
Communicating Process Architectures 2000
P. H. Welch and A. W. P. Bakkers (Eds.)
IOS Press, 2000

263

Native JCSP – the CSP for Java Library
with a Low-Overhead CSP Kernel

James MOORES (jm40@ukc.ac.uk)
Computing Laboratory, University of Kent at Canterbury, CT2 7NF

Abstract. The JCSP library provides a superior framework for building concurrent
Java applications. Currently, JCSP is a collection of classes that uses the standard
Java Threads mechanism to provide low-level facilities such a process scheduling and
synchronization. The overheads of using Java Threads can be quite large though,
especially for synchronization and context switching.

This paper begins by describing various options for increasing performance, and
then how the standard Java Threads work. The integration of the low-overhead CCSP
run-time system into a Linux-based Sun JDK 1.2.1 Java Virtual Machine is then de-
scribed. This integration provides the low-level support required to dramatically in-
crease the performance of the JCSP library’s model of concurrency. The paper then
looks at the problem of maintaining backward compatibility by preserving the func-
tionality of the existing threads mechanism on which much legacy code depends.

The paper finishes by looking at the performance displayed by the current pro-
totype JVM and contrasting it with the performance of both Green (co-operatively
scheduled) and Native (operating-system scheduled) Java Threads.

1 Introduction

The Java programming language has been widely praised for more tightly integrating support
for concurrency directly into the core of the language. Concurrency-related problems remain
though: race hazards, deadlock, and starvation are all still major causes of bugs in concurrent
systems written in Java. These problems are aggravated by the lack of transparency in the
combinational semantics of Java Threads. Large projects, such as the Swing library, have
simply abandoned threading wherever possible and actively discourage the use of threads by
developers.

The JCSP library [1] brings the improved security and scalability of CSP-based languages
like occam to concurrent programming in Java. The current JCSP implementation is as a set
of classes built on top of the standard Java Threads model, and carries the overheads associ-
ated with Java Threads. It allows the development of more scalable, more highly concurrent
Java applications and components.

Although Java provides two different underlying threads mechanisms, both are still be-
tween one and two orders of magnitude slower than CSP-based platforms like occam and
CCSP. The high overheads mean that Java developers are discouraged from using too many
threads and from synchronizing those threads too often. This in turn leads to a reluctance to
use concurrency as a structural tool to express the natural parallelism in a problem. Instead,
threading is often used just as a tool for enhancing system response time and in utilizing
multiprocessors.

Native JCSP solves these problems by bypassing the layers of software that JCSP must
go through. Under Native JCSP, instead of using Java Threads, processes run directly on a
modified version of the CCSP system that is integrated into the JDK1.2.1 JVM.

264 J. Moores / Native JCSP – CSP for Java with a Low-Overhead CSP Kernel

The CCSP system is a low-overhead run-time kernel originally designed to support oc-
cam and C. The resulting increase in performance removes the need for developers to worry
about the costs associated with a greater use of concurrency.

2 Possible approaches to implementation

The concept of integrating radically different support for concurrency into the Java platform
could be implemented in several different ways. Looking at how other languages support
CSP constructs should provide some direction.

occam is the original CSP-based language. It was designed to run on the Inmos Trans-
puter architecture. The Transputer provided all the necessary concurrency services as a part
of the instruction set of the machine itself. Microcode was used to perform complex prim-
itives such as operations to start and stop processes, perform inter-process communication,
and so on. No other architecture has since provided such complex concurrency facilities at
such a low level.

The KRoC project [2] achieved the same result on more conventional and more modern
architectures. By moving the most complex functionality into a software kernel (or ‘run-
time system’), and in-lining more simple operations it was able to replace the microcode
functionality of the transputer with a thin layer of software. The SPOC [3] project was
similar, but generated C code that included its own scheduler (basically a large switch()
statement) [4].

CCSP [5] brought a KRoC-style kernel to the C language (and, incidentally, it also sup-
ports KRoC occam). It interfaces the language with the kernel using a function library and
macros to provide an API for process management and IPC very similar to that of the Inmos
C compiler for the Transputer (which used the Transputer’s microcoded instructions much
like occam). The kernel was based on a SPARC assembler KRoC kernel, but was rewrit-
ten in a mixture of C and embedded assembler. Since then the CCSP kernel has evolved to
include numerous extra facilities to the C programmer. These include priorities, an external
communications interface, ‘native’ timer support, and a flexible API.

