Communicating Process Architectures — 2002 17
James Pascoe, Peter Welch, Roger Loader and Vaidy Sunderam (Eds.)
I0S Press, 2002

Acceptances, Behaviours and
Infinite Activity in CSPP

Adrian E. LAWRENCE
Department of Computer Science, Loughborough University, Leicestershire, LE11 3TU UK
A.E.Lawrence@lboro.ac.uk

Abstract. The denotational semantics presented here defines an extension of CSP
calledCSPP . Itincludes a full description of infinite behaviour in one simple model
using only finite traces. This is true for both finite and infinite alphabets. The struc-
ture is a complete lattice, and so also a complete partial order, under refinement. Thus
recursion is defined by fixed points in the usual way. It is also a complete restric-
tion metric space so this provides an alternative treatment of recursion for contraction
mappings.

Keywords: CSP; CSPP; Denotational semantics; formal methods; concurrency; par-
allel systems; occam; hardware compilation; priority; p-priority.

CSP is a process algebra which describes processes which engage in eventsridirthe
nal version of CSP presented in [1] and reprinted in [2] processes were sequential, but could
run in parallel at an outer syntactic level. They could communicate by unbuffered message
passing. Hence the nan@mmunicating Sequential Processdhe communication was
more liker-calculus than modern CSP: channels did not appear explicitly.

The second version of CSP is described in a very accessible way in Hoare’s book [3]. In
this version, parallelism is ubiquitous, and the name Communic&&egentiaProcesses is
not so obviously appropriate. However, the concurrendgterleaving so events occur in
sequence and the historical name can be defended on those grounds.

The language has spawned many variants and even competitors, but the mainstream
version has not changed substantially in recent years and is described comprehensively in
Roscoe’s landmark text [4].

CSP also spawned the concrete languageam [5], which was designed by May in
consultation with Hoare and other CSP researchers. Itis an imperative language and so had to
encompass notions which did not appear explicitly in the more abstracoC&nwas one
of the first practical concurrent imperative languages with a mathematical foundation. That
foundation was CSP extended with algebraic semantics to cover aspects of state. An almost
complete denotational semantics is given by Goldsmith, Roscoe and Scott in [6] and [7].

occam originally closely associated with the transputer, inspired and enthused a world
wide community. Itis so innovative, simple and elegant that it revolutionised the approach of
many practitioners. It must be said that those very same qualities, coupled with a longstand-
ing lack of support for conventional tools and environments, since rectified, alienated others
wedded to tradition.

Whenoccamwas introduced its close connections with CSP were seldom mentioned, and
occampractioners were typically unfamiliar with the algebra. Toeamcommunity, who
were in effect the main ‘applied-CSP’ practioners, developed many techniques and insights
largely independently from main stream CSP.

occamwas regarded from the beginning as merely an initial foundation for more pow-
erful developments, particularly in raising the level of abstraction. The language has indeed

18 A.E. Lawrence / Acceptances, Behaviours and Infinite Activity

evolved from proto-occam toccam3, although the level of abstraction has not changed sig-
nificantly so far. It also has small extensions for hardware compilation: see [8], [9] and [10].
But so far it has proven to be remarkably resistant to major change or extension: it seems
that the core language is so robust, simple and transparent that modification is almost always
a backward step.

The work on CSP reported below originated in this context:

e occamincludes a way to give priority to some CSP events: conventional CSP abstracts
from such concerns. This problem became a serious concern when the author attempted
to prove that his hardware, software and firmware design in the HARP([11],[12])
codesign circuit boards and Handel-AS compiler was correct.

e Hardware compilation involves true concurrency.

e The semantics in [6] and [7] is rather difficult to use informally: a simpler way to
understand imperative state in the same way as CSP events is very attractive.

e The characteristic features o€camstem from its mathematical foundations. In seek-
INg successors or extensions, it is essential to have a full mathematical theory on which
to build.

This led to two incremental extensions of CEBPP andHCSP . CSPP extends CSP
by including priority: the trailing P stands for priorityHCSP is a further extension of
CSPP and includes true concurrency and additional constructors for hardware compilation:
the leading H stands for hardware. These ideas were first presented informally at the Twente
WoTUG-20 technical meeting.

Readers with only passing acquaintance with CSP may wish to be reminded that there
are two elementary processgkipandStop Neither process does anything, [8kipdoes it
successfully! That iSkipterminates: it will pass control on to a successor, wBilepis a
deadlock. The process representing liveldok might also be included as an ‘elementary’
process: that represents a situation when a broken program goes into an infinite internal loop.

A common way of building more complex programs is to ysefixing: if a process
performs an evend before stopping, that is written @& — Stop And the process that
performsa before passing control to a successa is> Skip Notice thata is aneventwhile
botha — SkipandSkipareprocessesProcesses just engage in events. Almost: as in the
case ofStop they mightrefuseto engage in events.

A slightly more general prefixing is exemplified loy: {1,2,3} — Skip a process that
is willing to engage in the evemtwheren is drawn from{1, 2, 3}. Notice that here we are
regarding ordinary integers as CSP events. That is fine: CSP does not specify the nature of
events. Here we interpret such an event ageheptionof a number from some sender. Our
process is willing to accept one of the three numbers and then terminate. This is an example
of external choicethe sender decides on whether to send 1,2 or 3, and our receiver process
follows that decision. It is ‘driven'—the choice is made—externally: hence ‘external choice’.

The more general form of external choice is writtenso

n:{1,2,3} — Skip= (1 — Skip O (2 — Skip O (3 — Skip ,

for example.
Now consider3 — 1 — Skip O (4 — 2 — Skip. A most important aspect of CSP is
that it supports abstraction—hiding of detail. Thus

((3—1— Skip O (4 — 2 — Skip) \ {3,4}

is our same process, but now with the events 3 and 4 hidden. Because 3 and 4 are hidden,
they are unconstrained, and can happen freely as far as the inner process is concerned. The

A.E. Lawrence / Acceptances, Behaviours and Infinite Activity 19

justification for this idea is not difficult, but must be omitted from this brief overview. It

is now aninternal matter whether 3 or 4 occurs, so the external view of the process is non
deterministic. We may observe a process that is prepared to accept the number 1 and will
refuse 2, or the reverse. In fact

(3—1—Skip O (4 — 2 — Skip) \ {3,4} = (1 — Skip 11 (2 — Skip .

Thusr is theinternal or non deterministichoice operator.

