
Communicating Process Architectures 2000 205
P.H. Welch and A.W.P. Bakkers (Eds.)
IOS Press, 2000

Using Java for Parallel Computing:
JCSP versus CTJ, a Comparison

Nan C. Schaller
Computer Science Dept., Rochester Institute of Technology

102 Lomb Memorial Drive, Rochester, NY 14623-5608, USA
ncs@cs.rit.edu

Gerald H. Hilderink
University of Twente, P.O.Box 217, 7500 AE Enschede

Control Laboratory, The Netherlands
g.h.hilderink@el.utwente.nl

Peter H. Welch
Computing Laboratory, University of Kent

Canterbury, UK CT2 7NF
P.H.Welch@ukc.ac.uk

Abstract. Java provides support for concurrent and parallel programming through
threads, monitors and its socket and Remote Method Invocation (RMI) classes.
However, there have been many concerns expressed about the way in which this
support is provided, e.g., [1][2], citing problems such as improper implementation of
monitors and difficulty of programming with threads. Hoare’s Communicating
Sequential Processes (CSP) [3][4][5] model fully specifies thread synchronization
and is based on processes, compositions, and channel communication. It provides a
mathematical notation for describing patterns of communication using algebraic
expressions and contains formal proofs for analyzing, verifying and eliminating
undesirable conditions, such as race hazards, deadlocks, livelock, and starvation.
Two independent research efforts provide a CSP based process-oriented design
pattern for concurrency implemented in Java: Communicating Sequential Processes
for Java (JCSP) [6] and Communication Threads in Java (CTJ) [7]. In this paper, we
compare these two packages, looking at the philosophy behind their development,
their similarities, their differences, their performance, and their use.

1. Introduction

Java has been touted as the “write once, run anywhere” programming language. One of the
long-standing issues in concurrency, parallel programming and high performance
computing has been lack of portability. Thus, many researchers are exploring the use of
Java in this field. But, there are many problems with using Java for parallel computing:
Java’s RMI does not provide a flexible enough scheme to be used for many concurrent and
parallel programming paradigms. Java’s synchronisation primitives are too low level,
unsafe and difficult to use correctly. For example, the monitor-threads model provided by
Java, while easy to understand in its primitives, proves difficult to apply with confidence
[1][2] in any system above a modest level of complexity. Numerous warnings in Java

206 N. Schaller et al. / Using Java for Parallel Computing: JCSP versus CTJ

textbooks (and on some of Sun’s web pages) emphasise the difficulties of multi-threading
(race hazards, deadlock, livelock and process starvation) and recommend getting involved
only as a last resort. In addition, Java’ s performance is not impressive when compared to
other languages. There has been some performance improvement with Just-In-Time (JIT)
compilers, but it is still not close to what one can achieve using languages such as C and
C++. However, concurrency is too powerful and, indeed, too simple an idea to be set aside.
With a better handle, it can simplify both the design and the implementation of most
complex systems, as well as boost performance. And, researchers would like to program
concurrency in Java – particularly for internet, interactive, embedded and high performance
computing – for all the reasons that Java is so popular.

A recent partial web search for packages that use Java for developing tools that handle
concurrency resulted in this partial alphabetical list, categorized by type:

• Alternative languages: Titanium [8]
• Active Agents – Concordia [9], IBM Aglets [10], JAFMAS [11], JATLite [12],

Kafka used in Pathwalker [13], Mole [14], Odyssey [15], and ProActive PDC [16]
• Cluster Computing: Albatross [17] and JavaNOW [18][19]
• Corba-like: HORB [20], JacORB [21], Jorba [22], sJava [23] and Voyager [24]
• Dataflow: Dataflow Java [25]
• Distributed Shared Memory: JUMP [26] and MultiJav [27]
• Java Virtual Machine (JVM) Changes: cJVM [28]
• Linda-like or Shared Memory – Jada [29], Javaspaces [30], JOMP[31], and

TSpaces [32]
• Message Passing: CSP-OZ to Java[33], CTJ [7], Infospheres [34], and JCSP [6]
• Metacomputing: Byanihan [35], DOGMA [36], and Javelin [37]
• MPI: HPJava [38], JavaMPI [39], jmpi [40], and mpiJava [41]
• PVM: JPVM [42] and jPVM [43]
• RMI Changes : JavaParty[44], Manta [45], and NinjaRMI [46]
• (New) Synchronization Primitives: Jsync [47] and PtolemyII [48]
• Utilising OS and Hardware resources: Jaguar [49]

To weed through all of these packages is difficult, especially as there are often problems
with packages that are available on the web. Many of them represent research projects for
completing academic degrees. These may not have a life after that degree is completed.
Several of the packages are available for Java 1.1 only. It is not clear if this is because
research or maintenance has stopped, or because later versions of Java are sufficiently
different that it is difficult to get the package to work correctly under them. Some packages
are implemented fully in Java, others provide a Java binding to a previously existing
package. Some of the packages are only discussed in reports and are not publicly available.
Others are implementations that are sold commercially, which means that one may have to
pay to even try them out. And, there is always the problem that the web is a moving target,
i.e., the links that one finds today may have moved or removed tomorrow.

The search also yielded organizations whose goals are to find ways to use Java
effectively for high performance computing (e.g., Java Grande [50]) and to create real-time
and embedded systems specifications for Java (e.g., the Real-Time Java Group [51] and the
J-consortium [52]). Some efforts are dedicated to make Java packages that one can use to
write programs that are formally verifiable (e.g., CTJ [7] and JCSP [6]).

This paper will focus on this last category, which not only provides formal verification,
but more importantly, enables complex parallel applications to be built, ones that can be
scaled up without losing control. Our web search yielded only these two publicly available

N. Schaller et al. / Using Java for Parallel Computing: JCSP versus CTJ 207

packages. These two independent research efforts have introduced the CSP model into Java
through sets of classes implemented on top of its monitor support: Java Communicating
Sequential Processes (JCSP) from the University of Kent, UK [6] and Communication
Threads in Java (CTJ) [7] from the University of Twente, NL. In this paper, we compare
these packages, looking at the philosophy behind their development, their similarities, their
differences, their performance, and their use.

2. A(n Almost) Common Philosophy

The first Java Threads Workshop [53] organised by Java users (under the umbrella of the
World occam and Transputer User Group) was held at the University of Kent, England, in
September, 1996. This workshop focused on design and performance issues for threaded
applications in Java. The creators of the current versions of both CTJ and JCSP were
intimately involved with the workshop and indeed, have communicated frequently during
the development of their packages.

Both libraries are based on the philosophy that concurrent behavior from the objects in a
system ought to be the normal expectation – not something difficult that is added in as an
advanced feature to improve user response times or other performance indicators.
Concurrency should provide:

• a powerful tool for simplifying the description of systems;
• performance that spins out from the above, but is not the primary focus;
• a model that is mathematically clean, springs no engineering surprises and scales

well with system complexity.

Java’ s built-in monitor concepts score badly on the above [1][2]. Both CTJ and JCSP
use instead a model based on Communicating Sequential Processes (CSP) [3][4][5]. CSP is
a mathematical theory for specifying and verifying complex patterns of behavior arising
from interactions between concurrent objects. CSP has a formal and compositional
semantics that lines up with ones informal intuition about the way things work.

So, CSP deals with processes, networks of processes and various forms of
synchronization and communication between them. A network of processes is also a
process – so CSP naturally accommodates layered structures (networks of networks). Both
CTJ and JCSP incorporate these ideas.

