s appropriate to use theDistParallel in a lot of applications, but there is of course a
number of problems where automatic distribution of the processes aren’t appropriate, e.g.
peer two peer applications. CSP.NET includes theDistParallelclass to be used when appro-
priate.

2.3. Transparency

As pointed out earlier one of the main objectives in CSP.NET is to keep the architecture
transparent to the programmer and the last example program exhibits this transparency. The
programmer doesn’t have to pay any attention to the architecture because theDistParallel
class will utilise remote workers if they are available, andotherwise create and use local
workers.

3. Implementation Details

3.1. Distributed Applications and .NET Remoting

In CSP.NET distributed applications are not only applications residing on different machines
and communicating through the network. They can also be applications that consist of mul-
tiple communicating programs on a single machine, or they can be a combination of the two.
Regardless of the number of machines and programs involved,all communication between
distributed applications is done through .NET remoting.

20 A.A. Lehmberg and M.N. Olsen / An Introduction to CSP.NET

[Serializable]
class AltReader : ICSProcess
{

public void Run()
{

AltingChannelIn<int> plus = Factory.GetOne2OneIn<int>("plus");
AltingChannelIn<int> minus = Factory.GetOne2OneIn<int>("minus");

CSTimer timer = new CSTimer();
Alternative alt = new Alternative(new Guard[] { plus, minus,

timer });
int result = 0;
bool done = false;
while (!done)
{

timer.RelativeTimeOut(1000);
switch (alt.FairSelect())
{

case 0:
result += plus.Read();
break;

case 1:
result −= minus.Read();
break;

case 2:
done = true;
break;

}
}

}
}

Listing 5. AltReader process code

class AltProgram
{

static void Main(string[] args)
{

CspManager.Init("9092", "9090", "192.0.0.1","192.0.0.2");

new DistParallel(new ICSProcess[]{new AltReader(),
new AddIntegers(100, "plus"),
new AddIntegers(100, "minus")

}).Run();
}

}

Listing 6. Distributed-parallel program code

Remoting is a simple way for programs running in one process to make objects accessi-
ble to programs in other processes, whether they reside on the same machine or on another
machine on the network. Remoting is similar to Java RMI and isvery easy to customise and
extend. That is exactly what is done in CSP.NET in order to facilitate code transfer between
machines. The structure of the remoting system in CSP.NET isshown in figure 2. In the
CSP.NET case the formatter sink is a binary formatter that serializes all messages into a rel-
atively compact binary format for efficient transport across the wire. The transport sink uses
a simple TCP-channel which is fast and reliable.

Given the flexibility of Remoting it would be trivial to replace the Binary formatter with
a SOAP formatter or the Transport sink with a HTTP channel. The CSP.NET sink and the
CSP.NET proxy are discussed in section 3.3. All constructs in CSP.NET, that are in some way
distributed, uses remoting behind the scenes. That goes fornamed channels likeOne2One,

A.A. Lehmberg and M.N. Olsen / An Introduction to CSP.NET 21

Network

Process 1 Process 2

Client object

Server object

Formatter sink

Transport sink

CSP.NET proxy

CSP.NET sink

Transport sink

Formatter sink

Figure 2. The remoting system structure in CSP.NET

Any2OneandOne2Anyas well as for the named versions ofBarrier andBucket. With regard
to the channels the real object - the server object - is alwaysplaced on theOne-end and the
proxies are created on theAny-ends. That means that processes on theAny-end can go out of
scope without problems, as they only contain a proxy and not the real object. Only when the
”One” end goes out of scope does the channel cease to function. On channels where noOne-
end exists it is impossible to know where best to put the real object and the user runs the risk
of breaking the channel every time a process using the channel goes out of scope. It’s possible
to implement anAny2Anychannel through a combination of anAny2Onechannel and an
One2Anychannel but the performance of such a channel would not be on par with the other
channels in CSP.NET. That is the reason no namedAny2AnyChannel exists in CSP.NET.

While remoting has many advantages it is probably not as efficient as a tailor-made so-
lution. In order to minimise the performance overhead we have chosen the fastest combina-
tion of formatter sink and transport sink. To further make sure that optimal speed is obtained
wherever possible, CSP.NET offers a few mechanisms that optimise named constructs that
do not cross process boundaries - see section 3.2.