3 A CSP runtime system under Java

There are several possible approaches to making the use of CSP under Java more efficient.
The existing Java Threads1 implementation could be rewritten. This would bring the added
advantage of speeding up all existing Java applications too. A disadvantage of this approach
is that CSP operations may needlessly be translated to multiple Java Threads operations.

The Java Threads model is full of subtleties, and some operations, such as changing
another Thread’s priority and dequeuing multiple threads from a monitor, can be quite inef-
ficient to implement. Beating the current implementations to the same degree as CCSP may
therefore not be possible.

As an aside, it is also worth noting that although Java Threads, or more accurately Hoare
Monitors, are generally seen as a lower-level scheme than CSP, the opposite could also be
argued. Welch and Martin [6] have shown that Java Threads can be expressed in terms of
CSP, so it may even be that at some time in the future the existing Java Threads mechanism
could be built on top of a CSP-based kernel.

Having decided to implement a separate CSP-based run-time system rather than rework
the existing one, there are several different levels at which the kernel might be implemented.

1‘Threads’ is capitalized here because it refers specifically to the implementation of the class
java.lang.Thread

J. Moores / Native JCSP – CSP for Java with a Low-Overhead CSP Kernel 265

Could a kernel be hand-written at the byte-code level? The main advantage of this ap-
proach is that it should work on all existing JVM implementations so porting to different
architectures would not be necessary. One disadvantage would be that it would only execute
at a speed of the JVM it was running on. This would be less of a problem with modern JITs
and dynamic compilers like Sun’s Hotspot. However, the Java language does not support the
necessary low-level operations necessary to manage multiple stacks.

So unfortunately, while an attractive option, this does not appear to be possible. Calling
the JVM [7] a ‘virtual machine’ is somewhat misleading. The instruction set of the JVM is
quite specific to Java’s object model. It is not possible, for example, compile an arbitrary
C program into byte-code. There are several reasons for this. Byte-code is heavily type-
checked for security reasons to ensure that, for example, only the correct type of pointers are
dereferenced. Byte-code can also not perform arbitrary absolute jumps. It has only method
calls and relative jump instructions for flow control, and the relative jumps are restricted to
16-bit offsets in most JVM’s (32-bit offsets are supported as an optional extension in the
specification). Thirdly it may be impossible to manipulate things such as the frame and stack
pointers as their use is usually implicit. Tampering with these in strange ways is also likely
to trigger the security manager. This last point really rules out a byte-code-based kernel.

As a different starting point, the implementation of the existing Thread support frame-
work was examined. The platform used for research and eventual development of the Native
JCSP prototype was Linux 2.0/2.2/2.3 running on x86 processors. The source code was a
Sun Microsystems Solaris source release (1.2.1) patched with the Linux ‘Blackdown’ source
patches and built with EGCS-1.1, a custom version of glibc 2.1.1, and Lesstif.

4 So how does the existing Thread support work?

Information on how Java actually implements threads appears to be very thin on the ground.
One approach that might be expected is for support to be provided in the byte-code instruc-
tion set. In fact there are only a couple of instructions involved in concurrency, and they
simply relate to entering and leaving a synchronized method, so they are really just locking
operations.

From examination of the JDK source code it was established that the bulk of Java’s multi-
threading functionality is provided by native method calls from java.lang.Thread.
These operate through the Java Native Interface (JNI) mechanism supported from Java ver-
sion 1.1. Under Java 1.0 and Microsoft’s JVM, native calls work quite differently.

These native methods calls invoke C functions, and transform parameters into the equiv-
alent C types where possible. The JNI provides facilities to access any Java-specific data
structures such as data members, or even invoke methods.

Usually, an application developer would generate a separate library in the native format
that could be loaded as required by the JVM. The major libraries (including the Threads
package) included in the JDK all have their native parts implemented inside the JVM and so
do not need to be demand-loaded.

Within the JVM there is an extensive layering of interfaces that hide thread functionality.
At the top layer there are the calls that correspond directly to the native methods. These then
call a seemly redundant layer, which then calls the Hardware Portability Interface (HPI).
The HPI layer then either is implemented as Green threads or drops down into the native
thread library. The Green thread support is the threading implementation that was originally
included with Java 1.0. Green threads are user-level threads that provide non-blocking I/O
and are co-operatively scheduled. They were largely side-lined in later versions of the JVM
because they do not support SMP multiprocessors and have sometimes proved unresponsive
to external asynchronous events.