CTJ and JCSP have a common core in the base algorithms for CSP primitives, but have
different emphasis and design philosophy. CTJ is one of the ongoing projects culminating
from Gerald Hilderink’ s Ph.D. research under the tutelage of André Bakkers and Jan
Broenink at the University of Twente. The impetus behind the development of CTJ was to
create a Java package for creating real-time and embedded software using the CSP model.
In particular, to develop control software for 20-sim [54], a modeling and simulation
program, and that would compete with dSPACE [55] (a commercial product that
purportedly “revolutionizes your development processes with real-time systems for rapid
control prototyping, production code generation, and hardware-in-the-loop tests”). Thus,
the important motivations behind CTJ (as well as JCSP) are:

• to make things reasonably safe but not too restrictive;
• to make compromises so as not to introduce unreasonable inefficiencies;
• to specify thread synchronisation and scheduling behaviour that is platform

independent and that enables real-time capabilities (CTJ specific).

208 N. Schaller et al. / Using Java for Parallel Computing: JCSP versus CTJ

The motivation behind JCSP was to generate a real practical product - an alternative and
sane API for concurrency in Java.. JCSP aims to combine a clean approach to CSP
capabilities with an acceptance of the peculiarities of Java. Hence, it shares with CTJ the
first two of the above bullets. The syntactic and semantic differences in its API were the
result of slightly different trade-offs being chosen (between safety and efficiency) and
independent teams. In fact, ideas that were initially introduced in JCSP were later taken up
by CTJ – and vice-versa. These independent ideas may not have taken place if the
development efforts had been explicitly merged..

JCSP was born as a result of an incredibly good final year undergraduate project by Paul
Austin at the University of Kent, who came up with the idea of the Parallel and the AWT
processes. His professor, Peter Welch, felt that the project was too good to leave, picked it
up and continues its development.

3. Similarities

To understand the similarities between CTJ and JCSP, one must know more about CSP as
both libraries have a common core in the base algorithms for implementing CSP primitives.
We use a simple producer/consumer example to illustrate the similarities in the packages.
The Producer sends an integer message to the Consumer, who will simply receive the
message and print out its contents. This activity is diagrammed in Figure 1. A complete
implementation of the Producer-Consumer Process Network is provided in sections 3.4 in
CTJ and in 3.5 for JCSP.

Figure 1. Producer-Consumer Process Network

3.1 Processes

A CSP process is a component that encapsulates data structures and algorithms for
manipulating that data. Both its data and algorithms are private. The outside world can
neither see that data nor execute those algorithms.

Each process is alive, executing its own algorithms on its own data. Processes interact
solely via CSP synchronizing primitives, such as channels, not by calling each other’s
methods. Objects implementing those primitives form the CSP interface to a process.

Figure 1 shows two processes, 3URGXFHU and &RQVXPHU, connected by a CSP channel
labeled &KDQQHO that provides the conduit over which the two processes may interact. In
CTJ and JCSP, each process is an instance of a class implementing the FVS�ODQJ�3URFHVV
or &63URFHVV interface, respectively, e.g.:

SXEOLF�LQWHUIDFH�FVS�ODQJ�3URFHVV�^������SXEOLF�LQWHUIDFH�&63URFHVV�^
��SXEOLF�YRLG�UXQ��������������������������SXEOLF�YRLG�UXQ����`��`
In both, the behavior of a process is defined by the implementation of its UXQ�� method.

Figures 3 and 4 display an implementation for the &7-B3URGXFHU and &7-B&RQVXPHU
classes, while Figures 6 and 7 for the -&63B3URGXFHU and -&63B&RQVXPHU classes.

Consumer
Channel

Producer

N. Schaller et al. / Using Java for Parallel Computing: JCSP versus CTJ 209

Each shows the implementation of the appropriate interfaces. For example, in CTJ:

FODVV�&7-3URGXFHU�LPSOHPHQWV�3URFHVV�^������LPSRUW�FVS�ODQJ�3URFHVV�����`
and in JCSP:

FODVV�-&63B3URGXFHU�LPSOHPHQWV�&63URFHVV�^
�����`

There are some “rules” that pertain to the construction of a CSP-type process in CTJ and
JCSP:

• Any public constructors or mutator methods for these processes must install the
shared synchronisation objects into the private fields, i.e., channels. They may
also, of course, initialise other private state information.

• Any public accessor/mutator methods (simple sets and gets) may be invoked only
when this process is not running. They should be the responsibility of a single
process only, usually the process that constructed this one.

• That constructing process is also responsible for triggering the public UXQ��
method that kicks this one into life, usually in parallel with some other
constructed processes (see Section 4.3). The private support methods are invoked
only by each other and by the UXQ�� method and express the live behaviour of
this process.

There are also some properties that pertain to each of these processes:

• A process instance may have several lives but these must, of course, be
consecutive. Different instances of the same process class may be alive
concurrently

• When a process is running, it is in sole charge of its private fields. Its thread of
control never leaves the process and no foreign threads can enter. No other
processes can inspect or interfere with those fields.

• Changes of state may be requested by other processes, e.g. through channel
communication, but this process is at liberty to refuse even to listen to such
requests. Both sides must actively cooperate to exchange information, so neither
can be surprised when this happens.

This last property of localized semantics, preserved under parallel composition, is a major
reason why CSP-concurrent design is so manageable.

3.2 Synchronizing Channels

The simplest form of process interaction is synchronised message-passing along channels.
The simplest form of channel is zero-buffered and point-to-point. Such channels correspond
directly to our intuition about a wire connecting two hardware components.

In Figure 1, 3URGXFHU and &RQVXPHU are processes and &KDQQHO is a channel connecting
them. Channels, like wires in an electronic circuit, have no capacity to hold information,
being only media for transmission. To avoid undetected loss of data, channel
communication is synchronized. This means that if &RQVXPHU transmits before 3URGXFHU is

210 N. Schaller et al. / Using Java for Parallel Computing: JCSP versus CTJ

ready to receive, then &RQVXPHU will block. Similarly, if 3URGXFHU tries to receive before
&RQVXPHU transmits, 3URGXFHU will block. When both are ready, data is transferred directly
from the state space of &RQVXPHU into the state space of 3URGXFHU.

Both CTJ and JCSP have special channel classes to handle integer messages. Figures 3
and 6 show a channel write of an integer message in the &7-B3URGXFHU and
-&63B3URGXFHU classes, respectively, while Figures 4 and 7 show a channel read of that
integer message in the &7-B&RQVXPHU and -&63B&RQVXPHU classes, respectively. The
appropriate channel declarations using CTJ are:

&KDQQHO2XWSXWBRIB,QWHJHU�RXW&KDQQHO��� ���,Q�&7-B3URGXFHU
&KDQQHO,QSXWBRIB,QWHJHU�LQ&KDQQHO���� ���,Q�&7-B&RQVXPHU

and using JCSP:

&KDQQHO2XWSXW,QW�RXW&KDQQHO� ��������,Q�-&63B3URGXFHU&KDQQHO,QSXW,QW�LQ&KDQQHO� ��������,Q�-&63B&RQVXPHU
The communication of the integer message is accomplished using CTJ by:

Q�YDOXH� �����������������������������������Q�LV�D�FVS�ODQJ�,QWHJHURXW&KDQQHO�ZULWH��Q�� ��������������,Q�&7-B3URGXFHU
LQ&KDQQHO�UHDG��Q����� ��������������,Q�&7-B&RQVXPHU

and using JCSP by:

RXW&KDQQHO�ZULWH������� ��������,Q�-&63B3URGXFHUYDOXH� �LQ&KDQQHO�UHDG���� ��������,Q�-&63B&RQVXPHU
Note that the set of CSP synchronization primitives that defines the interface between a

process and its environment is not part of any Java interface. Instead, it must be plugged
into each process via public constructors or mutator methods when the process is not
running, i.e., before or in between runs when it is safe to extract information from a
process.

3.3 Networks

A process-oriented design consists of layered networks of processes. A network is simply a
parallel composition of processes connected through a set of passive synchronisation
objects (e.g., wires) and is itself a process.

