Communicating Process Architectures 2000 179
P.H. Welch and A. W. P. Bakkers (Eds.)
10S Press, 2000

Post-Mortem Debugging in KRoC

David C. WOOD and Frederick R. M. BARNES
Computing Laboratory, University of Kent at Canterbury, CT2 7NF
{D.C.WoodRukc.ac.uk, frmb2@ukc.ac.uk}

Abstract. A simple post-mortem debugging facility has been added to KRoC [1], to
identify and locate run-time errors, including deadlock. It has been implemented for
the SPARC/Solaris and i386/Linux versions of KRoC.

1. Introduction

A limitation of KRoC has always been its lack of debugging facilities. Some users,
especially students, are not convinced by the argument that a properly constructed program
does not contain bugs.

Interactive debuggers are complex to write and hard to use, particularly in a system with
concurrent processes. For these reasons, a simple post-mortem debugger has now been
provided. When KRoC is used in debugging mode, it automatically prints debugging
information when an error is detected.

Separate versions of this debugger have been written for the SPARC and the i386. The
architectures and translation mechanisms used for KRoC on these two targets are
sufficiently different for it to be worth describing them separately [2].

2. SPARC version

The main ideas for post-mortem debugging were developed first on the original SPARC
version of KRoC.

2.1. Debugging directives

On the SPARC, compilers for C, Fortran, etc. insert debugging directives (stabs and
stabn) into their assembly-language output[3]. These cause extra information to be
added to the symbol table of the object code, which in turn can be interpreted by debugging
programs like adb, gdb, and dbx.

An experimental version of octran has been use to generate similar directives, but it
appears that the structure of occam®* programs is too unfamiliar for the standard debuggers
to handle, and this approach has been abandoned. In any case, one very important error,
deadlock, could hardly be handled by standard debuggers.

2.2. Special code

KRoC has always, by default, generated code to check for run-time errors, like arithmetic
overflow and array-bound violations, and options are provided to control what, if anything,
happens when such an error occurs. Some of these checks are simply translations of the

* occam is a trademark of the SGS-THOMSON Microelectronics Group.

180 D. C. Wood and F. R. M. Barnes/Post-Mortem Debugging in KRoC

transputer code from the compiler; others, like integer overflow on most machines, are
added by octran.

This mechanism has been expanded to provide more information.

2.2.1. Run-time errors

In order to identify errors detected during translation (which, of course, never occur!),
octran has always kept track of the file name and line number of the occam source,
as indicated in comments generated by the compiler, and also the line numbers of
the transputer and target assembly-language files. The debugging option causes this
information to be recorded as a data structure in the object code, and when an error occurs a
post-mortem routine is called to print it.

In most cases the cost of this extra debugging code, in speed and size of the object
program, is small.

A few kinds of errors require special treatment.

2.2.2. Floating-point errors

At appropriate points in the code, the compiler generates transputer fpchkerr
instructions to check if a floating-point error has occurred. By default, oct ran ignores
these, because the SPARC hardware is set to trap such errors when they actually occur.

However, for some checking modes, these checks were already implemented. So for
debugging purposes, hardware trapping is turned off, and the check instructions are
generated, with the extra information required, exactly as for other run-time errors. This
involves a signifi cant run-time overhead, because the floating-point state register has to be
checked explicitly, which is slow on the SPARC [4].

2.2.3. Division by zero

Like many machines, the SPARC treats integer division by zero as a floating-point error, and
traps it. In debugging mode, octran checks if the divisor is zero before all integer
division operations.

2.2.4. Deadlock

One of the most frustrating errors in an occam program is deadlock, because it is a
property of a whole network of processes, rather than being localized at a single point.

Deadlock occurs when the scheduler fi nds no processes on the run queue or waiting for
an external event (keyboard input or a timeout, in KRoC). In standard occam, any
remaining processes must be waiting on a channel. Hence, the processes involved in the
deadlock must have attempted to start a communication that has never fi nished.

To identify such processes, oct ran generates extra code for each communication over a
channel, setting a flag before the communication and clearing it afterwards.

The workspace of each occam process has a header, of between two and fi ve words, used
to contain control information. One of these words is the link, pw.Link, used when the
process is on the run queue. Since any communicating process may be put on this queue,
this location must be available, so it is used to contain the flag.

The post-mortem routine searches the workspace for such flags, and so identifies all
communications currently blocked.