266 J. Moores / Native JCSP – CSP for Java with a Low-Overhead CSP Kernel

Green threads are more like the JCSP processes that we are aiming for, in that they are
more lightweight and are co-operatively scheduled. They are also relatively portable across
multiple operating systems because most of the functionality is not greatly dependent on
low-level operating system calls. When Green threads do need to access operating system
functions, they use standard POSIX calls wherever possible. This has meant that when Java
is being ported to a different platform, the Green threads support is usually available before
the full native threads.

‘Native threads’ refer to threads supported directly by the operating system kernel. The
current implementation of Native JCSP runs on the Linux operating system. The Linux kernel
does not support threads directly, but provides the clone() system call. clone() is like
the standard fork() call, but it allows the spawning of kernel processes that share the same
address space. Additionally it has flags to tell the kernel to allocate stack space automatically.

The benefits of lightweight threading have become more apparent as Java has matured,
and there has been a demand for a reduction in the overheads. The latest versions of the
Hotspot dynamic compiler now uses Green threads in combination with native threads to
give the best of both worlds and do represent a significant improvement over Java 1.1.

As Java Threads aim to hide some of the less elegant details of previous threading li-
braries, they do not allow the developer to specify anything about the stack size of each
thread. So how does the system allocate stack space?

4.1 Dynamic stacks

Dynamically expanding stacks are implemented by reserving an area of virtual memory of
the maximum stack size. Only the very top page of this area is actually allocated physical
memory. As the stack is used during program execution it will probably require more than
just the minimum stack size (a single page). If the thread accesses the area below the initially
allocated page a page fault exception occurs. Normally a page fault would cause the process
to terminate if the page had not been allocated, or it might cause the operating system to read
in a page from a swap file on disk. In this case, however, it is used to allocate a new page of
physical memory. The page below the new page is then set up to trigger the same action and
processing is then resumed. See Figure 1

3GB

4GB

0GB

2GB

Application address space

Stack address space

Linux Kernel address space

... and another 500 stacks more

2MB virtual address space

2MB virtual address space

2MB virtual address space

2MB virtual address space2MB virtual address space

2MB virtual address space

2MB virtual address space

2MB virtual address space2MB virtual address space

2MB virtual address space

2MB virtual address space

2MB virtual address space

2MB virtual address space

2MB virtual address space Default stack size (one page)

page allocated due to page fault

page allocated due to page fault

page allocated due to page fault

page allocated due to page fault

One page usually = 4K

Stack pointer can move up
and down within the allocated
area. The stack will not
contract back (although the
pages might be paged out
to disk)

Figure 1: How dynamically expanding stacks are mapped into Linux’s virtual address space

J. Moores / Native JCSP – CSP for Java with a Low-Overhead CSP Kernel 267

The number of these stacks is limited by the virtual address space of the host architecture.
Usually this is 32 bit, and under Linux about a quarter of the address space is given over to
stack allocation. This means that all stacks must fit within about one gigabyte of virtual
address space. Given that each stack typically has a maximum size of around two megabytes,
there is an implicit limit of 512 stacks.

For the current generation of multi-threaded applications this would usually be sufficient,
but there are examples (web servers, applications servers and so on) where this limit is al-
ready being reached. An additional aspect of JCSP is the promotion of the extensive use of
concurrency as a natural part in the expression of algorithms and real world objects. For the
moment, the only way to circumvent this limit is to reduce the maximum stack size. This can
only work if all of the threads can live within this reduced stack size, so it can only be used
to solve certain problems.

New architectures, like the Intel Itanium (IA-64), and even some existing architectures,
such as the API (previously DEC) Alpha, will largely cure the problem. The 64-bit virtual
address spaces of these architectures should provide ample space for stacks, and allow the
increase of maximum stack sizes. Alternatively, Dijkstra’s method of allocating activation
records from a stack could be abandoned in favor of something more tolerant of concurrency,
such as the method Brinch Hansen used for SuperPascal [8]. The use of this approach with
occam has also been explored by Wood [9].

4.2 LinuxThreads

Because the clone() call only provides the basis for a native threads library, there are
numerous libraries available for Linux: Bare-Bones Threads, DCEThreads, FSU Pthreads,
JK Threads and Radke Threads. Perhaps the best known is LinuxThreads which provides
a POSIX 1003.1c threads-compatible implementation on top of clone(). LinuxThreads
was originally only available as a separate package that was not included with most Linux
distributions. It has now become integrated into the GNU C Library (glibc), so it is effectively
the standard implementation.