Each process fulfills a contract with its environment that specifies not only what
functions it performs, but how it is prepared to synchronize with that environment to obtain
information and deliver results.

Note that a process does not interact directly with other processes, rather only with the
channels to which it is connected. This is a familiar form of component interface, certainly
to hardware engineers, and one that allows considerable flexibility and reuse.

Figure 1 represents a (possibly layered) network of processes. The diagram represents an
overall process that consists of a parallel composition of two processes, the 3URGXFHU and
the &RQVXPHU, that are connected by a &KDQQHO. The implementation of this overall
process is shown in Figure 2 for CTJ (CTJ_PCMain.java) and in Figure 5
(JCSP_PCMain.java) for JCSP. Notice that both of these processes have the common
components of a channel object of the appropriate type, a process that is a parallel
composite of their Producer and Consumer processes and a statement SDU�UXQ�� – that
causes the parallel composition to begin executing.

N. Schaller et al. / Using Java for Parallel Computing: JCSP versus CTJ 211

3.4 The Producer-Consumer Network implemented using CTJ

This section contains the complete implementation of the Producer-Consumer Network in
CTJ. Assuming the CTJ library has been downloaded and the &/$663$7+ has been correctly
set, to execute the CTJ network one need only compile the three pieces of code in Figures
2-4 (MDYDF �MDYD), and then execute CTJ_PCMain (MDYD�&7-B3&0DLQ).

LPSRUW�FVS�ODQJ��LPSRUW�FVS�ODQJ�3URFHVV� ���RYHUULGH�MDYD�ODQJ�3URFHVVLPSRUW�FVS�ODQJ�,QWHJHU� ���RYHUULGH�MDYD�ODQJ�,QWHJHU
SXEOLF�FODVV�&7-B3&0DLQ�^
��SXEOLF�VWDWLF�YRLG�PDLQ��6WULQJ>@�DUJV��^����QHZ�&7B-3&0DLQ������`
��SXEOLF�&7-B3&0DLQ����^
�������&UHDWH�FKDQQHO�REMHFW����ILQDO�&KDQQHOBRIB,QWHJHU�FKDQQHO� �QHZ�&KDQQHOBRIB,QWHJHU����
�������&UHDWH�SDUDOOHO�FRQVWUXFW�ZLWK�D�OLVW�RI�SURFHVVHV����3URFHVV�SDU� ������QHZ�3DUDOOHO��
��������QHZ�3URFHVV>@�^����������QHZ�&7-B3URGXFHU��FKDQQHO������������QHZ�&7-B&RQVXPHU��FKDQQHO�
��������`��������
�������5XQ�SDUDOOHO�FRPSRVLWLRQ����SDU�UXQ������`
`

Figure 2: CTJ_PCMain.java

LPSRUW�FVS�ODQJ��
LPSRUW�FVS�ODQJ�3URFHVV��� ���RYHUULGH�MDYD�ODQJ�3URFHVVLPSRUW�FVS�ODQJ�,QWHJHU� ���RYHUULGH�MDYD�ODQJ�,QWHJHU
FODVV�&7-B3URGXFHU�LPSOHPHQWV�3URFHVV�^
��&KDQQHO2XWSXWBRIB,QWHJHU�RXW&KDQQHO�
��SXEOLF�&7-B3URGXFHU��&KDQQHO2XWSXWBRIB,QWHJHU�RXW�^����RXW&KDQQHO� �RXW�
��`
��SXEOLF�YRLG�UXQ����^
����,QWHJHU�Q� �QHZ�,QWHJHU��������Q�YDOXH� ���������RXW&KDQQHO�ZULWH��Q��
��`
`

Figure 3: CTJ_Producer.java

212 N. Schaller et al. / Using Java for Parallel Computing: JCSP versus CTJ

3.5 The Producer-Consumer Network implemented using JCSP

This section contains a complete implementation using JCSP. Again, assuming the JCSP
library has been downloaded and the &/$663$7+ has been correctly set, to execute the JCSP
network one need only compile the three pieces of code in Figures 5-7 (MDYDF �MDYD),
and then execute JCSP_PCMain (MDYD�-&63B3&0DLQ).

LPSRUW�MFVS�ODQJ��
SXEOLF�FODVV�-&63B3&0DLQ�^
��SXEOLF�VWDWLF�YRLG�PDLQ�6WULQJ>@�DUJV��^����QHZ�-&63B3&0DLQ������`
��SXEOLF�-&63B3&0DLQ����^
�������&UHDWH�FKDQQHO�REMHFW����ILQDO�&KDQQHO,QW�FKDQQHO� �QHZ�2QH�2QH&KDQQHO,QW����
�������&UHDWH�SDUDOOHO�FRQVWUXFW�ZLWK�D�OLVW�RI�SURFHVVHV����&63URFHVV�SDU� ������QHZ�3DUDOOHO��
��������QHZ�&63URFHVV>@�^����������QHZ�-&63B3URGXFHU��FKDQQHO������������QHZ�-&63B&RQVXPHU��FKDQQHO�
��������`��������
�������5XQ�SDUDOOHO�FRPSRVLWLRQ����SDU�UXQ������`
`

Figure 5: JCSP_PCMain.java

LPSRUW�FVS�ODQJ��LPSRUW�FVS�ODQJ�3URFHVV� ���RYHUULGH�MDYD�ODQJ�3URFHVVLPSRUW�FVS�ODQJ�,QWHJHU� ���RYHUULGH�MDYD�ODQJ�,QWHJHU
FODVV�&7-B&RQVXPHU�LPSOHPHQWV�3URFHVV�^
��&KDQQHO,QSXWBRIB,QWHJHU�LQ&KDQQHO�
��SXEOLF�&7-B&RQVXPHU��&KDQQHO,QSXWBRIB,QWHJHU�LQ��^
����LQ&KDQQHO� �LQ���`
��SXEOLF�YRLG�UXQ����^����,QWHJHU�Q� �QHZ�,QWHJHU��������LQ&KDQQHO�UHDG��Q��
���������GR�VRPHWKLQJ�ZLWK�Q��`
`

Figure 4: CTJ_Consumer.java

N. Schaller et al. / Using Java for Parallel Computing: JCSP versus CTJ 213

3.6 Alternation – Choosing Between Events

A crucial CSP operator is choice or selection, i.e., the ability of a process to wait for one of
several events to occur, reacting to whichever shows up first and choosing between them if
many are pending.

Both packages provide a passive mechanism for doing the waiting, i.e., there is no active
polling for events, and three ways for resolving any offered choice (arbitrary, user-
prioritized and fair). This is discussed in more detail in Section 4.2.

3.7 More Similarities

Both packages add CSP primitives to Java. Both have Java classes that implement CSP
constructs for 6HTXHQWLDO, 3DUDOOHO, 3UL3DUDOOHO, $OWHUQDWLYH (with arbitrary,
prioritised or fair choice), 3UL$OWHUQDWLYH, 6NLS, 6WRS, *XDUGV, 3URFHVV, and the
occam 7DJJHG�3URWRFRO (called &KDQQHOBRIB5HIHUHQFH in CTJ). Both have facilities to
create all types of channels: one-to-one, any-to-one, one-to-any, any-to-any, buffered and
unbuffered, and call channels.