Concurrency has been implicit in all our examples so far: the ‘received1, 2,3} —
Skipneeded to interact with a ‘sender’. So the receiver and sender are running in parallel.
Thus we may have

(1 — Skip || (n: {1,2,3} — Skip = (1 — Skip) ,

where || is the parallel operator which requires that every event be a joint event of both
partners. A more general version|isthe parallel partners synchronize on the joint events in

E
E, but are otherwise independent. This is enough to express any sort of parallelism including
interleaving||| which is just]||.
0

Sequential composition is written §sso
(1 — Skip ¢ (2 — Stop = 1 — 2 — Stop.

The last of the basic CSP operators is recursio®.e n: {1,2 3} — P is the process
that will accept an unending sequence of events drawn {ror2, 3}.

CSPP extends CSP by the addition of biased and neutral versions of the external choice
and parallel operators. Since prefixing is a form of external choice, that also gets extended
as does interleaving which is a particular case of the general parallel operator(1Thus

—
Skip 0 (2 — Skip is a process that will choose to accept a 1 when there is a choice. Fre-
quently, there is no choice: a sender is only prepared to send a single integer on any given

ke
occasion. Therfl — Skipd(2 — Skip behaves in just the same way as the ordinary

(1 — Skip O (2 — Skip). All this has been described in previous papers presented in this
series of conferences: [13],[14], [15] and [16].

Merely adding extra syntax to CSP does not achieve very much in its own right. It is
necessary to ensure that a consistent and meaningful structure emerges. Since we are building
an algebra, we must be able to identify what algebraic laws are obeyed, at the very least. The
original and traditional way to do that for CSP is by way of a denotational semantics. That is
a mapping from syntax into a mathematical structure embedded in a known theory typically
incorporating some sort of fixed point property.

The standard denotational semantics of CSP is based on Failures and has a long history
some of which is recounted in [4]. It took a while for the right concepts to emerge, and various
difficulties to be recognised and sidestepped. But there have always been severe problems
in handling certain sorts of infinite behaviour connected with unbounded non determinism.
These have been largely overcome mainly by outstanding work by Roscoe, see [17]. Yet
it has to be said that when tHall theory is included, the whole semantics is somewhat
convoluted. And the treatment of termination is a little contrived. It is believed that the
semantics presented in this paper completely overcomes all of those problems as well as
having additional merits.

The design oCSPP was driven by the acceptance denotational semantics below. This
too evolved, and various versions were explored and presented in this conference series. A
number of difficulties were encountered but have now been resolved. The version in this

20 A.E. Lawrence / Acceptances, Behaviours and Infinite Activity

paper is pleasingly simple and appears to have solved all the outstanding problems with a
single theory. Time will tell whether it will become the standard semantics for CSP and its
extensions. This semantics defiié&SP including true concurrency with almost no change:
that is the subject of the companion paper [18].

1 Introduction

The theory introduced here is a significant advance over earlier denotational semantics for
CSP:

e It captures infinite behaviour in the simplest and only model.
e Itis a complete partial order, indeed a complete lattice, under refinement in all cases.

e / is a token rather than a first class event; a new tdkénintroduced to represent
divergence.

¢ It deals with certain ‘awkward’ processes lig&ipO P in a simple and natural way.
e Itis expressive enough to capture extensions to CSP, in particular priority.

The main family of denotational semantics for CSP is based on Failures, see [3], [4],[19],
[20] and the references therein. The principal idea is to characterise a process by what it
canrefuseto do after it has performed some trace, that is a sequence of events. The idea
is elegant and economical, if somewhat anti-intuitive. However there are some difficulties,
especially when infinite behaviour is included. In particular, refinement then fails to be a
complete partial order.

In contrast to Failures, the Acceptance semantics below is based on the idea of simultane-
ously offering a process a number of mutually exclusive events, and observing which event
or events can be chosenaxcepted

A problem which seems to be inherent in a semantics based on Failures is an inability
to describeconditional refusal So if a process prefers to engage in an eenthen it is
available, but otherwise will perforra, thenb will sometimes be refused and sometimes
accepted. The best that a simple Failures model can do is to model that non deterministically.

CSPP extends CSP to include priority, so the last observation is very pertinent: accep-
tance semantics was devised as a means of defGsRPP precisely. Traditionally CSP
abstracts from priority, modelling it with nondeterminism, presumably arising from the un-
derlying Failures semantics. And sometimes it is said that CSP is not appropriate for mod-
elling ‘fine detail’ like priority.

Yet the correctness of some systems, including those built directly in hardware, depend
upon priority. So there is every reason to capture them in a formal and precise way in a single
unified language. This is a prime motivation for extending CSP and giving it a rigorous
definition.

Nondeterminism is fundamental and is modelled here in a rather direct way by allowing
a process to have multipleehaviours That is a type of internal choice: a parallel partner
cannot control which is selected.

Nondeterminism also arises when a particular behaviour does not make a unique choice
of an event from those offered to it. This is a extension of external choice: such a response
indicates a behaviour which is prepared to be flexibleamnpliant it is prepared to negotiate
or be driven by a parallel partner into the refinement of the choice down to a particular event.
If there is no such partner, or the response of the partner is also compliant, then the final
selection of a particular event is nondeterministic.

The entity ‘offering’ the choice of events to a process is abstracted amnthnment
This is generally the set of parallel partners of the process. But even if our process represents

A.E. Lawrence / Acceptances, Behaviours and Infinite Activity 21

a whole system, it can at least be observed, perhaps passively, from the outside: one expects
it to engage in at least one event if it is of any use. In this sense, there is always an outermost
environment.

Those familiar with the standard semantics of CSP will recognise much of this picture,
but the interpretation in Acceptances is enriched. Events remain atomic and require the joint
participation of all partners. It is useful to think of some such partners as ‘always ready and
compliant’ as in a passive observer.

2 Extended CSP

CSP originated in the context of concurrent software typically implemented on a single se-
quential processor. Major issues were synchronisation and communication. And CSP unified
these in the notion of an atomic event which involved the joint participation of, normally
two, processes. The joint participation involved both partners in such events mutually block-
ing. The event could only proceed when both were ready: there was a ‘handshake’ between
partners.

As technology advanced, CSP came to be used to describe situations involving true con-
currency. In particular, the theory was used to design and program massively parallel arrays
of transputers, although since individual transputers were not usually synchronous across
arrays, it might be argued that the concurrency involved was still interleaving.

In consort, CSP was used to desigocam and that introduced new concepts. It in-
troduced parallel assignment asprg = q,p . The semantics was equivalent to true
concurrency although it was not expressed in that way. However, the assignments were not
regarded as CSP events, so that did not immediately raise the question of true concurrency in
CSP.

But occamalso introduced priority as PRI PAR and PRI ALT, and these were obviously
direct extensions of the CSP operatidnsr ||| andO. However there was no formal seman-
tics for these extensions. The first attempt to provide such was made by Fidge in [21], but
since fundamental issues of recursion and fixed points were not considered it was incomplete
and so did not succeed.