3.2. Standalone Applications

When programming applications that are designed to run on more than one processor or ma-
chine, it is often impossible to know the exact runtime environment in advance. If a program
is designed never to be run on multiple machines or communicate over the network there is
no need to use named channels, barriers or buckets.

If it is uncertain whether the application will run on one or more machines it is wise
to take that fact into consideration when designing the application. That would typically be
done by using processes communicating through named channels and using named barriers
and buckets in the parts of the program most likely to be run onseparate machines. Alterna-
tively it could mean using workerpools to offload heavy computations to other machines if
present. Under normal circumstances that would mean poorerperformance given the over-
head incurred by the use of Remoting.

To ensure that all applications that use named constructs and workerpools run at opti-
mum speed CSP.NET features a method calledCspManager.InitStandAlone

By callingCspManager.InitStandAloneat the beginning of a program you tell CSP.NET
that the application does not share named CSP.NET constructs with other applications. Nor
will there be any remote workerpools available at runtime, and local workerpools will be
used instead. That means that neither a stand-alone Name Server nor the use of Remoting is
necessary, which results in maximum performance.CspManager.InitStandAloneis particu-
larly useful when the program is designed for both distributed and non-distributed environ-
ments. In the non-distributed case the use ofCspManager.InitStandAlonewill yield the same
performance as if the application had been written specifically for a single machine.

22 A.A. Lehmberg and M.N. Olsen / An Introduction to CSP.NET

In distributed applications whereCspManager.Initis called at the beginning of the pro-
gram all named CSP.NET constructs are by default distributed. That means that they are cre-
ated through the use of the stand-alone Name Server and communicate through Remoting.
There might be situations, even in distributed applications, in which local named CSP.NET
constructs are desirable. To accommodate such needs all named CSP.NET constructs can be
created with a parameter specifying that they should bypassremoting and the Name Server
Service.

3.3. Remote Code Transfer

The distributed nature of CSP.NET means that it is possible for a program on one machine
to send an object over a distributed channel for another machine to use. If the object is an
instance of an ordinary class any program that sends or receives that object would need the
correct assembly, in order to compile. It is another matter if the channel is defined to transport
objects implementing a specific interface and the programs on either side only invokes meth-
ods that are defined on that interface. Only the interface needs to be known for the program
to compile - that would be the case with a channel transporting CSP processes implementing
the ICSProcessinterface. Even though the program may compile it will certainly throw an
exception when run if the code that implements the interfaceis missing.

We want CSP.NET to handle exceptions thrown because of missing assemblies without
the user noticing that anything is amiss. One way to solve theproblem would be to continu-
ously monitor objects sent through named channels. If the code for the object was unavailable
on the other end of the channel the missing code would be sent over the channel prior to the
actual object. Another possibility would be to always send the relevant code along with the
object. The first option would mean a lot of unnecessary communication over the network
and the second would mean sending a lot of redundant code.

To avoid chatty interfaces and redundant code transfers CSP.NET employs the flexibility
of the Remoting system to deal with missing assembly files. Asillustrated in figure 2 a
custom proxy and a custom sink are inserted into the Remotingsystem on the client side. Any
exception thrown because of missing code is caught in eitherthe proxy or the sink. When
that happens a recursive check is made of the missing assembly and any other referenced
assemblies. All the missing assemblies are then copied to the machine on which they are
needed. They are placed in a special location that CSP.NET always checks when looking for
assemblies.

3.4. ThreadPool

At the heart of any implementation of CSP lies the managementof the threads used when a
set of CSP Processes are run in theParallel construct. How the thread management is im-
plemented depends on various considerations: how many threads do we want running con-
currently, how transparent should the thread management beand what limitations do the OS
impose on the use of threads.

The design of the thread management system in CSP.NET is verymuch dictated by the
fact that it is meant to be a native .NET implementation of CSP. Lightweight threads - in
Windows called fibers - are not available in the .NET API, which means that CSP.NET uses
real heavyweight OS threads.

As thread creation and destruction are relatively heavy operations, CSP.NET implements
a threadpool to manage busy and free threads. TheParallel class and theCSPThreadPool
class are closely connected, as the threadpool makes sure that all CSP processes run in a
Parallel are allocated a free thread. After a parallel run completes,all threads are returned
to the threadpool but they are not released, unless the programmer explicitly requests the
threadpool to do so. The principle of always freeing, but notreleasing, threads that are not

A.A. Lehmberg and M.N. Olsen / An Introduction to CSP.NET 23

currently executing means that a CSP.NET program will neveruse more threads than are
executing concurrently.

