Architectures, Languages and Patterns 93
P.H. Welch and A.W.P. Bakkers (Ed.)
I0OS Press, 1998

A Technique for Checking the CSP sat Property

Jeremy M.R. MARTIN Sabah A. JASSIM
Oxford University Computing Services, Department of Mathematics,
13 Banbury Road, Statistics, and Computer Science,
Oxford 0X2 6NN, UK University of Buckingham,
MKI8 IEG, UK

Abstract. This paper presents an algorithm for checking that a CSP process satisfies
a specification defined by a boolean-valued function on its traces and refusals, i.e.

Psatf(tr, ref)

This is contrasted with the refinement approach, as implemented by the FDR tool, of
checking that one CSP process is a possible implementation of another, i.e

P 3 SPEC

1 Introduction

The CSP Language of C.A.R.Hoare[3, 8] is a notation for describing patterns of communi-
cation by algebraic expressions. It is widely used for the design of parallel and distributed
hardware and software, and for the formal proof of vital properties of such systems. How-
ever, without computer assistance, it is often impractical to prove such properties other than
for toy systems.

There are two standard approaches to specifying properties of a CSP process P. The
first is to use logical ‘sat’ clauses to define constraints on the directly observable behaviour
patterns of P. The second is to provide an abstract non-deterministic process which charac-
terises these constraints and which must be refined by P. Both these methods are described
in section 2. Automated support for the latter technique of refinement checking is given by
the FDR tool of Formal Systems Europe Ltd.[2] — this paper describes a new algorithm for
checking automatically the former technique of specifying behaviour using sat clauses.

The rest of this paper is structured as follows. In section 2 we review the CSP language
and its two aforementioned specification techniques. In section 3 we describe the normal-
form transition system which was developed for use with FDR and is also crucial to the new
algorithm introduced in section 4. The other vital ingredient for our new technique is the
incremental trace function, which enables us to prove properties of infinite sets of behaviour
patterns through finite analysis. Some useful examples of such functions are given in section
5. In section 6 we provide two case studies to demonstrate the practical significance of our
new technique and we finish off with a discussion of further applications of our new method
and directions for future research.

Two appendices are included. The first lists some relevant CSP terminology for specify-
ing properties of traces. The second outlines the relationship between the occam program-
ming language and CSP.

94 J.M.R.Martin and S.A.Jassim / Checking the CSP sat Property

2 The CSP Language, Specification and Refinement

The core syntax of CSP is described by the following grammar

Process :== STOP ‘ Deadlock
SKIP ‘ Successful termination
CHAOS | Might do anything
event — Process ‘ Event prefix
channel?x — Process ‘ Input
channel!x — Process ‘ Output
Process;; Processy ‘ Sequential composition
Process; |[alph, || alph, || Processs ‘ Parallel Composition
Process; M Processs ‘ Non-deterministic choice
Process; O Processs ‘ Deterministic choice
if B then Process; else Processs ‘ Conditional
Process \ event ‘ Event hiding
f(Process) ‘ Event relabelling
name

The meaning of a CSP process is defined in terms of the circumstances under which it
might exhibit the phenomena of deadlock or divergence. This is the Failures-Divergences
model. A process which is deadlocked is permanently blocked in a state where it is able
neither to perform any event nor to terminate successfully. A program which is divergent is
locked into an infinite pattern of concealed activity. To the outside world both phenomena
appear the same.

The terminology for the failures-divergences model is defined as follows. A trace tr of
a process P is any finite sequence of events {(eq, es .. ¢,) that it may perform from its initial
state. A divergence of a process is a trace after which it might diverge. A failure of a process
P consists of a pair (tr, ref) where tr is a trace of P and ref is a set of events which if offered
to P by its environment after it has performed trace ¢r, might be completely refused.

Each CSP process is then uniquely defined by a pair of sets (F, D), corresponding to its
failures and divergences.'

Precise definitions for the failures and divergences of CSP processes are given in [8] by
equations such as

divergences(STOP

) 0
failures(STOP) {{

divergences(x — P) {(x) “tr|tre divergences(P)}
failures(x — P) {(0,X) | X CZ —{x}}

{((¥) ™ 1r,X) | (tr,X) € failures(P)}

An important characteristic of the model to be noted is that the possibility of divergence
is always treated as being catastrophic. It is identified with the primitive process CHAOS

I'The traces of a process may be fully determined from its failures.