D. C. Wood and F. R. M. Barnes/Post-Mortem Debugging in KRoC 181

2.3. Output
For any run-time error detected, the the following information is printed:

. The type of error (overfbw, range, fbating-point, etc.), insofar as it can be
determined; or, for deadlock, the instruction (in, out, outbyte, outword,
altwt, or taltwt*) concerned.

. The name of the PROC or FUNCTION in which it occurred.
. The fi le name and approximate line number of the occam source fi le.
. The fi le names and line numbers of the transputer and target assembly-language fi les.

. The contents of the virtual transputer registers. Only the active elements of the
evaluation stacks are given.

. A few words of the workspace around the workspace pointer, and of the target code
around the instruction pointer.

. The process and timer queues.

Most of this information is given in hexadecimal, except for the fbating-point stack
registers, which are printed in an appropriate format.

In ALT constructs, the relationship between occam source and assembly language is
complicated; for deadlock in an ALT the line number reported is near the end of the
construct.

2.4. Main PROC header
The main PROC of a program in KRoC must have the form

PROC proc.name (CHAN OF BYTE keyboard, screen, error)

where the channels correspond to the standard UNIX{ input and output streams. Previously
this was not checked, giving rise to the possibility of mysterious run-time errors that could
not be located by the post-mortem mechanism. This has now been corrected.

2.5. Implementation

The debugging option requires extra code to be generated when checking for run-time
errors and in communications, and additional routines in the run-time system to interpret
the information this provides.

2.5.1. Extra code generated

Normally, run-time errors are reported through conditional trap instructions; for example:

cmp %10, %14 !- error if negative
tgeu 18 !+ RANGE

where the operand of the trap instruction indicates the type of error (16 greater than the
error code).

* A timer ALT can deadlock, if the timer guard has a precondition that evaluates to FALSE.
+ UNIX is a trademark of AT&T Bell Laboratories in the USA and other countries.

182 D. C. Wood and F. R. M. Barnes/Post-Mortem Debugging in KRoC

For debugging, this is replaced by a conditional branch over some extra code, and a
debugging record is assembled in the . data segment:

cmp %10, %14 !- error if negative
blu 9f
sethi $hi (0f), %00 1 *
call $Sdebug
or %00,%1o0(0f), %00 !*
.data !'* debugging record
.align 4
0: .word 0x12002000,17,31,58,LP0,LF0,LS0O,LDO
LPO: .asciz "out_repeat"
LFO: .asciz "small_utils.lib"
LSO: .asciz "nos.kt8"
LDO: .asciz "nos.s"
.text

9:
The hexadecimal digits of the first word of the debugging record encode, from left to
right:
. The type of the routine (in this case PROC);
. The depth of the integer evaluation stack;
. The depth of the fbating-point evaluation stack;
. The types (REAL32 or REAL64) of the entries in the fbating-point stack;
. The type of error (in this case RANGE).

Then follow the line numbers in the occam, transputer assembly-language (nos . kt8),
and SPARC assembly-language (nos. s) files, and pointers to the names of the routine and
fi les concerned.

Since this is the fi rst such record, all the strings are required.

In the normal case when the branch is taken, the sethi in its delay slot is also executed.
This is unavoidable, but harmless (as it happens, nop is actually a special case of sethi).

Communications are implemented as kernel calls; for example, without debugging:

call SSout
inc 8,%07 !'* adjust pc

where the return address in $07 is incremented in the delay slot to skip over the call and
the increment instruction itself.

For debugging, some identifi able value must be placed in the workspace while the
communication is pending, and removed when it has completed. Using the workspace
pointer itself, in the pw . Link word of the process header, is quick and simple:

st %13, [%$13-8] '+ set flag
call $Sout
inc 12,%07 !'* skip magic

D. C. Wood and F. R. M. Barnes/Post-Mortem Debugging in KRoC 183

.word 0Of
.data !'* debugging record
.align 4

0: .word 0x10300001,18,40,81,LP0,LF0,LS0O,LDO
.text
clr [$13-8] '+ clear flag

Here the return address is incremented to skip over the pointer to the debugging record, at
no extra cost.

The code word contains:

. The type of the routine, as above;

. Two digits for the instruction (in this case out);

. The remaining digits for the byte count, if known (this is not currently used).
In this case all the strings are the same as before, so they are not repeated.

The cost in time is two instructions, setting and clearing the fhg in the workspace, for
each communication. (Actually, clearing this location is unnecessary, as the current
scheduler always changes it, but other versions might not.)