The default, and recommended, stack size of threads in .NET is 1 MB. That means
that programs with many CSP processes executing concurrently, requires lots of memory to
run, compared to sequential programs. In CSP.NET it is possible to manually control the
maximum stack size of new threads. That means that processesthat are known to be frugal
in their use of stack memory can be allocated less memory.

It would have been entirely possible to use the existing ThreadPool class in .NET but that
would have meant less flexibility. The .NET threadpool does not allow for the programmer to
specify neither maximum stack size nor thread priority, thus making it impossible to assign
individual priorities to individual threads. By managing our own threadpool none of those
limitations apply to CSP.NET.

3.5. Workerpool and Distributed Parallel

Workpools are often used in distributed applications to achieve load balancing and the work-
erpool1 in CSP.NET is very similar to a standard centralised workpool [10]. It’s implemented
as a Windows Service and once started the Service will register a listenchannel and the num-
ber of available workers on the Name Server. The Name Server is responsible for manag-
ing the workers and hence every process in need of a worker must contact the Name Server,
which is done implicitly through theDistParallelclass.

Whenever aDistParallelobject requests a worker from the Name Server a listenchannel,
connecting the object to a workerpool with free workers, is returned and the number of avail-
able workers on the specific workerpool is decremented. The worker itself will read and run
one ICSProcessbefore informing the Name Server that it is ready for new jobs/processes.
At the same time, the worker informs theDistParallel object that it is done, hence allow-
ing theRun-method to return when all processes have executed once. TheName Server will
increment the number of available workers for the given workerpool.

By keeping score of available workers we ensure that processes only connect to work-
erpools with free workers thereby avoiding starvation. Thedownside of this approach is that
we have to contact the Name Server in order to get free workersand we can only write one
process to each worker.

4. Tests

Even though we attempt to demonstrate the performance of some aspects of CSP.NET, this
section is by no means intended to be a thorough and comprehensive benchmark. No attempt
is made to compare CSP.NET to other paradigms and only one small comparison is made
with existing CSP libraries.

All single machine performance tests have been run on a machine containing: Pentium
4M 2 GHz processor, 512 MB ram, Windows XP SP2, .NET 2.0, Java 5.0. The distributed test
was run on the single machine setup plus a second machine containing: Pentium M 2GHz, 1
GB ram, Windows XP SP2 and .NET 2.0. The two machines were connected directly through
a 100 Mbps network.

4.1. Channel Performance

We have not done any extensive performance comparisons between CSP.NET and other im-
plementations of CSP like JCSP, C++ CSP and KRoC(occam). Mostly because the main fo-

1We are deliberately using the term workerpool instead of workpool, since it’s a pool of workers and not a
pool of work/tasks.

24 A.A. Lehmberg and M.N. Olsen / An Introduction to CSP.NET

cus has been ease of use and transparency rather than high performance, but also because
comparing the performance of CSP.NET to C++ CSP and KRoC is irrelevant given the differ-
ences in functionality, see section 3.4. Given the similarities of CSP.NET and JCSP we have
done one small test to illustrate the performance of the various channels. The test consist of
three processes.Process Asend an integer toProcess Bwhich reads the number and sends it
to Process Cwhich in turn reads the number and sends the number back toProcess A. That
means thatProcess Aonly sends another number when the previous one has passed through
all the processes in the loop.

Channel type JCSP(jre 5.0) CSP.NET(.NET 2.0)

One2One 16975 12488

Any2One 17165 17825

One2Any 16854 12257

Any2Any 17125 17524

Table 1. Comparing the performance of different anonymous channel types in JCSP and CSP.NET. All times
are in milliseconds.

Table 1 shows the results of the test. The numbers are in milliseconds and indicates the
time it takes to send 500,000 integers through the loop.

The measurements reveal some clear differences between JCSP and CSP.NET. For all
channels in JCSP the time is around 17 seconds, which is aboutthe same as theAny2Oneand
Any2Anychannels in CSP.NET. The two remaining channels,One2OneandOne2Any, are
somewhat faster in CSP.NET. It is impossible to tell if the differences in performance are due
to the implementation of CSP.NET and JCSP, or if they are caused by differences between
Java and .NET.