J.M.R.Martin and S.A.Jassim / Checking the CSP sat Property 95

which is the most completely unpredictable CSP process of all. This means that it is virtu-
ally impossible to prove anything useful about a divergent process. The main purpose for
allowing for this form of behaviour in the model is so as to be able to prove its absence.

Let us introduce a couple of simple CSP processes here to illustrate the concepts covered
in this section. First consider a process to represent a typical vending machine.

VM = coin — tea — VM M coin — VM

This vending machine is faulty. It is supposed to accept a coin, then dispense a cup of
tea. However sometimes it swallows up the coin without dispensing anything, quite unpre-
dictably. Here are some possible traces for VM.

(coin, tea, coin, tea, coin, tea)

{coin, coin, coin, coin)

(coin, tea, coin, coin)

)

(coin, coin, tea, coin

After the machine has performed trace (coin) it may or may not refuse to serve a cup of tea.
This is recorded by the following two pieces of information.

(coin,tea) € traces(VM) ...might serve tea after receiving a coin
({coiny,{tea}) € failures(VM) ...might refuse to serve tea after receiving a coin

Now let us consider a process to describe the behaviour of a consumer of hot drinks.
TD = coin — tea — TD O coffee — TD

The tea drinker is happy either to pay for cups of tea, or to drink coffee free of charge. He
allows his environment to control this choice if necessary.

We can use the CSP parallel operator to combine the two processes 7D and VM into a
single process. To do this we need to specify for each process an alphabet to define the set of
communication events in which it is required to participate. In this example it makes sense
for the alphabet of TD to be {coin, coffee, tea} and for the alphabet of VM to be {coin, tea}.
We then write the parallel composition as

TD |[{coin, coffee, tea} || {coin, tea} || VM

Writing Specifications for CSP Systems

The failures-divergences model is used for formal reasoning about the behaviour of concur-
rent systems defined by CSP equations. Hoare invented a simple notation for this purpose.
We write

Psatf(tr, ref)

to specify that all failures (¢r, ref)) of process P must satisfy the predicate f.

96 J.M.R.Martin and S.A.Jassim / Checking the CSP sat Property

For instance the owner of vending machine VM might wish to specify that it must never
dispense more cups of tea than have been paid for by the clause?

VM sattr | tea < tr | coin (1)

This specification is satisfied by the current faulty definition of VM, but is clearly not satis-
factory for the customer as he might not receive any tea for his money.

A more reasonable specification from the customer’s point of view would be that the
machine should alternate between accepting a coin and dispensing a cup of tea, i.e.

VM sat(Q < tr | coin —tr | tea < 1 2)

However this specification still does not guarantee that he will receive any tea for his money,
as it does not rule out that the machine will deadlock immediately after receiving the coin.

Better is to specify that the vending machine cannot refuse to serve tea immediately after
receiving a coin, by

VM sat (head(reverse(tr)) = coin) = tea & ref (3)

However, this specification says nothing about the situation where a machine allows the
customer to insert two or more coins, before serving him any tea. Should the additional coins
be regarded as forfeit on account of stupidity, or should the customer be allowed to claim as
many cups of tea as the number of inserted coins?

Note that specifications (2) and (3) do not hold for the current faulty definition of VM.

Another important property that involves specification on refusal sets is that of deadlock-
freedom. Let X be the universe of communication events, then process P is deadlock-free if,
and only if,

Psatref # %

Generally the only property we are likely to want to show about divergence is its absence,
i.e. divergences(P) = {}, so this component of the formal model is not usually included as
part of the sat language.

Proving sat Clauses Algebraically

Clearly the usefulness of sat specification clauses depends on the feasibility of proving their
validity. One approach is to calculate directly the failures and divergences of the process def-
inition to be analysed and then perform proofs regarding the contents of these mathematical
objects. As these are likely to be highly complex and infinite sets, this method is unappeal-
ing. A second approach is to use a system of deduction rules, such as the following examples
from a set of rules due to Hoare.

If PsatSand PsatT then PsatSAT
If PsatS(tr) then x — P sat (1r = () V (head(tr) = x A S(tail(tr))))

However this approach also seems destined to require complex and intricate analyses to be
carried out.