The topic of priority is sometimes said to be a ‘real-time’ issue rather than a matter of
‘logical’ design, and therefore legitimately separated from matters of correctness. This is
an appealing separatlon of concerns’ argument at first S|ght it seems to have more force

when applied toH and||, the parallel operators, rather than[fbandD the external choice
operators. But many programs, especially those involving PRI ALT, depend on priority for
their correctness.

It would be absurd to require a second precise language with another rigorous semantics
to establish what PRI ALT meant and to be able to prove the correctness of programs utilising
it. Far better to extend CSP rigorously which is wl&PP achieves. And that is done in a
way that maintains ‘separation of concerns’. For PRI ALT is a refinement of ALT. That is if
we establish the correctness of a program that employs ALT, then it follows that ALT can be
replaced by PRI ALT, and the program is still correct.

Although CSP andccamwere used in the design of hardware including the transputer,
direct use in hardware compilation was a later development. The hardware was usually a
synchronous circuit and was truly concurremccam simultaneous assignment was used
extensively. And when two processes engaged in a joint event, the ‘handshake’ was typically
implemented with a signal in each direction. But there were some circuits where the receiver
was ‘always ready’: it was a waste of hardware to provide redundant signals. So the idea
of a process that was ‘always ready’ to engage in an event arose. Although this idea seems
disturbing to some only familiar with software, it is still a valid interpretation of CSP and

22 A.E. Lawrence / Acceptances, Behaviours and Infinite Activity

CSPP . We can maintain the fiction that such a ready process could in principle inhibit the
event, but it ‘chooses’ not to do so.

Once one has admitted that interpretation of an event, it opens the door to the more radical
idea that ‘actions’ like assignments might also be regarded as events. Quantum physicists are
very familiar with the idea that a measurement can affect the subsequent observed behaviour
of a system. And that measurement involves the reception of information.

While conventional assignment can be described perfectly well by CSP, that normally
requires an explicit model of a variable. By extending the idea of an event to include assign-
ments where an observer is ‘always ready’ to see the action, we can capture a large part of
the semantics of anccantlike language within the framework of an extended CSP. Since
sequential execution is included, this provides a radical unifying theory for imperative pro-
gramming in general. There is a further extensio@®PP which covers such matters. For
now, merely note that events in the theory below may have non traditional interpretations.

Hardware also throws up the idea of events that involve more than two processes. In
software, events normally include precisely two processes joined by a channel (which is
formally merely a set of events). The most obvious example of an event involving many
processes in hardware is a clock edge in a synchronous circuit.

The underlying theory of CSP did not restrict events to two processes. In fact the number
of processes involved in an event is not even well defined as evidenced by the identity

(a— Skip || (a — Skip = (a — Skip

Almost all descriptions of CSP aimed at software deal with events as channels. Below
we concentrate on the underlying events for the reasons indicated above, and because the
semantics is more obvious. Channels are used in applications and examples.

Here only the modest extension of CSRC®PP is addressed, but this also serves as a
foundation for further extensions includirtigCSP . Only interleaving concurrency is cov-
ereded here HCSP includes true concurrency. The main extensions to standard CSP here
are:

e A miraculous process]. This is an unimplementable process introduced for technical

reasons: it ensures that the structure is a complete lattice under refinement.

— — —
e Priority and compliant processes. THudas refinement§], [and[d, for example.

¢ ‘Fair’ refinements of standard operations like interleaving. T\ﬂu’s a refinement of
interleaving that must eventually favour each partner. This is related to priority and
infinite behaviour and expresses ideas found in temporal logic.

3 Why denotational semantics?

Much recent work in CSP concentrates on operational semantics. That work is largely con-
cerned with modelling and proving systems correct particularly with the aid of model check-
ing [22]. FDR [23] is a model checker for CSP which is built around such an operational
semantics.

Here there is a different emphasis: the main thrust is in building tools and designing lan-
guages for codesign, especially for hardware design. In particular transformation laws, in
effect algebraic semantics, are required which can be used in compilers. Acceptance seman-
tics is abstract and simple, yet can capture more detail than standard CSP and can be applied
to a wide range of situations. It can establish the algebraic identities needed for practical
tools. And the insight that it affords in aiding understanding and recognising new realms of
application should not be dismissed.

A.E. Lawrence / Acceptances, Behaviours and Infinite Activity 23

4 Some intuitions underlying Acceptances
4.1 Events and Traces

Classical CSP models concurrency by interleaving: no more than one event can occur at any
instant. Since such events may be separated by arbitrarily small times, at least in untimed
CSP, this suffices for many purposes. If we wish to model two events that occur together, that
is done by supposing that closer examination would reveal that the events actually did happen
at different times, and so can be represented by a trace: a particular sequence. In fact, the
more precise measurement of the order is not available, so that information is missing, and
consequently the order is indeterminate. Thus if we wish to model two eaeridb that
appear to happen together either because that is the reality, or because we cannot determine
the times of occurrence sufficiently precisely, then that is handled as the pair of ¢aters
and (ba). The corresponding elementary procesgais— Skip ||| (b — Skip = (a —
b — Skip O (b — a — Skip: one or other order will happen, we know not which. This
identification is established rigorously in section 5.9 on page 28.

On occasions this model is inadequate. Modelling synchronous hardware in full detail in-
cluding explicit clocks requires a more realistic modgCSP [18] is an extension afSPP
which is further extended to include true concurrency. BSPP is a more conservative
extension of standard CSP and retains interleaving semantics.

4.2 Priority, simultaneous offers and concurrency

CSPP is aimed at capturing priority. Consider two eveataind b again, and a process

that gives priority toa in preference td. If the process is presented with bathandb

simultaneouslythen the process will seleat At first sight, we seem to be faced with the need

for true concurrency once again. Yet priority arises in real software systems implemented on

entirely sequential processors, so that cannot be the case. The explanation here is that the

state of the system, in particular what events are availabdangledat various points.
Acceptance semantics captures these ideas, but can also be extendgd(C&sirto

handle true concurrency. Itis intended to be close in spirit to Failures semantics, but easier to

understand: it is simpler to identify what a procasseptgather than what it refuses. Hence

the name.

4.3 Environments, simultaneous offers, compliant responses, and events.

A basic idea is that of aenvironmentwith which a process interacts. That environment

is formed by the concurrent partners of the process if any. But at the outer level, it may
be thought of as a passive observer. The only purpose of the environment is to engage in
common events. At the outermost level, a passive observer merely ‘accepts’ — observes —any
event that the process chooses to perform. This is an example of a ‘compliant’ environment.

