
Communicating Process Architectures 2007
Alistair A. McEwan, Steve Schneider, Wilson Ifill, and Peter Welch
IOS Press, 2007
c© 2007 The authors and IOS Press. All rights reserved.

109

Concurrent/Reactive System Design
with Honeysuckle

Ian EAST

Dept. for Computing, Oxford Brookes University, Oxford OX33 1HX, England

ireast@brookes.ac.uk

Abstract. Honeysuckle is a language in which to describe systems withprioritized
service architecture(PSA), whereby processes communicate values and (mobile) ob-
jects deadlock-free under client-server protocol. A novel syntax for the description of
service (rather than process) composition is presented and the relation to implemen-
tation discussed. In particular, the proper separation of design and implementation
becomes possible, allowing independent abstraction and verification.

Keywords.Client-server protocol, compositionality, component-based software devel-
opment, deadlock-freedom, programming language, correctness-by-design.

Introduction

Honeysuckle [1] is intended as a tool for the development of systems that are both concurrent
and reactive (event-driven). Formal design rules govern the interconnection of components
and remove the possibility of deadlock [2,3].

A model for abstraction is provided that is derived fromcommunicating process archi-
tecture(CPA) [4]. Processes encapsulate information and communicate with each other syn-
chronously. In place of theoccam channel, processes send values or transfer objects to each
other according to aservice(“client/server” or “master-servant”) protocol. Whereas a chan-
nel merely prescribes data type and orientation of data flow for a single communication, a
service governs a series of communications and the order in which they can occur. It therefore
provides for a much richer component interface [5].

In addition to describing service architecture, Honeysuckle also provides for the ex-
pression of reactive systems. Aprioritized alternationconstruct [6] affords pre-emption of
one process by another, allowing multiple services to interleave, while retaininga priori
deadlock-freedom [3]. This allows the expression of systems withprioritised service archi-
tecture(PSA). One additional benefit of including alternation is that it overcomes the limita-
tion of straightforward service architecture to hierarchical structure.

Honeysuckle also addresses certain short-comings ofoccam. It is possible to securely
transfer objects between processes, rather than just copy values1. Provision is included for
the expression of abstract data types (ADTs), and project-, as well as system-, modularity.
Definitions of processes, services, and object classes, related by application, can be gathered
together in acollection.

Previous papers have been concerned with the programming language and its formal
foundation. This one is about Honeysuckle’s support for proper engineering practice; in par-
ticular, how aPSAdesignmay be expressed (and verified), independent of, but binding upon,
any implementation. It is simple, yet powerful.

1Mobility has also been added inoccam-π [7].



110 I. R. East / Concurrent/reactive system design with Honeysuckle

1. The Problem of Engineering Software

1.1. Engineering in General

In general, the term ‘engineering’ has come to mean a logical progression from specification
through design to implementation, with each phase rendered both concrete and binding on
the next. All successful branches of the discipline have found it necessary to proceed from
a formal foundation in order to express the outcome of each phase with sufficient precision.
Rarely, however, do engineers refer to that foundation. More common, and much more pro-
ductive, is reliance upon design rules that embody necessary principles.

A common criticism of software engineering is that theory and practice are divorced. All
too often, verification (of a design against specification) is applieda posteriori. This amounts
to “trial and error” rather than engineering, and is inefficient, to say the least. Furthermore,
verification typically requires formal analysis that is specific to each individual system. It
requires personnel skilled in both programming and mathematics. In systems of significant
scale, analysis is usually difficult and thus both expensive and error-prone.

The primary motivation behind Honeysuckle is to encapsulate analysis within the model
for abstraction offered by a programming language. Adherence to formal design rules, proven
a priori to guarantee security against serious errors, can be verified automatically at design-
time (“static verification”). Both the cost and risk of error incurred by system-specific analy-
sis can be thus avoided. “Trial and error” gives way to true engineering.

In order to serve as an engineering tool, Honeysuckle must fulfill a number of criteria.

