
Communicating Process Architectures 2000
P.H. Welch and A.W.P. Bakkers (Eds.)
IOS Press, 2000

275

Formal Analysis of Concurrent Java Systems

Peter H. Welch
Computing Laboratory

University of Kent at Canterbury
CT2 7NF, UK

Jeremy M.R. MARTIN
Oxford Supercomputing Centre

Wolfson Building
Parks Road

Oxford OX1 3QD, UK

Abstract. Java threads are synchronised through primitives based upon monitor con-
cepts developed in the early 1970s. The semantics of Java’s primitives have only been
presented in natural language – this paper remedies this with a simple and formal CSP
model. In view of the difficulties encountered in reasoning about any non-trivial inter-
actions between Java threads, being able to perform that reasoning in a formal context
(where careless errors can be highlighted by mechanical checks) should be a consid-
erable confidence boost. Further, automated model-checking tools can be used to root
out dangerous states (such as deadlock and livelock), find overlooked race hazards
and prove equivalence between algorithms (e.g. between optimised and unoptimised
versions). A case study using the CSP model to prove the correctness of the JCSP
and CTJ channel implementations (which are built using standard Java monitor syn-
chronisation) is presented. In addition, the JCSP mechanism for ALTing (i.e. waiting
for and, then, choosing between multiple events) is verified. Given the history of
erroneous implementations of this key primitive, this is a considerable relief.

Keywords: Java, threads, monitor, CSP, JCSP, CTJ, formal verification.

1 Introduction

Java has a built-in concurrency model based upon threads and monitors. It is simple to un-
derstand but very hard to apply. Its methods scale badly with complexity. Almost all Java
multi-threaded codes making direct use of these primitives that we have seen (including our
own) have contained race hazards – with some of our own remaining undetected for over
two years (although in daily use, with their source codes on the web and their algorithms
presented without demur to several Java-literate audiences). Our failures only showed them-
selves when faster JITs (Just-In-Time compilers) enabled certain threads to trip the wrong
way over unspotted race hazards, corrupting some internal state that (in due course) led to
deadlock. Debugging the mess was not easy – fortunately, the application was not safety-
critical!

We regard this as evidence that there is something hard about Java multithreading. We
are not alone in this opinion – numerous warnings circulate on the web (e.g. [4] from Sun’s
own web pages).

Java monitors, therefore, are not language elements with which we want to “think” – at
least, not without some serious help. The first step in getting that help is to build a formal
model that describes what is happening. The particular semantics given here is a CSP (Com-
municating Sequential Processes)[5] one. The importance of CSP is that it is an algebra for
concurrent systems – a formal piece of mathematics with which we can specify requirements
precisely (including properties like deadlock-freedom) and prove that our implementations
satisfy them. Further, some powerful and mature CSP tools can be applied – for example,
FDR (Failures-Divergences-Refinement) from Formal Systems Ltd.[2] and Jeremy Martin’s
deadlock/sat checker[9, 10].

276 P.H.Welch and J.M.R.Martin / Formal Analysis of Concurrent Java Systems

There is some - but, worryingly, not widespread - concern in the Java community about
the absence of such a formal model (e.g. see [12]). Without it, we will always remain un-
comfortable about the security of any multithreaded product. As Tony Hoare said in his 1980
Turing Award speech[6], there are two kinds of computer systems that sell:� those that are obviously right ...� and those that are not obviously wrong ...

and he noted that it’s much easier, of course, to produce the latter. Guess which kind we are
peddling! We wonder how many surprises will pop up when we start applying CSP tools to
Java codes?

This paper extends the original presentation of this model[17]. The case studies include
verification of the JCSP channel implementation (Sections 3-5), the CTJ channel (Section 6)
and the JCSP ALTing mechanism (Section 7).

Reaching the last of these three goals was the real motivation behind the development of
this formal model for Java monitor operations. Although the code – two interacting monitors
hit by many threads – fits on to less than two pages (see Section 7), its safety analysis re-
peatedly fooled professional Java experts. The original[15] JCSP implementation of ALTing,
which had the same length as the one presented here, was declared safe – albeit with a certain
amount of finger crossing! Two years later, when we were finally feeling comfortable with
it, we had quite a shock when it suddenly deadlocked.

This monitor implementation of ALTing is not particularly lengthy or complex. Modern
and near future systems will demand multithreaded code synchronisation that will be at least
as difficult. Many of these systems will be safety-critical, where in-service failure costs lives.
It is for such reasons that this formal model is offered.

2 The CSP Model

The key Java primitives for thread synchronisation are:� synchronized methods and blocks;� the methods wait, notify and notifyAll of the Object superclass.

Their informal (natural language) semantics will be briefly summarised as we build their CSP
model. Otherwise, we assume familiarity with CSP and Java basics.

2.1 Objects and Threads

We shall model a system consisting of a set of Java objects and threads. Let Objects be an
enumeration of all Java objects. For any particular Java application being CSP-modelled,
this can be restricted to just those objects on which any threads in the application are ever
synchronized. Usually, this will be finite and small – for example:

Objects � �������	��

�
Let Threads be an enumeration of all Java threads. For any particular Java application

being CSP-modelled, this can be restricted to just those threads that are created and started.
Sometimes, this may be unbounded or large – for example:

Threads � ���������

P.H.Welch and J.M.R.Martin / Formal Analysis of Concurrent Java Systems 277

2.2 Synchronisation Events

We define a collection of channels to model Java’s synchronisation events:

channel claim
�
release

�
waita
�
waitb
�
notify
�
notifyall � Objects � Threads

This introduces six families of channel, with each family indexed by an object and a thread.
For example claim � o � t, where o is in Objects and t is in Threads.

2.3 The User Process Interface to Java Monitors

We define the Java programmer’s interface to monitors. For the moment, we’ll ignore recur-
sive locks by a particular thread on a particular object (i.e. the re-acquisition of a monitor lock
by a thread that already has it). This can easily be handled by using processes to represent
the relevant lock counts. Also, we will set aside the possible InterruptedException
that may get raised by the wait method. Our model can be simply extended to account for
this but these extensions will be reported in a later paper.

Entry and exit to a synchronized block or method, o.wait(), o.notify() and
o.notifyAll() are modelled, respectively, by the following five processes:

STARTSYNC � o � me ��� claim � o �me � SKIP

ENDSYNC � o � me ��� release � o �me � SKIP

WAIT � o � me ��� waita � o �me � release � o �me �
waitb � o �me � claim � o �me �
SKIP

NOTIFY � o � me ��� notify � o �me � SKIP

NOTIFYALL � o � me ��� notifyAll � o �me � SKIP

where me is the thread performing the action.
The interesting one is the WAIT � o � me � process. The first event � waita � o �me � puts its invoking

thread � me � in the wait-set of the monitor object � o � – see Section 2.4.2. The second event� release � o �me � releases the lock it was holding on the monitor object � o � – see Section 2.4.1.
The third event � waitb � o �me � represents its commitment to leave the wait-set of � o � . The final
event � claim � o �me � is its re-acquisition of the monitor lock.