Thus if a particular process has a repertoire of evanbsandc, then a compliant envi-
ronment might make the compliant ‘offeX = {a, b, c}. That means that the environment
is prepared to engage in precisely one of the evens it is compliant in that it leaves the
choice to the process. If the process opted for eaettien we will describe that by saying
that the process ‘accepteffi} in response to the offdm, b, c}.

But the environment is also the mechanism for capturing the interaction of cooperating
(and also contending) processes. If a process is placed in parallel with another process only
prepared to engage in the shared ewenthat would in effect constitute an environment
offering X = {a}. If our process is only prepared to perform another ebettien deadlock
follows.

24 A.E. Lawrence / Acceptances, Behaviours and Infinite Activity

An offer like {a, b, c} is a simultaneoupresentatiorof a choice among 3 events. This is
quite distinct from simultaneows/entsvhich are only present iRKCSP : the compliant offer
is to perform exactly one of the events. This is just what we need to capture priority. Notice
that explicit priority is sometimes only required when true concurrency is not available: if
both eventsa andb are available and we can execute them together, there is no need to use
priority to select just one. But there are uses for explicit priority even when true concurrency
is available: there may still be mutually exclusive choices with a preference when both are
available.

5 Simple examples

The examples here serve to introduce notation and fix ideas. It is assumed that the reader has
had some previous exposure to CSP.

5.1 Stop

ConsiderStop Like all processes, it starts with an empty trage initially it has done
nothing: AndStopcontinues to do nothing: if it is offered the set of eveXithen it accepts
nothing. We write the acceptance semantics as

() : X~ 0 or Stop::(): X~ 0 whenwe need the process name.

Stopis an example of a process which has only bebaviour namely() : X ~~ (). That will
be explicit in section 13.1 on page32.

5.2 Prefixing:a — Stop

a — Stopalso has a single behaviour. If it is offered the ewittitially, it accepts it:
() :{a} ~{a}

More generally
() : X~ {a}nX.

Once the only behaviour @ — Stophas accepted, the trace of its past actions {a).
It subsequent behaviour is

(@ : X~ 0

X ~~ {a} can be pronounceH accepts{a} or X may accept abut X ~~ () is probably
better pronounced as may refuser X may accept nothing

A behaviourhas a set of traces, here juUsb, (a)}, and associates each trace with the
responses to all possible offexs

5.3 NondeterminismStopr (a — Stop

ConsiderStopr (a — Stop. This is a process that may behave I&®por like (a — Stop.

And the choice ignternal: the environment cannot influence which. An implementation
might consist of either process alone in which c8sapr (a — Stop can be regarded as a
specification Or a system might be capable of behaving like either component process, but
makes arbitrary choice between the options when it is run.

A.E. Lawrence / Acceptances, Behaviours and Infinite Activity 25

These two possibilities are mapped very literally here: there is a distmetviourmatch-
ing each of the component processes. The process is modelled by this set of two behaviours
{by, by}.
Even whera is among the events offered initially, it may be refus@d: X ~~). But we
still have() : X ~~ {a} whena € X as well. Each corresponds to one of the tvahaviours
of the component processes. We write

by =() : X ~ 0
by () X ~ Xn{a}
by (@ : X ~ 0

for the two behaviour®, andb,. Since these behaviours are uniquely associated with the
component processes here, we can abuse notation in such cases to write:

Stop () X~ 0
(a— Stop :: () X ~ Xn{a}
(a— Stop :: (a) X~ 0

Soin general a process is identified with a set of partial functions each of which represents
a possible behaviour. A behavidutakes a possible trasand yields another function which
describes what is accepted when a set of evéigoffered. Thud :: () : X ~») means that
b(()) is the functionX — (). More precisely

b(()) = {X—=0[XC X}

whereY. is the set of all events.

5.4 Terminationy” andSkip

The processes illustrated above simply cease activity, but useful processes normally termi-
nate. That is how a process passes control to a successor on successful completion. In CSP
this is done with a special token written @ An associated process 8kipwhich has a

single behaviour which does nothing except terminate:

(s X {v}

In CSPP v has a special status: it cannot be offered to an event, and it cannot appear in a
trace. In classical CSR; is treated as an ordinary event for most purposes so it may appear in
traces. To do this consistently requires considerable ingenuity and awkwardness in Failures
semantics. These problems do not arise in Acceptance semantics.

A characteristic property of is

(a — Skip s (b — Skip = (a — b — Skip)
This has a behaviour with
(ab) : X~ {v'}
The v which passes control from— Skipto b — Skipis a hidden synchronisation between

the two processes, and does not appear in the trace: rather it is associated with the instance
of the sequential constructowhich “glues” the two processes together.

26 A.E. Lawrence / Acceptances, Behaviours and Infinite Activity

5.5 RecursionyPea— P

CSP includes solutions to recursive equations like
Q=a—-0Q

which defines an infinite process. This can be written
Q=puPea—P

1P e f(P) denotes denotes the unique solution of the equdicea f(P) if one exists. If

there is more than one solution, then it selectdélst that is the most non deterministic, of

the available solutions, if any. Determining under what conditions such solutions exist is one
of the primary tasks in setting up a denotational semantics for any CSP variant.

Acceptance semantics based on behaviours showS§#g® constitutes a complete met-
ric space. This shows that all functiohsvhich are contracting with respect to that metric
have unigue solutions.

With the addition of a ‘miraculousT processCSPP is also a complete lattice and
therefore also a complete partial order. The order relates processes with common behaviours
where those that are more deterministic are ‘better than’ those which exhibit more internal
choice. This refinement order is defined below. It then follows from standard results about
fixed points that all sensible recursiongifiPP have ‘best’ — most deterministic — solutions.

Be that as it may, note for the moment thea® e a — P is an infinite process with traces
consisting of a sequence at. Its semantics is

@ : X~{ajnx

where(a") is a trace of consecutive's. It is unbounded: it can perform more thaevents
for anyn.

This is our first example of Behaviourwith an infinite domain. The domain is the set of
all finite traces consisting of sequences®f This ability to represent infinite behaviour using
only finite traces is simple, yet significant. It is the extra layer of structure at the individual
behaviourlevel that yields the expressive power to distinguish truly infinite behaviour.

5.6 Hiding, divergence arid (a — b — Stop \ {a}
An important feature of CSP is that it includes hiding. An example:
(a— b— Stop \ {a} = b — Stop.

Soabecomes an ‘internal event’ invisible to the environment. This is the primary abstraction
mechanism. It introduces nondeterminism and divergence. So

(a— (uPeb—P))\ {b}, 1)

is a process which perforngs but then goes into an infinite loop which no longer interacts
with its environment, and there is no way to exercise control. This livelocked process is said
to bedivergentin analogy with uncontrolled infinite behaviour. Such situations are captured
with the aid of another pseudo-event The notation is intended to indicate undesirable
non-terminating behaviour contrasting with For equation (1) the behaviour is:

(: X ~ {a}nX
(@: X ~ {0O.