4.2. Performance Overhead

To measure the performance overhead incurred by using multiple threads on a uni-processor
machine we have run a series of tests based on the Monte Carlo Pi algorithm. Monte Carlo
Pi is well suited to measure performance overhead when goingfrom sequential execution
to concurrent execution because the algorithm can be divided into as many, almost indepen-
dent parts, as there are threads of execution. Thus in an ideal world, with zero time context
switches, the sequential and the parallel version should run equally fast, and the speedup
using multiple processors should be linear or better - taking the increased number of cache
hits into consideration. Listing 7 shows the sequential version and listing 8 shows the parallel
version.

We have run two different Monte Carlo Pi tests. The first one runs Monte Carlo Pi for
a fixed number of iterations, with varying numbers of threads- from 1 to 600. To fit 600
threads into memory we use a thread stack size of around 200 kilobytes. Table 2 shows the
rather surprising results.

The concurrent version is consistently marginally faster than the sequential version, that
runs in 112242 milliseconds, indicating that running a CSP.NET program with quite a number
of threads on an idle machine is quite feasible. We should addthat the machine is much more
responsive when running the sequential test, meaning that machines that has to do other work
than just computing Monte Carlo Pi might benefit from less threads being run.

It seems that the relatively long run time of the test programhides the overhead of thread
creation and context switching. To better illustrate that the sequential version of Monte Carlo
Pi is much faster at low iteration counts we have done a comparison shown in table 3. Here
both the sequential and the parallel version of Monte Carlo Pi have been run at varying
iteration counts. The parallel version has the number of threads fixed at 400 in all runs.

A.A. Lehmberg and M.N. Olsen / An Introduction to CSP.NET 25

Iterations Number of threads Par Time

1,200,000,000 1 109371

1,200,000,000 50 110121

1,200,000,000 100 109989

1,200,000,000 200 110092

1,200,000,000 300 110579

1,200,000,000 400 110889

1,200,000,000 600 111480

Table 2. Monte Carlo Pi with fixed number of iterations and variable number of threads. All times are in
milliseconds. Sequential time: 112242 milliseconds.

Iterations Par Time Seq Time

400 225 1

4000 224 1

40000 225 5

400000 262 42

4000000 595 378

40000000 3998 3798

400000000 37062 37258

Table 3. Parallel Monte Carlo Pi versus sequential Monte Carlo Pi at different iteration counts. Parallel version
fixed at 400 threads. All times are in milliseconds.

Looking at table 3 it is evident that the cost of creating the threads completely dominates
when the number of iterations is low. That makes perfect sense as creating one thread to do
one simple calculation is a complete waste of time. But the numbers also confirm the fact that
when the workload of each thread increases the overhead of thread creation will eventually
become almost invisible.

4.3. Distributed Performance

To illustrate the performance overhead of going distributed, we have extended our Monte
Carlo Pi test to run across two machines. The work is divided into two parts of equal size. One
part is sent to a second machine for processing and the other part computed locally. When
computation is done on the remote machine the data is sent back and used in the calculation
of Pi.

Table 4 shows the results of the distributed version compared to the sequential version
of Monte Carlo Pi. We varied the number of iterations while keeping a the number of threads
fixed at 10 on each machine.

Iterations Dist Time Seq Time

80 497 1

800 782 1

8000 563 2

80000 817 8

800000 953 53

8000000 1214 745

80000000 4279 7281

800000000 38619 73117

Table 4. Distributed Monte Carlo Pi with variable number of iterations. Each machine in the distributed test
uses 10 threads. All times are in milliseconds.

26 A.A. Lehmberg and M.N. Olsen / An Introduction to CSP.NET

It is not surprising that the sequential version of Monte Carlo Pi is vastly superior when
the number of iterations in each of the 20 processes is low. The overhead of remoting and
network communication clearly dominates at low iteration counts, but the time is still well
below one second. When the time exceeds a couple of seconds the distributed version comes
into its own and is much faster than the sequential version. Aspeedup of 2 is almost achieved
and even though the theoretical maximum speedup is unknown,the performance gain is
significant. We have included the code for the distributed Monte Carlo Pi in the appendix
to show an example of a distributed CSP.NET program that doesn’t use workerpools and
DistParallel. The program running on the server side is shown in listing 9 and the client
program is shown in listing 10.

5. Conclusions

CSP.NET is a new implementation of the CSP paradigm suitablefor both distributed-memory
multicomputers and shared memory multiprocessor systems.A lot of functionality is pro-
vided in the library but some work remain e.g. robust error handling.