When octran encounters the names of new routines or files, it updates the debugging
records:

deccc $11

bvc 9f
O: .word 0x12001000,27,62,121,LP1,LF0,LS0O,LDO
LP1: .asciz "out_ch"

It would have been possible to place the debugging records in the .text segment, but
then even more of the code displayed in the post-mortem dump would have been concerned
with debugging, rather than with the user’s program.

2.5.2. Post-mortem routines

As shown above, when a run-time error occurs, an assembly-language routine, $$debug,
is called. This in turn calls, in sequence, a number of C functions to print information
about the error. (This is simpler than calling a single routine, since passing a few
parameters at a time in registers avoids the complexity of the SPARC method of passing
them in memory.)

When deadlock is detected, the kernel calls the post-mortem routine deadlock.
If debugging is in force, this routine searches the workspace for occurrences of
Wptr[pw.Link] = Wptr. Of course, since pointers to local variables are common,
some of these may not represent genuine debugging ‘magic’, so further checks are made to
reduce the probability of spurious ‘hits’. For each occurrence, the routine inspects
Wptr[pw.Iptr], which should contain the return address from the communication
routine concerned, checking that it is a properly aligned pointer into the code area, and that
it points back to the correct sequence of instructions.

184 D. C. Wood and F. R. M. Barnes/Post-Mortem Debugging in KRoC

2.6. Usage
Post-mortem debugging is enabled by a fhg to the kroc command.
kroc -D prog.occ

gives the full debugging report; —d instead of —D omits the dump of registers and memory,
which is unlikely to be useful to ordinary users.

2.6.1. Separate compilation

If a program is made up from separately compiled components, error reports will be given
only for those parts compiled with the debugging fhg. Whether the long or short form is
given depends on the fi nal compilation of the main program.

2.7. Examples
The following is a typical error report, actually caused by an uninitialized variable.

KRoC: Run—-time error

RANGE ERROR in PROC "fair_alt_phil";
in occam file "g7.occ" near line 170

The compiler does not provide numbers for every line; hence the word ‘near’, though the

("g7.kt8" line 938; "g7.s" line 1638)
Areg = #00000005, Breg = #00000000
Wptr = #EFFFF5C8, Iptr = #000033BO
Workspace Code
-5 #00003724 #EO04E008
-4 #EFFFFS5E8 #E204E030
-3 #80000003 #80A40011
-2 #00003704 #0A800004
-1 #00000000 #11000039
0 #0000374C #40000B1C
1 #00000000 #9012214cC
2 #00000005 #E204E02C
3 #00000001 #A12C2002
4 #00000000 #A0040011
5 #00000005 #E0040000
Fptr = #EFFFF65C -> #00000008
Bptr = #EFFFF65C
Tptr = #EFFFF9AC —-> #EFFFF924 -> #80000000

line numbers are normally exact.

D. C. Wood and F. R. M. Barnes/Post-Mortem Debugging in KRoC 185

Many occam programs contain processes with WHILE TRUE loops. In this case,
deadlock is the normal form of termination. Here is a classic example, with the short form
of report:

KRoC: Deadlock

Instruction "out"™ in PROC "id";
in occam file "cycles.lib" near line 9
("nos.kt8" line 320; "nos.s" line 662)

Instruction "in" in PROC "succ";
in occam file "cycles.lib" near line 18
("nos.kt8" line 336; "nos.s" line 691)

Instruction "out" in PROC "delta';
in occam file "cycles.lib" near line 43
("nos.kt8" line 386; "nos.s" line 799)

3. Linux version

The implementation of post-mortem debugging in the 1386/Linux port of KRoC differs
signifi cantly from the SPARC/Solaris version, largely because of the different translation
mechanism used.

3.1. Errors detected
Debugging code is placed around the following operations:
. Blocking kernel calls (inputs, outputs, and ALTs), to report process states if deadlock
occurs
. Arithmetic operations, to check for overfbw
. Integer division, to check for division by zero
. Range checks
. Application-level errors (seterr)
The translator used in KRoC/Linux, tranpc, converts from extended transputer code

(ETC) directly into native i386 ELF object fi les [5]. This means that the debugging code has
to be generated as in-line machine code, complicating things somewhat.

As for the SPARC, the mechanism for post-mortem debugging is split into two parts: the
generation of additional debugging code during translation, and extra code in the occam
kernel to make use of it.

3.2. Translation

During translation, t ranpc maintains a note of the current procedure names, obtained
from their entry points, and file names and line numbers, from ETC specials in the
instruction stream. The line number is just an integer, while procedure and fi le names must
be kept in arrays indexed by integers.

