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Abstract. Computational steering is the ability to visualise the data from a computa-
tion in progress and to modify the future behaviour of the computation in response to
this. It is often perceived as being something very difficult to implement, especially
for parallel computations. However, given a good visualisation environment, we have
found that this is not necessarily the case. We have sought to dispel this myth using a
very simple model which makes it easy to ‘wire-up’ an existing MPI parallel program
for steering. New insights may quickly be gained by continually monitoring and guid-
ing the progress of computational simulations, that were perhaps previously analysed
only in their final state.

1 Introduction

Technological advances are making parallel computers ever more powerful, and the range of
problems that they may tackle is continually expanding. However a ‘mainframe mentality’
persists in the manner of their use which dates from the nineteen-sixties. They are typically
operated as batch-processors sealed off from their users in some way – usually system time
must be reserved days in advance [1]. The purpose of this method of operation is to try to
maximise the flow of work through a heavily-loaded shared resource. However this approach
overlooks the fact that many jobs ultimately fail to yield useful results.

Were there a facility to visualise the state of running programs many of these failures
might be detected at an early stage, freeing up the resources for another purpose. In some
cases failure might be averted simply by modifying certain parameters and feeding them back
into the application in progress. Allowing scientists the freedom to exploit their intuition
interactively can greatly reduce the computation time required to get results.

Much research effort has been applied to developing computational steering environments
for parallel programming (e.g. [2–4]). Typically these involve a visualisation component, a
communication component, and some sort of model for parallel computation. There are usu-
ally tens of thousands of lines of source code that need to be ported to one’s own system. This
can be intimidating to a potential user, giving the impression that much work will have to be
done. Our approach is bare-bones. We do not provide any parallel programming model, but
we support the industry-standard MPI library [5] (and also OpenMP). We do not specifiy any
particular visualisation system, but have found that our code fits easily into existing graphics
systems, such as AVS [6]. All we provide is the ‘glue’ for connecting the parallel program
to visualisation code using three simple subroutines. The advantage of this minimalistic ap-
proach is ease of implementation. The effort required to make an existing parallel program
steerable is very small, assuming that the operation of the program is well-understood.
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Our model for computational steering consists of two elements: a parallel application and
a steering agent. The steering agent provides a user interface for visualisation and command
entry, and may run on a separate machine from the application. When prompted by the
user, the agent sends a signal to the application causing it to pause, at a suitable point in
its execution, and then send back a snapshot of its data. The data is then visualised and
explored by the user and in due course a restart signal is sent back to the application, possibly
accompanied by some modified parameters (figure 1).

Figure 1: A basic steering model
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This paper describes a FORTRAN subroutine library which is designed to facilitate com-
putational steering of MPI jobs, according to this simple model. We illustrate use of the
library by means of a significant example: a program for mesoscale modelling of complex
fluids. A more detailed technical tutorial on implementation ofsteering is contained in ap-
pendix A. Visualisation is performed using AVS [6]. Although all routines are implemented
in FORTRAN a port to another high level language such as C would be trivial.

2 The MPI parallel programming model

MPI [5] is a library specification for message passing, proposed as a standard by a broadly
based committee of vendors, implementors, and users. It is now accepted as the industry
standard for programming distributed memory parallel computers using conventional high
level languages: C, C++, and Fortran.

MPI is a single-program-multiple-data paradigm (SPMD), which means that the same
code is executed on each processor. However, processors may still be made to perform dif-
ferent tasks by first invoking the inquiry function MPI COMM RANK to discover the processor
identity, and thence to determine the subsequent behaviour at each node. The total number of
processors used is fixed throughout the execution of an MPI job, and may be inquired using
the MPI COMM SIZE function.