This paper is concerned with providing a simple algorithm for automated verification of
sat clauses, which will be introduced in section 4.

2The notation tr | x means the number of times that event x occurs in trace tr. See the appendix for a
glossary of trace functions.

J.M.R.Martin and S.A.Jassim / Checking the CSP sat Property 97

The Refinement Approach

An alternative to the sat notation for specifying CSP processes is given by process refine-
ment. Here required behaviour constraints may be specified as abstract, non-deterministic
CSP processes.

There is a natural ordering on the set of all processes given by

(F1,D1) C (F9,Dy) <= F1 2 F3 AD; D D,

The interpretation of this is that process P; is worse than Ps if it can deadlock or diverge
whenever P, can. The worst process of all is CHAOS.

This ordering is very important to the stepwise refinement of concurrent systems. Start-
ing from an abstract, non-deterministic definition, details of components may be indepen-
dently fleshed out whilst preserving important properties of the overall system such as free-
dom from deadlock and divergence.

The refinement ordering provides an alternative approach to specifying the behaviour of
CSP systems. To determine whether a process Imp satisfies a particular property p we con-
struct the worst possible process Spec that satisfies p and then check that the process Imp
refines Spec (or Spec is worse than Imp: Spec T Imp).

For example, in order to check that a process is divergence-free, we compare it with the
worst possible divergence-free process, DIVFREE, given by

DIVFREE = STOP 1 (O _ x — DIVFREE)

This process may perform any event (from the global universe X)) at any time, or it may
deadlock at any time. But it will never diverge.
Using refinement, specification statement (2) from the previous section becomes

VM 1 DIVFREE |[X || {tea, coin} || ALTERNATE?
Where
ALTERNATE = coin — tea — ALTERNATE

The parallel composition of DIVFREE and ALTERNATE defines a process which never di-
verges but may deadlock at any time, and the only constraint on the events that it may per-
form is that alternation is required between coin and tea starting with coin*. (The reader will
find that it is rather more difficult to express clauses (1) and (3) as refinement assertions.)

A significant advantage of using refinement expressions over sat clauses until now has
been the existence of an automated tool for checking their validity — the FDR tool of Formal
Systems Europe[2]. The intention of this paper is to prepare the ground for the development
of a similar tool for the verification of sat clauses, which appear to provide a more expressive
notation.

3 Normal Form Transition Systems

It will be observed that the failures sets for most interesting processes will be infinite, cer-
tainly for any non-terminating process. For automated analysis a compact finite representa-
tion is required. This is given by the normal form transition system devised by A.W.Roscoe
for use in the refinement checking program FDR.

3This assertion is, of course, false for the current definition of VM.
*It was necessary to include divergence-freedom in the specification process because CSP identifies diver-
gence with CHAOS — a process that does not satisfy any reasonable constraints.

98 J.M.R.Martin and S.A.Jassim / Checking the CSP sat Property

Here any process P, with a finite number of recognisable states, is represented by a tran-
sition system NF(P). Each state of NF(P) corresponds to a set of traces of P after which the
subsequent behaviour is identical. So we have effectively defined an equivalence relation ~
on traces(P) given by

try ~ tro <= Paftertr; = P aftertry

If there exist any divergent traces of P, i.e. divergences(P) # (), then they belong to a single
equivalence class which corresponds to a state labelled with a flag L. States which corre-
spond to non-divergent classes of traces are labelled with a set of minimal acceptance sets
{Ai,..,A,}. Minimal acceptance sets are the complement in ¥ of maximal refusal sets®.
They will clearly be the same for any particular class of equivalent traces. Minimal accep-
tances are used instead of refusals because they usually require less storage space.

The transitions of NF(P) are defined as follows. There is a transition state; — states

if and only if for every trace tr represented by state; there is a corresponding trace r > (x)
which is represented by states.

The normal form transition systems for processes VM and TD, defined in section 2, are
illustrated in figure 1. Observe that the action of the nondeterministic choice operator I is
absorbed into state 1 of NF(VM). The nondeterminism is represented by the presence of two
distinct minimal acceptance sets.

State 0

Acceptance set: {coin }

.

NF(VM)) coin o tea
ate

) coin
Acceptance sets: {coin} {tea)

.

-

State 0
Acceptance set: {oin, coffee} coffee
coin tea NF(ID)
(State 1

Acceptance set: {tea }

.