Note that this WAIT(o,me) process has been modified from the original version of this
model [16]. At first, we had the release event preceding the waita. Subsequent FDR analysis
threw up some unexpected deadlocks and we returned to the java definition document which
revealed a misunderstanding in our interpretation of the natural language explanation. This
has now been corrected as described above: an object needs to join the wait-set before releas-
ing the monitor – otherwise it might miss being notified. Again, this shows the importance
and usefulness of having a simple formal definition of these semantics.

2.4 Monitor Processes

Every Java object can be used as a monitor. In our model, there will be a monitor process,
MONITOR � o � , for each o in Objects. This process is itself the parallel composition of two
processes:

MONITOR � o ��� MLOCK � o ��� MWAIT � o ����� �

278 P.H.Welch and J.M.R.Martin / Formal Analysis of Concurrent Java Systems

where MLOCK � o � controls the locking of object o’s monitor (i.e. deals with synchro-
nized) and MWAIT controls the (initially empty) wait-set of threads currently stalled on this
monitor (i.e. deals with wait, notify, notifyAll). The alphabet of MONITOR � o � is the
union of its component processes, which are defined next.

2.4.1 Locking the Monitor

Each MLOCK � o � process is basically a binary semaphore. Once it has been claimed by a
thread (i.e. entry to a synchronized method or block), only a release from that same
thread (i.e. exit from the entered synchronized method or block) will let it go. If this
were all it had to do, it could be simply modelled by:

MLOCK � o ��� claim � o � t � release � o � t � MLOCK � o �� MLOCK � o � � � claim � o � t � release � o � t ! t " Threads
�

However, one of the constraints in Java is that an o.wait(), o.notify() or o.not-
ifyAll() is only allowed if the invoking thread has the monitor lock on o. In Section 2.3,
these invocations are modelled by (user) processes commencing, respectively, with the events
wait � o � t, notify � o � t and notifyAll � o � t (where t is the invoking thread).

This constraint is enforced by including these events in the alphabet of MLOCK � o � , but
refusing them in its (initial) unlocked state. In the locked state, these events are accepted but
have no impact on the state:

MLOCK � o ��� claim � o � t � MLOCKED � o � t �
MLOCKED � o � t � � release � o � t � MLOCK � o �#

notify � o � t � MLOCKED � o � t �#
notifyall � o � t � MLOCKED � o � t �#
waita � o � t � MLOCKED � o � t �

� MLOCK � o ��� $% & claim � o � t � release � o � t �
notify � o � t � notifyall � o � t �
waita � o � t ! t " Threads

' ()
2.4.2 Managing the Wait-Set

The MWAIT � o � ws � process controls the wait-set (ws) belonging to the monitor object (o). This
set contains all threads that have invoked o.wait() but have not yet been notified.

New threads are added to the set via the waita channel. A notify event results in one
thread being non-deterministically selected from the set and reactivated – if the set is empty,
the event is still accepted but nothing changes. A notifyall event results in all the waiting
threads being reactivated in some non-deterministic order

MWAIT � o � ws �*�� waita � o � t � MWAIT � o � ws + � t � �,� #-...../
notify � o � t �
if �0!ws !
1 � � then2

s 3 ws
waitb � o 4 s � MWAIT � o � ws 5 � s � �

else
MWAIT � o ����� �

6�777778 #� notifyall � o � t � RELEASE � o � ws �0�

P.H.Welch and J.M.R.Martin / Formal Analysis of Concurrent Java Systems 279

and where:

RELEASE � o � ws �9�
if �:!ws !�1 � � then2

t 3 ws
waitb � o 4 t � RELEASE � o � ws 5 � t � �0�

else
MWAIT � o ���	� �� MWAIT � o �*�;
waita � o � t � waitb � o � t � notify � o � t � notifyall � o � t ! t " Threads <

2.4.3 Visualisation

One of the difficulties of working with threads and monitors is that it is hard to visualise what
is happening. One of the strengths of CSP models is that they correspond to notions of hard-
ware – layered networks of components connected by wires – that are easy to visualise and
whose operations correspond to intuitive concepts of communication and synchronisation.

Figure 1: The Monitor Process (for Object o)

Figure 1 represents the CSP process enforcing the monitor rules for a Java object o. Each
arrow represents an array of channels – one for each thread, t, that needs to synchronize,
wait or notify on this monitor. The split channels are broadcasters – both sub-processes
must input for the communication to take place.

An observation is that this is a rather specialised and complex object to be given as the sole
primitive for synchronisation control of multithreaded systems. At least, that is in comparison
with the CSP channel primitive, whose visualisation is as a bare wire!

3 A Case Study: the JCSP Channel

In Section 1, we said that we do not like to “think” at the level of Java monitors. Although
the semantics of individual operations are simple enough and now formally defined, correct
usage requires an understanding of how the monitor methods interact. This means that such
methods cannot be designed or understood individually – their logics are very tightly coupled
and all must be considered at the same time. This is compounded when different monitors
invoke each others’ methods! This approach to design does not scale well.

Formal methods certainly help but even they may become overwhelmed without some
discipline that eliminates the strong coupling between threads. That discipline can be pro-
vided by CSP itself.

280 P.H.Welch and J.M.R.Martin / Formal Analysis of Concurrent Java Systems

Java’s flexibility means that we can ignore the built-in monitor model and build a high-
level API to something that does scale and with which we can “think” - for instance, the
occam/CSP model. JCSP[18] (CSP-for-Java) is a Java class library spun out from work
started in the occam-for-all project in the Portable Software Tools for Parallel Architectures
managed programme of the UK Engineering and Physical Sciences Research Council. It
provides an occam3[3] concurrency framework for Java applications. CSP designs (with
some occam-like caveats) can be directly crafted into Java code with no stress.

Currently, JCSP is built upon standard Java monitors and suffers (but does not increase)
their overheads. Ultra-low overheads for process management, which lead to ultra-low laten-
cies for event handling (e.g. for external message passing) are possible, although this would
require building something close to (and derived from) our occam kernels into specialised
JVMs. JCSP already supports shared-memory (SMP) concurrency, for which CSP primitives
provide excellent control. JCSP does not currently support distributed memory architectures,
although being derived from the old transputer model, of course it could.

If we can prove that the JCSP implementation of its primitives (e.g. channels) really gives
us the corresponding CSP semantics, this will not only be a huge relief (since that was the
original intention after all!), but it will also mean that formal analysis of JCSP designs can
be done directly in terms of those primitives (and not on Java monitors). That will be a con-
siderable simplification. Since CSP semantics are well-behaved under parallel composition,
formal design and analysis of large multithreaded systems becomes practical. It will raise
both our confidence in these systems and their real quality.

3.1 Visualisation of the Verification

3.1.1 Main Theorem

The theorem to be proved is that the system shown in Figure 2 is equivalent to the one shown
in Figure 3.

Figure 2: CSP channel communication

Figure 2 shows two processes, A and B, communicating over a CSP channel c. Each
process guarantees that no parallel writes (for A) or reads (from B) are allowed. The internal
channel, c, is hidden from the outside world.