A.E. Lawrence / Acceptances, Behaviours and Infinite Activity 27

When priority is present, processes like
(a— StogE(b — Stop) \ {a} = Stop,

-
arise. (a — Stop (b — Stop is a process which always perforrasvhen it is available,
but otherwise performis. But

((a— Stop O (b — Stop) \ {a} = Stopr (b — Stop .

Here(a — Stop O (b — Stop treats the evenandb on an equal basis. Both of the above
equations are true in the semantics presented below.

5.7 External choiceta — Stop O (b — Stop

A simple example of external choice i@ — Stop O (b — Stop. Itis a process which is
partly controlled by the environment as we can see in

by (): X~ {ab}nX

by:: (): X~ {a} €acX» {b}nX

by:: (): X~ {b} «beXp» {a}nX 2
(@: X~ 0
(by : X~ 0.

E, <« boolean» E, is a notation borrowed from CSP itself: if the boolean is true the result
is the expressiof;, otherwise it isE;. Our process is hondeterministic because there are in
general three possible responses to an initial offeX.ofThe last two lines in equation (2)
represent the responses commobltab2 andbs3.

b2 :: () : {a,b} ~» {a} shows that the process may choose to perform the evehen
given a choice betweemandb. But suppose that we have a process which is compliant in
the sense that it wishes to conform to the selection made by a parallel partner in its shared
environment. It expresses that by responding with lacthdb: bl :: () : {a, b} ~~ {a, b}.

Thus O allows any of these possibilities: it abstracts from those details. Priority is a
means of choosing just one class of these behaviours.

5.8 The pseudo events’, [}

v_ and0model termination and livelock respectively. We work with a global alphabet
{v', 0} whereX is a set which includes all the ‘ordinary’ events that may arise.

“—
Later we will encounter the odd proceSkip div. It always acceptgv’, }. That is
X~ {v, 0} for every offerX.
{v/, 0} has the form of a compliant response, but since an environment can only offer

—
real events, it cannot ‘select’ betweenand(l there is no way to mak8kip] div comply
with a request to terminate because the environment has no way of making such a request.
>
How then doesSkip[J div differ from Skip 1 div? The acceptance semantics certainly
differ. The first has a single compliant behaviour; the second two deterministic behaviours.
The nondeterminism i8kipr div is between the two possible behaviours. We interpret any

>
unresolved compliance also as a nondeterministic outcomeSkial div is deterministic
in that there is only one behaviour, but nondeterministic in that no environment can choose
betweernv’ andlJin the response of that behaviour. So no single experiment can distinguish

>
Skip div andSkipr div.

28 A.E. Lawrence / Acceptances, Behaviours and Infinite Activity

5.9 Interleaving{a — Stop ||| (b — Stop

The interleavinga — Stop ||| (b — Stop has 3behaviourscharacterised by

bl:(): X ~ {ab}nX

b2:(): X ~ {a} «acXp» {b}NX
b3:(): X ~» {b} «beX» {a}nX
(@: X ~ {b}nX

(by: X ~ {alnX

(ab): X ~ 0

(ba) : X ~ 0,

where the responses after the first event for a particular trace are common. This is just
(a—b— Stop O (b — a— Stop,

so the process is prepared to perfa@ndb in either order. And when offerefh, b} it may
choosen, b or be noncommittal.

5.10 Parallel{a — Stop || (a— b — Stop
{a}

(a — Stop || (a — b — Stop is a process that synchronises on the ewentThe two
{a}
component processes can only engaga simultaneously so there is only obhehaviour

given by:

b is an independent event, so one partner can engage in it without the participation of its
compatriot. So

(a— Stop || (a— b— Stop = (a— b — Stop .
{a}

6 Alphabets and traces

As above, there is an alphabetof ordinary events: this will be large enough to include all
the visible events of any process that we need to describe. To this we add the pseudo events
v and[writing X" =X U {v, O0}.

Traces are sequences, empty or finite, of events drawn¥rofhis the empty sequence.
The set of all finite traces drawn frod is written as¥". The acceptance semantics here
based orbehaviourseeds only finite traces.

7 Behaviours

We specify the meaning of a process by describing its responses after it has performed some
trace of events. Traces are membersafGiven such a trace, we then specify an acceptance
function as{X ~» U}. The offerX is some subset of the alphabet that isX C . And

A.E. Lawrence / Acceptances, Behaviours and Infinite Activity 29

a responseJ is a subset ofV". So there is a partial function : ¥~ + (PX — PXv")
representing each possible behaviour.
Thus we have a description which is a 4 of such behaviours:

BP:P(X + (PSS —Px'Y)) (3)
[P] is the usual notation for the semantic function describing the behaviour of the pRycess
but B P is more intuitive and used here. The set of traces of the process is just the union of
the traces of the behaviours:

tracegP) = (J{tracegb) | b € BP},

wheretracegb) = dom b.
We sometimes identify a process directly with its behaviours where the context warrants.
And that leads to a simple matchingrmal form

8 p-priority

-
CSPP extends CSP with extra operators includingand T

8.1 Process Priority and external choice.

H
P = P, P, extends external choice and provides a semantics for PRI AloE@am The

first event is selected in favour &;. SoP,, = (a — Stop (b — Stop, with a minimal
alphabet: = {a, b} for simplicity, has the behaviour:

(): {ab} ~ {a}

R R

O: D - 0 “)
(a) : X ~ 0

(b) : X ~ 0

«—> «—>
P, O P is the symmetrical version. So the behaviouPof (a — Stop OJ (b — Stop
is:
{ab} ~ {ab}

()
() f

$ 888 d

(a) :
(b) :

«—
P, O P, embodies the antithesis of p-priority in that it refuses to choose betwaradb but
rather treats them symmetrically. But it will always respect the p-priority of a parallel partner.

9 Fairness

The presence of priority iI€SPP provides a way to express degrees of fairness. Since
infinite behaviour is also captured properly, this includesntual fairness

30 A.E. Lawrence / Acceptances, Behaviours and Infinite Activity

If A= upea— pandB = up ¢ b — p, considerP;, = A ||| B where there
are no other processes involved so that both component processes are always ready. Then

<_
an implementation oP; can always favouA over B, that isA|||B J P, and nob is ever
performed.

<>
EvenP, = A||| B could also behave in just the same way. Although no behavioBg of
favoursa overb, but is neutral, the nondeterministic resolution of that neutrality, conceptually
resolved by the environment in this case, might happen to be consistently unfair.