Figure 1: Normal Form Transition Systems

The algorithm by which FDR calculates normal-form transition systems is described in
[7] and [4].

4 A Checking Algorithm for sat

Complete information about failures and divergences of a process may be extracted from
its normal-form transition system. Generally if a process may diverge then we shall not be
very interested in proving anything useful about it, so from now on we shall assume that all

3In the CSP failures-divergences model any subset of a refusal set is also a refusal set.

J.M.R.Martin and S.A.Jassim / Checking the CSP sat Property 99

processes considered are divergence-free. (This property is checked during the construction
of a normal-form transition system.) It will also be useful, from now on, to assume that the
ref variable in a sat clause refers only to the maximal refusal sets corresponding to any given
trace tr. This does not cause any loss of generality and yet makes the checking process far
more efficient.

Specifications on refusal sets are easy to check because all the required information may
be deduced from the list of minimal acceptance sets stored at each vertex. Each vertex needs
to be looked at only once, since it represents an equivalence class of all traces after which the
process behaves in a particular way. For instance, to check that a process is deadlock-free,
i.e. Psatref # %, it would suffice to check that no state of NF(P) is labelled with an empty
acceptance set.

However checking a trace specification might potentially lead to an infinite search unless
the specification is carefully stated.

Consider the specification

Psat(tr . b+4)>2(trla)>trlb

Starting at the initial state of P we might search through the transition digraph, keeping a
record of the current trace, and checking every possible trace for #r | a and tr | b. This
search might never terminate for a non-terminating process, as the values of both tr | a and
tr | b might increase continually, in step with each other.

There is a much better approach to this problem, as follows. We write our specification
like this

Psatd > 2(tr la)—tr{b >0
Then we define an incremental trace function f as follows

f))=0
fler ™ {x)) = (tr) if x=b
(tr) otherwise

fler)+2 if x=a
-
f

It is clear that

fr)y=2(rla)—trlb

We start an exhaustive search through the transition system for pairs of the form (o, v),
where o is a state and v is a possible value of f(zr) at that state. The search terminates either
when there are no new such pairs to be found, or if we find a pair for which = (4 > v > 0).

There are two reasons why this approach is better. Firstly we have defined our variant
function, f, in an incremental way, which means that we do not need to store any information
about traces. The value of f(¢r) at each point in the search can be calculated purely from the
information stored at the previous point. Secondly we have converted an endless search into
one that is guaranteed to terminate, due to the bounds placed on the range of f.

This technique can be extended to a parallel network of two (or more) processes V =
P |[aP||aQ]| Q, and a specification on network states (tr, (refp, refp)), where refp and refy
are refusals of the individual processes P and Q after the network has performed trace tr. We
now assume that the specification is expressed in the form

V sat PRED(f,(tr), . ., f(tr), refp, refg)

involving a number of incremental trace functions f; and refusal sets refp and refy of P and

0.

100 J.M.R.Martin and S.A.Jassim / Checking the CSP sat Property

Two sets of records are maintained: pending and done. Each record is of the form

(Up, O'Q, Viy. o Vn)

where (op, 0p) is a pair of normal form states in which P and Q may simultaneously rest, and
each v; is the value of f;(¢r) for a corresponding trace #r. The algorithm proceeds as follows.

1. Initially pending consists of a single record corresponding to the original state of the
system, and done is empty.

pending = {(0,0,£1({)), - -./u(0))}
done = {}

(We are assuming that the initial state of each process is numbered 0.)
2. Take a new record from pending to be processed.

r = (op,00,V1,-.,V) € pending
pending = pending — {r}

3. Now check whether record r satisfies the specification. Suppose that op has a set A of
minimal acceptance sets and o has a set B of minimal acceptance sets.

If 3a:A,b:B. —PRED(vq,..,v,,aP — a,aQ — b) then halt. (The specification is
not satisfied). Otherwise

done := done U {r}

4. Now construct the set new of successor records of r, by considering every transition
that is possible for P |[aP| aQ]| Q from state pair (op,0p). Assume that r corre-
sponds to some trace tr of P |[aP || aQ]| Q. Then

{ (0, 00, a(tr ™ (%)), - s fultr ™ (%)) | }

x€aP—aQAaop = o

new = U { (07,00, /1(tr ™ (%)), - - fultr ™ (%)) | }

B x€aQ—aP Aoy = oy

U { (0, 00 fitr 7 (0)), o Sultr 7 (1)) | }

x€aPNaQAop = apNog = 0y
Although we have not stored any record of a value of #r that corresponds to r, it is not
actually required in order to perform this calculation due to the incremental method of

defining the various trace functions.

