
Concurrent Computing – Architectures, Languages and Techniques
B. M. Cook (Ed.)
IOS Press, 1999

57

Supercomputing Resource Management –
Experience with the SGI Cray Origin 2000

Kathryn M. MEASURES
Jeremy M.R. MARTIN

Robert C.F. McLATCHIE
Oxford Supercomputing Centre

Wolfson Building
Parks Road

Oxford OX1 3QD, UK
http://www.osc.ox.ac.uk

Abstract. The Oxford Supercomputing Centre OSC1 was established in April 1998
to provide high-performance computing services to a consortium of Oxford Univer-
sity research groups. The main computer resource, an 84-processor SGI Cray Origin
2000 known as Oscar, is being deployed in a wide variety of research studies covering
biological, medical, chemical, mathematical, physical and engineering topics (includ-
ing parallel computing itself).

In this paper we shall describe the queueing and accounting mechanisms we have
developed to facilitate effective use of this powerful resource. We shall also describe
innovative work in progress to optimise the performance of the machine, using simu-
lation and genetic algorithms.

1 Introduction

The Oxford Supercomputing Centre provides parallel computing facilities and consultancy
to a consortium of Oxford University scientific research groups. Its mission is to promote and
support multi-disciplinary research in the application of high performance computing. At the
time of writing, nineteen research groups, from a wide variety of scientific and mathematical
disciplines, are actively using the service.

The main resource of the OSC is Oscar, an 84-node SGI Cray Origin 2000[1], which has
a peak computing capacity 32 GFLOPS.

The Origin is a CC-NUMA machine (Cache-Coherent Non-Uniform Memory Architec-
ture). Although its memory is physically distributed between the various processor boards,
which are linked by a hypercube routing network, it appears to the programmer to be as a
single shared memory machine. However there are considerable variations in memory ac-
cess times – from zero to over a hundred processor clock cycles2. This means that in order to
use the Origin effectively one must pay great attention to memory management. Otherwise
pathological problems such as cache-thrash are likely to appear.

The Origin uses the MIPS R10000 processor. This superscalar processor is capable of
initiating four separate pipelined instructions per clock cycle. Each pipelined instruction

1OSC gratefully acknowledges the support of the Higher Education Funding Council for England (HEFCE)
Joint Research Equipment Initiative 1997 and Silicon Graphics UK Ltd

2There are six levels of data location relative to a given processor, as follows: on-chip registers, primary
cache, secondary cache, main memory of local node-board, main memory of remote node-board, cache be-
longing to another processor.



58 Measures et al / Supercomputing Resource Management

Figure 1: The SGI Cray Origin 2000

takes four cycles to execute. Potentially this means that each processor may execute upto
sixteen instructions in parallel. Clearly the various instructions that a particular processor is
executing at a given time need to be independent of each other, to ensure program correct-
ness.

Hence there are two major challenges in developing codes for the Origin 2000 in order to
keep the processors fully occupied as follows:� Minimise memory access delays with careful memory management.� Exploit superscalar properties of processors using fine-grained parallelism.

Much sophisticated optimisation is performed by advanced compilation technology, but
the compilers cannot do it all. We find that to program the Origin effectively requires some
understanding of its architecture.

At OSC there is a further complication to consider. The Oscar supercomputer is a heavily
loaded shared resource. In practice the individual processes that constitute a user’s program
might have to compete with others to get scheduled. When a process finally gets a time slice
it may find that its cache has been dirtied by another job. It may also find that its parallel
partners have been descheduled so that it is forced to wait for communication. (This wait-
ing is often performed using an inefficient spin lock.) It may also find that the processor
interconnection network is clogged up with noise from other programs.

Under these circumstances it becomes virtually impossible to use the machine effectively.
Any good work done in optimising one’s code may be immaterial. What is needed is some
means of getting hold of a cluster of resources and retaining exclusive access to them for the
duration of a run. Fortunately this is offered by SGI’s new ‘Miser’ scheduling system[2]. In
this paper we shall describe how we have used this facility, along with the NQE spooling
software[3], and job accounting, to build a fair and effective job management system for the
Oscar supercomputer.

The rest of this paper is organised as follows. In section 2 we specify our initial require-
ments for job scheduling on Oscar. Then we describe the available software components
from which to build such a system. In section 3 we explain, in detail, how the system has
been constructed. Section 4 explains the innovative approach to performance optimisation
that is being employed to tune Oscar. This is based on the technique of genetic algorithms.
We are working towards running a series of experiments to breed an optimal set of system
parameters.