LPSRUW�MFVS�ODQJ��
FODVV�-&63B&RQVXPHU�LPSOHPHQWV�&63URFHVV�^
��&KDQQHO,QSXW,QW�LQ&KDQQHO�
��SXEOLF�-&63B&RQVXPHU��&KDQQHO,QSXW,QW�LQ��^����LQ&KDQQHO� �LQ���`
��SXEOLF�YRLG�UXQ����^����LQW�Q� �LQ&KDQQHO�UHDG����
���������GR�VRPHWKLQJ�ZLWK�Q��`
`

Figure 7: JCSPBConsumer.java

LPSRUW�MFVS�ODQJ��
FODVV�-&63B3URGXFHU�LPSOHPHQWV�&63URFHVV�^
��&KDQQHO2XWSXW,QW�RXW&KDQQHO�
��SXEOLF�-&63B3URGXFHU��&KDQQHO2XWSXW,QW�RXW��^����RXW&KDQQHO� �RXW���`
��SXEOLF�YRLG�UXQ����^����RXW&KDQQHO�ZULWH�������
��``

Figure 6: JCSP_Producer.java

214 N. Schaller et al. / Using Java for Parallel Computing: JCSP versus CTJ

Note that call channels provide a standard Java interface for channel communication.
Any Java interface can be turned into a call channel. This gives an object-oriented familiar
means of inter-process communication that contains all the benefits of CSP channel
communications, i.e., both sides have to be involved so that both know what is happening.
Those things cannot happen to process’ s state without that process’ s involvement is a key
benefit from CSP. Hence, separate consideration of each process is possible. That is not the
case with the threads/monitor model.

4. Class Differences

CTJ and JCSP differ in the APIs provided for the basic primitives, reflecting different
design ideas, and in the extensions each of them pursues (CTJ to provide flexible support
for real-time constraints, JCSP to provide support for general concurrent programming,
such as GUI/graphics and modelling). We discuss some of these differences below.

4.1 Channels and Message Types

The reader most likely has already noted that the interfaces used to send the integer
message in our example looked a bit different in the two libraries. There are actually
several differences in this area that we indicate in the Table 1. Some are subtler than one
might expect and are noted below.

Notes on Table 1:

1. In JCSP the correct use of one-to-one, one-to-any, any-to-one and any-to-any
channels is not automatically checked and is the user's responsibility. The programmer can
misuse these channels, e.g., by connecting two readers or writers to a one-to-one channel.
In this case, the semantics are undefined and anything can happen, including correct
channel behavior, an incorrect termination of a channel read or write, or incorrect message
delivery. This means that that if the user constructs a one-to-one channel, it is the user’ s
responsibility to dedicate it to connecting just two processes. CTJ channels are all any-to-
any, so this issue does not arise.

2. The CTJ channel passes messages by value normally, but passing messages by
reference is possible. The JCSP channel passes messages, other than int, by reference.
CTJ’ s approach of passing messages by value encourages the reuse of objects. Once a
message object has been sent, the sender process may reuse that message object. The CTJ
creators have determined that passing messages by value does not unnecessarily fragment
memory, and makes less intensive use of the garbage collecting because of this reuse. This
method of message passing works as well for distributed non-shared memory systems.

That CTJ passes messages by value means that communication over a soft (shared
memory) channel and a hard (external) channel connecting separate memory JVMs have
the same semantics. This consistency is very nice. JCSP external channels, when
completed, will almost certainly have a message-by-value semantics, which would different
from its internal channels. This is not so nice. But JCSP's internal channels are fast and no
less secure than CTJ's message-by-value ones; both are insecure and rely on design rules to
make them safe.

CTJ’ s message passing does provide some support in this area, but it is not complete.
One problem is that it is not enough to forget about the object that has just sent down a
channel, which CTJ does provide. One must also forget about any other objects for which a
reference is held and for which the sent object also hold references! Getting automatic

N. Schaller et al. / Using Java for Parallel Computing: JCSP versus CTJ 215

control of this would be an important breakthrough. What is required is the ability to
“message-by-reference” for internal channels, but where the sender loses the reference, and
references to anything referred to by the thing just sent. That would be fast and safe. Sadly,
Java is not up to this! What is needed is a language, perhaps a derivative of Java, that takes
aliasing issues seriously, probably from the point of view of concurrency, although getting
this right brings big benefits to purely serial programming. (Peter has a Ph.D. student, Tom
Locke, working on this.)

Table 1. Channel Related Differences

CTJ JCSP
Types of Channels
(See Note 1)

Any-to-Any
Others could be added.

One-to-One, One-to-Any
Any-to-One, Any-to-Any
BlackHole

Types of Messages The types of all messages are
essentially Objects, but specific
channel classes are provided for
message types Any, Boolean, Byte,
Character, Double, Float, Integer,
Long, Object, Poison, Reference,
and Short. In addition, CTJ provides
wrapper classes for Java primitive
data types that allow their values to
be overwritten

The type of message may be
Object or the Java primitive data
type LQW.

Message types for other Java
primitive data types could easily
be added (but there seems little
demand).

How messages are passed
(See Note 2)

Messages are normally passed by
value, but may be passed by
reference.

Messages of type LQW are
passed by value. Messages of
type 2EMHFW are passed by
reference. The user may choose
to make a copy of the message
before sending.

Hardware to Hardware
channels

Channels may be used for external
communication, but these must be
constructed using the /LQNGULYHU
class. /LQNGULYHUV provide the
protocol of the hardware dependent
data transfer. Some sample link
drivers are provided.

Hardware to hardware
communication is available
automatically on SMP hardware
only. For any other situation, the
user must extend the appropriate
channel classes.

GUI/Graphics Supports a link to standard
Java AWT/SWING components
using a special linkdriver.

Contains a set of special JCSP
processes that provide channel
interfaces to AWT components.

Real-Time Support
(See Note 3)

Provided through built-in real-time
kernel connected with the channels
that schedules their own threads in a
well-specified and real-time fashion.

Only real-time on top a of a
real-time operating system.

3. The CTJ CSP channel concept deals with single- and multi-processor environments
and also takes care of the real-time priority scheduling requirements. Careful examination
of priority and scheduling has determined that priority scheduling should be attached to the
communicating channels rather than to the processes themselves. A priority based
3DUDOOHO construct, 3UL3DUDOOHO, was developed in association with channels for
composing processes, hiding threads and priority indexing from the user. This approach
simplifies the use of priorities for the object-oriented paradigm. Moreover, the notion of
scheduling is no longer connected to the operating system but has rather become part of the
application.

216 N. Schaller et al. / Using Java for Parallel Computing: JCSP versus CTJ

4.2 Specification and Implementation of Alternatives

Appendix A (Section 8) shows a CTJ implementation of the simple process network,
diagrammed in Figure 8, that consists of two Producers and one Consumer. Because the
Producers may operate at different speeds, it is an ideal occasion for the Consumer to use
an $OWHUQDWLYH to determine which has data available for reading at any one time.
Appendix B (Section 9) shows the implementation of the same network using JCSP. It is
hoped that the reader will refer to these implementations while considering the differences
in the implementation of $OWHUQDWLYH in the two packages. Notice that only the consumer
processes changes significantly from our previous example.

Figure 8. Two Producer-Consumer Process Network

In CTJ there are two classes for selection, the $OWHUQDWLYH and 3UL$OWHUQDWLYH. As
3UL$OWHUQDWLYH is a subclass of $OWHUQDWLYH and $OWHUQDWLYH’ s VHOHFW�� method is
polymorphic, both classes then are specifying a single VHOHFW�� method. An $OWHUQDWLYH
then consists of a VHOHFW�� method, a process or a guard that enables nesting with other
$OWHUQDWLYHV as in occam and CSP.