Acceptance semantics based on behaviours allows us to d&fireA ||| B which is a
process which cannot be consistently unfair. It guaranteegveatuallythere is an insiance
whena has priority, and likewise an instance whirhas priority. To be precisé ||| B
consists of those behavioursAf]|| B which have at least one trace matching an acceptance
giving priority to A and another giving priority t@&.

n
More precise control is given ¥ ||| B which ensures fairness in the sense above over
every sequence ofevents.

10 Abstracting from priority

When two processes are combined, one or the other may have priority, or the result may
be compliant. So if the first process accefitsand the othelX,, the overall acceptance is
determined by, if the first process has priority, b% when the second process has priority
and byX; U X, in the compliant case. Each case corresponds to a particular variant of the
joint process. But we also need a general version which abstracts from those details. We need
it to model situations in which we lack full information, and for specification where we wish
to leave the implementation choices open. This last is especially important in a programming
language where we wish the compiler to generate the most efficient circuit or code.

A more general and fairly extreme exampleeisE — StopwhenE is a large set. This
is a process that may perform any event frenthat may be offered. But if several events
from E are offered simultaneously, we do not wish to constrain how the final choice of a
single event is made. In a hardware implementation, the most efficient circuit is quite likely
to be one with a definite priority hardwired. A biased implementation is acceptable. But
a compliant implementation is just as acceptable, as is any intermediate sort that might be
compliant with respect tge;, e, } say, but biased in favour die; }.

11 Some definitions and notation

The discussion so far has been introductory. There is no room in a conference paper for full
technical detail. Here we lay out the foundations, in particular the axioms or ‘*health condi-
tions’ and simply give a taste of the full semantics by way of a small number of examples.

Definition 11.1 When XC ¥, X is used to denote X {v'} and X" denotes XU {v, [J}.

#sis the length of s:#() = 0 and#(t ™ (e)) = #t + 1. We extend this notation
to behaviours:#b = max{#s | s € dom b} which is well defined when the lengths are
bounded. Otherwisgb = oc.

A.E. Lawrence / Acceptances, Behaviours and Infinite Activity 31

12 Health Conditions (Axioms)

A set of partial functionsBP : P (X" -+ (PX — PX")) describing a procesB, must
satisfy the axioms or health conditions below. We usually viajg(X) asbsXfollowing the
usual conventions for curried functions. This is equivalent to wribings : X ~» bsX

Each behaviour starts with a clean slate:
H1: Vbe BPe () € tracegb)

tracegb) = dom b above. The miraculous process has no behaviddifs:= ().
The traces of a behaviour are prefix closed, and extend while any event can be accepted:

H2: Vbe BPeVsc Y e¥xcXe
S (x) € tracegb) < sc tracegb) A (IX C X e x € bsX

Notice that these closure conditions determine all behaviours when the acceptances are spec-
ified for a general trace.

Every acceptance of an event is one of those offered. And there is a response to every
offer because eadt(s) is a total function:

H3: Vbec BPeVsctracegsh) e VX C Yo bsXC XU

If an offer can be refused, then so can any smaller offer. And if an event can be accepted,
then no offer including that event can be refused. However the accepted event may differ
from the original, perhaps because the second offer includes an event of higher priority:

Vbe BPeVsctracegb) e VXY C X o
bsX=0AYCX=bsyY=»0
A
bsXNY # 0 = bsY# ()

H4:

If an offer can be accepted, then smaller offers including accepted events can also be
accepted:

Vbe BPeVsctracesb) e VXY C X o

HS: bSXN Y T £ A Y C X = bsY= bsXn YO

Combining conditions fronH4 andH5 shows that all behaviouts € B P have accep-
tances which obey

(C1) bsX= 0 A YCX = bsY=0
(C2) bsXNY # () = bsY#0
(C3) bsXNY'P#0 A YCX = bsY=bsXxnY?,

whensis one of their traces andandY C X.
These requirements for any individual behavibare collected in the following abbre-
viation.

32 A.E. Lawrence / Acceptances, Behaviours and Infinite Activity

Definition 12.1 behave(b) is an abbreviation for

b:E*—H(PZ—ﬂP’E/D)
A
() € domb
A
Vse dom(b) e Y¥X C ¥ e bsXC XF
A
VseX eVXeXe
s7(x) € dom(b) & se dom(b) A (X C X e x € bsX

VAN
VsecdombeVX YC Xe
bsX= () AN YCX = bsY= 0 A
bsXNY # 0 = bsY £ () A

bsX)NYP#£0 A YCX = bsY=bsXnY""

13 Semantics

There is only room here to give the precise semantics for some of the simpler cases and
to highlight refinement and recursion. In particular, the definition of the parallel operators
requires a little technical infrastructure which we omit.

13.1 Stop
() : X~ 0 (6)
The only behaviour has a single empty trace and no events are accepted. This means
BStop= {{() — {X~ 0) [XS T}}}, (7)

so the only behavious has domair{()} = tracegb) andb()X = () for everyX C X.

13.2 Skip
() : X~ {v} (8)

Again there is only one behaviour, the only trace is empty, but the process always offers to
terminate.

BSkip= {{() — AX e {V'}}} 9)

13.3 div

We define a simpldiv here. It is a process which immediately livelocks:

() - X~ {0}
There is a single behaviogx) — A X e {{}}.

134 L

1 is the most unpredictable of processes: it includes every behaviour.
B L = {b|behave(b)} (10)

A.E. Lawrence / Acceptances, Behaviours and Infinite Activity 33

13.5 T

T is a miracle. And a fraud. It has no behaviours, and so is not implementable. But it refines
every process. And ensures that every monotone recursion is well defined.

BT =0 (11)

13.6 Prefix choice

Considere : E — P(e) with E C X. In general there are many possible initial behaviours

b():
b: () : X~ 0 4«XNE=0p»U

whereU C X N E is not empty. Sdy() must satisfyb()X =) whenX N E =) and
0 # b()X C X N E otherwise;

B(e:E— P(e)) =

behave(b)
A
b YXC T eb()XCXNEA (B)X=0 = XNE=0) (12)
A
VecEedpc BP(e)eVsec X o (€ sc tracegb) = b((€) "s) = ps

The behaviours represent all possible ways of assigning or refraining from assigning priority
among the events @&. They match one of those iP(e) after the initial event.