1.2. Compositionality and the Component Interface

Design is a matter of finding an appropriate component composition (when proceeding
“bottom-up”) or decomposition (when proceeding “top-down”). In order to compose or de-
compose a system, we require:

• some components that are indivisible
• that compositions of components are themselves valid components
• that behaviour of any component is manifest in its interface, without reference to any

internal structure

A corollary is thatany system forms a valid component, since it is (by definition) a
composition. Another corollary, vital to all forms of engineering, is that it is then possible to
substitute any component with another, that possesses the same interface, without affecting
either the design or its compliance with a specification.

Software engineering now aspires to these principles [8].
Components whose definition complies with all the above conditions may be termed

compositionalwith regard to some operator or set of operators. Service network components
(SNCs) may be defined in such a way as to satisfy the first two requirements when subject to
parallel composition [3].

With regard to the third criterion, clearly, listing a series of procedures, with given pa-
rameters, or a series of channels, with their associated data types, does little to describe object
or process as a component. To substitute one object (process) with another that simply sports
the same procedures (channels) would obviously be asking for trouble. One way of improv-
ing the situation is to introduce a finite-state automaton (FSA) between objects (processes)
to govern the order of procedure invocation (channel communication) and thus constrain the
interface [9]. Such a constraint is often termed acontract. The notion of a service provides
an intuitive abstraction of such a contract, and is implemented using aFSA [5].

Honeysuckle is thus able at least to reduce the amount of ancillary logic necessary to
adequately define a component, if not eliminate it altogether.



I. R. East / Concurrent/reactive system design with Honeysuckle 111

1.3. Balanced Abstraction

It has long been understood that system abstraction requires an appropriate balance between
data and control (object and process). This was reflected in the title of an important early
text on programming —Algorithms + Data Structures = Programs[10]. Some systems were
more demanding in the design of their control structure, and others in their data structure. An
equal ability to abstract either was expected in a programming language.

Imperative programming languages emerging over the three decades since publication of
Wirth’s book have typically emphasized “object-oriented”, whileoccam promoted “process-
oriented”, programming. While either objects or processes alone can deliver both encapsula-
tion and a “message-passing” architecture, Honeysuckle offers designers the liberty to deter-
mine an appropriate balance in their system abstraction. This is intended to ease design, aid
its transparency, and increase the potential for component reuse.

A programming language can obscure and betray abstraction. Locke showed how en-
capsulation, and any apparent hierarchical decomposition, can dissolve with the uncontrolled
aliasing accepted in conventional “object-oriented” programming languages [11]. He also il-
lustrated how the ‘has’ relation between two objects can become subject to inversion, allow-
ing each to ‘own’ the other. State-update can be rendered obscure in a manner very similar to
interferencebetween two parallel or alternating processes.

Clearly, if modularity and transparency can break down even in simple sequential de-
signs then it hardly bodes well for any extension of the model to include concurrency and al-
ternation. The possibility then of multiple threads of control passing through any single object
poses a serious threat to transparency and exponentially increases opportunity for error.

Honeysuckle applies strict rules upon objects: each object has but a single owner at any
time, class structure is statically determined, and no reference is allowed between objects.
All interaction is made manifest in their class definition, rendering interdependence explicit.

1.4. Separation of Design from Implementation

Electronic engineering typically proceeds with the graphical capture of a design as a paral-
lel composition of components interconnected by communication channels, collectively gov-
erned by precisely-defined protocol. This provides for both intuition and a precise concrete
outcome. Modularity and compositionality impart a high degree of scalability.

One important principle at work is the clear separation of design and implementation.
This has allowed electronic design to remain reasonably stable while implementation has
moved from discrete devices, wires, and soldering irons, toVLSI and theFPGA.

All this remains an aspiration for software engineering.
This paper reports how Honeysuckle facilitates the separation of design from implemen-

tation. A sub-language expresses the behaviour of component or system purely in terms of
communication. Design may be thus delivered: concrete, verified, and binding.

2. Process (De)Composition

2.1. Direct (One-to-One) Connection

The simplest protocol between two processes may be expressed as asimple service[5]. A
simple service is one comprising a single communication. It is equivalent to channel abstrac-
tion, where only data type and orientation of data flow is stipulated. As a result, anything that
can be expressed using general communicating process architecture (CPA) andoccam can
be expressed using service architecture and Honeysuckle, but for a single constraint. There
must beno circuit in the digraph that describes the system.