There are two ways one can use the $OWHUQDWLYH in CTJ: with a VHOHFW�� method as
shown in Figure 9 or as a compositional construct as shown in Figure 10. For explicit
selection, the VHOHFW method can be used; for a more structural and compositional
alternation, the guarded process construct can be used. The UXQ�� method of that guarded
process is executed by the $OWHUQDWLYH process with almost the same performance as

Producer1

����ILQDO�$OWHUQDWLYH�DOW� ����������������WKLV�YHUVLRQ�RI
������QHZ�$OWHUQDWLYH����������������������WKH�$OWHUQDWLYH��������QHZ�*XDUG>@�^����������������������FDQ�RQO\�EH�XVHG����������QHZ�*XDUG��LQ&KDQQHO>�@����������ZLWK�LWV�VHOHFW��
����������QHZ�*XDUG��LQ&KDQQHO>�@����������PHWKRG��������`��������
����,QWHJHU�Q� �QHZ�,QWHJHU����������������Q�LV�DQ�2EMHFW
����IRU��LQW�L� ����L�������L����^���������IRU�H[DPSOH
������ILQDO�LQW�LQGH[� �DOW�VHOHFW���������ZDLW�IRU�D�FKDQQHO
������LQ&KDQQHO>LQGH[@�UHDG��Q�������������UHDG�IURP�VHOHFWHG�FKDQQHO
�����������GR�VRPHWKLQJ�ZLWK�Q
����`

Figure 9: CTJ Alternative set up for use with a VHOHFW�� – see Appendix A

Consumer

Channel0

Channel1

Producer0

N. Schaller et al. / Using Java for Parallel Computing: JCSP versus CTJ 217

switching on a returned VHOHFW index – there is the overhead only of its method invocation.
In addition, one can easily add, remove and insert guards to the $OWHUQDWLYH construct.
And, with proper nesting of $OWHUQDWLYH and 3UL$OWHUQDWLYH constructs, the user may
create the equivalent of fair and priority selection using either the select or compositional
constructs.

In JCSP, the input channels are already *XDUGs (they H[WHQG them) – so no new *XDUG
array is needed. In the $OWHUQDWLYH, as shown in Figure 11, JCSP uses the same VHOHFW��
technique as CTJ, but takes a different approach to prioritising that choice. Instead of
subclassing, $OWHUQDWLYH offers the following set of methods:

• VHOHFW��, returns an arbitrary choice;
• SUL6HOHFW��, returns a prioritised choice (in order of the *XDUG array);
• IDLU6HOHFW��, returns a fair choice when repeatedly invoked.

����ILQDO�,QWHJHU�Q� �QHZ�,QWHJHU�����������Q�LV�DQ�2EMHFW
����ILQDO�3URFHVV�DOW� ������QHZ�$OWHUQDWLYH��
��������QHZ�*XDUG>@�^����������QHZ�*XDUG��LQ&KDQQHO>�@��QHZ�3URFHVV���^������������SXEOLF�YRLG�UXQ����^

��LQ&KDQQHO>�@�UHDG��Q���������GR�VRPHWKLQJ�ZLWK�Q`
����`������QHZ�*XDUG��LQ&KDQQHO>�@��QHZ�3URFHVV���^SXEOLF�YRLG�UXQ����^

��LQ&KDQQHO>�@�UHDG��Q���������GR�VRPHWKLQJ�ZLWK�Q`
����������`���`
��������
����IRU��LQW�L� ����L�������L����^���������IRU�H[DPSOH
������DOW�UXQ�������������PDNH�WKH�VHOHFWLRQ�DQG�UXQ�WKH�UHVSRQVH
����`

Figure 10: CTJ Alternative set up with guarded processes – see Appendix A

����ILQDO�$OWHUQDWLYH�DOW� �QHZ�$OWHUQDWLYH��LQ&KDQQHO��
����IRU��LQW�L� ����L�������L����^
������ILQDO�LQW�LQGH[� �DOW�IDLU6HOHFW���������RU�SUL6HOHFW���RU�VHOHFW��
������ILQDO�LQW�Q� �LQ&KDQQHO>LQGH[@�UHDG����
�����������GR�VRPHWKLQJ�ZLWK�Q
����`

 Figure 11: JCSP Alternative set up – see Appendix A

218 N. Schaller et al. / Using Java for Parallel Computing: JCSP versus CTJ

Note that the channels are of type $OWLQJ&KDQQHO,QSXW,QW in this example. In JCSP,
the select() approach only was taken for ALTing because one of its objectives was to
make compromises with Java so as not to introduce unreasonable inefficiencies. In occam
(and CSP), $/7 (and the choice operator) is a constructor that takes guarded processes as
arguments. CTJ follows this principle, although it also allows for the select() approach.
But processes in Java, however they are implemented, are not as trivial to define as they are
in occam and CSP. They are instances of classes that need to be able to access and alter
global items, rather than simple fragments of code.

So, if the $OWHUQDWLYH constructor were to take processes as arguments, the
programmer has to go through the whole Java process of creating those object instances.
This is a bit obscure and expensive, both in the syntactic overhead required and, unless
handled carefully, in run-time. So, the JCSP $OWHUQDWLYH just focuses on an array of
*XDUGV – which can include any user-defined mix of channel inputs, CALL channel
accepts, timeouts and SKIPs – and returns an index to the one selected. That index can then
be used in the normal sequential flow of control offered by Java, often through a VZLWFK
statement on the index. This introduces no syntactic and run-time overhead of inner classes
in the response to that $OWHUQDWLYH guard.

There is something else for which a user needs to beware. Because CTJ has only any-to-
any channels, safety errors will arise should someone try to use an $OWHUQDWLYH on a
channel that happens to be used in a design with many receivers. This is documented as a
constraint that the CTJ user must honour. Disregarding this constraint leads to code whose
semantics are undefined. Tools could be developed that check for such illegal xxx-to-xxx
relationships. In JCSP, one-to-any and any-to-any channels may not be used as ALT guards
for the same reason. However, breaking this rule in JCSP is trapped at compile-time.

4.3 PriParallel Implementations

Both CTJ and JCSP support prioritising processes that are running in parallel. JCSP’ s
priority parallel is limited to whatever priorities the underlying JVM implementation
provides and the semantics of those underlying JVM priorities. CTJ has a much more
aggressive approach to this, as is needed for real-time applications. 3UL3DUDOOHO
constructs may be nested within other 3UL3DUDOOHO constructs, allowing an unlimited level
of priorities that the underlying kernel then handles within its priority scheduling duties. In
the future, JCSP may support its API with the CCSP version of the KroC [57] kernel that
will support multiple priorities and external drivers properly.

4.4 Additional Features

Both packages provide additional classes: In CTJ, these include:

• 7KUHDG – specifies a process that assigns a new thread to a process and continues
immediately. Each instance of Thread can be used in all composition constructs.

• 7LPH6OLFHU – can be used to time slice between processes of the same priority.
A process that must be appended to a dispatcher implements it. It will only time
slice between processes with lower priority than the 7LPH6OLFHU process itself.

• 7LPHU – provides timeout guards (similar to occam 7,0(5s).
• Call channels – channels with a method interface.
• 9HUVLRQ - print the version number of the CTJ library.

N. Schaller et al. / Using Java for Parallel Computing: JCSP versus CTJ 219

In JCSP, these include:
.
• %DUULHU – enables barrier synchronisation between a set of processes.
• %XFNHW – a non-deterministic version of barrier synchronisation [58][59].
• &UHZ – provides a Concurrent Read Exclusive Write (CREW) lock for

synchronising fair and secure access to a shared resource.
• 7LPHU – provides timeout guards (similar to occam 7,0(5s).
• Call channels – channels with a method interface.
• 3URFHVV0DQDJHU – enables a &63URFHVV to be spawned concurrently with the

process doing the spawning. This is similar to CTJ’ s 7KUHDG.
• Plug-and-Play components similar to that used in the occam course material.

These components emphasise code reuse.
• Utilities to customise the semantics of object FKDQQHOs and LQWs, e.g., buffered

channels of several types.

4.5 Package Accessibility and Appearance

Both packages are works in progress and continue to evolve. The CTJ creators have put
most of their efforts into the programming end and less in the product presentation end.
Example code is available, but it is not (yet) nicely packaged and an interested party must
work to find them.

The JCSP documentation is vast and full of mini-tutorials, e.g., those on the CALL
channels. Considerable effort has been spent on documenting the library – as much as, or
possibly more than, on its coding.