Communication of a message between two processors requires that one processor issue
an MPI SEND instruction and that the other processor issue a corresponding MPI RECIEVE
command. Communication may be either buffered or unbuffered and, independently of that,
it may also be either blocking or non-blocking. Global communication facilities, such as all-
to-all exchange (MPI ALLTOALL) and barrier synchronisation (MPI BARRIER), are also
provided.
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Due to the flexibility of message-passing available in MPI there is much that can go
wrong. Deadlocks, livelocks and buffer overflows may crop up and it can be very difficult to
debug MPI codes. Hence it is a good idea to program according to tried and tested design
patterns which guarantee avoidance of these demons [7, 8].

3 The STR library

The main function of this code is to provide a communication interface between an MPI
application program and an interactive ‘controller’, (which may be a visualisation tool). Syn-
chronisation between the two agents is achieved primarily by repeatedly creating and deleting
a lock-file.

3.1 SUBROUTINE STRSETUP

SUBROUTINE STRSETUP(I)
INTEGER I

This routine is called by the application to set up computational steering. The argument
I specifies a flag number which is to be used for controlling the application henceforth. The
assignment of a unique number to each parallel application means that a single steering agent
can interact with multiple parallel applications independently.

3.2 SUBROUTINE STRBREAKPOINT

SUBROUTINE STRBREAKPOINT(DUMP,GET)
EXTERNAL DUMP, GET

This routine is called by the application at points in its execution where it would be
appropriate to halt and be examined. It has the effect of globally synchronising all the MPI
threads, and so should be used discriminately so as not to reduce significantly the overall
efficiency of the code.

It works as follows. Firstly the root MPI process checks whether the steering flag has
been set by an external agent, i.e. the controller, and then broadcasts the result of this check
to all the other processes. If the flag has been set each process calls a user-supplied subroutine
DUMP that must be supplied as an argument by the calling program. The root process then
unsets the flag and goes to sleep, periodically checking to see whether the flag has been reset.
Once the flag has been reset a global barrier synchronisation is applied between the MPI
processes and then they all call subroutine GET, to take on board any information that has
been introduced by the external agent. The root process finally unsets the flag once again and
execution of the code resumes at the point where it was interrupted (figure 1).

3.3 SUBROUTINE STRKICK

SUBROUTINE STRKICK(ID)
INTEGER ID

This routine is the steering agent interface. It is used both for intercepting and restarting
the application. When performing an intercept it blocks until the application has completed
its call to the DUMP subroutine. When performing a restart it blocks until the application has
completed its call to the GET subroutine.
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This synchronisation is achieved using a lock-file semaphore and the precise mode of
operation of this routine is as follows. First it waits for the flag specified by the argument ID
to be unset (by the application), if necessary, and then resets it. It then waits again for the
flag to be unset by the application.

4 A case study: Mesoscale modelling of complex fluids

In this section we present an example of the use of computational steering for the mesoscale
simulation of binary immiscible fluids. The simulation of such fluids remains a very serious
challenge. At the very finest level, molecular dynamics is often used to study small systems,
but is too computationally demanding to reach the hydrodynamic timescales of interest. At
the very coarsest level, one would like to obtain hydrodynamic equations for such fluids,
similar to the Navier-Stokes equations for simple viscous fluids, but such equations are often
unknown or ill-posed for complex fluids. For this reason, attention has turned in recent years
to mesoscale descriptions of complex fluids, such as lattice-gas automata models. Such de-
scriptions aim to simulate the complex fluid on length and time scales that are much larger
than those of the molecular level, but still much smaller than those of the bulk hydrody-
namics. The algorithm is based on a hydrodynamic lattice gas technique originally obtained
by Rothman and Keller [9]. The details of the particular implementation are described in a
recent paper [10].

The code is implemented in F90 and parallelised using MPI. It has been used extensively
on the T3D formerly at EPCC in Edinburgh, on Origin 2000 machines both at the Oxford
Supercomputing Centre and at the Boston University Center for Computational Science, and
on T3E machines at SGI and at the CSAR service in Manchester. Prior to the implementation
of steering the code produced AVS viewable files at a user specified interval. A suitable DUMP
routine, as referred to above, was therefore already available. The GET routine is simply
the subroutine which reads the initial input file. All the essential ingredients required by
the steering library were therefore already implemented in the code. In order to implement
steering, we simply added a call to STRSETUP, using the random seed as the job id and a
call to STRBREAKPOINT wherever the output was written. The control module was added
to the AVS visualisation network, and the implementation was complete.