5. Now we eliminate records from new that have already been processed and merge the
remainder into pending.

pending := pending U (new — done)

6. If pending = {} then halt. (The specification is satisfied.) Otherwise return to step 2.

J.M.R.Martin and S.A.Jassim / Checking the CSP sat Property 101

This algorithm is not certain to terminate for every given set of incremental trace func-
tions f; and predicate PRED. But if there is a finite range of values for each f; outside which
satisfaction of PRED is impossible then termination is guaranteed for any network.

The following example is included in order to illustrate this technique. Consider the net-
work V = LEFT |[{in,mid} || {mid,out} || RIGHT with the following process definitions.

LEFT = in— mid — LEFT
RIGHT = mid — out — RIGHT

Suppose we wish to prove that the following trace specification is satisfied.
Vsat2 > tr L in—tr | out > 0

V is an abstract representation of a double buffer, which inputs information on channel in
and outputs it on channel out. The specification simply states that the number of messages
held in the buffer at any given time lies between nought and two inclusive.

We proceed by defining an incremental trace function f as follows

f()) =0
fltr)+1 if x=in
frm () = {f
f

(tr)—1 if x=out
(tr) otherwise

It is clear that
fltr)y=1trlin—tr] out

In this case our predicate function PRED is given by
PRED(f(tr)) = (2 > f(tr) > 0)

Normal form state transition systems for the network V are shown in figure 2. We now pro-
ceed to form an exhaustive set of records of the form

(oLEFT, ORIGHT, val)

consisting of a state of process LEFT, a corresponding state of process RIGHT and a possible
value for f(#r) when the processes are in those states.
The search proceeds as follows. First we have

pending = {(0,0,0)}, done = {}

Check (0,0, 0); possible transition is in; leads to record: (1,0, 1). Now we have
pending = {(1,0,1)}, done = {(0,0,0)}

Check (1,0, 1); possible transition is mid; leads to record: (0, 1,1). Now we have
pending = {(0,1,1)}, done = {(0,0,0),(1,0,1)}

Check (0, 1,1); possible transitions are in, out; lead to records: (1,1,2), (0,0,0). Now we
have

pending = {(1,1,2)}, done = {(0,0,0),(1,0,1),(0,1,1)}

102 J.M.R.Martin and S.A.Jassim / Checking the CSP sat Property

LEFT RIGHT
State 0 State 0
Acceptance set: {in} Acceptance set: {mid }
in mid mid out
State 1 State 1
Acceptance set: {mid } Acceptance set: {out }

Figure 2: Normal Form Transition Systems for Two-Place Buffer

Check (1,1, 2); possible transition is out; leads to record: (1,0,1). Now we have
pending = {}, done ={(0,0,0),(1,0,1),(0,1,1),(1,1,2)}

The search is now complete. Every record that was found satisfies the original specification,
and we shall conclude that it is satisfied by V. This is rather a bold claim given that the set of
traces of V is infinite and we have only examined four cases. But it may be justified by using
induction on traces, as follows.

Every trace tr of V corresponds to a unique pair of normal-form states

(0 LEFT, O RIGHT)

These are found by constructing the unique walk in the normal-form transition system of
LEFT with labels tr [aLEFT, and the unique walk in the normal-form transition system of
RIGHT with labels tr | aRIGHT. We shall call this state pair

(orerr(tr), origur(tr))

Now suppose that for a certain trace ¢, we know that record
(o1er1(t), oriGuT(t),f(2))

lies in set done, constructed above. Now consider a trace ¢ ~ (x) of V. This corresponds to a
state pair

(orerr(t ™ (x)), oriGur(t ~ (x)))

which must be reachable from (o;grr, oriGur) by one or both of the processes performing
event x.

We have already assumed that (ogr7(?), oricur(t),f(¢)) lies in set done. Therefore it
must have at some point been selected from set pending at step 2 of the checking algorithm
and record

(orerr(t ™ (x)), oricur(t ~ (), f(t 7 (x)))

must have been discovered at step 4 and so now also must lie in set done, given that the
algorithm has terminated.