5. Performance

The performance of both packages is not any worse than programming in Java directly, but
this is still disappointing. For instance, communication time with JCSP under Java
Development Kit (JDK) 1.1.x clocks in at over 100 microseconds per context switch on a
500 MHz PIII. Under JDK1.2.2, that reduces to around 23 microseconds. So, things are
improving. However, the KRoC occam (from the same research team) context switch on
the same machine is around 140 nanoseconds. One approach to obtaining better
performance might be to create a JVM binding to the KRoC kernel. This is under
consideration – indeed, work is under way [61]. In the future, JCSP may support its API
with the CCSP version of the KRoC kernel that supports multiple priorities and external
drivers properly, and with context switch times also measured in nanoseconds.

As parallel processes in both CTJ and JCSP are mapped onto Java threads, that in turn
are mapped by modern JVMs to native threads, all the processors can be used on an SMP
machine and real speedup can be obtained with the right kind of problem. Absolute
performance times, though, are hard to predict on a multi-user system, such as a Sun 450
server, since they depend on machine loading at the time the benchmarks are run. On a
single user SMP, such as a multi-processor PC, results are more predictable.

One importance of CTJ is its real-time kernel that schedules its own threads in a well-
specified and predictable fashion. CTJ does not require an operating system and can be
used on bare control hardware. Because CTJ has control over its own threads, the spread in
its performance is quite small. JCSP, on the other hand, is (currently) only real-time on top
of a real-time operating system.

220 N. Schaller et al. / Using Java for Parallel Computing: JCSP versus CTJ

Both packages function well under JDK1.2. However, there are some JCSP
demonstration applets downloadable alongside the package itself. Some of these allow the
user to interact with and control animated graphics, where the graphics are computed and
rendered in real-time. Rendering images in JDK1.2 is horribly slow in comparison to
JDK1.1.8, or any earlier JDKs down to 1.1.5. So, these demonstrations work much better
under JDK1.1.x than JDK1.2.x. All animated graphics applications/applets suffer from this
in JDK1.2; i.e., it is not a JCSP problem. The recently released JDK1.3 has not been tried
yet, but the beta versions had not solved this problem. In addition, whether the applets work
at all seems to be entirely hardware dependent. They all work fine from browsers running
under Windows™, but some functions disappear mysteriously under Solaris™ or Linux –
so much for “write once, run anywhere”!

The creators of both packages are considering a JVM binding approach to improve the
performance. In CTJ, Gerald is considering creating a binding to his CSP versions of C and
C++, which are copies of the ideas behind CTJ and which are very fast compared to CTJ.
As stated before, Peter is likewise considering a JVM binding that accesses the KRoC
kernel. This also outperforms JCSP.

6. Reports of Use

Both packages are in use internationally and have been well received. CTJ has been used
for course work at universities in such places as South Africa (Rhodes), the United States
(Utah State), and in England (Westminster) for classes involving concurrency, parallel
computing and real-time computing. In some cases, exercises included using CTJ’ s
linkdrivers to achieve true parallelism, i.e., to execute on multiple machines. Students from
other universities have reportedly used CTJ successfully for their individual projects.
Inquiries have been received from industries such as Philips and Oracle as well.

JCSP has experienced similar results. It is used for course work at universities in places
such as England (Kent), the United States (Colgate and Rochester Institute of Technology),
and in Italy (Pisa). It has been used for courses that teach concurrency and parallel
computing. While JCSP does not support the use of multiple computers directly other than
on SMP platforms, additional constructors for channel classes have, in at least one instance,
been used to facilitate programs to execute in a truly parallel fashion. JCSP is also featured
in section 4.5 of the second edition of Doug Lea’ s book: Concurrent Programming in Java:
Design Principles and Patterns [56].

7. Conclusions

Both CTJ and JCSP are viable Java class libraries providing a base range of CSP
primitives. Both libraries enable multithreaded systems to be designed, implemented and
reasoned about entirely in terms of CSP synchronising primitives, e.g., channels and events,
and constructors, e.g., parallel and choice. This allows 20 years of theory, design patterns
with formally proven good properties, such as the absence of race hazards, deadlock,
livelock and thread starvation, tools supporting those design patterns, education and
experience to be deployed in support of Java multithreaded applications and eventually,
high performance computing.

The CSP channel concept implemented in these libraries is a natural way to use
multithreading without being troubled with Java threads programming. The thread
administration is completely handled by the CSP channel. In fact, the CSP addition
provides a concurrent object-orientated and process-oriented programming tool without the

N. Schaller et al. / Using Java for Parallel Computing: JCSP versus CTJ 221

additional burden of programming threads. The resulting code is not only easy to program
and understand, it is also safe to use because the rules of CSP, which both packages are
based on, guarantee the correct interaction between concurrent processes. The programmer
need not be concerned with the formal mathematical theory, because CSP is mature, well-
founded, and some powerful model checking tools Error! Reference source not found.,
based on that mathematics, are available for when they are needed.

CTJ contains a real-time kernel that schedules its own threads in a well-specified and
real-time fashion. CTJ does not need an operating system and can be used on bare control
hardware.

JCSP, which provides an additional rich set of extensions and a package providing CSP
process wrappers giving a channel interface to all Java AWT widgets and graphics
operations, is extensively (javadoc)umented and includes much teaching material.

Both are in use today internationally and an extended lifetime is anticipated. However, it
may require some help from the Java creators for these packages to have good performance
for high performance computing – to make them competitive with C and C++ packages.
However, both are considering a JVM binding approach to improve the performance; CTJ
with its sister libraries for C and C++ and JCSP with the KRoC kernel.

References

[1] P. H. Welch. Java Threads in Light of occam/CSP. In Architectures, Languages and Patterns, WoTUG-
21, pp. 259-284, IOS Press (Amsterdam), April 1998.

[2] P. Brinch-Hansen. Java’ s Insecure Parallelism. ACM SIGPLAN Notices, 34, 4, pp. 38-45, April 99.
[3] C. A. R. Hoare. Communicating Sequential Processes, Communications of the ACM, 21-8, pp. 666-677,

August 1978.
[4] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, London, UK, 1985.
[5] A.W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall, 1997.
[6] P. H. Welch and P. D. Austin. The JCSP Home Page. http://www.cs.ukc.ac.uk/projects/ofa/jcsp/, 1999.
[7] G. H. Hilderink. The CTJ (Communicating Threads in Java) Home Page. http://www.rt.el.

utwente.nl/javapp, 2000.
[8] The Titanium Home Page. http://http.cs.berkeley.edu/projects/titanium/, 1999.
[9] The Concordia Home Page. http://www.meitca.com/HSL/Projects/Concordia/, 2000.
[10] The IBM Aglets Workbench. http://www.trl.ibm.co.jp/aglets/, 1999.
[11] A. Galan. The JAFMAS Home Page. http://www.ececs.uc.edu/~abaker/JAFMAS, 1998.
[12] The JATLite Home Page. http://java.stanford.edu/java_agent/html/, 1998.
[13] The Pathwalker Home Page. http://www.fujitsu.co.jp/hypertext/flab/free/paw/index.html, Jujitsu, 2000.
[14] J. Baumann, et al. The Mole Home Page. http://mole.informatik.uni-stuttgart.de/, 1999.
[15] The Odyssey Web Site: http://www.genmagic.com/agents/.
[16] The ProActive Team. The ProActive PDC Home Page. http://www-sop.inria.fr/sloop/javall/, 1999.
[17] H. Bal, et al. The Albatross Home Page. www.cs.vu.nl/albatross/, 2000.
[18] The JavaNOW Source Page. http://www.jhpc.cs.depaul.edu/general/resources.html.
[19] The JavaNOW Home Page. http://www.plexobject.com/software/javanow/javanow.html, PlexObject

Solutions.
[20] The HORB Developers Group. The HORB Home Page. http://ring.etl.go.jp/openlab/horb/, 2000.
[21] G. Brose, et al. The JacORB Home Page. http://www.inf.fu-berlin.de/~brose/jacorb/, 2000.
[22] R. Turner. The Jorba Home Page. http://jorba.castle.net.au/.
[23] C. Petitpiere. The sJava: synchonous Java Home Page. http://ltisun9.epfl.ch/sJava/, 1999.
[24] The Voyager Product Page. http://www.objectspace.com/products/prodVoyager.asp, 2000.
[25] G. Lee and J. Morris. Dataflow Java: Implicitly Parallel Java. In Proceedings of the Fifth Australasian

Computer Architecture Conference, Canberra, pp. 42-50, February 2000.
[26] K. A. Hawick, et al. Java Tools and Technologies for Cluster Computing. University of Adelaide DHPC

Technical Report DHPC-077, Available at http://www.dhpc.adelaide.edu.au/reports/077/abs-077.html,
November, 1999.