An initially homogeneous mixture of oil and water below a critical temperature referred
to as the spinodal point will spontaneously separate. Our model is capable of simulating this
behaviour and computational steering was used to locate the spinodal point. Previously such
points in the phase diagram of the model have been found using large task-farm parameter
searches. Such searches are computationally expensive. Additionally, one is limited to a
system which will fit on a single processor and so finite size effects may distort the results
obtained. In the course of a single simulation lasting under an hour the systems tempera-
ture was repeatedly raised above and lowered below the spinodal point and the behaviour
observed until the desired accuracy was obtained. The sequence of events observed in a cy-
cle of simulation is shown in figure 2. The use of steering meant that the simulation could
be stopped when the desired accuracy for the result had been obtained, and represented an
enormous saving in both wallclock and CPU time.

For examples such as the above, search algorithms based on some metric measure are
the alternative to the more ’brute force’ taskfarm. For one-dimensional parameter spaces
such search algorithms are relatively straightforward. However, the extension of such algo-
rithms to multidimensional parameter spaces is highly non-trivial. Steering enables the use
of intuition to guide such parameter space searches.
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Figure 2: The cycle of observations in a steered simulation to determine the spinodal point of an immiscible
fluid. Top left: initial homogenous mixture below spinodal point. Top right: Clear phase separation indicating
system is below spinodal point. Bottom right: System remixing after temperature is shifted above spinodal
point. Bottom left: System remixed ready for the next temperature change.

5 Conclusions and future work

We have shown that computational steering can be very easy to implement as an add-on
to existing MPI programs. What little effort is required to get started is quickly repaid by
getting faster research results. Despite its immense simplicity, we have found our approach
to be surprisingly useful. The case study described would have been hugely expensive in
cpu-time had traditional batch task-farm analysis been applied.

We feel that computational steering is mainly an educational issue rather than a technical
one. The main creative challenge is to think of a way to apply a suitable interactive feedback
loop to an existing simulation program so as to get better results. Once this is done the
implementation should be easy.

There are many other libraries in existence that offer computational steering environ-
ments. The CUMULVS [4] library is similar to ours in that it is intended as an aid to steering
existing parallel programs, although these must be written using the PVM parallel library
rather than MPI. It is higher level than our library in that it offers additional features such
as checkpoint/restart and fault tolerance. It also provides special parallel routines for data
extraction, whereas we leave this task to the user (by way of the DUMP and GET routines).
On the downside CUMULVS is much more complicated for a user to learn than our library
amd also has additional system overheads: requiring certain daemons to be run. It also ties
the user into using the CUMULVS visualisation software, whereas our software can be used
with any graphics package. Other approaches such as VIPAR [3] and SPaSM [2], are more
intrusive - taking control of the interprocess communications as well as the steering. Whilst
they may be attractive to developers of new parallel applications they do not offer the ability
to ’retrofit’ a steering interface to legacy code.

There is much benefit in designing simple portable protocols upon which higher level
facilities may be constructed, and this has been the philosophy of our approach. There is
much evidence for the validity of this in the world of networking. Consider the universally



104 P. J. Love and J. M. R. Martin / Steering High Performance Parallel Programs

accepted SNMP protocol for network management. This has but two basic commands: one
to write a variable and one to read a variable, and yet it is the linchpin of much complex
software for maintaining the health of the internet.

In the future we shall be collaborating in setting up a national computational steering
service, which will run on a front-end machine to a 512 processor Cray T3E. This will provide
us with the opportunity to work with many varied applications and to consider enhancements
to our model that might be necessary. We also plan to blend the computational steering
facilities described here into the Oxford BSP visual programming development system [11].