Figure 3 shows two processes, Aj and Bj, communicating via three intermediary pro-
cesses. Aj is the same as A except that the CSP output, c ! mess, is changed to the
JCSP method invocation, c.write (mess), where c is now a JCSP One2OneChannel
object (see Section 3.2). The implementation of this method uses c as a monitor – hence
the MONITOR(c) process. It also uses two state variables, channel hold and chan-
nel empty, represented by the variable processes Hold(c) and Empty(c). These latter

P.H.Welch and J.M.R.Martin / Formal Analysis of Concurrent Java Systems 281

Figure 3: JCSP channel communication

processes service simple get and set channels for getting and setting values - no requests are
ever refused. Empty(c) holds boolean values (that indicate if one side is ready to commini-
cate) and Hold(c) holds the message being sent (and whose actual value is irrelevant to the
operation of this channel).

Bj is related to B in the same way as Aj relates to A. The CSP input, c ? mess,
is changed to the JCSP method invocation, mess = c.read(), where c is the same
One2OneChannel object used by Aj. The implementation of this method (see Section
3.2) interacts with the same three intermediary processes as Aj, but uses its own sets of
channels.

To prove this theorem is quite daunting and we would like some mechanical help. The
FDR model checker cannot yet be employed because the behaviour of the A/Aj and B/Bj
processes when they are not communicating has not been specified. Model checkers need a
completely specified system into which to get their teeth.

3.1.2 Parallel Introduction

Although this may seem a strange thing to want to do, gratuitous introduction of parallel
processes can be done anywhere.

Figure 4: Do P Yourself

Suppose X contains one or more instances of a process P that are executed in sequence –
see Figure 4. Then, X may be replaced by the system shown in Figure 5. X’ is the same as
X, except that each occurrence of P is replaced by synchronisation on the CSP events ping
and pong (in that order). These events are in the alphabet of Xb’, but are hidden from the
outside environment. Xb’ is a buddy process for X’ and is completely defined apart from P.

282 P.H.Welch and J.M.R.Martin / Formal Analysis of Concurrent Java Systems

Figure 5: Delegate P to a Buddy

All it does is wait for a ping, perform P on behalf of its buddy and, then, let its buddy know
that it’s finished by synchronising on pong. It repeats doing this forever.

We don’t need a model checker to prove the equivalence of figures 4 and 5 – it’s almost a
one-liner from the basic algebraic laws of CSP.

Figure 6: Do P (with side-effects) Yourself

Figure 6 shows a slightly more useful version of Figure 4, where the process to be dele-
gated accesses and modifies some of the state of X. Further, the particular states being modi-
fied vary between instances.

Figure 7: Delegate P (with side-effects) to a Buddy

In this case, the ping and pong events used previously become channels that carry and
return state information to and from the buddy process – see Figure 7. Again, the proof of the
equivalence between figures 6 and 7 (with the ping/pong channels hidden) follows directly
from basic CSP algebra.

P.H.Welch and J.M.R.Martin / Formal Analysis of Concurrent Java Systems 283

3.1.3 Applying Parallel Introduction

We can now deduce that the original system in Figure 2 is equivalent to the one in Figure 8.

Figure 8: Parallel Introduction applied to Figure 2

A’ and its buddy Ab’ are derived from A as prescribed for Parallel Introduction – the
same for B’ and Bb’ (derived from B). Notice that the buddy processes, Ab’ and Bb’, are
this time completely specified. They each have a simple loop in which they do their respective
ping, their common channel communication, and then their respective pongs.

Figure 9: Parallel Introduction applied to Figure 3

We may also deduce, using Parallel Introduction, that the Java-ised system of Figure 3
is equivalent to that shown in Figure 9. Note that Aj has become the parallel composition of
the same A’ process as in Figure 8, but with a different buddy process Aj’. Processes Ab’
and Aj’ are identical except that the former does a CSP channel write and the latter does a
JCSP one. Similarly, Bj from Figure 3 has become B’ (the same as in Figure 8) in parallel
with Bj’ – and Bj’ is related to Bb’ as Aj’ is to Ab’.

3.1.4 Applying the Model Checker

Looking at figures 8 and 9, we see that all processes, apart from A’ and B’, are completely
specified. If we can prove that the completely specified middles – i.e. figures 10 and 11
– are equivalent, we are done. This is because simple CSP laws of parallel composition
(associativity) would allow us to deduce that figures 8 and 9 are equivelent and, hence, so
must be our original systems in figures 2 and 3.

To prove figures 10 and 11 equivalent, we stand on the shoulders of giants and apply the
FDR model checker. Both systems are fully specified and have the same channel interface
(two pairs of ping/pong channels) to their environments – everything else is hidden. Type
these systems into FDR and ask if they are equivalent. Within seconds, Q.E.D!

284 P.H.Welch and J.M.R.Martin / Formal Analysis of Concurrent Java Systems

Figure 10: Completely Specified System – model check for equivalence with Figure 11

Figure 11: Completely Specified System – model check for equivalence with Figure 10

3.1.5 Connecting this Visualisation with the Rest of this Paper

The above rationalisation was constructed after the detailed proof reported in Sections 3.2,
3.3, 3.4 and 4 was developed.

Section 3.2 develops a CSP model of the JCSP channel that already includes Parallel
Introduction. The READ(o,t) and WRITE(o,t) processes correspond to the buddy processes Aj’
and Bj’ from Figure 9. The write.o.t and ack.o.t channels are ping and pong for Aj’. The
ready.o.t and read.o.t are ping and pong channels for Bj’.

In Section 3.3, the LEFT and RIGHT correspond to Ab’ and Bb’ from Figure 10. Their
respective ping and pong channels are, of course, the same as those for Aj’ and Bj’.

Finally, Section 4 performs the Parallel Introduction lemma in reverse (i.e. Parallel Re-
moval) to go from Frigure 8 to Figure 2.

3.2 The CSP Model of the JCSP Channel

The JCSP channel, One2OneChannel, is currently implemented as a (100% pure) Java
monitor. The following CSP model is derived directly from its source code and the CSP
model of Java monitors just presented. This derivation was done by hand, but a tool could be
built to assist this process considerably. Here is the outline of the class:

P.H.Welch and J.M.R.Martin / Formal Analysis of Concurrent Java Systems 285

public class One2OneChannel {

// data in transit
private Object channel_hold;

// synchronisation flag
private boolean channel_empty = true;

... public sync Object read ()

... public sync void write (Object mess)

}

A JCSP channel object has two attributes (channel empty and channel hold), which we
shall model as processes always ready both to have their values reset or to report them to any
willing thread. For simplicity, we assume that each channel carries the same three-valued
type (Data) that we shall use for the Java ‘boolean’.

datatype Variables � channel empty ! channel hold
datatype Data � TRUE ! FALSE ! OTHER

The operation of the channel, however, is independent of the type of data that it carries – at
no point is the value of the data it stores used to decide its future behaviour. So this analysis
is equally valid for channels of any type1.