222 N. Schaller et al. / Using Java for Parallel Computing: JCSP versus CTJ

[27] X. Chen and V. H. Allan. The MultiJav Home Page. http://www.cs.usu.edu/~allanv/Pubs/pdpta/
pdpta.html, 1999.

[28] cJVM: A Cluster-Aware JVM. http://www.haifa.il.ibm.com/projects/systech/cjvm.html, IBM, 2000.
[29] D. Rossi. The Jada Home Page. http://www.cs.unibo.it/~rossi/jada/, 1996.
[30] The Javaspaces Technology Page. http://java.sun.com/products/javaspaces/, Sun Microsystems, 2000.
[31] J. M. Bull and M. E. Kambites. JOMP -- an OpenMP-like Interface for Java. To appear in Proceedings of

the ACM 2000 Java Grande Conference, June 2000. Available from http://www.epcc.ed.ac.uk/research/
publications/conference/acm2k.ps.gz.

[32] Tspaces Project Page. http://www.almaden.ibm.com/cs/TSpaces/, IBM, 2000.
[33] C. Fischer. Combination and implementation of processes and data: from csp-oz to java. Ph.D. thesis.

University of Oldenburg, January 2000, available from http://theoretica.Informatik.UniOldenburg.
DE/~fischer/cspoz2java.ps.

[34] K. M. Chandy, et al. Catech Infospheres Project. http://www.infospheres.caltech.edu/releases/index.html,
1999.

[35] L. Sarmenta. The Byanihan Home Page. http://www.cag.lcs.mit.edu/bayanihan/, 1999.
[36] DOGMA Source Code. http://zodiac.cs.byu.edu/DOGMA/, 2000.
[37] P. Capella, et al., The Javelin 2.0 Home Page. http://javelin.cs.ucsb.edu/, 2000.
[38] B. Carpenter. The HPJava Home Page. http://www.npac.syr.edu/projects/pcrc/mpiJava/index.html, 2000.
[39] V. S. Getov. The JavaMPI Info Page. http://perun.hscs.wmin.ac.uk/CSPE/software.html, 1998.
[40] K. Dincer. jmpi information accessible under “research” at http://www.ceng.metu.edu.tr/~kdincer/, 2000.
[41] B. Carpenter. The mpiJava Home Page. http://www.npac.syr.edu/projects/pcrc/mpiJava/ mpiJava.html,

2000.
[42] A. Ferrari. The JPVM Home Page. http://www.cs.virginia.edu/~ajf2j/jpvm.html, 1999.
[43] The jPVM (a.k.a. JavaPVM) Home Page. http://www.chmsr.gatech.edu/jPVM/, 1998.
[44] B. Haumacher. JavaParty. http://wwwipd.ira.uka.de/JavaParty/, 1999.
[45] R. vanNieuwpoort. The Manta Home Page. http://www.cs.vu.nl/~rob/manta/, 2000.
[46] M. Welsh. NinjaRMI: A Free Java RMI Introduction and Tutorial. http://www.cs.berkeley.edu/~mdw/

proj/ninja/nijarmi.html, 1999.
[47] K. Knizhnik. The Jsync source link. http://www.ispras.ru/~knizhnik/, 2000.
[48] The Ptolemy II Home Page. http://ptolemy.eecs.berkeley.edu/ptolemyII/, 2000.
[49] M. Welsh, The Jaguar (Java Access to Generic Underlying Architectural Resources) Home Page.

http://www.cs.berkeley.edu/~mdw/proj/jaguar/, 2000.
[50] The Java Grande Forum Home Page. http://www.javagrande.org/, 2000.
[51] The Real-Time for JavaTM Experts Group Home Page. http://www.rtj.org/, 1999.
[52] The J Consortium™ Home Page. http://www.j-consortium.org/, 2000.
[53] Java Threads Workshop. http://wotug.ukc.ac.uk/parallel/groups/wotug/java/, 1996.
[54] 20-sim Home Page. http://www.rt.el.utwente.nl/clp/products/20sim30.htm, 2000.
[55] The dSPACE. Home Page. http://www.dspace.de/, 2000.
[56] D. Lea. Concurrent Programming in Java (Second Edition): Design Principles and Patterns. The Java

Series, Addison-Wesley, section 4.5, 1999.
[57] P. H. Welch, et al. The KroC Home Page. http://www.cs.ukc.ac.uk/projects/ofa/kroc/, 2000.
[58] P. H. Welch, D. C. Wood, Higher Levels of Process Synchronisation, in A. Bakkers (ed.), Parallel

Programming and Java - Proceedings of WoTUG-20, pp. 104-129, IOS Press, Netherlands, April 1997.
[59] J. Kerridge, P. H. Welch, D. C. Wood, Synchronisation Primitives for Highly Discrete Event Simulations,

in R. H. Sprague Jnr. (ed.), Proceedings of the 32nd. Hawaii International Conference on System
Sciences (HICSS-32), IEEE Computer Society Press. January 1999.

[60] Formal Systems (Europe) Ltd.: FDR2 Failures-Divergence-Refinement Manual, http://www.formal.
demon.co.uk/FDR2.html, 1997.

[61] J. Moores, Native JCSP – the CSP for Java Library with a Low-Overhead CSP Kernel, in
Communicating process Architectures 2000 - Proceedings of WoTUG-20, pp. 263-274, IOS Press,
Netherlands, September 2000.

N. Schaller et al. / Using Java for Parallel Computing: JCSP versus CTJ 223

Appendix A: The Two Producer-Consumer Network Implemented Using CTJ

This network, diagrammed in Figure 8, may be executed in the manner as detailed in
Section 3.4 for the single producer and consumer. This appendix contains the complete
listings. The sections pertinent to Alternatives are highlighted in &7-&RQVXPHU.