112 I. R. East / Concurrent/reactive system design with Honeysuckle

Since circuits can give rise to the possibility of deadlock, this is not a severe limitation.
It does, however, remove the option to employ a very useful alternative design pattern for
the proven denial of deadlock —cyclic ordered processes(COPs) [12,13,4]. The theoretical
foundation for design rules that deny deadlock [14,15] allows for the composition of compo-
nents, each guaranteed deadlock-free by adherence to a different rule. An appealing extension
to Honeysuckle would be to allow the inclusion of (’systolic’)COParrays.

Service architecture, and especiallyprioritised service architecture, affords a much
richer interface than channels allow. Much more information can be captured in a design.
The behaviour of system or component can be expressed in terms of communication protocol
alone, without reference to procedure.

It may seem odd to define a system with reference only to communication and not to
‘physical’ entities like objects or processes. But a system can be very well described accord-
ing to the way it communicates. It can, in fact, be defined this way. An emphasis on commu-
nication in a specification often leads to concurrency and alternation in implementation. It
is only natural to retain such emphasis within a design. Honeysuckle offers a simple way to
abstract such behaviour to a degree intermediate between specification and implementation,
and in a manner open to intuitive graphical visualization.

For example, suppose a system is built around a component that offers a single service,
which isdependentupon the consumption of just one other (Figure 1).

s2s1

Figure 1. A single service dependent on just one other.

We can express this simply:

network
s1 > s2

Note that the symbol used to denote a dependency is suitably asymmetric, and one that
also correctly suggests the formation of a partial order.

As it stands, the above forms a complete system, implemented as a parallel composition.
The centre component, isolated, requires anINTERFACE declaration:

interface
provider of s1
client of s2

but no network definition. A complete system requires no interface declaration.

s4

s1

s5

s2

s3

Figure 2. A tree structure for service dependency.

A tree-structured component (Figure 2) is easily described:

network
s1 > s2, s3
s2 > s4
s3 > s5

Chains of identical services can be indicated via replication of a dependency:



I. R. East / Concurrent/reactive system design with Honeysuckle 113

network
repeat for 2
s1 > s1

Note that all reference to services has been solely according to their type. No instance of
any service has yet needed distinction by name. Honeysuckle can connect processes correctly
simply by theirport2 declarations and the network definition that governs their composition.

Naming might have become necessary should one component provide multiple identical
services, except that such structure may be described more simply.

2.2. Sharing and Distribution

A commonCPA design pattern is the consumption of a common service by multiple clients,
which is whyoccam 3 introducedshared channels[16]. Honeysuckle similarly permits the
sharing of any service. For example, Figure 3 depicts a simple closed system where two
components share a service.

s1

Figure 3. Sharing of a service between two clients.

Such a design is declared as follows:

network
shared s1

As outlined in a previous paper [5], one-to-any, and any-to-any connection patterns are
also supported via theDISTRIBUTED and SHARED DISTRIBUTED attributes, respectively.
None of these options are the concern of implementation. They neither appear in nor have
any effect upon the interface of any single component.

Within a design, there is still no need for naming instances of service. We have thus far
presumed that every service is provided in precisely the same way, according to its definition
only, and subject to the same dependencies.

2.3. Service Bundles, Mutual Exclusion, and Dependency

A design may require a certainbunchof services to be subject to mutual exclusion. If any
member of the bunch is initiated then all of the others become unavailable until it completes.

greet s4
s1

s3
s2

Figure 4. A servicebunch, subject to mutual exclusion and a dependency.

Connections to the component depicted in Figure 4 can be expressed:

2A port is one end of a service,i.e.either aclient or serverconnection.



114 I. R. East / Concurrent/reactive system design with Honeysuckle

network
exclusive
s1
s2 > s4
s3

A bunch of mutually exclusive services can be provided by a single, purely sequential,
process. All that is required is selection between the initial communications of each. Inoc-
cam, an ALT construct would be employed. The body of each clause merely continues the
provision of the chosen service until completion. An outer loop would then re-establish avail-
ability of the entire bundle. (InPSA, and inCPA in general, it is often assumed that processes
run forever, without terminating.)