Variables are initialised as TRUE. Their values may then be read or written by any thread
using channels getvar and setvar.

channel getvar
�
setvar � Objects � Variables � Threads �Data

VARIABLE � o � v �=� VAR

 � o � v � TRUE �

VAR

 � o � v � d �9�>@?

t 3 Threads
getvar � o � v � t 4 d � VAR

 � o � v � d �0A ?>@?
t 3 Threads

setvar � o � v � t � x � VAR

 � o � v � x �0A� VARIABLE � o � v �9��

getvar � o � v � t � d � setvar � o � v � t � d ! t " Threads
�
d " Data

�
VARIABLES � o �B�

VARIABLE � o � channel empty �C� VARIABLE � o � channel hold �
One purpose of JCSP is to seal off the thread/monitor synchronisation calls from the pro-

grammer. Instead a read/write interface is provided by two simple methods. We shall model
this interface with the following events:� write � o � t � d – thread t invokes java method write � d � of object o, message d is supplied for

transmission;� ack � o � t – call to write � d � terminates;� ready � o � t D – thread t D invokes method read �E� of object o;� read � o � t DE� d – call to read �E� terminates, returning d.

1A formal theory of data independence in CSP has been developed by Ranko Lazic and Bill Roscoe[13].

286 P.H.Welch and J.M.R.Martin / Formal Analysis of Concurrent Java Systems

The JCSP channel should behave like a synchronised channel. Each successful communica-
tion requires that at some point both threads are simultaneously involved.

channel read
�
write � Objects � Threads �Data

channel ready
�
ack � Objects � Threads

The Java code for the JCSP read method is as follows[14]:

public synchronized Object read ()
throws InterruptedException {
if (channel_empty) {

channel_empty = false; // first to the rendezvous
wait (); // wait for writer process
notify (); // schedule the writer to finish

} else {
channel_empty = true; // second to the rendezvous
notify (); // schedule the waiting writer

}
return channel_hold;

}

We model this JCSP read method as a process which repeatly waits to be activated by a ready
event and then executes the monitor synchronisation code to receive a message:

READ � o � t �9�
ready � o � t �
claim � o � t �
getvar � o � channel empty � t � c �-......../

if � c � TRUE � then
setvar � o � channel empty � t 4 FALSE �
WAIT � o � t �GF
NOTIFY � o � t �
else
setvar � o � channel empty � t 4 TRUE �
NOTIFY � o � t �

6 777777778 F
getvar � o � channel hold � t � mess �
release � o � t �
read � o � t 4mess �
READ � o � t �� READ � o � t �H�$II% II& claim � o � t � getvar � o � v � t � d � notify � o � t �

notifyall � o � t � setvar � o � v � t � d � read � o � t � d �
release � o � t � waita � o � t � waitb � o � t �
ready � o � t ! v " Variables

�
d " Data

' II(II)
By including all the relevant java synchronisation events, such as notifyall J o J t in the alphabet

of the CSP READ process we model our intention to prohibit the user of JCSP from calling
the corresponding java methods directly from within his or her code. JCSP is intended as a
complete, user-friendly alternative to using monitors for programming multi-threaded appli-
cations.

P.H.Welch and J.M.R.Martin / Formal Analysis of Concurrent Java Systems 287

The Java code for the JCSP write method is as follows:

public synchronized void write (Object mess)
throws InterruptedException {
channel_hold = mess;
if (channel_empty) {

channel_empty = false; // first to the rendezvous
wait (); // wait for reader process

} else {
channel_empty = true; // second to the rendezvous
notify (); // schedule the waiting reader
wait(); // let the reader regain the lock

}
}

This write method is similarly modelled as a repeating process, activated by the write event:

WRITE � o � t �H�
write � o � t � mess �
claim � o � t �
setvar � o � channel hold � t 4mess �
getvar � o � channel empty � t � c �-......../

if � c � TRUE � then
setvar � o � channel empty � t 4 FALSE �
WAIT � o � t �
else
setvar � o � channel empty � t 4 TRUE �
NOTIFY � o � t ��F
WAIT � o � t �

6 777777778 F
release � o � t �
ack � o � t �
WRITE � o � t �� WRITE � o � t �K�$II% II& claim � o � t � getvar � o � v � t � d � notify � o � t �

notifyall � o � t � setvar � o � v � t � d � write � o � t � d �
release � o � t � waita � o � t � waitb � o � t �
ack � o � t ! v " Variables

�
d " Data

' II(II)
The JCSP channel is then modelled as the parallel composition of processes which model

its monitor, two attributes, and read and write methods:

JCSPCHANNEL � o � t L � t M���� READ � o � t LG�C�
WRITE � o � t M��C�
MONITOR � o �N�
VARIABLES � o �

Note that there is an implicit assumption here that the read and write methods of the JCSP
channel will only be used by those threads for which they are intended. Otherwise we would
have to include a separate parallel READ and WRITE process for each thread t in Threads.

Note also that in the above definition (and in the rest of this paper) we shall assume
that the alphabet of a parallel composition is the union of the alphabets of the component
processes (in line with Hoare’s book[5]).

288 P.H.Welch and J.M.R.Martin / Formal Analysis of Concurrent Java Systems

3.3 Equivalence to a Simpler Channel

Now we shall define a simplified model of how the JCSP channel should work, and then use
FDR to show that this is equivalent to the JCSP implementation.

The simple channel consists of two parallel processes, LEFT and RIGHT, to handle input
and output respectively. The processes are joined by a hidden channel transmit – see Figure 12.

RIGHT
read.o.t!mess

transmit.o.mess
LEFT

ack.o.t’

write.o.t’?mess ready.o.t

Figure 12: Special Version of Figure 10

We define:

channel transmit � Objects �Data

LEFT � o � t �H�
write � o � t � mess � transmit � o 4mess � ack � o � t � LEFT � o � t �� LEFT � o � t �*��

write � o � t �m � transmit � o �m � ack � o � t ! m " Data
�

RIGHT � o � t D �H�
ready � o � t D�� transmit � o � mess � read � o � t DO4mess � RIGHT � o � t DP�� RIGHT � o � t DQ�*��

ready � o � t D � transmit � o �m � read � o � t DO�m ! m " Data
�

CHANNEL � o � t � t DR�H�� LEFT � o � t DQ�C� RIGHT � o � t �0�HS � transmit � o �m ! m " Data
�� CHANNEL � o � t � t DR�H�;

write � o � t DE�m � ack � o � t D � ready � o � t � read � o � t �m ! m " Data <
In order to compare this specification with the JCSP implementation we need to conceal

all the additional events in the alphabet of JCSPCHANNEL.

Private � � JCSPCHANNEL � ���:����� �=5 � CHANNEL � ���:����� �
The CSP language of Hoare is a notation for describing patterns of communication by

algebraic expressions. It is widely used for the design of parallel and distributed hardware
and software, and for the formal proof of vital properties of such systems. Underpinning CSP
is a formal semantic model based on traces, failures and divergences. Two CSP systems are
equivalent if the possible sequences of events (traces) they may perform are identical, and
also if the circumstances under which they might deadlock or livelock are the same.

P.H.Welch and J.M.R.Martin / Formal Analysis of Concurrent Java Systems 289

We assert that JCSPCHANNEL � o � t L � t M �TS Private is equivalent to CHANNEL � o � t L � t M � in the fail-
ures/divergences model:

assert CHANNEL � ���:����� �H� JCSPCHANNEL � ���:����� �9S Private

The FDR[2] tool can check for equivalence between CSP systems. The sizes of the
problems it may tackle are limitied to around one billion states with current workstation
technologies. The above assertion is verified within seconds using this tool.

