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Abstract. A synchronous extension to the library model for message
passing (Inmos C, PVM, Parmacs, MPI, etc.) is presented. This
extension, provides a comfortable expression of nested parallelism from
inside the message passing model. Furthermore of being a valuable tool
for the presentation and teaching of parallel algorithms, the
computational results prove that an efficiency similar to or even better
than the one obtained designing and implementing algorithms using the
native language can be achieved.
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1. Introduction.

Although the most safe approach to the general expression of parallel algorithms comes from
the CSP model [18] and its most successful implementation, occam [21], the lack of portability
has resulted in the translation of the message passing ideas to libraries extending sequential
languages. In the parallel programming model based on a library for message passing (Inmos C
[20], PVM [10], Parmacs [15], MPI [28], etc.) a collection of processes execute programs written
in a standard sequential language, usually C or Fortran, extended with a library of functions for
sending and receiving messages and the creation and synchronization of processes. From all the
existing approaches, this one seems the most general, and the one leading to more efficient code.
Nevertheless, the cost of writing parallel codes with these tools has resulted in an effort directed
to the development of higher level languages being portable and efficient for a wide range of
supercomputers. An usual approach has been to provide data-parallel constructs to existing
sequential languages. This is the case of High Performance Fortran (HPF) [16] and different C
extensions such as C* [34], [32] and C** [25]. Although the eclosion of HPF seems to have been
the most successful, it is commonly agreed that still there are some inconvenients. The
performance of a HPF program does not only depend on the skills of the programmer but also on
the capacity of the compiler. Usually, the structure and consequently the performance of a
program are neither intuitive nor obvious to the programmer [9]. Even simple operations on not
aligned arrays may demand a considerable amount of communications if the arrays have different
distributions. Although these languages are appropriate for matrices and regular meshes, they are
not suitable for irregular structures such as sparse matrices, graphs and trees. According to
Blelloch [4], this data parallelism is limited to its less expressive form: flat data-parallelism.
Languages with nested parallelism such as Paralation Lisp [6], NESL [4], fork95 [23], [11] and 1
[35] provide the capacity to nest parallel calls. This model combines the programming ease of the
data-parallel model with the efficiency on execution for irregular data structures of the



control-parallelism model [4]. In [6] we can find information about an implementation of the
quicksort algorithm using Paralation Lisp that is only a factor of three times slower than the
fastest sorting algorithm for the CM2. These results have been improved for NESL [5].
Nevertheless, NESL is far away of being a well known and extended language, perhaps due to its
nature of functional language. In opposition, fork95 and [/ are procedural languages based on C
and Pascal- [14] respectively. The present implementation of the fork95 compiler produces code
for a SBPRAM computer [1] based on the PRAM model [8]. At this moment, the machine is
being built and there are no fork95 compilers for other parallel computers.

In this paper we describe a subset of /lc, an extension of the library model for message passing
that allows a comfortable expression of nested parallelism from inside the message passing
model. The computational results show that the efficiency obtained is equivalent to the one
reached designing the program in the native language for a concrete architecture and topology.

Through the use of two examples, the next section outlines the syntax and semantic of //c. The
third section portrays some implementation issues for multicomputers. Computational results are
presented in the fourth section. Conclusions and work under development are commented in the
fifth and last section.

2. Description of the llc extension: Use and Semantics.

More than a formal approach, we will use a few examples to describe the use, syntax and
semantic of the synchronous version of the //c system (the name starts with the two initials of La
Laguna. Read it "La Laguna C"). The current version expands inmosC, but the system can be
straightforwardly ported to any extension of C with a message passing library like PVM, MPI,
MPL, etc. The [lc environment provides the programmer with nested parallelism and, in
consequence, with the capability to mix parallelism and recursivity. This feature makes easier the
implementation of parallel divide and conquer algorithms [22]. The [Ic simple code in figure 1
shows a "natural" parallel version of the classical quicksort algorithm [19] sorting a global array
A. Procedure find in figure 2, due to Hoare [17] divides the array A in two balanced halves in
such a way that all the items in the second half are greater than all the elements in the first half.
This is achieved by iterative calls to the well known procedure partition [19]. It can be easily
proved that procedure find is twice slower than the classic procedure partition [13]. The code in
figure 1 is almost self-explanatory. At the beginning of the computation all the processors belong
to a single set and the variable NUMPROCESSORS contains the number of processors available
in the machine. The word "set" has an special meaning in //c and it is used to describe a
synchronous group of processors. This concept is pretty similar to the concept of group
introduced in FORK [11] but, in contrast to FORK, conditionals and loops do not create implicit
subsets. The /lc macro PAR used in line 9 performs in parallel the two recursive calls to sort the
first and second subintervals.