13.7 Compliant Prefix choice

The fully compliant refinement of prefix choice,: E - P(e), is sometimes useful. An
initial behaviour accepts anything frol () : X ~~ XN E. So

behave(b) A VX C X eb()X=XNE
b A (13)
VecEedpc BP(e)eVsec Y o (€ sc tracegb) = b((€) "s) = ps

13.8 Non deterministic choice

We extend the definition to sets of processes, writing

B (ﬂ{a}) = | J{BP} (15)

i€l iel

34 A.E. Lawrence / Acceptances, Behaviours and Infinite Activity

13.9 Compliant external choice

The proces® = P; O P, abstracts away from implementation details. If given the choice,

it may select between available initial eventsRfandP,. If it always favours events from

P,, that amounts to p-priority, but in general there are a large number of other possibilities.
Among them is the case where the process abstains entirely from making a choice, and is
completely symmetrical in its treatmentBf andPs. It will always comply with the wishes

of whatever mechanism makes the final decision:

B(P,.OP,) =
(behave(b)
A
3(p1,p2) € BP1 x BPy @

VX C X e b)X = pi()X U pa{)X
b A (16)

Vec Y eVsc X e (e sc tracegh) =

dXCXeeecp ()XAb((e)"s)=pi((e) "9)

%
IXC X eecp()XADb((e) " s) =pA(e)))

13.10 p-prioritised external choice

(behave(b)
A
El(p17p2) c Bpl X BPQ °

o VX C Y eb()X=p()X «p()X=0m»p ()X
A
V(e) € tracegb) e Vsc X" o (€) " s c tracegb) =
dXCXeeecp ()X Ab((e)"s)=pi((e) "9)
V
IXCXep()X=0 A eep()XADb({€)"s) =p((e) "5

Vs
17)
This simply says that the process always behavedljikenlessP; refuses in which case

it behaves likeP,. It allows P; to perform any event, terminate or diverge if it is capable of
doing so. So ifP; is active in any sense, it is let loose:

() : X~ U if Py (): X~ U apartfromd = ()
P, is only allowed to be active whe®y is not. If P; shows any sign of life, even pathological
life, it executes.

13.11 External choice

! — —> —
We defineP; O P, abstractly agP; OP,) 1 (P, O Py) 11 (P, OPs):

—

B (P, 0 P,) = B(P,0IP,) UB (P, O P,) UB(P,0P) (18)

A.E. Lawrence / Acceptances, Behaviours and Infinite Activity 35

13.12 Sequential Composition

B (Pl g PQ) —

(behave(b))
A

A(p1,p2) € BP, x BPy e Vs tracegb) e VX C X o
se tracegp;) A v & piSXA bsX= p;sX
b V (19)
se tracesgp;) A v € piSXA bsX= ((pisX) \ {v'}) Up2()X
V
(s, S;) € tracegp;) x tracegp;) e IY C Y o
\ VeEpSYAS Z()A0) epsYAS=S5"5 AbsX=p5X /)

Notice that we cover processes lik@ o (Skipr a — p) 3 Q. And also that it is trivial to
check thatSkipg P = P ¢ Skip= P.

13.13 Refinement
Refinement is as usual

Plgpg = P2:P2|_|P1 (20)
which simply maps onto set inclusion on the behaviours:

PP, & BP, CBP, (21)

13.13.1 T andL

The most nondeterministic process which has all possible behaviours is evidently below any
other process in this order: it is the least elememtf .

T has no behaviours, and is not implementable. Its contribution is to form the final brick
in building a complete lattice. The structure then has the weaker property of being a complete
partial order to which we can apply standard fixed point theorems to define recursion.

13.13.2 Meets and joins

Obviously meets correspond to unions and joins to intersections of behaviours which always
represent processes. Thus meet is fjusthich is the motivation for the choice of symbol.
For example, the meet ¢& — Stop and(b — Stop is (a — Stop M (b — Stop.

Joins are written analogously as(a — Stop U (b — Stop = T. All meets and joins
exist so the set of processes is a complete lattice under refinement. And so also a Complete
Partial Order(CPO).

13.13.3 Unbounded nondeterminism

T handles cases of unbounded nondeterminism in a clean way. A standard example with an
infinite X is:

Example 13.1 Consider the set of processes
P, =[1{a — Stop|i > n}

for n € N where all the aare distinct.

36 A.E. Lawrence / Acceptances, Behaviours and Infinite Activity

Here any finite set of th®; has an upper bound, namd®, wherem is the largest index.
So we have a directed set. Yet for evarye N, a, cannot be performed by members of
{Pi | i > n}, so there can be no process behaviour which refines every element. But since
has no behaviours, it is the joint{P, | n € N} = T. m[13.1]

Another of the standard examples of an awkward directed set involves infinite behaviour
even wher is finite.

Example 13.2 LetY = {a,b} and

Po=wppe(b—p) (22)
Pr=a— Py (23)
szb—>a—>P0 (24)
Pis=b—b—a— P (25)

(26)

so that B, performs an a as the'hevent in an otherwise unbroken stream of b’s. Write

Dn = |_|Pi

1>n

Then D= {D, | n € N} is a directed set.

A finite set ofD,, is refined by a process that performsaany time after tha™ b. It might

be thought that a possible candidate for a process that refines every merbbisrRyf. Yet

is is clear that this is not true here for it consists of a single behaviour which is not present in
any otherP,. Clearly the only candidate for an upper boundois given by intersection of

the behaviours of members Bt That is obviously empty, so yields.

13.14 Recursion

wp e f(p) denotes a fixed point of the functidn This is often the least fixed point with
respect to the refinement order in standard untimed CSP. Semantics based on Failures often
have problems in this area: when unbounded non determinism or infinite traces are present,
refinement is no longer a CPO.

The Acceptance semantics basedbamaviourspresented here is the first denotational
semantics that completely overcomes all those problems. It naturally includes infinite be-
haviour yet, as we have seen above, it is not only a CPO, but also a particularly simple sort
of complete lattice under refinement.

Standard theorems now ensure that every monotone function f has a least fixed point,
and soup e f(p) is well defined. All the ordinary operators 6§PP are monotone with
respect to the refinement ordsr this follows from the fact that they are defined in terms of
individual behaviours, so they all distribute over

As noted eatrlier, a restriction metric can also be defined, and that is also complete. Con-
traction mappings then have unique fixed points: the corresponding recursions in CSP are
known as constructive. The simplicity of establishing the uniqueness of the fixed points is
often useful in proofs.

A.E. Lawrence / Acceptances, Behaviours and Infinite Activity 37

14 Conclusions

Acceptances employingehaviourgprovides a simple satisfying powerful and intuitive deno-
tational semantics for CSP addPP . It incorporates infinite behaviour naturally in contrast
to other denotational theories for CSP which require awkward extensions to do the same.

The standard operators distribute ovewhich is related to refinement in the usual way.
With the additional of a ‘top’ or ‘miraculous’ process, refinement yields a complete lattice.
Thus all standard recursions are well defined and have fixed points. This intuitive result has
been difficult to establish in other denotational semantics, but the present theory shows that
the intuition was well founded.