3.4 Interference by Other Threads

The above works fine with the current system when only two threads are in existence. When
we increase the number of threads in the system beyond two, perhaps by defining Threads ��������	��

�

, we find that the above pair of assertions no longer holds. FDR reveals that this is
because the other threads may tamper with the state of the channel implementation, using the
getvar and setvar channels.

So how do we stop other threads from interfering with the channel object? In CSP we
can add a parallel process to the channel implementation which blocks access to any of the
relevant events!

PROTECTION � o � t � t DU�H� STOP� PROTECTION � o � t � t DU�H�$IIII% IIII& claim � o � t D D � setvar � o � v � t D D � d �
getvar � o � v � t D DE� d � waita � o � t D D! t D DV" Threads 5 � t � t D ���
v " Variables

�
d " Data

' IIII(IIII)
SAFEJCSPCHANNEL � o � t � t DU�H�

JCSPCHANNEL � o � t � t DR�C� PROTECTION � o � t � t DP�
assert CHANNEL � ���:����� �H� SAFEJCSPCHANNEL � ���:����� �BS Private

This pair of assertions is indeed found to hold when the number of threads is increased
beyond 2.

This is not supported by the actual Java implementation of One2OneChannel and so
must be regarded as a usage rule for JCSP. The same usage rule is, of course, enforced for
occam channels by its semantics (and by its compilers). Given that JCSP channels are just
Java objects (i.e. held by reference to stack addresses), that usage rule must be enforced either
manually or by good design tools.

However, JCSP also provides Any2OneChannels (as well as One2AnyChannel and
Any2AnyChannel) that do give the necessary protection to control parallel reads and
writes. This is considered in Section 5. First, we must complete the proof of correctness
for One2OneChannel.

4 Correctness of the JCSP Channel

So far we have succeeded in reducing the JCSP channel to a vastly simplified form, which
does away with monitors, and involves just two very simple processes: LEFT and RIGHT.
This is useful but it would be nice to go one stage further and be rid of these two processes,
leaving just a single unprotected CSP channel. It turns out that this is only possible if we

290 P.H.Welch and J.M.R.Martin / Formal Analysis of Concurrent Java Systems

assume certain ‘usage’ rules about how networks are constructed using JCSP, similar to those
enforced by occam compilers in that alternative implementation of CSP.

For the moment let us consider simple ‘ALT-free’ CSP programs that use only one-to-one
channels and no have alternation. Define an SCSP network as a special kind of parallel CSP
network P L � P M �W�P�X� Pn, where each Pi is an SCSPPROC:

SCSPPROC � SKIP! a 4 x � SCSPPROC! a � x � SCSPPROC � x �! SCSPPROC Y SCSPPROC! SCSPPROC F SCSPPROC

A usage rule is enforced which is that each channel a is used by exactly one process Pi

for input and exactly one process Pj for output, i.e. the network is triple-disjoint. (There
will be other external events though to represent things like reading in data and printing out
results).

So we have described a simple set of CSP processes that we would like to model using
JCSP. However there is an obstacle to this – we don’t really have any CSP channels available
for use - we only have JCSP channels, which behave like extra parallel processes:

JCSPCHANNEL � a ��� � LEFT � a ��� RIGHT � a �,�KS � a �
where LEFT � a ��� write � a � x � a 4 x � ack � a � LEFT � a �
and RIGHT � a ��� ready � a � a � x � read � a 4 x � RIGHT � a �

This representation of a JCSP channel has been proven correct above using FDR.
We are now going to show that these JCSP channels can be used just like ordinary CSP

channels. We shall consider an SCSP network V � P L �Z�P�[� Pn and transform it in some way
that replaces all the CSP channels with JCSP channel processes, and show that the external
behaviour of the program is preserved.

Let us define the transformation as follows: suppose that network V originally contains
a CSP channel a, which is written to by process Pi and read from by process Pj. To replace
CSP channel a in V we introduce an additional parallel process JCSPCHANNEL � a � , and we
transform process Pi to P Di by replacing all occurrences of a 4 x � Process by write � a 4 x � ack � a �
Process. And we transform process Pj to P Dj by replacing all occurrences of a � x � Process � x �
by ready � a � read � a � x � Process � x �

Now, because of the nice algebraic laws of CSP, if we can show that the external behaviour
of subnetwork Pi � Pj is unchanged by this transformation then it follows that there is no effect
on the external behaviour of the network as a whole.

What we actually need to prove is that:� Pi � Pj �HS � a � � � P Di � JCSPCHANNEL � a ��� P Dj �KS � write � a � ack � a � ready � a � read � a � (1)

Let’s start with the RHS:� P Di � JCSPCHANNEL � a �C� P Dj �HS � write � a � ack � a � ready � a � read � a � �� P Di �\�,� LEFT � a �C� RIGHT � a �0�HS a �C� P Dj �*S � write � a � ack � a � ready � a � read � a � �� P Di � LEFT � a �C� RIGHT � a �C� P Dj �HS � a � write � a � ack � a � ready � a � read � a � �] �:� P Di � LEFT � a �,�HS � write � a � ack � a � �^�_ � RIGHT � a ��� P Dj �*S � ready � a � read � a �a`cb S � a �

P.H.Welch and J.M.R.Martin / Formal Analysis of Concurrent Java Systems 291

We can establish result (1) if we can prove the following:� P Di � LEFT � a �0�HS � write � a � ack � a � � Pi (2)
and � RIGHT � a ��� P Dj �KS � ready � a � read � a � � Pj (3)

Let us consider the validity of equation 2. This would not hold true in general for any CSP
process Pi. But due to our restriction on the syntax of SCSP processes, we can see that it is
true as follows.

1. In moving from Pi to P Di we replace a 4 x � PROCESS with write � a 4 x � ack � a � PROCESS

2. The effect of putting LEFT � a � in parallel with P Di is then to replace write � a 4 x � ack � a �
PROCESS in P Di with write � a 4 x � a 4 x � ack � a � PROCESS

3. The effect of hiding
�
write � a � ack � a � is to set write � a 4 x � a 4 x � ack � a � PROCESS back

to a 4 x � PROCESS, which is what we started with. This is the only part of the proof
which makes use of the restricted syntax. For if we were to allow external choice to
be applied to JCSP channels, then hiding the write channel would introduce unwanted
non-determinism.

Equation 3 is proved similarly and we conclude that the transformation to replace CSP
channel a with JCSPCHANNEL � a � has not affected the external behaviour of the network.

Having applied a transformation to replace one CSP channel a D with a JCSP channel we
can repeat the step on other channels until only JCSP channels remain. (This is because
the transformation from Pi and Pj to P Di and P Dj preserves the restricted syntax of the SCSP
processes). Finally we will have shown that� P L �W�P�X� Pn �HS � a L � �P� � am

� �-/ � P D L �W�P�X� P Dn ���]
JCSPCHANNEL � a L ����P�X� JCSPCHANNEL � am � b

68 Sed write � a L � ack � a L � ready � a L � read � a L � ���
write � am

�
ack � am
�
ready � am

�
read � am f

Which means that the external behaviour of the network (i.e its behaviour when all internal
channels are concealed) is exactly preserved.