The additional second and third parameters, A + first and size, show that the result of the call to
the function gs(first, middle) on the first segment is constituted by the size bytes pointed by A +
first. In the same way, the two last parameters A + middle + 1 and size describe the fact that the
result of the second call is constituted by the size bytes following the address pointed by A +
middle + 1. At the time to execute the macro PAR at line 9 in figure 1, the set is divided into two
subsets. One executing the first call and the other doing the second one. The variable
NUMPROCESSORS is updated for the two subsets according with the distribution policy (that
policy can be chosen and/or modified by the programmer).



void gs(int first, int last) {
int middle, size;

1

2

3

4 if (NUMPROCESSORS > 1) {
5 if (first < last) {

6
-
8

middle = (first + last) / 2;
size = (middle - first + 1) * sizeof (int);
find(first, last, middle);
9 PAR(gs (first, middle), A + first, size,

10 gs (middle + 1, last), A + middle + 1, size)

11 }

12}

13 else {

14 seqquicksort (first, last);

15 1}

16 } /* gs */

Figure 1: Parallel quicksort described in 1Ilc.

At the end of the calls, the two splitted subsets swap the results and they join together to form the

original set. There are other macros allowing the creation of new subsets, with the same
resemblance of PAR, like PARVIRTUAL (to support virtual processors), PARLEFT (instead of
swapping the results, only processors in the first subset receive the results generated by the
processors in the second subset), etc.

void find(int first, int last, int middle) {
int left, right, i, 3;

left = first; right = last;
while (left < right) {
partition(&i, &3, left, right);
if (middle<=j) right = j; else if (i<=middle) left = i;
else left = right;
}
} /* find */

Figure 2: Function find: balancing the partition.

To take advantage of the //c programming scheme the programmers have only to include in the
body of their program the file llcsync.h:

#include <llcsync.h>

and to follow a reduced set of semantic rules. Generally, the [I[c programmer writes only one
code, obviating the usual differentiation in message passing programs between "master" or "root"
processor and "workers" or "slaves". Figure 3 contains the corresponding llc main() function. As
it can be deduced from their names, macros INITIALIZE and EXIT, included in llcsync.h, are
responsible for the respective execution of the initialization and finalization code of the lic
system. Observe in line 11 the use of the //c function GPRINTF allowing to all the processors in
the root subset to gain access to the output to write their NAME and computing time. The lic
variable NAME holds the processor name.



main (void) {
clock_t itime, ftime;
int first, last;

1
2
3
4
5 INITIALIZE;

6 initialize (RA); /* Read array A */
7 itime = clock();

8 first = 0; last = SIZE - 1;

9 gs (first, last);

0

1

1 ftime = clock();
1 GPRINTF ("\n%d: time: (%1f)\n",
NAME, difftime (ftime,itime));
12 EXIT;
13 } /* main */
Figure 3: main() function: same code for both root and node
processors.

Calls to INITIALIZE, EXIT and GPRINTF are examples of subset operations. The main rule to
consider when using a subset operations in llc is:

RULE:
All the processors in a subset have to participate when executing a ''subset operation''.