Future developments include channel poisoning known from C++CSP [3] and JCSP [1],
user definable Name Servers and of course further work needs to done on the workerpool.
DistParallel could also be extended to provide exactly the same methods and functionality
as the normalParallel class, making the boundary between distributed applications and lo-
cal applications disappear completely. A thorough benchmark comparing CSP.NET to other
libraries and paradigms would also be a good idea.

We hope that CSP.NET will introduce new programmers to the CSP paradigm and ad-
vocate CSP as the right choice for parallel and concurrent programming in Microsoft.NET.
The library will be available on the websitewww.cspdotnet.com.

References

[1] Alastair R. Allen and Bernhard Sputh. JCSP-Poison: SafeTermination of CSP Process Networks. In
Communicating Process Architectures 2005, pages 71–107. IOS Press, Amsterdam, Sept 2005.

[2] N.C.C. Brown. C++CSP Networked. In I.R. East, D. Duce, M.Green, J.M.R. Martin, and P.H. Welch,
editors,Communicating Process Architectures 2004, pages 185–200. IOS Press, Amsterdam, 2004.

[3] N.C.C. Brown and P.H. Welch. An Introduction to the Kent C++CSP Library. In J.F. Broenink and G.H.
Hilderink, editors,Communicating Process Architectures 2003, pages 139–156. IOS Press, Amsterdam,
2003.

[4] Communicating Sequential Processes for Java. www.cs.kent.ac.uk/projects/ofa/jcsp/.
[5] C. A. R. Hoare.Communicating sequential processes. Prentice-Hall, Inc., Upper Saddle River, NJ, USA,

1985.
[6] P.H.Welch, J.R.Aldous, and J.Foster. Csp networking for java (jcsp.net). In P.M.A.Sloot, C.J.K.Tan,

J.J.Dongarra, and A.G.Hoekstra, editors,Computational Science - ICCS 2002, volume 2330 ofLecture
Notes in Computer Science, pages 695–708. Springer-Verlag, April 2002.

[7] Nan C. Schaller, Gerald H. Hilderink, and Peter H. Welch.Using Java for Parallel Computing - JCSP
versus CTJ. In Peter H. Welch and Andrè W. P. Bakkers, editors, Communicating Process Architectures
2000, pages 205–226. IOS Press, Amsterdam, Sept 2000.

[8] Peter H. Welch and Brian Vinter. Cluster Computing and JCSP Networking. In James Pascoe, Roger
Loader, and Vaidy Sunderam, editors,Communicating Process Architectures 2002, pages 203–222. IOS
Press, Amsterdam, Sept 2002.

[9] P.H. Welch and D.C. Wood. The Kent Retargetable occam Compiler. In Brian O’Neill, editor,Parallel
Processing Developments, Proceedings of WoTUG 19, volume 47 ofConcurrent Systems Engineering,
pages 143–166, Amsterdam, The Netherlands, 1996. World occam and Transputer User Group, IOS Press.
ISBN: 90-5199-261-0.

[10] Barry Wilkinson and Michael Allen.Parallel Programming: Techniques and Applications Using Net-
worked Workstations and Parallel Computers (2nd Edition). Prentice-Hall, Inc., Upper Saddle River, NJ,
USA, 2004.

A.A. Lehmberg and M.N. Olsen / An Introduction to CSP.NET 27

A. Monte Carlo Pi Source Code

A.1. Sequential Monte Carlo Pi

private static void CalcMonteCarloPiSeq()
{

double x, y, area;
int pi = 0;
int i;
Random r = new Random();

for (i = 0; i < Max; i++)
{

x = r.NextDouble() ∗ 2.0 − 1.0;
y = r.NextDouble() ∗ 2.0 − 1.0;

if ((x ∗ x + y ∗ y) < 1)
pi++;

}
area = 4.0 ∗ (double)pi / (double)Max;
Console.WriteLine("Seq Area: pi/Max " + pi + "/" +

Max + " = " + area);
}

Listing 7. Sequential Monte Carlo Pi

A.2. Parallel Monte Carlo Pi

public class Worker : ICSProcess
{

long iters;
int pi;
Random r;
Barrier ba;

public Worker(long iterNum, int seed)
{

iters = iterNum;
pi = 0;
r = new Random(seed);

}

public Worker(long iterNum, int seed, Barrier b)
{

iters = iterNum;
pi = 0;
r = new Random(seed);
ba = b;