The STR computational steering library may be freely downloaded from URL
http://www.osc.ox.ac.uk/vsig.html
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A An Example of Steering Implementation.

A.1 Making an application steerable.

For the purpose of illustration we shall consider a rather contrived example. We shall start
with an MPI parallel program, written in FORTRAN, which calculates temperature distribu-
tion over a metal plate with a heating element attached to one side. This is achieved by
a numerical solution to Laplace’s equation over a rectangular grid using Dirichlet boundary
conditions. The data domain is partioned into strips. Data are passed backwards and forwards
between two rectangular arrays, U and UNEW.

PROGRAM MPIDIRICHLET
INCLUDE ’mpif.h’
INTEGER PWIDTH, PHEIGHT, STRIPSIZE
PARAMETER (PWIDTH = 400, PHEIGHT = 498, NPROCS = 8)
PARAMETER (STRIPSIZE = (PHEIGHT - 2)/NPROCS+2)
REAL U(PWIDTH,STRIPSIZE), UNEW(PWIDTH,STRIPSIZE)
CALL MPI_INIT (ERRCODE)
CALL MPI_COMM_RANK (MPI_COMM_WORLD, PROC, ERRCODE)
CALL INITIALISE(U,UNEW,PWIDTH,PHEIGHT,STRIPSIZE,PROC)
DO N = 1, 100000

CALL ITERATE(U,UNEW,PWIDTH,STRIPSIZE,PROC,NPROCS)
CALL ITERATE(UNEW,U,PWIDTH,STRIPSIZE,PROC,NPROCS)

END DO
CALL MPI_FINALIZE (ERRCODE)
STOP
END

Now in order to make this code ‘steerable’ we need to add a call to STRSETUP early on
to set an identifier that may be used to control the program from outside. We also need to
place calls to STRBREAKPOINT at suitable locations. Whenever the program arrives at such
a point in its execution it will check whether an interrupt signal has been sent, and, if so, it
will call the DUMP subroutine and then go to sleep until it is reactivated. Upon reactivation it
will call the GET subroutine prior to restart.

This transformation is very simple to apply. The main program simply needs to have a
few lines added as follows.

PROGRAM MPIDIRICHLET
INCLUDE ’mpif.h’
INTEGER PWIDTH, PHEIGHT, STRIPSIZE
PARAMETER (PWIDTH = 400, PHEIGHT = 498, NPROCS = 8)
PARAMETER (STRIPSIZE = (PHEIGHT - 2)/NPROCS+2)
REAL U(PWIDTH,STRIPSIZE), UNEW(PWIDTH,STRIPSIZE)

C
C Create COMMON block for data and declare communication routines
C

COMMON/ONE/U, N
EXTERNAL DUMP, GET
CALL MPI_INIT (ERRCODE)
CALL MPI_COMM_RANK (MPI_COMM_WORLD, PROC, ERRCODE)

C
C Set Job id for computational steering
C

CALL STRSETUP(12345)
CALL INITIALISE(U,UNEW,PWIDTH,PHEIGHT,STRIPSIZE,PROC)
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DO N = 1, 100000
C
C Set break point
C

CALL STRBREAKPOINT(DUMP,GET)
CALL ITERATE(U,UNEW,PWIDTH,STRIPSIZE,PROC,NPROCS)
CALL ITERATE(UNEW,U,PWIDTH,STRIPSIZE,PROC,NPROCS)

END DO
CALL MPI_FINALIZE (ERRCODE)
STOP
END

It is also necessary for the programmer to supply suitable DUMP and GET subroutines,
which must have no arguments. The purpose of these routines is to send data to the exter-
nal agent and also to retrieve modified parameters before restart. (Note that routines DUMP
and GET are called by all processes, and so may communicate with each other using MPI
routines.)

In this case we shall make DUMP output the entire data array U to a file dirichlet.dta.
Subroutine GET will read in a new temperature for the heating element, resulting in resetting
of some boundary values for the array. Code for DUMP is as follows. We do not include code
for GET as that is very similar.