It is an error, if some of the members of a subset do execute a subset operation and there are
other members that do not. The /lc manual describe what functions are subset operations and
what are not. Any subset operation implies a synchronization among the members of the subset.
Viceversa, these are the only synchronizations provided by the /Ic system. There are a variety of
subset operations: reductions like REDUCEBYADD, REDUCEBYMULT, REDUCEBYMIN,
REDUCEBYMAX and REDUCE (reduction using a function specified by the user) or
communications like ONETOALL, ALLTOALL, PONETOALL (personalized broadcasting),
PALLTOALL (personalized all to all communication), SHIFTLEFT, SHIFTRIGHT, etc. with
meanings similar to those described in [24]. Even the PAR family of macros (PARVIRTUAL,
PARLEFT, etc.) are subset operations. Obviously, the programmer can extend this range of
operations by using the native language.

A second example of /Ic appears in figure 4. This code, when executed by a subset, searches for
the first appearance of an element KEY in an array. This code works even if there has been
previous parallel calls (like the macro PAR). The macro IAMTHELASTPROCESSOR in line 8
returns 1 (TRUE) for the last processor in a subset. After the call to the subset operation
REDUCEBYMIN in lines 11-16, variable i0 holds the minimum index i such that array/[i] is
equal to KEY. When called by a subset §, macro REDUCEBYMIN(x, y), sets all variables y to
the minimun of the values x brought by the processors in S. This code is correct since the call is
executed by all the processors in the subset. It would be wrong if the else clause is suppressed in
lines 11-16 and substituted by:

if (i < last) {
REDUCEBYMIN(IO, i)
}



1: dini_time = clock();
2:
3: 10 = 0;
4: rate = SIZE / NUMPROCESSORS;
5: remaining = SIZE % NUMPROCESSORS;
6: first = rate * NAME;
7: last = first + rate;
8: if (IAMTHELASTPROCESSOR)
9: last = SIZE;
10: for (i = first; ((i < last) && (arrayl[i] != KEY)); i++);
11: 1if (i < last) {
12: REDUCEBYMIN (10, 1)
13: }
14: else {
15: REDUCEBYMIN (10, INFINITY) ;
16: }
17:
18: /* now for every processor in the subset it holds: */
19: /* i0 = min { i / array[i] == KEY} */
20:
21: end_time = clock();
22: GPRINTF ("\n%d: time: (%1f)\n",
23: NAME, difftime(end_time, ini_time));
24: if (10 == INFINITY) GPRINTF ("%d: NOT Found\n", NAME);
25: else GPRINTF ("%d: Found Position: %d\n", NAME, 1i0);

Figure 4: Searching for the first ocurrence of KEY in an
unsorted array.

3. Schemes for the efficient implementation on multicomputers.

All the processors are active at the beginning of the computation and they belong to the same
synchronous set H. For each processor there are, among others, two variables involved in the
division and rejoinment of subsets. These two variables are: NUMPROCESSORS and NAME.
The [lc programmer has read-only access to these variables. NUMPROCESSORS stands for the
total number of processors in its subset H. All the processors in H have the same value for
NUMPROCESSORS. Variable NAME, always withh NAME between 0 and
NUMPROCESSORS-1 alludes to the name of the processor inside the subset H. After the
execution of a call to a PAR macro (or one of the variety of macros creating synchronous
subsets), the set H is divided in the number r of synchronous subsets H,, H,, ..., H, requested by
the particular call, following the policy specified by the programmer (CYCLIC, BLOCK, etc.).
NUMPROCESSORS is updated to /H, / for each processor in subset H, i = 1, ..., r. Processors in
H. are reenumerated with NAMEs between 0 and /I—L / - 1. As an example, for a hypercube
computer, the call to the macro PAR at lines 9-10 of figure 1, using a BLOCK policy, expands to
the code in figure 5.



1
2 BOOLEAN INLOWHYPERCUBE = ((NAME & (1 << BIT)) == 0);
3
4 PUSHPARALLELCONTEXT;
5
6 /* Subset division phase */
7 NUMPROCESSORS /= 2; /* Block policy */
8 NAME /= 2;
9 BIT —-;
10 /* Swapping the results of the two parallel calls */
11 if (INLOWHYPERCUBE) ({
12 gs (first, middle);
13 SWAP (BIT, A + first, size, A + middle + 1, size);
14 }
15 else {
16 gs (middle+l, last);
17 SWAP (BIT, A + middle + 1, size, A + first, size);
18 }
19 /* Rejoinment phase */
20 POPPARALLELCONTEXT;
21 1}

Figure 5: Expansion of the PAR call.