So we are perfectly safe to reason about JCSP programs in their natural form, modelling
calls to read and write as atomic communication events. There is no need for the additional
baggage of LEFT g RIGHT process pairs for each channel.

5 Any-to-One (Shared) Channels

A serious omission from the JCSP model considered so far is (occam) Alternation. We
consider here a simplified version that affords a much more efficient implementation. It
corresponds to the occam3 notion of a SHARED channel. In JCSP, this is the Any2One-
Channel, which allows any number of concurrent writers but only a single reader.

Any2OneChannel is similar to One2OneChannel, but contains an extra attribute
– write monitor. This is a dumb object whose only use is to provide a monitor lock
that must be acquired by a writer before writing. The read method is unchanged from
One2OneChannel. The modified write method is as follows:

292 P.H.Welch and J.M.R.Martin / Formal Analysis of Concurrent Java Systems

public void write (Object mess)
throws InterruptedException {
synchronized (write_monitor) { // compete with other writers

synchronized (this) { // compete with a single reader
channel_hold = mess;
if (channel_empty) {
channel_empty = false; // first to the rendezvous
wait (); // wait for reader process

} else {
channel_empty = true; // second to the rendezvous
notify (); // schedule the waiting reader
wait(); // let the reader regain the lock

}
}

}
}

For the CSP version, an extra object is needed for the write monitor.

WRITE DO� o � writemonitor
�
t �H�

write � o � t � mess �
claim �writemonitor � t �
claim � o � t �
setvar � o � channel hold � t 4mess �
getvar � o � channel empty � t � c �-......../

if � c � TRUE � then
setvar � o � channel empty � t 4 FALSE �
WAIT � o � t �
else
setvar � o � channel empty � t 4 TRUE �
NOTIFY � o � t ��F
WAIT � o � t �

6�777777778 F
release � o � t �
release � writemonitor � t �
ack � o � t �
WRITE DO� o � writemonitor

�
t �� WRITE DE� o � o D � t �K�$II% II& claim � o D DR� t � getvar � o � v � t � d � notify � o D DR� t �

notifyall � o D DR� t � setvar � o � v � t � d � write � o � t � d �
release � o D DE� t � waita � o D DO� t � waitb � o D DO� t � ack � o � t! v " Variables

�
d " Data

�
o D Dh" � o � o D �

' II(II)
The read method is essentially the same as before, except that we need to include certain

events in its alphabet to prevent the reading thread from interfering with the write monitor.
(This was only discovered after FDR caught a livelock on an early run.)

READ DE� o � o D � t �H� READ � o � t �� READ DO� o � o D � t �*� � READ � o � t �[+ � claim � o DR� t �
JCSPSHAREDCHANNEL � o � o D � t L � t M � t i��H�

READ DO� o � o D � t L��C�
WRITE D � o � o D � t M��C� WRITE D � o � o D � t i����
MONITOR � o �^� MONITOR � o Dj��� VARIABLES � o �

P.H.Welch and J.M.R.Martin / Formal Analysis of Concurrent Java Systems 293

Now we arrive at the step of reducing the CSP representation of an Any2OneChannel
to a simpler equivalent form. Since the FDR tool can perform only static analysis of finite
systems we shall restrict ourselves to the case of a two-to-one channel. (However it should
be possible to extend this analysis to the general case by a form of mathematical induction
devised by Creese and Roscoe for CSP programs with arbitrary network topologies[1].)

The specification for a two-to-one JCSP channel consists of three simple processes – one
for each user thread (see Figure 13):

LEFT

RIGHT’’
ack.o.t’

ack.o.t’’

ready.o.t

read.o.t!mess

transmit.o.mess

transmit’.o.mess

write.o.t’?mess

write.o.t’’?mess

LEFT’’

Figure 13: A 2-way Shared Channel Version of Figure 10

We define:

channel transmit D[� Objects �Data

LEFT D Dk� o � t �*�
write � o � t � mess � transmit DE� o 4mess � ack � o � t � LEFT D DE� o � t �� LEFT D Dk� o � t �*� d write � o � t �m � transmit Dl� o �m �

ack � o � t ! m " Data f
RIGHT D Dl� o � t DQ�*�
ready � o � t D@�]

transmit � o � mess � read � o � t DE4mess � RIGHT D DE� o � t DU� #
transmit DO� o � mess � read � o � t DE4mess � RIGHT D Dl� o � t DU� b� RIGHT D Dk� o � t DU�H�d ready � o � t D � transmit � o �m � transmit DR� o �m �
read � o � t DE�m ! m " Data f

SHAREDCHANNEL � o � t � t D � t D DU�H�_
LEFT � o � t DU�C� LEFT D DE� o � t D DU�C� RIGHT D Dl� o � t � ` S � transmit � o �m � transmit DO� o �m ! m " Data

�
In order to compare this specification with the JCSP implementation we need to conceal

all the additional events in the alphabet of JCSPSHAREDCHANNEL.

Private

 �� JCSPSHAREDCHANNEL � �����	�0�������:
 �V5 � SHAREDCHANNEL � ���0�������:
 �

Assert that JCSPSHAREDCHANNEL � o � o D � t L � t M � t i��*S Private

is equivalent to SHAREDCHANNEL � o � t L � t M � t i��
in the Failures/Divergences model.

assert SHAREDCHANNEL � ���0�������:
 �=� JCSPSHAREDCHANNEL � �����	�0�������:
 �BS Private

Again, this is easily verified using FDR.
The analysis of Section 4 can now be extended to cater for simple networks with shared

CSP channels.

294 P.H.Welch and J.M.R.Martin / Formal Analysis of Concurrent Java Systems

6 Analysis of the CTJ Channel

Having proved correctness for the JCSP channel it is natural to move on to consideration of
its rival: CTJ (Communicating Threads for Java)[7].

The CTJ channel algorithm is quite similar to JCSP, but it handles the monitor synchro-
nisation in a subtly different, and somewhat simpler way. CTJ only has any-to-any channels.
The following shows the core one-to-one code that it uses, written in the same style as the
JCSP version presented in Section 3.2:

public class One2OneChannel {

private Object channel_hold; // data in transit (as in JCSP)

private boolean channel_empty = true; // sync flag (used differently)

// the above flag indicates whether there has been a write.
// previously, it indicated whether there had been a read or a write.

public synchronized Object read () throws InterruptedException {
if (channel_empty) {

wait (); // wait for a writer
}
// there has been a write and channel_empty is now definitely false.
channel_empty = true;
notify (); // there is a writer waiting
return channel_hold; // this will still be valid

}

public synchronized void write (Object value) throws InterruptedException {
channel_empty = false;
channel_hold = value;
notify (); // redundant if first to the channel
wait (); // wait for a reader

}

}

This is implemented in our CSP model by redefining the READ and WRITE processes as
follows:

READ � o � t �9�
ready � o � t � claim � o � t �
getvar � o � channel empty � t � c �m� if � c � TRUE � then WAIT � o � t � else SKIP �@F
setvar � o � channel empty � t 4 TRUE � NOTIFY � o � t ��F
getvar � o � channel hold � t � mess �
release � o � t � read � o � t 4mess � READ � o � t �

WRITE � o � t �H�
write � o � t � mess � claim � o � t �
setvar � o � channel empty � t 4 FALSE �
setvar � o � channel hold � t 4mess �
NOTIFY � o � t �GF WAIT � o � t �GF
release � o � t � ack � o � t � WRITE � o � t �

The channel is then shown to be equivalent to the simpler form, and hence also the JCSP
channel, in the same manner as before:

assert CHANNEL � ���:����� �H� JCSPCHANNEL � ���:����� �9S Private

P.H.Welch and J.M.R.Martin / Formal Analysis of Concurrent Java Systems 295

7 Verifying the JCSP ALT Construct

General ALTing provides much more control (albeit at O � n � -cost) than the shared channels
considered in Section 5. For example, shared channels do not enable a process to listen
exclusively to channel x one moment and channels x and y another - so ALTing is crucial.