SUBROUTINE DUMP
INCLUDE ’mpif.h’
... data and parameter declarations omitted
COMMON/ONE/U, N
CALL MPI_COMM_RANK (MPI_COMM_WORLD, PROC, ERRCODE)
IF (PROC .EQ. 0) THEN

OPEN(UNIT=23,FILE=DUMPFILE,STATUS=’NEW’)
C
C Now we have to get the information from each process and
C dump it out
C

WRITE(23,’(f4.2)’),((U(I,J),I=1,PWIDTH),J=1,STRIPSIZE-1)
DO P2 = 1, NPROCS - 1
DO K = 2, STRIPSIZE - 1

CALL MPI_RECV(UBUFF,PWIDTH,MPI_REAL,P2,1,
: MPI_COMM_WORLD,STATUS,IERR)

WRITE(23,’(f4.2)’) UBUFF
END DO

END DO
CALL MPI_RECV(UBUFF,PWIDTH,MPI_REAL,NPROCS-1,1,

: MPI_COMM_WORLD,STATUS,IERR)
WRITE(23,’(f4.2)’),UBUFF
CALL FLUSH(23)
CLOSE(23)

ELSE
DO K = 2, STRIPSIZE - 1
CALL MPI_SSEND(U(1,K),PWIDTH,MPI_REAL,0,1,

: MPI_COMM_WORLD,IERR)
END DO
IF (PROC .EQ. NPROCS-1) CALL MPI_SSEND(U(1,STRIPSIZE),PWIDTH,

: MPI_REAL,0,1, MPI_COMM_WORLD,IERR)
END IF
RETURN
END
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Now all the work has been done to make the application steerable: we have marked a
suitable breakpoint in the code, and have also provided subroutines for writing out the current
state of the simulation and reading in new parameters.

A.2 Steering the Application

Once a code has been made steerable it is controlled by a sequence of calls to subroutine
STRKICK, which successively cause it to pause and ‘dump’, and then to ‘get’ and restart.

The following code skeleton could be used to control a steerable application interactively.

PROGRAM CONTROLLER
CHARACTER R
PRINT’(’’Please type job ID:’’)’
ACCEPT*, ID
R = ’’
DO WHILE (.TRUE.)

PRINT’(’’Press return to interrupt or S to STOP:’’)’
ACCEPT’(A)’, R
IF (R .EQ. ’S’ .OR. R .EQ. ’s’) STOP
CALL STRKICK(ID)
... insert code for visualisation and parameter modification
PRINT’(’’Press return to resume:’’)’
ACCEPT’(A)’, R
CALL STRKICK(ID)

END DO
END

This code could run on a dedicated visualisation machine, assuming that the filestore for
the application is remotely accessible (e.g. using NFS or AFS). It is often possible to integrate
this steering code directly into the visualisation system being used, as will be described in
the next section.

A.3 Visualisation using AVS

The application code, once made steerable, is ready to be coupled to a visualisation system
such as AVS [6]. AVS is a high-powered commercial tool, with a visual programming envi-
ronment. AVS applications are constructed by connecting together ‘modules’ on a graphical
display. Each component has a computational function, together with a collection of typed
input and output ports for data communication. An easy programming interface is provided
for constructing new modules in C or Fortran.

Figure 3 displays a simple AVS network compiled to visualise the results from the above
application program. The control module has a instrumentation panel with ‘stop’ and ‘start’
buttons to control a steerable application. It has been built using the AVS module API and
interacts with the application by calling the STRKICK subroutine described above.

The standard readfield module reads in the data that the application writes with its DUMP
subroutine. The temperature module provides a slider bar for resetting the temperature of
the heating element. When the value of the slider is changed a parameters file is written
out by AVS which will subsequently be read in by the GET subroutine upon restart of the
application.
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Figure 3: AVS Network Editor and Image Display