The call in the main function to the macro INITIALIZE at line 5 of figure 3, initializes the
variable BIT to the dimension of the hypercube. The macro PUSHPARALLELCONTEXT stores
the three variables NUMPROCESSORS, NAME and BIT characterizing the current subset. The
division of the original subset into two subsets according to the BLOCK policy is carried out in
lines 7-9. The call to the macro SWAP produces an interchange in dimension BIT of the resulting
data. The POPPARALLELCONTEXT macro joins the two subsets by recovering the stored
context. In hypercubic networks, butterflies, perfect-shuffles, cycle connected hypercubes, etc.
these three phases of organization, interchange and reorganization can be achieved efficiently.
The hypercube implementation relies on the fact that, at any time, an /lc subset of processors
corresponds to a sub-hypercube of the initial hypercube.

4. Computational Results.

The results presented in this section were obtained executing the algorithms on a Parsys
SN-1000 with T-800 transputers at 20Mhz and links operating at 10Mb/s. Experiments with 2, 4
and 8 transputer hypercubes were carried out. For each hypercube size and for each algorithm the
corresponding entry shows the speedup against the corresponding best sequential algorithm. All
the algorithms were coded using inmosC. Integer arrays of size 256K, 512K and 768K have been
used as input.

Table I compares the efficiency of the /lc algorithm in figure 1 (columns labelled /Ic) with the
obtained programming in inmosC professor P.B. Hansen [12] parallel quicksort for hypercubes
(columns labelled BH).

2 4 8
BH 1llc BH 1llc BH 1llc
256 K 0.79 1.16 1.04 1.78 1.21 2.23
512 K 0.74 1.06 0.97 l.61 1.13 2.03
768 K 0.81 1.13 1.08 1.73 1.27 2.17

Table I: Speedups: Hansen versus llc parallel quicksorts.



Previous experiences of the authors prove that the speedups obtained for the Hansen algorithm
using inmosC are worse than using occam [3]. The results clearly prove the superiority of the llc
implementation in spite of being easier to program.

The results in table II correspond to the /Ilc implementation of the search algorithm in figure 4.
Ten experiments were carried out. For each experiment, the position of the KEY was placed
according to the uniform distribution between 0 and SIZE-1. Entries in table II show the average
speedup for these ten cases. Although the synchronism of the parallel algorithm constitutes a
drawback, the average speedup exhibits a good scalability.

2 4 8
256 K 1.56 3.19 6.39
512 K 1.69 3.20 6.39
768 K 1.69 3.20 6.39

Table II: Search algorithm.

5. Conclusions and Future work.

A programming methodology and its corresponding tool have been presented. This tool consists
in a set of C macros and functions expanding a programming environment based in the library
model for message passing (Inmos C, PVM, Parmacs, MPI, etc.). Nested parallelism and the
capacity to mix parallelism and recursivity are provided among other features. While portability
across platforms can be improved, the programmer control is not diminished since the tool is
embedded in the native C language. The sensible use of this tool does not introduce any kind of
inefficiency.

Different versions of the library providing automatic load balancing (using dimension and
diffusion techniques [33]), support for pipeline parallelism using the techniques explained in [2],
[29] and support for asynchronous computing are being developed. The complexity of the
expression of parallel probabilistic heuristics [31] (genetic algorithms, simulated annealing, tabu
search, etc.), parallel divide and conquer algorithms [13], [12], [3], parallel dynamic
programming [30] and parallel branch and bound algorithms [26], [27], [36], [7] with these
libraries is almost reduced to its sequential expression.

All the codes appearing in this paper can be obtained through anonymous ftp at:
ftp.csi.ull.es/pub/parallel/llcsync.
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