��file CTJ_Producer.java

LPSRUW�FVS�ODQJ��LPSRUW�FVS�ODQJ�3URFHVV� ���RYHUULGH�MDYD�ODQJ�3URFHVV
LPSRUW�FVS�ODQJ�,QWHJHU� ���RYHUULGH�MDYD�ODQJ�,QWHJHU
FODVV�&7-B3URGXFHU�LPSOHPHQWV�3URFHVV�^
��ILQDO�SULYDWH�&KDQQHO2XWSXWBRIB,QWHJHU�RXW&KDQQHO�
��SXEOLF�&7-B3URGXFHU��&KDQQHO2XWSXWBRIB,QWHJHU�RXW�^����RXW&KDQQHO� �RXW���`
��SXEOLF�YRLG�UXQ����^����,QWHJHU�Q� �QHZ�,QWHJHU���
����IRU��LQW�L� ����L�������L����^������Q�YDOXH� �������L�������RXW&KDQQHO�ZULWH��Q��
����`��`
`
��� file CTJ_Consumer.java (1)

LPSRUW�FVS�ODQJ��LPSRUW�FVS�ODQJ�3URFHVV� ���RYHUULGH�MDYD�ODQJ�3URFHVV
LPSRUW�FVS�ODQJ�,QWHJHU� ���RYHUULGH�MDYD�ODQJ�,QWHJHU
FODVV�&7-B&RQVXPHU�LPSOHPHQWV�3URFHVV�^
�ILQDO�SULYDWH�&KDQQHO,QSXWBRIB,QWHJHU�LQ&KDQQHO>@�
��SXEOLF�&7-B&RQVXPHU��ILQDO�&KDQQHO,QSXWBRIB,QWHJHU�LQ>@��^����LQ&KDQQHO� �LQ���`
��SXEOLF�YRLG�UXQ����^
����ILQDO�$OWHUQDWLYH�DOW� ����������������WKLV�YHUVLRQ�RI������QHZ�$OWHUQDWLYH����������������������WKH�$OWHUQDWLYH��������QHZ�*XDUG>@�^����������������������FDQ�RQO\�EH�XVHG
����������QHZ�*XDUG��LQ&KDQQHO>�@����������ZLWK�LWV�VHOHFW������������QHZ�*XDUG��LQ&KDQQHO>�@����������PHWKRG��������`
��������
����ILQDO�,QWHJHU�Q� �QHZ�,QWHJHU����������Q�LV�DQ�2EMHFW
����IRU��LQW�L� ����L�������L����^
������ILQDO�LQW�LQGH[� �DOW�VHOHFW���������ZDLW�IRU�D�FKDQQHO������LQ&KDQQHO>LQGH[@�UHDG��Q�������������UHDG�IURP�WKH�VHOHFWHG�FKDQQHO
������6\VWHP�RXW�SULQWOQ��´IURP�FKDQQHO�´���LQGH[���´���!��´���Q��
����`
��`
`

224 N. Schaller et al. / Using Java for Parallel Computing: JCSP versus CTJ

��� file CTJ_Consumer.java (2)

���Note: this version uses guarded processes when constructing its $OWHUQDWLYH.
���It is the same as version (1) above except for the following�UXQ�� method:

��SXEOLF�YRLG�UXQ����^
����ILQDO�,QWHJHU�Q� �QHZ�,QWHJHU�����������Q�LV�DQ�2EMHFW
����ILQDO�3URFHVV�DOW� ������QHZ�$OWHUQDWLYH����������QHZ�*XDUG>@�^
����������QHZ�*XDUG��LQ&KDQQHO>�@��QHZ�3URFHVV���^������������SXEOLF�YRLG�UXQ����^��LQ&KDQQHO>�@�UHDG��Q��

��6\VWHP�RXW�SULQWOQ��´IURP�FKDQQHO�����!��´���Q��`����`��
����QHZ�*XDUG��LQ&KDQQHO>�@��QHZ�3URFHVV���^SXEOLF�YRLG�UXQ����^��LQ&KDQQHO>�@�UHDG��Q��

��6\VWHP�RXW�SULQWOQ��´IURP�FKDQQHO�����!��´���Q��`����������`�
��`��������

����IRU��LQW�L� ����L�������L����^������DOW�UXQ�����������WKLV�PDNHV�WKH�VHOHFWLRQ�DQG�UXQV�WKH�UHVSRQVH����`
��`
`

/// file CTJBPCMain.java

LPSRUW�FVS�ODQJ��LPSRUW�FVS�ODQJ�3URFHVV� ���RYHUULGH�MDYD�ODQJ�3URFHVV
LPSRUW�FVS�ODQJ�,QWHJHU� ���RYHUULGH�MDYD�ODQJ�,QWHJHU
SXEOLF�FODVV�&7-B3&0DLQ�^
��SXEOLF�VWDWLF�YRLG�PDLQ��6WULQJ>@�DUJV��^
�������&UHDWH�WKH�FKDQQHO�REMHFWV
����ILQDO�&KDQQHOBRIB,QWHJHU�FKDQQHO�>@� �QHZ�&KDQQHOBRIB,QWHJHU>�@�
����FKDQQHO>�@� �QHZ�&KDQQHOBRIB,QWHJHU�������FKDQQHO>�@� �QHZ�&KDQQHOBRIB,QWHJHU���
�������&UHDWH�WKH�QHWZRUN�RI�SURFHVVHV�DQG�UXQ�LW
����QHZ�3DUDOOHO��
������QHZ�3URFHVV>@�^��������QHZ�&7-B3URGXFHU��FKDQQHO>�@����������QHZ�&7-B3URGXFHU��FKDQQHO>�@��
��������QHZ�&7-B&RQVXPHU��FKDQQHO�������`������UXQ����
��`
`

N. Schaller et al. / Using Java for Parallel Computing: JCSP versus CTJ 225

Appendix B: The Two Producer-Consumer Network Implemented Using JCSP

This network, diagrammed in Figure 8, may be executed in the manner as detailed in
Section 3.5 for the single producer and consumer. This appendix contains the complete
listings. The sections pertinent to Alternatives are highlighted in -&63B&RQVXPHU.

/// file JCSPBProducer.java

LPSRUW�MFVS�ODQJ��
FODVV�-&63B3URGXFHU�LPSOHPHQWV�&63URFHVV�^
��ILQDO�SULYDWH�&KDQQHO2XWSXW,QW�RXW&KDQQHO�
��SXEOLF�-&63B3URGXFHU��&KDQQHO2XWSXW,QW�RXW�^����RXW&KDQQHO� �RXW���`
��SXEOLF�YRLG�UXQ����^
����IRU��LQW�L� ����L�������L����^������RXW&KDQQHO�ZULWH��������L������`
��`
`

/// file JCSPBConsumer.java

LPSRUW�MFVS�ODQJ��
FODVV�-&63B&RQVXPHU�LPSOHPHQWV�&63URFHVV�^
�ILQDO�SULYDWH�$OWLQJ&KDQQHO,QSXW,QW>@�LQ&KDQQHO�
��SXEOLF�-&63B&RQVXPHU��ILQDO�$OWLQJ&KDQQHO,QSXW,QW>@�LQ��^����LQ&KDQQHO� �LQ���`
��SXEOLF�YRLG�UXQ����^
����ILQDO�$OWHUQDWLYH�DOW� �QHZ�$OWHUQDWLYH��LQ&KDQQHO��
����IRU��LQW�L� ����L�������L����^
������ILQDO�LQW�LQGH[� �DOW�IDLU6HOHFW���������RU�SUL6HOHFW���RU�VHOHFW��������ILQDO�LQW�Q� �LQ&KDQQHO>LQGH[@�UHDG����
������6\VWHP�RXW�SULQWOQ��´IURP�FKDQQHO�´���LQGH[���´���!�´���Q��
����`
��`
`

226 N. Schaller et al. / Using Java for Parallel Computing: JCSP versus CTJ

/// file JCSPBPCMain.java

LPSRUW�MFVS�ODQJ��
SXEOLF�FODVV�-&63B3&0DLQ�^
��SXEOLF�VWDWLF�YRLG�PDLQ��6WULQJ>@�DUJV��^
�������&UHDWH�WKH�FKDQQHO�REMHFWV
����ILQDO�2QH�2QH&KDQQHO,QW>@�FKDQQHO� �2QH�2QH&KDQQHO,QW�FUHDWH�����
�������&UHDWH�WKH�QHWZRUN�RI�SURFHVVHV�DQG�UXQ�LW
����QHZ�3DUDOOHO��
������QHZ�&63URFHVV>@�^��������QHZ�-&63B3URGXFHU��FKDQQHO>�@����������QHZ�-&63B3URGXFHU��FKDQQHO>�@��
��������QHZ�-&63B&RQVXPHU��FKDQQHO�������`������UXQ����
��`
`