}

public int getPI()
{

return pi;
}

public void Run()
{

double x, y;
if(ba != null)

ba.Sync();

for (int i = 0; i < iters; i++)
{

x = r.NextDouble() ∗ 2.0 − 1.0;
y = r.NextDouble() ∗ 2.0 − 1.0;

28 A.A. Lehmberg and M.N. Olsen / An Introduction to CSP.NET

if ((x ∗ x + y ∗ y) < 1)
pi++;

}
}

}

private static void CalcMonteCarloPiPar(int num)
{

Worker[] processes = new Worker[num];

for (int i = 0; i < num; i++)
processes[i] = new Worker(Max / num, 115 + i ∗ 10);

new Parallel(processes).Run();

int pi = 0;
for (int i = 0; i < num; i++)

pi += processes[i].getPI();

double area = 4.0 ∗ (double)pi / (double)Max;
Console.WriteLine("Par Area: pi/Max " + pi + "/" +

Max + " = " + area);
}

Listing 8. Parallel Monte Carlo Pi

A.3. Distributed Monte Carlo Pi – Server

[Serializable]
public class DistControl : ICSProcess
{

int numThreads, pi;
long iterNumPerWorker;
string channelName;

public DistControl(string name, int threads, long iterPerWorker)
{

numThreads = threads;
iterNumPerWorker = iterPerWorker;
channelName = name;

}

public void Run()
{

Worker[] processes = new Worker[numThreads];

for (int i = 0; i < numThreads; i++)
processes[i] = new Worker(iterNumPerWorker, 1763 + i ∗ 10);

new Parallel(processes).Run();

for (int i = 0; i < numThreads; i++)
pi += processes[i].getPI();

IChannelOut<int> resultChannel =
Factory.GetOne2OneOut<int>(channelName);

resultChannel.Write(pi);
}

}

public class LocalDistControl : ICSProcess
{

string resultChannel;
int numThreads, pi;
long iterNumPerWorker;
Barrier ba;

A.A. Lehmberg and M.N. Olsen / An Introduction to CSP.NET 29

public LocalDistControl(string name, int threads, long iter, Barrier b)
{

resultChannel = name;
numThreads = threads;
iterNumPerWorker = iter;
ba = b;

}

public void Run()
{

IChannelOut<ICSProcess> work =
Factory.GetOne2OneOut<ICSProcess>("workchannel");

DistControl dc = new DistControl(resultChannel,
numThreads, iterNumPerWorker);

work.Write(dc);
ba.Sync();
IChannelIn<int> result = Factory.GetOne2OneIn<int>(resultChannel);
pi = result.Read();

}

public int getPI()
{

return pi;
}

}

private static void CalcMonteCarloPiDist(int numlocal, int numdist)
{

Worker[] processes = new Worker[numlocal];
Barrier b = new Barrier(numlocal + 1);

long localWork = Max / 2;
for (int i = 0; i < numlocal; i++)

processes[i] = new Worker(localWork / numlocal,115 + i ∗ 10,b);

Parallel p = new Parallel();
long iterPerWorker = (Max−localWork)/numdist;
LocalDistControl dc = new LocalDistControl("resultChannel5", numdist,

iterPerWorker,b);
p.AddProcess(dc);
p.AddProcess(processes);

p.Run();

int pi = 0;
for (int i = 0; i < numlocal; i++)

pi += processes[i].getPI();
pi += dc.getPI();

double area = 4.0 ∗ (double)pi / (double)Max;
Console.WriteLine("DistPar Area: pi/Max " + pi + "/" + Max +

" = " + area);
}

Listing 9. Distributed Monte Carlo Pi – server side

A.4. Distributed Monte Carlo Pi – Client

public class runTest : ICSProcess
{

string channelName;

public runTest(string name)
{

channelName = name;
}

30 A.A. Lehmberg and M.N. Olsen / An Introduction to CSP.NET

public void Run()
{

IChannelIn<ICSProcess> work =
Factory.GetOne2OneIn<ICSProcess>(channelName);

ICSProcess p = work.Read();
p.Run();
Console.WriteLine("Work done");

}
}

public class Program
{

static void Main(string[] args)
{

CspManager.Init("9097", "9090","192.0.0.1","192.0.0.2");
Console.WriteLine("after Init");
new Parallel(new ICSProcess[] { new runTest("workchannel")}).Run();
Console.ReadKey();

}
}

Listing 10. Distributed Monte Carlo Pi – client side