J.M.R.Martin and S.A.Jassim / Checking the CSP sat Property 103

We actually know that

(01£r1(()), oriGur(()),f(())) = (0,0,0) € done

because this is the record that was used to start the search. Hence, by induction, every trace
tr of V is represented in done by a record of the form

(oLerr(tr), origur(tr), f(tr))

So we conclude that the original specification is satisfied by all traces of V.
Although this proof technique is tedious for humans it is very easy to automate on a com-
puter.

5 Some Examples of Incremental Trace Functions

Incremental trace functions are found to be surprisingly useful in the information that they
can be made to carry. There now follow some simple examples.

Length of trace modulo 7 (fizr modulo n)

fQ)=0
fltr ™ (x)) = f(tr) + 1 modulon

Trailing subsequence of ¢r of length n

Flr™ () = {f(tr)“<x> it 4f(r) < n

tail(f(tr)) © (x) otherwise

Number of events following last occurrence of event ¢

F(Q) = null
0 if x=e
fler™(x)) = { fltr)+1 if x# eandf(s) # null
null otherwise

ith event of tr
F(0)) = (0, null)

fler ™ (x)) = (left(f(tr)) + 1,null) if left(f(tr)) < i
f(tr) otherwise

{ (i+1,x) if left(f(tr) =i

Here left and right are standard tuple projection functions and the value of tr[i] is given
by right(f(tr)).

104 J.M.R.Martin and S.A.Jassim / Checking the CSP sat Property

6 Case Studies
A Simple Railway Signalling System

The verification technique described in this paper could potentially be used for guaranteeing
safety in a railway system. Figure 3 shows a simple single track railway circuit, with two
driverless trains, such as might be found at an amusement park. The track is divided into
three distinct segments guarded by signals, and, in order to avoid collisions, it is important to
ensure that the two trains can never be on the same segment of track simultaneously.

Figure 3: Simple Railway Signalling System

We shall model the system as a network V of five processes:
(THOMAS, HENRY, SIGNAL,, SIGNAL,, SIGNAL3)

We use names enter.T.i and enter.H.i, where i ranges between 1 and 3, to represent the
events of “Thomas’ and ‘Henry’ entering particular segments of the track.

If we assume that, when the system first comes into operation, Thomas is situated in
the segment of track guarded by SIGNAL3 and Henry is situated in the segment guarded by
SIGNAL, we can model the safety condition as follows:

V sat ThomasSegment(tr) # HenrySegment(tr)
where ThomasSegment(()) = 3
([1ifx = enter.T.1
2ifx = enter.T .2
3ifx = enter.T.3
ThomasSegment(tr)otherwise

ThomasSegment(tr — (x)) =

A

and HenrySegment(()) = 1
([1ifx = enter.H.1
2if x = enter.H.2
3ifx = enter.H.3
| HenrySegment(tr)otherwise

HenrySegment(tr — (x)) =

J.M.R.Martin and S.A.Jassim / Checking the CSP sat Property 105

A possible implementation of the network is as follows:

THOMAS = enter.T.1 — enter.T.2 — enter.T.3 — THOMAS
aTHOMAS {enter.T .1, enter.T .2, enter.T.3}
HENRY = enter.H.2 — enter.H.3 — enter.H.1 — HENRY
aHENRY = {enter.H.1,enter.H.2, enter.H.3}
SIGNAL, = ready.2 — enter.T.1 — ready.1 — ready.2 —
enter.H.1 — ready.1 — SIGNAL,
aSIGNAL, = {enter.T.1,enter.H.1,ready.2,ready.1}
SIGNAL, = enter.H.2 — ready.2 — ready.3 — enter.T.2 —
ready.2 — ready.3 — SIGNAL,
aSIGNAL, = {enter.T.2, enter.H.2, ready.3, ready.2}
SIGNAL3; = ready.l — enter.H.3 — ready.3 — ready.1 —
enter.T.3 — ready.3 — SIGNAL3
aSIGNAL; = {enter.T.3, enter.H.3, ready.1, ready.3}

Here we are using the channels ready.1, ready.2 and ready.3 as the means of communication
between the signalling processes. The safety property may easily be verified for our imple-
mentation of the network using the incremental function technique described above®.