It extends CSP so that there is thption of refining to the level of detail required to
describe priority, yet in an abstract way which does not require a fully timed theory.

It forms a foundation for wider extensions of CSP needed for codesign, especially hard-
ware compilation, but also for capturing a larger part of the semanticscdmlike lan-
guages than is traditional. These further developments will be reported elsewhere.

15 Acknowledgements

Bill Roscoe noticed a deficiency in an early version of Acceptance semantics which did not
include what are now called compliant processes. His prompting led to their formulation, but
he is not to blame for the details.

Support from Jeremy Martin wheiSPP was just an experiment was crucial. The
WoTUG community and discussions at CPA conferences have inspired many of the ideas
underlyingCSPP .

References

[1] C.A.R.Hoare. Communicating sequential proces&ssnmunications of the ACN21:666-677, 1978.
[2] Per Brinch Hansen, editofhe Origin of Concurrent Programmingpringer-Verlag, 2002.

[3] C.A.R Hoare.Communicating Sequential ProcessBsentice Hall International, 1985.

[4] A.W. Roscoe.The Theory and Practice of Concurrendrentice Hall, 1998.

[5] Inmos Limited.occam 2 Reference Manydl988. Document 72 occ 45 01.

[6] M.H. Goldsmith, A.W. Roscoe, and B.G.O. Scott. Denotational semantics for occam 2, peah&puter
Communicationsl:65-91, 1993.

[7] M.H. Goldsmith, A.W. Roscoe, and B.G.O. Scott. Denotational semantics for occam 2, peah8puter
Communication2:25—-67, 1994.

[8] B.M.Cook and R.M.A.Peel. Occam on Field Programmable Gate Arrays - Steps towards the para-PC. In
Barry Cook, editorProceedings of WoTUG-22: Architectures, Languages and Techniques for Concurrent
Systemsvolume 57 ofConcurrent Systems Engineerjnuages 211-228, Amsterdam, April 1999. I0S
Press.

[9] R.M.A.Peel and B.M.Cook. Occam on Field Programmable Gate Arrays — Optimizing for Performance.
In P.H.Welch and A.W.P.Bakkers, edito@pmmunicating Process Architectures, Proceedings of WoTUG
23, volume 58 ofConcurrent Systems Engineerjmaages 227-238. World occam and Transputer User
Group (WoTUG), 10S Press, Netherlands, September 2000.

[10] I Page and W Luk. Compiling occam into fpgas. In Will R Moore and Wayne Luk, ediERP§As
Abingdon EE&CS Books, 1991.

[11] A.E. Lawrence. HARP (TRAMple) manual. Volume 1. User Manual for HARP1 and HARPZord
University, 1992-95.

38

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]
[21]

[22]
[23]
[24]
[25]

[26]

[27]

[28]

[29]
[30]

[31]

[32]

A.E. Lawrence / Acceptances, Behaviours and Infinite Activity

Adrian Lawrence & Andrew Kay & Wayne Luk & Toshio Nomura & lan Page. Using reconfigurable
hardware to speed up product development and performanc@FIThConferenceOxford University,
1994,

A.E. Lawrence. Extending CSP. In P. H. Welch & A. P. Bakkers, edRooceedings of WoTUG 21.:
Architectures, Languages and Pattermslume 52 ofConcurrent Systems Engineerjmzpges 111-131,
Amsterdam, April 1998. WoTUG, IOS Press.

A. E. Lawrence. Hard and soft priority in CSP. In Barry M Cook, editdrchitectures, Languages
and Techniques for Concurrent Systenaslume 57 ofConcurrent Systems Engineerjqages 169-195,
Amsterdam, Apr 1999. WoTUG, 10S Press.

A. E. Lawrence. CSPP and event priority. @@mmunicating Process Architectures — 20Gbncurrent
Systems Engineering, pages 67-92, Amsterdam, Sept 2001. 10S Press.

A. E. Lawrence. Successes and Failures: Extending CSEZ.ommunicating Process Architectures —
2001, Concurrent Systems Engineering, pages 49-65, Amsterdam, Sept 2001. IOS Press.

Oxford University Computing Laboratorywo Papers on CSPiumber PRG-67 in PRG Technical Mono-
graphs, July 1988.

A. E. Lawrence. HCSP, imperative state and true concurrendgoinmunicating Process Architectures
— 2002 Concurrent Systems Engineering, pages 39-55, Amsterdam, Sept 2002. 10S Press.

A.W. Roscoe. An alternative order for the failures modelTwo Papers on CSRL7].
A.W. Roscoe. Unbounded nondeterminism in CSPT Papers on CSRL7].

C.J.Fidge. A formal definition of priority in CSPACM Transactions on Programming Languages and
Systems15(4):681-705, September 1993.

Edmund M. Clarke, Jr., Orna Grumberg, and Doron A. Peldddel CheckingMIT Press, 1999.
Formal Systems (Europe) Ltd, 3, Alfred Street, Oxford OX1 4EH BAOR2 User ManualMay 2000.
Jeff Magee & Jeff KramerConcurrency: State Models & Java Progrand®hn Wiley, 1999.

Jeremy Malcolm Randolph Martif.he Design and Construction of Deadlock—Free Concurrent Systems
PhD thesis, University of Buckingham, 1996.

A.W. Roscoe, editorA Classical Mind Prentice Hall Series in Computer Science. Prentice Hall, 1994.
Essays in Honour of C.A.R. Hoare.

Gavin Lowe. Prioritized and probabilistic models of Timed CSP. Technical Report PRG-TR-24-91,
OUCL, 1991.

Gavin Lowe. Prioritized and probabilistic models of timed CSmeoretical Computer Scienc&994.
Special Issue on Mathematical Foundations of Programming Semantics conference.

Carl A. Gunter.Semantics of Programming Languag&fie MIT Press, 1992.

A.E.Lawrence. HCSP: Extending CSP for Codesign and Shared Memory. In P.H.Welch and A.P.Bakkers,
editors,Proceedings of WoTUG-21: Architectures, Languages and Patterns for Parallel and Distributed
Applications volume 52 ofConcurrent Systems Engineerjmupges 133-156, Amsterdam, April 1998.

IOS Press.

A. E. Lawrence. Infinite traces, Acceptances and CSPEommunicating Process Architectures — 2001
Concurrent Systems Engineering, pages 93-102, Amsterdam, Sept 2001. IOS Press.

Andrew Butterfield and Jim Woodcock. Semantics of prialt in Handel-CCdmmunicating Process
Architectures — 2002 oncurrent Systems Engineering, pages 1-16, Amsterdam, Sept 2002. 10S Press.