2 Requirements for the OSC batch queueing system

Effective resource management on any system is not solely the result of implementing re-
strictions as to the number and size of jobs that can run on a system at any one time. Edu-



Measures et al / Supercomputing Resource Management 59

cating the end user on how to get the most out of their code, and giving an understanding of
the system as a whole, in terms of the underlaying hardware, and the way in which it is man-
aged, also play a key role in effective resource management. Finally, but most importantly,
one must encourage use of any resource management facility that has been implemented on
the system – no matter how good the facility is, it will not be effective in controlling system
usage and resources unless it is actually used.

Below is a list of the key features that we noted as being essential for efficient resource
management on Oscar:

� Simple easy to use front end commands.

– allow a user to submit or delete requests, and to view the status of their requests,
with minimum effort on their part� Flexible scheduling / queueing system.

– allow a user to submit any size request without being restricted to a number of
fixed size requests, or without being restricted to running large requests at certain
times of the day or week

– minimum system administration� Fair sharing of system resources between groups.

– accounting system based on shares per group

– prevent one user or group from hogging system resources

– means of redistributing shares when the system is being under utilised� Efficient use of system resources.

– minimise number of cpu cycles that are wasted

– minimise cache-thrash and swapping

– maximise the throughput of jobs

Building blocks

From the outset it was decided to employ SGI’s new resource management facility, Miser, as
the features offered by Miser would enable us to more efficiently manage the system work
load, without having to resort to partitioning the system. It was also decided to use Cray’s
workload management software NQE, as this would allow us to take full advantage of the
batch queueing facilities of NQE, whilst at the same time utilise the resource management
and scheduling offered by Miser. IRIX system accounting[4] would be employed to obtain
information about the resources utilised by each users requests on a daily basis.



60 Measures et al / Supercomputing Resource Management

Figure 2: The Miser scheduling window

Miser

Miser is a resource management facility that schedules requests with known time and space
requirements. Miser manages a time / space pool, consisting of a number of cpus, and a
given amount of memory, from which it can allocate resources to run requests for a defined
period of time, as shown in Figure 2:

Given a request and its resources (number of cpus, maximum amount of memory and
total wall clock time), Miser will search through the time / space pool that it manages, until it
finds an allocation that first fits the request. The request is then scheduled to run with a given
start and end time, and the resources that have been allotted to it during this time. These
resources are guaranteed by the kernel during the request’s scheduled run time. Therefore,
when the request’s scheduled start time is reached, it will run without pre-emption until its
scheduled end time. As such, the request should run more quickly, and have a predictable
execution time, as it will not have to compete for system resources as it would do if it were
run in the normal timeshare scheduling class.

It is important to note that the schedule allocated to a request by Miser is non-conflicting.
At no point will Miser over-subscribe the resources that it manages. Therefore any request
that exceeds the maximum amount of memory, or the total wall clock time requested when
scheduled by Miser, will be terminated. On the other hand, any resources not being utilised
by a Miser request will be made available for use by any other process on the system, but can
be reclaimed back by the Miser request as necessary.

NQE

Cray’s Network Queueing Environment (NQE) is primarily a workload management facility
that provides batch scheduling and interactive load balancing across a heterogeneous net-
work of Unix machines. Taking advantage of the Network Queueing System (NQS), imple-
mented within NQE, it is also possible to setup a standalone batch queueing system that runs
on only one machine. The advantage of Cray’s NQE, is that it has also been configured to
use the IRIX Miser scheduler as one of it’s scheduling options. This therefore provides a
means of setting up a number of batch queues on Oscar, to which a number of restrictions
may be applied to control the number and size of requests running on the system as a whole,
or by any one user or group, at any one time, whilst still taking full advantage of the resource
management and scheduling features offered by Miser.



Measures et al / Supercomputing Resource Management 61

Accounting

IRIX system accounting provides a set of utilities that may be used to log certain types of
system activity. Of particular use, is the ability to log process activity on the system. This
enables us to monitor the number of programs that a particular user has run in any twenty
four hour period, as well as giving us information as to the resources that these programs
have used. Using this information it is possible to implement some form of credit / charging
system, that can be used to bill individual groups based on the total amount of resources each
user within that group has utilised in any one day.

3 Implementation of the batch queueing system

The resource management facility that was finally implemented on Oscar comprises a batch
queueing / scheduling system and a credit / charging system to try to ensure effective man-
agement of system load and resources, as well as fair share of resources between the individ-
ual groups involved.