An object class, when considered as a system component, typically documents only pro-
cedures offered, within its interface. It does not usually declare other objects on which it de-
pends. A service network component (SNC) documents both services providedandservices
consumed, together with the dependency between. Any interface thus has two ‘sides’, corre-
sponding to provision and consumption, respectively. Honeysuckle requires documentation
of dependency beginning with service provision and progressing towards consumption.

Suppose a system including the component shown in Figure 4 were to be extended with
s4 being provided under mutual exclusion with another service,s5, and a dependency upon
the consumption of yet another,s6. We would then write:

network
exclusive
s1
s2 > s4
s3

exclusive
s4 > s6
s5

If s4 failed to reappear under the secondEXCLUSIVE heading,s5 (and any other services
in that bundle) would be listed together withs1− 3. Mutual exclusion is fully associative.

2.4. Service Interleaving

An alternative to bunching services under mutual exclusion is to allow them tointerleave.
This allows more than one service in a group to progress together. Should two be ready to
proceed at the same moment, the ensuing communication is decided according to service3

prioritization. A service of higher priority will pre-empt one attributed lower priority.

greet s4
s1

s3
s2

Figure 5. Interleaving services.

This too can be expressed as a feature of design, quite separate from implementation:

network
interleave
s1 > s4
s2
s3

3Each member of any bunch is attributed a common priority.



I. R. East / Concurrent/reactive system design with Honeysuckle 115

Prioritisation is indicated simply by the order in which services are listed (highest up-
permost in both picture and text).

A process might interleave bunches. Each bunch would remain subject to mutual exclu-
sion between its members:

network
interleave
exclusive

s1 > s4
s2
s3

exclusive
s5
s6
s7 > s8

Again, implementation reduces to a programming construct; in this case,prioritized al-
ternation(WHEN) [6]. Each clause in a Honeysuckle alternation may be a guarded process or
a selection, according to whether a single service or a bunch is offered.

Interleaving several instances of a common service offers an alternative to sharing a
single instance, where each client is effectively allocated the same priority. Replication may
be used to indicate vertical repetitive structure, as it can horizontal:

network
interleave for 2
exclusive
s1
s2 > s4
s3

Note that replication under mutual exclusion would add nothing to the notion of sharing.

3. Asymmetry in Service Provision

For many systems withPSA, it is enough to define their design without distinction between
two instances of the same service type. Implementation could proceed with components
whose interface can be defined with reference only to that type. If two different processes
each declare the capability of providing that type of service, it would not matter which pro-
vides each instance of it.

Any departure from that scenario is termed anasymmetry. There are two kinds.
A design asymmetryis one where dependency in the provision of two services of the

same type differs. An example might be formed weres3 in Fig. 2 replaced by a second use
of s2. This would make it impossible to document dependency without ambiguity. Note that
no such ambiguity would result upon implementation since component interface could be
matched with dependency. A (reasonably intelligent) compiler will still be able to compose
components correctly.

Note that any service is necessarily shared (or distributed) symmetrically, since no
provider (or client) can distinguish one client (provider) from another.

An implementation asymmetryis where the provision of two instances of the same ser-
vice are not interchangeable, even though there may be no design asymmetry. Some relation-
ship between information exchanged is material to the system required. If so then a single
instance may neither be shared nor distributed.

It is worth reflecting that, in traditional, typically purely sequential, programming, we
commonly distinguish between “data-oriented” and “control-oriented” application design.
Often, the orientation is inherent in the problem. Sometimes, it is a choice reflecting that



116 I. R. East / Concurrent/reactive system design with Honeysuckle

of the designer. One might similarly identify “service-orientation” also. Business nature and
organization has re-oriented itself towards service provision, to great effect. The same de-
velopment in the design of software would arguably result in a greater reliance upon service
architecture, with less asymmetry appearing.

At the cost of complicating the declaration of design a little, a mechanism is provided by
Honeysuckle by which asymmetry may be introduced. For each asymmetric use of a service,
aservice alias(‘renaming’) is declared within the network declaration. It then becomes pos-
sible for the interface declaration of each process to distinguish one instance of service from
another of the same type.