As the translation proceeds, tranpc looks for points where debugging information is
required, and inserts the relevant code. This involves fi ve different generation sequences
for each of the fi ve debugging points mentioned above.

186 D. C. Wood and F. R. M. Barnes/Post-Mortem Debugging in KRoC

3.2.1. Deadlock

The first, and perhaps the most complicated, is the deadlock debugging information. The
debugging code is placed immediately before and after kernel calls which could result in
deadlock (input, output, and ALTs). As with the SPARC, just before the kernel call, the
Wptr of the current process is placed in its link field: Wptr [Link] := Wptr. The
following code is placed immediately after the call:

return from call here

jump to Lxx

debug record
[LINE_LOW, LINE_HIGH, KENTRY, DLOP]
[PROC_LOW, PROC_HIGH, FILE_LOW, FILE_HIGH]
[#DE, #AD, #BE, #EF]
jumpto procfile.setup.label

Lxx:

normal execution continues here

The two bytes LINE_HIGH: LINE_LOW together form the 16-bit current line number,
PROC_HIGH:PROC_LOW similarly form an index into the procedure-name array, and
FILE_HIGH:FILE_LOW form an index into the file-name array. These six bytes are
common to all debugging records, as they specify the current point in the source fi le.

KENTRY is the kernel entry-point which was called, and DLOP is the operation which
KENTRY handles. This will be one of the following constants:

DLOP_INVALID invalid debug record

DLOP_IN process was blocked on an input
DLOP_OUT process was blocked on an output
DLOP_OUTBYTE process was blocked outputting a byte
DLOP_OUTWORD process was blocked outputting a word
DLOP_ALTWT process was blocked on an ALT
DLOP_TALTWT process was blocked on a timer ALT

The target for procfile.setup.label is givenin § 3.3.

3.2.2. Arithmetic overflows

After each arithmetic operation which might overfbw (addition, subtraction, division,
multiplication, and remainder), the following code is placed:

arithmetic operation performed here

jump to Lxx if overfbw fhg not set

debug record
set EDX registerto [LINE_LOW, LINE_HIGH, #00, OPCODE]
set ECX register to [PROC_LOW, PROC_HIGH, FILE_LOW, FILE_HIGH]
jumpto overflow.label

Lxx:

normal execution continues here

D. C. Wood and F. R. M. Barnes/Post-Mortem Debugging in KRoC 187

OPCODE specifi es the operation which overfbwed, and will be one of the following
constants:

OOP_INVALID invalid debug record

OOP_ADD addition overfbw

OOP_SUB subtraction overfbw

OOP_MUL multiplication overfbw

OOP_DIV division overfbw

OOP_REM modulus overfbw

OOP_LADD long (INT64) addition overfbw

OOP_LSUB long (INT64) subtraction overfbw

OOP_ADC add-constant overfbw (transputer ADC instruction)

The target for overflow. label is given in § 3.3.

3.2.3. Division by zero

In addition to the overfbw debugging code placed after division operations, a check is
made before the division to ensure that the divisor is not zero. This is implemented by the
following code:

compare divisor with zero, and jump to Lxx if zero fhg not set

debug record
set EDX registerto [LINE_LOW, LINE_HIGH, #00, #00]
set ECX register to [PROC_LOW, PROC_HIGH, FILE_LOW, FILE_HIGH]
jumpto zerodiv.label

Lxx:

division performed here

The target for zerodiv.label is givenin § 3.3.

3.2.4. Range errors

Range errors occur when a run-time check (shift left or right, CSNGL, CSUBO, and CCNT1)
fails. The most common cause of errors of this type are array index out-of-bounds errors.
At the point where the check fails, the following code is placed:

push [LINE_LOW, LINE_HIGH, #FF, OPCODE] on kernel stack
push [PROC_LOW, PROC_HIGH, FILE_LOW, FILE_HIGH]
jump to range.entry.label

OPCODE specifies the operation which caused the range error. This will be
REOP_SHIFT for shift errors, or one of REOP_CSNGL, REOP_CSUBO, or REOP_CSUBR1
for the corresponding transputer operations. The target for range.entry.label is
given in § 3.3.

3.2.5. Application-level errors

Application-level errors are generated by such things as the STOP process, the compiler
library function CAUSEERROR, and ASSERT statements that evaluate to FALSE, all of
which correspond to the transputer seterr instruction.