Further, it was the (published[15], compact and well-used) JCSP implementation of ALTing
that contained the unfortunate race hazard that eventually yielded the deadlock mentioned in
Section 1. This requires the analysis of many interacting monitors – the Alternative ob-
ject itself (which has two methods) and the channels (which are extended to four methods).

We have recently performed a formal verification of the current JCSP Alternative
class (given below). This was done in a fairly restricted manner: considering only two chan-
nels firing at a single alternation construct. However, its success has brought great relief and
given us confidence in the correctness of the n-way ALT with pre-conditions.

The analysis was considerably more complex than that of the single and shared channels,
and so we shall only include an outline of the methods employed here. The complete FDR
document is available for reference at [11].

public class Alternative {

private static final int enabling = 0;
private static final int waiting = 1;
private static final int ready = 2;
private static final int inactive = 3;
private int state = inactive;
private final Channel[] c;

public Alternative (final Channel[] c({
this.c = c;

}

public int select () throws InterruptedException {
int selected = -999999; // this value should *never* be returned!
int i;
state = enabling; // ALT START
for (i = 0; i < c.length; i++) {

if (c[i].enable (this)) { // ENABLE CHANNEL
state = ready;
selected = i;
break;

}
}
synchronized (this) {

if (state == enabling) { // ALT WAIT
state = waiting;
wait ();
state = ready;

}
}
// assert : state == ready
for (i--; i >= 0; i--) {

if (c[i].disable ()) { // DISABLE CHANNEL
selected = i;

}
}
state = inactive;
return selected; // ALT END

}

296 P.H.Welch and J.M.R.Martin / Formal Analysis of Concurrent Java Systems

synchronized void schedule () {
switch (state) {

case enabling:
state = ready;

break;
case waiting:

state = ready;
notify ();

break;
// case ready: case inactive:
// break

}
}

}

Here is the modified Channel class, which allows for alternation:

public class Channel {

private int channel_hold; // buffer (not detectable to users)
private boolean channel_empty = true;// synchronisation flag
private Alternative alt; // state of reader

public synchronized int read () throws InterruptedException {
if (channel_empty) {

channel_empty = false; // first to the rendezvous
wait (); // wait for the writer thread
notify (); // schedule the writer to finish

} else {
channel_empty = true; // second to the rendezvous
notify (); // schedule the waiting writer thread

}
return channel_hold;

}

public synchronized void write (int n) throws InterruptedException
channel_hold = n;
if (channel_empty) {

channel_empty = false; // first to the rendezvous
if (alt != null) { // the reader is ALTing on this Channel

alt.schedule ();
}
wait (); // wait for the reader thread

} else {
channel_empty = true; // second to the rendezvous
notify (); // schedule the waiting reader thread
wait (); // let the reader regain this monitor

}
}

synchronized boolean enable (Alternative alt) {
if (channel_empty) {

this.alt = alt;
return false;

} else {
return true;

}
}

P.H.Welch and J.M.R.Martin / Formal Analysis of Concurrent Java Systems 297

synchronized boolean disable () {
alt = null;
return !channel_empty;

}
}

For the purpose of verification we modelled a system of two channels interacting with a
single alternation construct. Even this resulted in a fairly complicated CSP network as shown
in Figure 14.

endsched.o’’.t’

SELECTSTATE

SCHEDULE

MONITOR

SCHEDULE

query.o’’.t’’

result.o’’.t’’!selected
JCSPALT

MONITOR

VARIABLES

ALTING

ENABLE READWRITE2

JCSPCHANNEL2

write.o.t?mess

ack.o.t

ready.o.t’’

read.o.t’’!mess

WRITE2 ENABLE READ

ALTING

VARIABLES

MONITOR

JCSPCHANNEL2

ack.o’.t

write.o’.t?mess

read.o’.t’’!mess

ready.o’.t’’

startenable.o.t’’

startenable.o’.t’’
endenable.o’.t’’.status

endenable.o.t’’.status
endsched.o’’.t

startsched.o’’.t

startsched.o’’.t’

Figure 14: A 2-way ALTing Channel Version of Figure 11

The code for the various CSP processes is too long to be included here, but it is a straight-
forward translation of the equivalent Java (in the same way as for the One2OneChannel.
The function of those processes not defined above is as follows.� WRITE2 – Channel.write method, modified to keep track of alt variable and to

invoke Alternative.schedule.� ENABLE – models both Channel.enable and Channel.disable.� ALTING – process to model the alt variable.� SCHEDULE – Alternative.schedulemethod (there are two copies of this: one
to service each channel).� STATE – process to model the state variables for Alternate: state, selected
and i.� SELECT – Alternative.selectmethod.

298 P.H.Welch and J.M.R.Martin / Formal Analysis of Concurrent Java Systems

For our specification, which we wish to prove equivalent to the alternation construction,
we consider two simple CHANNEL processes placed in parallel with an ALT process which
snoops their write channels in order to provide the reader with selection information:

CHANNEL

write.o.t?mess

ack.o.t

ALT

query.o’’.t’’

result.o’’.t’’!selected

ready.o.t’’

read.o.t’’!mess

ready.o’.t’’

read.o’.t’’!mess

write.o’.t’?mess

ack.o’.t’

CHANNEL

Figure 15: A 2-way ALTing Channel Version of Figure 10

The CSP code for the ALT process is as follows.

ALT � o D D � t D D � o � t � o D � t D � ready
���

ready
���

waiting �n�
write � o � t � mess � ALT � o D D � t D D � o � t � o D � t D � TRUE

�
ready
���

waiting �#
write � o Dl� t DU� mess � ALT � o D D � t D D � o � t � o D � t D � ready

���
TRUE
�
waiting �# -..................../

if � waiting � TRUE � then �
if � ready

� � TRUE and ready
� � TRUE � then �� return � o D DE� t D Dl4 � � ALT � o D D � t D D � o � t � o D � t D � FALSE

�
ready
���

FALSE �,�Y � return � o D DE� t D Dl4 � � ALT � o D D � t D D � o � t � o D � t D � ready
���

FALSE
�
FALSE �,�� else if � ready

� � TRUE � then �
return � o D DO� t D Dl4 � � ALT � o D D � t D D � o � t � o D � t D � ready

���
FALSE

�
FALSE �� else if � ready

� � TRUE � then �
return � o D D � t D D 4 � � ALT � o D D � t D D � o � t � o D � t D � FALSE

�
ready
�	�

FALSE �� else STOP� else �
query � o D DR� t D D@� ALT � o D D � t D D � o � t � o D � t D � ready

���
ready
���

TRUE ��

6�777777777777777777778
In each state ALT maintains three variables: ready0, ready1 and waiting. The two former vari-
ables record which channels are carrying data, and the latter records whether an unanswered
query has been issued by the reader. Note that this is not a prioritized alternation construct.
If both channels are carrying data then a non-deterministic choice is made between them.