If we again refer back to Fig. 2 for an example, let us suppose thats2 ands3 are of the
same type (share the same definition), ands4 ands5 are similarly alike. Suppose that we
care that each instance ofs2/s3 is provided separately, because there is some difference we
cannot yet make explicit. All we need do is declare two service aliases within the network
definition:

network
named
s2 : s3
s4 : s5

...

Each component interface can now distinguish the desired connection.

4. Parametric and Dynamic Configuration

Modular software engineering calls for the ability to compose components whose utility is
not restricted to a single application. Having renamed services in order to apply an implemen-
tation asymmetry in service provision, it should be possible to employ a component designed
for wider use. While it must possess an interface appropriate to any design asymmetry, it will
know nothing of any service alias. Its interface will refer only to the original service (type)
names given in each corresponding definition.

An in-line component definition can match service and alias directly:

{
...
network
named

s2 : s3
...

parallel
{
interface
provider of s2 alias s3

...
}
...

}

while the option remains to state simply “provider of s3”.
The interface of any ‘off-line’ process definition can indicate that it expects to be told

which service it is to consume/provide viaalias ?, in which case its reference (invocation)
should provide aconfiguration parameter.

There is one other kind of configuration parameter, used by the network declaration
of the recipient. Aconfiguration valuemay be passed and used to limit replication. Since



I. R. East / Concurrent/reactive system design with Honeysuckle 117

this may be computed upon passing, it allows the network of a parallel component to be
configured dynamically.

A Honeysuckle process reference may thus include up to three distinct actual parameter
lists, arranged vertically (“loo roll” style), and delimited by semi-colon. When each list has
no more than one item, parameters can be arranged on the same line as the command (process
invocation). For example, suppose a processmediateis defined separately (like a procedure
in Pascal), and it expects one service alias and one configuration value. Definition would be
as follows:

process mediate is
{
...
interface

client of s1 alias ?
...

network
received Length
interleave for Length
...

}

An invocation might be simply:

mediate ; s2 ; 4

5. Conclusion

Honeysuckle began as a single-step method for the composition of concurrent/reactive soft-
ware guaranteed free from the threat of deadlock. As such, it was either going to remain a
simple academic exemplar, or grow into a tool suited to professional use. It was decided to
take the latter path, which has inevitably proved long and arduous.

Here, elements of the language have been introduced that affordPSA design, separate
from, and independent of, implementation. Design of system or component is expressed
purely in terms of communication, as a composition of services rendered. Any such design
may be compiled and verified independently, and automatically, using the same tool used for
implementation. It will then remain binding as the implementation is introduced and refined.
Every verified design, and thus implementation, isa priori guaranteed deadlock-free.

It has been shown how a design may be composed under service dependency, mutual
exclusion, and interleaving, and how repetitive structure can be efficiently expressed. While
prioritized service architecture alone may suffice to abstract some systems, especially when
design is oriented that way, others may call for significant emphasis on process rather than
communication. A mechanism has therefore been included wherebyasymmetryin service
implementation can be introduced.

Given that the parallel interface of each component is defined purely according to ser-
vices provided and consumed,configuration parametershave proved necessary in order to
allow the reuse of common components, and preserve modularity. They also afford limited
dynamic configuration of components, allowing the structure of each invocation to vary.

With regard to the progress of the Honeysuckle project, another decision taken has been
to complete a draft language manual before attempting to construct a compiler. Apublication
languagewould then be ready earlier, to permit experiment and debate. This is now complete,
though the language (and thus manual) is expected to remain fluid for some time yet [17].



118 I. R. East / Concurrent/reactive system design with Honeysuckle

Work is now underway towards a compiler. A degree of platform independence will be
facilitated by the use ofextended transputer code(ETC) [18] as an intermediary4.