188 D. C. Wood and F. R. M. Barnes/Post-Mortem Debugging in KRoC

At the point where the error occurs, the following code is generated:

push [LINE_LOW, LINE_HIGH, #00, #FB] onkernel stack
push [PROC_LOW, PROC_HIGH, FILE_LOW, FILE_HIGH]
push address of filename.label

push address of procedure.label

call K.SETERR kernel entry point

This is the simplest of the fi ve, as the entry to the occam kernel is made directly, whereas
the other four jump somewhere else first. This is because we do not expect to generate this
very often, so space is less of a constraint. The other four could be generated quite
frequently, and to stop the executable size exploding too much, they must be kept small.

3.3. Coding the rest

After the input has fi nished being translated, additional debugging code is placed in the
output. The first item to be generated is the procedure names array. The data is organized
thus:

procedure.label:
.word <number of procedure names, N>
.word <offset of procname (0) from procedure.label>

.word <offset of procname (N-1) from procedure.label>
.bytes <null-terminated procname (0) >

.bytes <null-terminated procname (N-1) >

Each of the names is adjusted to be a multiple of four bytes in length, being padded by at
least one NULL character (BYTE 0) at the end. The NULL characters ensure that the
strings can be printed directly from the C world. The PROC_HIGH:PROC_LOW debugging
records provide the index of the procedure name in this structure.

After the procedure names have been written, the fi lenames are written, in much the same
way:

filename.label:
.word <number of fi lenames, N>
.word <offset of filename (0) from filename.label>

.word <offset of filename (N-1) from filename.label>
.bytes <null-terminated filename (0) >

.bytes <null-terminated filename (N-1)>

FILE_HIGH:FILE_LOW provides the index into the array in this case. Both arrays are
packed fairly tightly into the output, to try to keep the size of the executable down.

Following these two arrays are the entry points for procfile.setup.label,
overflow.label, zerodiv.label, and range.entry.label. The function
of these is to provide any fi nal setup before jumping into the occam kernel to report the
error to the user. The code at procfile.setup.label (jumped to from deadlock
debugging records) is slightly different. The reasons are explained in § 3.5.

D. C. Wood and F. R. M. Barnes/Post-Mortem Debugging in KRoC 189

procfile.setup.label:
set EAX register to address of filename.label
set EBX register to address of procedure.label
RET
overflow.label:
push address of filename.label on kernel stack
push address of procedure.label
push EDX ([LINE_LOW, LINE_HIGH, #00, OPCODE])
push ECX ([PROC_LOW, PROC_HIGH, FILE_LOW, FILE_HIGH])
call K.OVERFLOW kernel entry point
zerodiv.label:
push address of filename.label
push address of procedure.label
push EDX ([LINE_LOW, LINE_HIGH, #00, #00])
push ECX ([PROC_LOW, PROC_HIGH, FILE_LOW, FILE_HIGH])
call K.ZERODIV kernel entry point
range.entry.label:
push address of filename.label
push address of procedure.label
call K.RANGERR kernel entry point

When many source files are combined to create a single executable, each object file
generated from the translation process will contain its own fi le name and procedure name
arrays. For this reason, the debugging code and information for a particular source file
must remain fully within the corresponding output fi le.

3.4. The occam kernel

The occam kernel provides four entry points for the different types of run-time error.
These are referenced by K. OVERFLOW, K. ZERODIV, K.RANGERR, and K. SETERR. For
each of these, the parameters passed on the kernel stack provide information about where
the error occurred, and what specifi cally the error was. In each case, the values are checked
for sanity (indices in range, valid opcodes, etc.), the error is reported to the user, and the
program is terminated.

3.5. Deadlock

When the occam kernel detects deadlock, the debugging code attempts to locate processes
blocked on inputs, outputs, and ALTs. This is done by scanning the workspace looking for
instances where Wptr [Link] = Wptr, which would have been set just before the kernel
call. This condition could occur quite frequently in the workspace, so a series of checks are
made to refi ne the probability that it is a kernel call.

Firstly, Wptr [Iptr] is checked to see if it points at a valid address. If it does, two
bytes are deferenced and checked. These bytes should be the jump placed immediately
after the kernel call. If the jump instruction looks good, the next twelve bytes should be the
debugging record. Only a small portion of the first eight bytes can be checked, as no
information about the procedure or fi le name arrays is available. The remaining four bytes
are checked for the magic word #DEADBEEF*.

* From the Linux kernel spin-lock debugging code.