The JVM used for the development of Native JCSP is based on the Linux version of the
JDK1.2.1 ported to Linux by the ‘Blackdown’ group. The Blackdown group chose to use
LinuxThreads as the basis for their Native Threads support.

5 Chosen implementation method

LinuxThreads, like CCSP, is a multi-threading C library and API (although in CSP terms we
would prefer to call them processes rather than threads, they are essentially the same thing).
It should therefore be possible to implement native JCSP by interfacing the JVM to CCSP in
a similar fashion to that in which the JVM is interfaced to LinuxThreads.

5.1 Context switching

The most complex problem in implementing multi-threading is actually achieving the switch-
ing from one process to another. Once this has been achieved, communication and synchro-
nization functions can fall into place relatively easily. The reason for this is that context
switching is an operation that requires the greatest knowledge of the programming environ-
ment. A context switch requires all of the state of the currently running thread/process to be
saved and so intimate knowledge of the system’s per-thread structures is required. Contrast
this with most other operations which are really just operating on structures internal to the
kernel (and therefore far more familiar).

268 J. Moores / Native JCSP – CSP for Java with a Low-Overhead CSP Kernel

Because of this the primary focus of the development of Native JCSP was to be able to
create JCSP processes and switch between them using the CCSP kernel’s scheduler.

The first step to understanding what was required was to trace the operation of the existing
threading mechanism.

One caveat concerning native JCSP is that it must still allow the continued operation of
the existing Java threads mechanism. This is necessary to enable JCSP to utilize the huge
library of APIs that make Java a useful platform. Most if not all of them rely on standard
Java Threads behaviour in some form or other, so it important for that behaviour to stay the
same.

5.2 Startup

Thread or process initialization and startup are often split into two separate stages using
different API calls. But in Java, threads are started immediately as they are created (through
the Thread() constructor, either directly or via a derived class). Java is able to do this
because the user does not need either to set up parameters to be passed to the thread, or to
specify the amount of stack space to allocate. The parameters either can be passed in via the
constructor, or may not be required at all because the thread is implemented as a class and
the required data may be available as class data members (properties). The stack size is not
needed because of the dynamic allocation scheme described above.

When a thread object is created, its constructor performs some housekeeping of other
objects (primarily to maintain the system of thread groups). As the constructor is a normal
Java method, this housekeeping code is written in normal Java that is executed by the JVM. It
then calls a special native method called start() that directly invokes a C function inside
the JVM using the JNI interface.

5.3 The Environment

Within the JVM, every Java Thread has its own structure, called its environment, that holds
all data specific to that particular thread. This includes pointers to its execution stack, its
thread descriptor, and so on. Whenever a native method is called, a pointer to this structure
is passed. In the case of a static native method, a pointer to the Java class in which the native
method is declared is also passed. If the native method is not static, then a pointer to the
object of which it is a method is passed instead. These two pointers allow the native method
to invoke other Java methods from C. This ability is the key to enabling context switching.

When creating a new context in CCSP or LinuxThreads, a new stack (dynamic or other-
wise) needs to be allocated and the starting function must be set, along with its parameters,
on the stack or in registers (depending on the architecture). Similarly, a Java Thread needs its
environment structure set up, its dynamic stack initialized, and various other bits of house-
keeping. The JVM then spawns a new thread by calling the relevant function in the Linux-
Threads library. This new environment structure, and either a class pointer or object pointer
to the class or object whose run() function we are going to invoke, are then passed to the
initial C function that is executed when the thread starts up. This function simply acts as if
it were a native method that has just been called from Java. The newly started function has a
valid environment and a class/object pointer, so it can, using the JNI, invoke the Java run()
method of the class or object that represents the new thread. The new thread is now started.
It would now seem to be a simple case of performing the same sequence of operations to start
a CCSP process rather than a LinuxThreads thread.

J. Moores / Native JCSP – CSP for Java with a Low-Overhead CSP Kernel 269

6 The co-existence of Threads and Processes

If JCSP processes really replaced Java Threads, then the user of the library would be unable
to execute any code inside a JCSP process that relied upon the standard Java Threads. For
example, the execution of a synchronized method or a wait() or notify() would
cause the JVM to translate the operation into a call to the underlying threads library. To
do this it would find the thread descriptor pointer field in the Environment structure and try
to pass that to LinuxThreads to perform the operation. This would fail because the thread
descriptor pointer field would contain a pointer to the CCSP process descriptor, rather than a
LinuxThreads thread descriptor.