While Honeysuckle has evolved into a rather ambitious project, it is nonetheless timely.
The beginning of the twenty-first century has marked the rise of large embedded applications,
that are both concurrent and reactive. Consumers demand very high integrity from both home
and portable devices that command prices, and thus (ultimately) development costs, orders of
magnitude below those of traditionally challenging applications, such as aerospace. Existing
methods are inappropriate. While a sound formal foundation is an essential prerequisite for
something new, proper support for sound engineering practice is also required.

Honeysuckle now offers both.
By clearly separating design from implementation, while rendering it inescapably formal

and binding, Honeysuckle brings the engineering of software into closer harmony with that
of electronic and mechanical systems, with which it must now co-exist.

References

[1] Ian R. East. The Honeysuckle programming language: An overview.IEE Software, 150(2):95–107, 2003.
[2] Jeremy M. R. Martin.The Design and Construction of Deadlock-Free Concurrent Systems. PhD thesis,

University of Buckingham, Hunter Street, Buckingham, MK18 1EG, UK, 1996.
[3] Ian R. East. Prioritised Service Architecture. In I. R. East and J. M. R. Martin et al., editors,Communi-

cating Process Architectures 2004, Series in Concurrent Systems Engineering, pages 55–69. IOS Press,
2004.

[4] Ian R. East.Parallel Processing with Communicating Process Architecture. UCL Press, 1995.
[5] Ian R. East. Interfacing with Honeysuckle by formal contract. In J. F. Broenink, H. W. Roebbers, J. P. E.

Sunter, P. H. Welch, and D. C. Wood, editors,Proceedings of Communicating Process Architecture 2005,
pages 1–12, University of Eindhoven, The Netherlands, 2005. IOS Press.

[6] Ian R. East. Programming prioritized alternation. In H. R. Arabnia, editor,Parallel and Distributed
Processing: Techniques and Applications 2002, pages 531–537, Las Vegas, Nevada, USA, 2002. CSREA
Press.

[7] Fred R. M. Barnes and Peter H. Welch. Communicating mobile processes. In I. R. East and J. M. R. Martin
et al., editors,Communicating Process Architectures 2004, pages 201–218. IOS Press, 2004.

[8] Clemens Szyperski.Component Software: Beyond Object-Oriented Programming. Component Software
Series. Addison-Wesley, second edition, 2002.

[9] Marcel Boosten. Formal contracts: Enabling component composition. In J. F. Broenink and G. H.
Hilderink, editors,Proceedings of Communicating Process Architecture 2003, pages 185–197, University
of Twente, Netherlands, 2003. IOS Press.

[10] Niklaus Wirth. Algorithms + Data Structures = Programs. Series in Automatic Computation. Prentice-
Hall, 1976.

[11] Tom Locke. Towards a viable alternative to OO — extending theoccam/CSP programming model. In
A. Chalmers, M. Mirmehdi, and H. Muller, editors,Proceedings of Communicating Process Architectures
2001, pages 329–349, University of Bristol, UK, 2001. IOS Press.

[12] E. W. Dijkstra and C. S. Scholten. A class of simple communication patterns. InSelected Writings in Com-
puting, Texts and Monographs in Computer Science, pages 334–337. Springer-Verlag, 1982. EWD643.

[13] Jeremy Martin, Ian East, and Sabah Jassim. Design rules for deadlock freedom.Transputer Communica-
tions, 2(3):121–133, 1994.

[14] A. W. Roscoe and N. Dathi. The pursuit of deadlock freedom. Technical Report PRG-57, Oxford Univer-
sity Computing Laboratory, 8-11, Keble Road, Oxford OX1 3QD, England, 1986.

[15] S. D. Brookes and A. W. Roscoe. Deadlock analysis in networks of communicating processes.Distributed
Computing, 4:209–230, 1991.

[16] Geoff Barrett.occam 3 Reference Manual. Inmos Ltd., 1992.
[17] Ian R. East.The Honeysuckle Programming Language: A Draft Manual. 2007.
[18] Michael D. Poole. Extended transputer code — a target-independent representation of parallel programs.

In P. H. Welch and A. W. P. Bakkers, editors,Architectures, Languages and Patterns for Parallel and
Distributed Applications, pages 187–198. IOS Press, 1998.

4Subject to the kind permission of Prof. Peter Welch and his colleagues at the University of Kent