Batch queueing / scheduling system

The batch queueing / scheduling system itself comprises three levels:

Figure 3: The OSC queueing system

Firstly, a set of user commands, batchq, batchqrm and batchqq, written in-house, allow
the user to submit, delete or monitor the status of their request respectively. The second
level comprises a number of NQE batch queues, where a request is either queued, passed
on to Miser, or run. All bar one of these queues pass their requests to Miser for scheduling.
The other, nqebatch, will run requests at low priority in the normal timeshare scheduling
class. Finally, there are two Miser queues, where requests are scheduled to run in the high
priority batch critical scheduling class, and are guaranteed their allotted resources during
their scheduled run time.

The batchq command

The batchq command is used to submit a shell script as a batch request to one of the NQE
batch queues on Oscar. The batchq command supports a number of options, but for any



62 Measures et al / Supercomputing Resource Management

script to be successfully submitted to one of the batch queues, the following options must be
supplied as a minimum:� the number of cpus to allocate to the request� the maximum amount of memory, in Mbytes, that will be used by the request at any

one point in time� the total wall clock time, in minutes, for the request to run� a shell script to be submitted as a batch request

During batch request submission, the batchq command firstly makes a decision as to
which NQE batch queue to submit the request, according to the number of cpus requested
and the batchq flags specified with the request.

A check is then made to ensure that the user’s group currently has enough credits for
the request to run, taking into account requests belonging to users in the same group that
currently reside in one of the batch queues. If the user’s group still has positive credits the
batchq command will submit the request to the appropriate NQE batch queue for forwarding
to Miser for scheduling. Otherwise the request is submitted to the nqebatch queue where it
will be run at low priority in the normal timeshare scheduling class.

Finally, if the user requests more resources than the predefined maximum, currently 76
cpus, 18 Gbytes of memory, or 6,000 minutes of total wall clock time, the request is au-
tomatically rejected, and an appropriate error message displayed. These limits are config-
urable and can be changed to meet system demands or whenever the system configuration is
changed.

The NQE batch queues

In all, seven NQE batch queues were setup on the system. Six of these queues, p4, p8,
p16, p32, p64 and nqefast, were configured to pass their requests to Miser for scheduling,
the other, nqebatch, was configured to run requests at low priority in the normal timeshare
scheduling class.

The purpose of the nqebatch batch queue is two fold. Firstly, it is for use by those groups
who have insufficient credits to submit requests to one of the Miser queues. (It was decided
that at no point would any group be restricted from using the system, even if they had used
more than their fair share of resources.) Secondly, it serves to soak up any resources that are
not being utilised by either of the Miser queues, along with interactive and system use, and
therefore helps to minimise the number of cpu cycles that are wasted on the system.

To each NQE batch queue a number of limits have been applied to help restrict the num-
ber and size of requests running on the system at any one time. Firstly, each queue has an
upper limit on the size of request that it will accept. But by far, the most important limit is
the Miser scheduling window, that is applied to all NQE batch queues that forward requests
to Miser. This time period controls how far into the future Miser will attempt to schedule a
request. The request will only be moved from the batch queue to the Miser queue if Miser
can schedule it to start running within the time period of the Miser scheduling window for
that particular queue. If Miser is unable to schedule the request within this time period, the
request will continue to remain queued in the NQE batch queue, until the next NQE schedul-
ing pass.

More than one NQE batch queue can be configured to forward requests to the same Miser
queue. On Oscar, five of the NQE batch queues, p4, p8, p16, p32 and p64, forward their



Measures et al / Supercomputing Resource Management 63

requests to the Miser queue default, whilst only one NQE batch queue, nqefast, has been
configured to forward requests to the Miser queue fast.

The Miser scheduling window for each of these NQE batch queues has, at present, been
defined so that the queues that forward requests that require larger amounts of resources are
given a larger scheduling window compared to those that forward requests requiring smaller
amounts of resources. This has the effect of biasing scheduling towards those requests that
require more resources, as they are given a larger time period in which to be scheduled. (This
may not, however, be the best approach and we are performing experiments to try to find an
optimal set of parameters which will be described in section 4.)

Limits that restrict the number of requests that may be run, or the number of processors
allocated to all requests in any one queue at any one point in time, are used only to control
the number and size of requests running in the nqebatch batch queue, as Miser itself controls
the number and size of requests running in either of the two Miser queues. An additional
limit to control the number of requests run by one user at any one time was also applied
to the NQE batch queues, as this hogging of resources by one user, even if their group had
sufficient credits, was found to be a source of irritation amongst other users on the system.