Now in order to compare the two processes we have to add a final parallel component to
each one to reflect a JCSP usage rule, which is that the reader must first call the select
method and then call which ever read method is appropriate. We are not interested in
comparing how the specification and implementation would behave under an illegal usage
pattern.

USAGE � o D D � t D D � o � o DP�*�
query � o D DR� t D Dh� return � o D DO� t D DU� c �
if � c � � � then �

ready � o � t D DX� read � o � t D DQ� mess � USAGE � o D D � t D D � o � o Dj�� else �
ready � o D � t D D � read � o D � t D D � mess � USAGE � o D D � t D D � o � o D ��

P.H.Welch and J.M.R.Martin / Formal Analysis of Concurrent Java Systems 299

FDR, after working through around 48,000 states, confirms that the implementation is
equivalent to the specification – which is a good step towards total confidence in the JCSP
ALT code. However there is still further work that could be done to consider alternation
structures with pre-conditions, and those which contain more than two channels.

Figure 16: Snapshot of FDR Finding the Deadlock in the Original (Bad) JCSP ALT

The original faulty JCSP implementation was also analsyed using FDR and, sure enough,
the deadlock trace that had taken two years to discover and then eliminate was revealed in a
matter of seconds – Figure 16.

8 Conclusions and Future Work

The CSP model of Java’s monitor primitives means that any multithreaded Java code – not
just code using the JCSP or CTJ[7] libraries that give direct access to CSP primitives –
becomes amenable to formal and (partly) automated analysis. This should be of interest to
the Java community.

Earlier work in the area of model-checking concurrent Java programs has been performed
by Naumovich et al[12]. Their approach involves specifying the behaviour of Java monitors
as a collection of constraints over event orderings. These constraints are defined using finite
transition systems. There is a certain similarity to the language of sat which is used to specify
behavioural characteristics of CSP programs using set theory and logic[10]. However, theirs
is a traces-only model and so provides no easy way to check for deadlocks. By using CSP as

300 P.H.Welch and J.M.R.Martin / Formal Analysis of Concurrent Java Systems

our underlying model, we are able to test for a wide ranging set of properties: e.g. deadlock-
freedom, livelock-freedom, program equivalence and program refinement. And we can use
the powerful and mature FDR tool.

In general, Java designers, implementors, testers and maintainers are running scared of
its multithreading primitives. However, applications force their use very quickly (e.g. to
maintain decent response times from continuous systems with external control). The Mars
Pathfinder mission of 1998 suffered a race hazard from just three interacting threads that
led to real-time failure on the Martian surface [8]. In future, if not already, finance-critical
and safety-critical applications will be multithreaded. How sure will the authors be of their
security?

A CSP model of multithreading puts this on a solid engineering foundation. Noone can
ignore that. Anyone doing so would, at the very least, be exposed to a risk of litigation after
a messy accident gets traced back to a system failure arising from some race condition:

“So, Bill, you sold your system without really knowing whether it was deadlock-free ... and
you never even tried these standard procedures that might have found out?!! Disclaimer notices
notwithstanding, would you say that that shows a lack of due care or a lack of diligence towards
your customer?”

References

[1] S. J. Creese and A. W. Roscoe, Formal Verification of Arbitrary Network Topologies,
Proceedings of the International Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA’99), Volume II. CSREA Press 1999

[2] Formal Systems (Europe) Ltd, Failures-Divergence Refinement: FDR2 Manual, 1997.

[3] Inmos Ltd, occam3 user manual, 1991,
<http://www.hensa.ac.uk/parallel/occam/documentation/>.

[4] H. Muller and K. Walrath, Threads and Swing, April 1998,
<http://java.sun.com/products/jfc/tsc/articles/threads/threads1.html>.

[5] C.A.R. Hoare, Communicating Sequential Processes, Prentice-Hall, 1985.

[6] C.A.R. Hoare, The Emperor’s Old Clothes, 1980 Turing Award Lecture, Commun.
ACM 30, 8, pp 672-686, February 1981.

[7] G. Hilderink, J. Broenink, W. Vervoort and A. Bakkers, Communicating Java Threads,
in Parallel Programming and Java, WoTUG-20, pp. 48-76, IOS Press (Amsterdam),
ISBN 90 5199 336 6, April 1997.

[8] N. Hess, Pathfinder Debugging, <java.sun.com/people/jag/pathfinder.html>.

[9] J.M.R. Martin and S.A. Jassim, A Tool for Proving Deadlock Freedom, in Parallel Pro-
gramming and Java, proceedings of WoTUG-20, pp. 1-16, IOS Press (Amsterdam),
ISBN 90 5199 336 6, April 1997.

[10] J.M.R. Martin, A Tool for Checking the CSP sat Property, The Computer Journal, Vol.
43, No. 1, 2000.

[11] J.M.R. Martin, FDR analysis of Peter Welch’s CSP model of Java threads and the JCSP
implementation of a channel, to be made available from the JCSP web site.

P.H.Welch and J.M.R.Martin / Formal Analysis of Concurrent Java Systems 301

[12] G. Naumovich, G.S. Avrunin and L.A. Clarke, Data Flow Analysis for Checking Prop-
erties of Concurrent Java Programs, Proceedings of the 1999 International Conference
on Software Engineering (IEEE Cat. No. 99CB37002), ISBN 1 58113 074 0, May 1999.

[13] A.W. Roscoe, The Theory and Practice of Concurrency, Prentice-Hall, 1998.

[14] P.H.Welch, Java Threads in the Light of occam/CSP, in Architectures, Languages and
Patterns for Parallel and Distributed Applications, proceedings of WoTUG-21, pp. 259-
284, IOS Press (Amsterdam), ISBN 90 5199 391 9, April 1998.

[15] P.H. Welch, ALTing, Java Threads Workshop (Post Workshop Discussion), Oct. 1996,
<http://www.hensa.ac.uk/parallel/groups/wotug/java/discussion/4.html>.

[16] P.H. Welch, A CSP model for Java Multithreading, java-threads@ukc.ac.uk
mailing list, March 1999,
<http://www.cs.ukc.ac.uk/projects/ofa/java-threads/203.html>.

[17] P.H. Welch, A CSP model for Java Multithreading, P.H.Welch and J.M.R. Martin, in
Proceedings of the International Symposium on Software Engineering for Parallel and
Distributed Systems, pp. 114-122, IEEE Cat. No. PR00634, ISBN 0 7695 0634 8, June
2000.

[18] P.H. Welch and P.D. Austin, JCSP home page, since 1999,
<http://www.cs.ukc.ac.uk/projects/ofa/jcsp/>.