This example has a close relationship with proving correctness of networking protocols
using parallel programming languages that are based on CSP, such as occam.

A Proof Rule of Brookes and Roscoe

Another application of the incremental function technique is given by automation of a proof
technique for deadlock-freedom due to S.D.Brookes and A.W.Roscoe[1], which has been
used in the design of routing protocols.

We consider a network of processes V = (P; .. P,) composed in parallel. Each process
P; has alphabet aP;. We shall need to recall a little deadlock-analysis terminology.

Triple-Disjoint A network is triple-disjoint if no event is shared by the alphabet of more
than two processes.

Busy A network is busy if every component process P; is individually deadlock-free.

Vocabulary The network vocabulary A(V) is defined as the set of shared events U, ; aP; N
OéPj.

Ungranted Request In network state (tr, (refp, .. refp,)) P; has an ungranted request to P,
whenever P; wishes to communicate with P; but P; refuses to accept any communica-
tion that P; offers, and neither process can communicate outside the network vocabu-
lary.

Strong-Conflict-Free A network is strong-conflict-free if whenever there are two processes
P; and P;, each one having an ungranted request to the other, then both processes are
also able to communicate with some other process.

The network may also be proven deadlock-free using the Deadlock Checker program[5].

106 J.M.R.Martin and S.A.Jassim / Checking the CSP sat Property

The proof rule may be stated as follows:

Let V = (P, .. P,) be a busy, triple-disjoint, strong-conflict-free network such
that whenever a process P has an ungranted request to another process Q then Q
has previously communicated with P, and has done so more recently than with
any other process. It follows that V is deadlock-free.

The properties of triple-disjointedness, and business are simple to check (see [4]). The
remaining conditions of this proof rule may be expressed as follows.

—Strong Conflict;(refp,, refp,) A
Vi,j. P;|[aP;||aP;]| P;jsat [UngrantedRequest;(refp,, refp) =
(LastComm;(tr) = i)

Where

((aP; —refp,) N aP; # {})A

UngrantedRequest;(refp,, refp,) = (aP; N aP; C refp, U refp,)A
((OZP,' — refpl.) U (QP] — refpj) g A(V))
UngrantedRequest;(refp,, refp,) \
StrongConflict;(refp,, refp,) = UngrantedRequest;(refp,, refp,) \

((aP; — refp, € aPj) V (aP; — refp, C aP;))
LastComm;({)) = null

{ LastComm;(tr) if x¢& A(V)NaP;

LastComm;(tr ™ (x) = "uch that x € aP;ANi#j otherwise

It will be seen that this expression is of a suitable form for the application of the checking
algorithm described in this paper. (In fact a simplified version of this check is implemented
as part of the Deadlock-Checker program[5].)

7 Conclusions and Future Prospects

This paper has described a technique for verifying CSP processes, and parallel networks of
processes, against specifications expressed as sat clauses. This approach seems to be more
expressive and powerful than refinement. However the new technique is not fully general.
It applies only to particular types of specifications that may be expressed using bounded,
incremental functions. Further work is required to explore fully the power and limitations of
this technique

The next step would be to develop a tool for automatic verification of sat clauses. The
most difficult aspect of this would be the process of deriving from a given clause a suitable
predicate involving incremental functions. A library of useful incremental functions, such as
those listed in the previous sections, would need to be provided to act as building blocks for
this construction. It seems likely that one would have to enforce restrictions on the syntax of
those sat clauses that could be checked.

We illustrated how the incremental function technique can be extended to analyse net-
works of processes, in order to verify specifications that involve the refusal sets of individual
processes within the network. The incremental function approach to verifying CSP processes
first emerged in work to check deadlock-freedom[4] through adherence to design rules (e.g.
see [6]). These design rules sometimes incorporate protocol specifications which are spec-
ified in terms of the refusal sets of individual processes, and such specifications cannot be
checked directly using the refinement approach of FDR, but can be checked using the tech-
nique described in this paper.