Miser resource queues

Two Miser resource queues, default and fast, were set up on Oscar. Each queue has its own
set of resources from which Miser can schedule requests to run. All requests are submitted
to the appropriate NQE batch queue for forwarding to the default Miser queue, unless the
user has specified that the request be submitted to the nqefast queue, for forwarding to the
fast Miser queue, at the time of submission.

The fast queue has a limited number of resources, 4 cpus and 1 Gbyte of memory, with
which to schedule requests. This queue is primarily for those users who wish to run small,
short jobs, for example, when debugging code. A time limit of 120 minutes per request, is
enforced by the batchq command at the time of submission.

The default queue, where the majority of requests are run under Miser, has 76 cpus and
18 Gbytes of memory with which to schedule requests. Requests are passed from one of the
NQE batch queues. The size of the request, and the time in which Miser has to schedule the
request being dependant upon the queue from which the request was forwarded, and is used
to control the mix of requests being passed to Miser.

Credit / charging system

To try to ensure fair share of system resources between the individual groups involved with
Oscar, a credit / charging system was implemented, where each group is given a certain
credit allocation proportional to its share holding on the system. One credit is charged for
each minute of cpu time used per processor. An additional charge is levied for excessive
memory utilisation.

To each group’s credit allocation is added a predefined daily income (proportional to its
share-holding), and is subtracted a daily charge based on the resources that have been used in
the previous twenty four hours. Upper and lower bounds constrain each group’s credit limit,
so that no group can accumulate credits indefinitely, nor can any group go into an arbitrarily
large deficit. These bounds aim to try to encourage those users who are not using the system
to their full potential to do so, “use it or you lose it”, yet at the same time do not deter those
users that are keenly using the system, by letting them incur a massive credit debt. Any group
that has a negative number of credits is not banned from using the system, but is prohibited
from submitting jobs to one of the favourable Miser queues.



64 Measures et al / Supercomputing Resource Management

The ability for one group to transfer some of its credits to that of another group, has also
been implemented. This allows those groups which have a negative number of credits to
barter for resources with those groups which are currently not actively using the system, and
therefore help to minimise the number of cpu cycles that are wasted.

Process activity data is logged by the kernel every time a process terminates. A report of
the system usage for the previous twenty four hours is generated on a daily basis. From this
report, the resources utilised by each user and then each group is calculated, and a charge
made according to the following formula:

Charge � Max
�
cpu minutes ������
	�� MB minutes 

A group is only charged for the amount of cpu time that it has utilised, unless it has
utilised more memory than is available per cpu on the system. In which case the group is
also charged for the additional memory that it has utilised.

4 Performance Optimisation

The queueing system in place has a number of configurable parameters which, up to now,
we have set by trial and error to establish an acceptable throughput of jobs and mean de-
lay time for a job getting scheduled. The most important parameters are the settings of the
Miser scheduling window for each queue, which controls how far into the future a job may
be scheduled to start.

So this presents us with an optimisation problem: what values to choose for these param-
eters to extract the best performance from the scheduling system. We shall need to define
some formal measure of performance to use as our guide. As Oscar is over-subscribed we
might consider the maximum attainable processor utilisation to be a reasonable criterion.
However to concentrate on this to the exclusion of everything else might lead us towards a
system with an unacceptable mean scheduling delay. We also have to consider whether the
aforementioned mean scheduling delay should be weighted according to job size.

We have decided to tackle this problem by developing a simulation of the queueing sys-
tem – a simple object-oriented program. This enables us to perform experiments with dif-
fering densities of job traffic, different settings for the queue parameters, and a variety of
evaluation criteria. An alternative strategy, which we are yet to investigate, would be to ap-
ply queueing theory[5].

Simulating the batch queueing system

The simulation program: OSCQ, which has been developed in an object-oriented style, is
constructed from objects: Users, Batchq, NQE, and Miser, which encapsulate the data and
behaviour of the various components of the system. Within each object there are various
configurable parameters, corresponding to actual system parameters. However, note that it
would be infeasible for us to implement the full functionality of NQE and Miser in our simu-
lation – we abstract away certain details that are assumed to be irrelevant to our investigation.
For instance, we are, for now, ignoring that fact that users may decide to kill a job at any point
using the batchqrm command. We also assume that a job will run for the exact amount of
time that was requested, whereas, in practice, it may finish much earlier, either because the
user requested more cpu time than was necessary, or because of program failure. Whether or
not these assumptions affect the result of our optimisation work will be investigated later.



Measures et al / Supercomputing Resource Management 65

A single run of the OSCQ program takes, as input, a list of time-stamped job requests:
each of the form �

Submission time � Processormax � Memorymax � Timemax �
plus a list of values for system parameters:

����� � ��� ��������� ��� � . It then works out, through sim-
ulation over discrete time-steps, the point at which each job would actually get scheduled.
This data is then processed to derive performance statistics.