190 D. C. Wood and F. R. M. Barnes/Post-Mortem Debugging in KRoC

If everything looks good up to this point, the thirteenth byte is checked for being a valid
jump opcode, and, if it is, its address is cast into a pointer to a function, which is then
executed. If what we have found is not actually a blocked process, then the program
will probably crash, but the probability of this occurring is extremely small. If what was
found was indeed a blocked kernel call, then the function called will return with
pointers to the relevant procedure and file name arrays. This is where the code in
procfile.setup.label (§3.3) differs from the other cases, as it must return to the
deadlock debugging code, not to an occam kernel entry point. After return, the rest of the
debugging record can be checked, and if everything still looks good, the position where the
process deadlocked and the associated operation are reported to the user.

3.6. The costs of debugging

The cost of post-mortem debugging on KRoC/Linux can be defi ned as the amount of extra
code executed when an operation does not generate an error, together with the increase in
code size when debugging is present. The costs incurred per debugging fragment generated
are:

. Instructions Bytes
Debug operation executed used
deadlock 2 21
overfbw 1 17
divide by zero 2 20
range checks 0 12
seterr 0 25

Range checks and seterr do not generate any additional code on the non-error path, as
the checks were already there before. The following table shows the increase in code size
for various occam programs:

Program Debug records % increase
tranetcp.occ 772 30
philfred.occ 728 49
beer_punters.occ 192 56
commstime.occ 8 11

The cost at run-time is relatively small; three fi fths of the instructions in the non-failure
cases are short forward jumps; the remaining are a comparison and a move. Two of these
are conditional jumps, in which following the jump (non-failure case) is the predicted
course.

The following table shows the time taken for two versions of tranpc, one with
debugging on, the other with debugging off, to translate t ranetcp.occ in two ways.
The fi rst translation is with debugging disabled, the second is with debugging enabled. The
execution times are given in milliseconds:

tranpc tranpc
Translated without debug with debug
without debug 66 70
with debug 70 74

D. C. Wood and F. R. M. Barnes/Post-Mortem Debugging in KRoC 191

4. Further work

When it detects deadlock, this system assumes that all the processes concerned are blocked
on communications. It does not yet know anything about semaphores or other
synchronization primitives [6].

It also expects all relevant information to be in the normal workspace, so it does not work

properly with the experimental recursive version of KRoC [7]. It correctly reports running
out of dynamic memory, but cannot handle deadlock in recursive routines.

A possible extension would be for the debugger, after locating the error, to interact with
the user to inspect the contents of the workspace. Since octran does not keep track of
occam variable names (and it would not be easy to make it do so), this would require the
user to refer to the assembly-language fi les.

There are trivial inconsistencies between the two versions that should be eliminated.
The 1386 version does not yet deal with fbating-point errors.

5. Conclusions

This work has shown that useful post-mortem debugging information can be provided in
KRoC at little cost in speed and size of code. We have already found it very helpful in
locating errors in students’ programs.

6. References

[1] David C. Wood and Peter H. Welch. The Kent Retargetable occam Compiler.
Proceedings of WoTUG-19: Parallel Processing Developments, edited by Brian C.
O’Neill. IOS Press, 1996. ISBN 90-5199—- 261-0.

[2] Michael D. Poole. Occam for all — two approaches to retargeting the INMOS
compiler. Proceedings of WoTUG-19: Parallel Processing Developments, edited by
Brian C. O’Neill. 10S Press, 1996. ISBN 90-5199-261-0.

[3] Sun microsystems. SPARCworks 3.0x Debugger Interface. 1994.

[4] SPARC International. The SPARC Architecture Manual. Prentice Hall, 1992. ISBN
0-13-825001—4.

[5] Michael D. Poole. Extended Transputer Code — A Target-Independent Representation
of Parallel Programs. Proceedings of WoTUG-21: Architectures, Languages and
Patterns, edited by P.H. Welch and A.W.P. Bakkers. 10S Press, 1998. ISBN
90-5199-391-9.

[6] David C. Wood and Peter H. Welch. Higher Levels of Process Synchronisation.
Proceedings of WoTUG-20: Parallel Programming and Java, edited by A.W.P.
Bakkers. 10S Press, 1997. ISBN 90-5199-336-6.

[7] David C. Wood. An Experiment with Recursion in occam. Proceedings of
WoTUG-23: Communicating Process Architectures 2000, edited by P. H. Welch and
A. W.P. Bakkers. 1I0S Press, 2000.

192