J.M.R.Martin and S.A.Jassim / Checking the CSP sat Property 107

Applying our checking technique to large networks of processes is difficult because of
the problem of exponential state explosion — the number of states of a network usually grows
exponentially with the number of parallel components. To combat this there is scope for de-
veloping a hierarchical proof system for the sat language. The idea would be that a specifica-
tion clause of a large network might be derived from a collection of specifications involving
small subnetworks which would be feasible to check. For instance, we might check a clause

P |[aP||aQ]| Qsatf(tr, ref) by proving
Psatg(tr,ref)and Qsath(tr,ref) =— P |[aP | aQ]| Qsatf(tr,ref)

and then checking Psat g(tr, ref) and Qsath(tr, ref). We could attempt to guarantee the
safety property of a complex railway system by a collection of local analyses of small re-
gions of track. Such an approach would be a natural extension to the automatic technique for
proving deadlock-freedom described here and in [4].

References

[1] S. D. Brookes and A. W. Roscoe Deadlock Analysis in Networks of Communicating Processes, Dis-
tributed Computing (1991)4, Springer Verlag

[2] FDR User Manual and Tutorial Formal Systems (Europe) Ltd. 3 Alfred Street, Oxford OX1 4EH. Avail-
able at ftp://ftp.comlab.ox.ac.uk/pub/Packages/FDR

[3] C. A.R. Hoare Communicating Sequential Processes, Prentice-Hall 1985.

[4] J. M. R. Martin The Design and Construction of Deadlock-Free Concurrent Systems. D. Phil. Thesis,
University of Buckingham 1996.
(also available at http://www.hensa.ac.uk/parallel/theory/formal/csp)

[5] J. M. R. Martin and S. A. Jassim, A Tool for Proving Deadlock Freedom, Proceedings of 20th World
Occam and Transputer User Group Technical Meeting (1997), IOS Press

[6] J. M. R. Martin and P. H. Welch A Design Strategy for Deadlock-Free Concurrent Systems Transputer
Communications Volume 3 Number 4 (1996)

[71 A. W. Roscoe Model Checking CSP, A Classical Mind, Prentice Hall 1994.

[8] A.W. Roscoe The Theory and Practice of Concurrency, Prentice Hall 1997

108 J.M.R.Martin and S.A.Jassim / Checking the CSP sat Property

Appendix A: Glossary of Trace Terminology

() The empty trace

(a) The singleton sequence containing only a

try 7 tro Trace tr; concatenated with trace troy

tr* Trace tr repeated n times

tr [A Trace tr restricted to events in set A

tryintry Trace trq lies within trace tro

tr1 < tro Trace try is a prefix of trace try

fitr Length of trace tr

tr | a Number of occurrences of a in tr

head(tr) The first element of 7r

tail(tr) The result of removing the first element from ¢r

reverse(tr) The result of reversing the order of the elements of #r

J.M.R.Martin and S.A.Jassim / Checking the CSP sat Property 109

Appendix B: Relationship between occam and CSP

We anticipate that some readers of this paper will be rather more familiar with occam than
with CSP. Table 1 lists some roughly equivalent constructions between the languages and
will hopefully clarify much of the above material for non-CSP-specialists.

The CSP processes VM and TD, and their parallel composition, might be ‘implemented’
in occam as shown in figure 4. However it should be noted that most implementations of
occam do not allow output guards within ALT constructs. This is done for reasons of effi-
ciency.

PROC VM (CHAN OF SIGNAL coin, tea)
WHILE TRUE
ALT
SIGNAL any:
TRUE & SKIP
SEQ
coin ? any
tea ! any
SIGNAL any:
TRUE & SKIP
coin ? any

PROC TD (CHAN OF SIGNAL coin, tea, coffee)
WHILE TRUE

ALT
SIGNAL any:
coin ! any

tea ? any
SIGNAL any:
coffee ? any
SKIP

CHAN OF SIGNAL coin, tea, coffee:
PAR

TD (coin, tea, coffee)

VM (coin, tea)

coin

D tea VM

coffee

Figure 4: occam code for VM and TD processes

110

J.M.R.Martin and S.A.Jassim / Checking the CSP sat Property

occam | CSP
SEQ P; O
P
Q
P [aP[[aQ] O
P
Q
a?x a?x — SKIP
bly bly — SKIP
ALT clx— PO
c?x d?y — Q
P
dry
Q
ALT Prio
TRUE & SKIP
P
TRUE & SKIP
Q
IF if b then P else O
b
P
NOT b
Q
WHILE TRUE Process X suchthat X = P; X
P

Table 1: Some occam constructs and their CSP equivalents