The main performance statistics that we calculate at present, for a particular run of OSCQ,
are as follows:

Processor utilisation: � – percentage of time that processors allocated to Miser are kept
busy for the duration of the run.

Mean delay: � – average time between submission of a job and actual scheduling.

Weighted mean delay: ��� – average of time between job submission and scheduling
total number of cpu minutes requested

Overload factor: � – the maximum number of jobs simultaneously in the system: either
queued or running.

Simulating job traffic

In order to perform optimisation experiments with the OSCQ program we need a means of
simulating job traffic, at varying rates of throughput. There needs to be a certain random
element in this to ensure that we are not purely optimising the system for a particular set of
test data. The strategy we are using at present is to analyse the distribution of actual jobs
on our system with respect to parameters

�
Processormax � Memorymax � Timemax � , and then

to generate a random sequence of jobs fitting such a pattern. A random submission time is
attached to each job, assuming, for now an even distribution as to when jobs get submitted.
In practice the distribution is uneven, as less jobs are submitted during the night than during
the day. We are also ignoring any ‘feedback-factor’, the extent to which people refrain from
submitting jobs into an over-subscribed system. These factors will be investigated later.

This leads us to a traffic generator program, TRAFFIC, which takes two arguments:� NJOBS – the total number of jobs to generate� TIME – the time interval in which all the jobs are to be submitted.

Different traffic densities may thus be simulated by altering the ratio of NJOBS to TIME.

Optimisation of parameters

It is planned to use the technique of genetic algorithms to search for an optimal set of param-
eters

� �!� ��������� �"� � for the queueing system. But, at present, we are still in the early stages of
this research.

The general idea is as follows. We need to define an evaluation program, EVAL, which
will take a particular set of system parameters, run a number of simulation experiments, us-
ing random traffic data, and then return a single number # , to represent how good those pa-
rameters are for running the system. It is important to ensure that any pathological behaviour
that we can envisage would be reflected by a poor evaluation score.



66 Measures et al / Supercomputing Resource Management

Once a reliable evaluation procedure has been established, we can perform a standard ge-
netic optimisation experiment. We shall start with a pool of widely varying parameter sets,
or gene-sequences,

�%$"� � $&� ��������� $(' � , where

$() � �*� )� ��������� �
)� � and then evaluate the perfor-

mance of each

$&)
using EVAL. A “survival of the fittest” replacement strategy will then be

employed. There are many variations of this but, in the most simple form, on each iteration
one performs the following steps:

1. Select the two strongest gene-sequences:

$") � $�+
2. Mate them using the technique of crossover:$-,) � � � )� �.������� �

)/ � �
+/10 � ��������� �

+� �$-,+ � �*� +� ��������� �
+/ � �

)/10 � ��������� �
)� �

for some random 2 , to produce two fresh offspring.

3. Replace the two weakest gene sequences from the original pool with

$ ,)
and

$ ,+
.

This particular strategy may need to be extended to avoid convergence to some local maxi-
mum which does not represent an optimal solution to the overall problem. There may also
be some advantage in looking at more complicated reproduction techniques.

5 Current Status and Future Plans

We have experienced a number of minor problems which have interfered with the smooth
running of our queueing system in its early days. Mainly these have related to the unclean
interface between Miser and NQE. Despite these problems, our users have heartily embraced
the system because of the huge benefits offered by dedicated resource allocation. We hope
to enhance the overall performance of the system, in time, as a result of our ongoing optimi-
sation project.

In the future SGI will be switching support from NQE to the alternative LSF queueing
system, but we do not see any major impact to the way that we are running Oscar as a result
of this.

One significant problem with Miser, as it stands, is that we have limited control over
when a job gets scheduled, which virtually rules out interactive work on a busy system. We
are planning to invest in special-purpose visualisation hardware to be incorporated into Os-
car, and it is hard to see how this could be used effectively within the existing batch frame-
work. We require the ability to set fixed starting times for our jobs, assuming that the re-
sources we need are available.

References

[1] Origin Servers Technical Report, Silicon Graphics Inc

[2] IRIX Admin: System Configuration and Operation, Silicon Graphics, Inc.

[3] Introducing NQE, Cray Research, Inc.

[4] IRIX Admin: Backup, Security and Accounting, Silicon Graphics, Inc.

[5] A Tanenbaum, Computer Networks, 2nd Edition, Prentice-Hall 1988