Limiting JCSP to not allowing the use of the standard thread facilities would make Na-
tive JCSP so limiting as to be pointless. Even the execution of System.out.println()
requires the acquisition of a lock through a synchronized method call (to prevent inter-
leaving on the output). A method whereby a piece of code could be running in both a Java
Thread and a JCSP Process would be more desirable.

The simple case is that all JCSP processes operate within a single Java Thread. There
should not be a problem in sharing a single Thread descriptor over multiple JCSP processes
as long as no process holds a lock used by another JCSP process over a context switch. As
context switches can only happen during calls into the kernel, it should be relatively easy to
avoid this.

Thread Descriptor

St
ac

k
E

nv
ir

on
m

en
t

Ptr to Thread Desc.

Self Ptr Field

Thread Descriptor

St
ac

k
E

nv
ir

on
m

en
t

Ptr to Thread Desc.

Self Ptr Field

Thread Descriptor

St
ac

k
E

nv
ir

on
m

en
t

Ptr to Thread Desc.

Self Ptr Field

Thread Descriptor

St
ac

k
E

nv
ir

on
m

en
t

Ptr to Thread Desc.

Self Ptr Field

Java Thread within which all Processes run

Native JCSP Process Native JCSP ProcessNative JCSP Process

Figure 2: How Native JCSP makes all Processes appear as one unified thread

270 J. Moores / Native JCSP – CSP for Java with a Low-Overhead CSP Kernel

A more complex case is spreading the execution of JCSP processes over multiple Java
Threads. This would enable JCSP Processes to execute blocking operations without sus-
pending execution of all other JCSP processes. It also enables the use of SMPs, and this is
discussed further in Section 8.

The primary reason for initially implementing this simple case is that the underlying
CCSP kernel is not thread-safe by default. If interrupted it may leave data structures in an
intermediate state.

However, this sharing of the thread descriptor turned out to be quite difficult to imple-
ment. The main problem is that whenever a Java Thread operation is performed it translates
down to a call to LinuxThreads. Internally, most LinuxThreads operations require the current
thread descriptor. The desired effect is for LinuxThreads to see the same thread descriptor for
JCSP Processes. Unfortunately the mechanism for identifying the current thread descriptor
is interfered with by JCSP processes all having separate stack spaces.

6.1 LinuxThreads’ incompatibility with CCSP

On examination of the LinuxThreads source code (which is available under the LGPL open
source licence) it became clear that two different mechanisms have been used to identify the
thread descriptor of any arbitrary running thread.

One method, that appears to have now been abandoned, is to store the thread descriptor
in the code segment register of the x86[10]. Because Linux runs a flat memory model, rather
than the segmented memory model used by the 16-bit x86 architecture, applications never
need to use the segment registers. The GCC compiler never normally generates code that
uses them, so as long as the application developer does not write any specific code to use
them, things will work correctly. Although this method has been abandoned, ironically, it
would probably have prevented the incompatibility problem.

The second method, which is currently in use, is to store the thread descriptor at the very
top of the dynamically allocated stack and start the stack pointer a little further down the
initial page. The top of each stack is aligned to an address of its maximum size. For example,
a two megabyte stack would be allocated to start from a two megabyte boundary. This means
that the thread descriptor can be found simply by masking off the bottom bits from the stack
pointer (which will put us at the very bottom limit of the stack), then adding two megabytes
to point at the top. Unfortunately this means that when LinuxThreads attempts to find out the
current thread within a JCSP Process, it goes to the top of a stack managed by CCSP, which
doesn’t have the current LinuxThreads thread descriptor, and so fails to work.

To combat this problem, the thread descriptor of the initializing Java Thread was copied
onto the top of each JCSP Processes stack. This worked well for operations that did not
modify the thread descriptor, but those that did caused all of the copies to fall out of syn-
chronization. Fixing this required producing a special version of LinuxThreads. Within the
LinuxThreads thread descriptor there is a field that just points back to its own structure;
the function call to get the current thread descriptor was modified to take advantage of this.
Rather than directly reference the top of that structure, it would, instead, insert another level
of indirection and access the field that pointed to itself. This meant that the modified library
worked in exactly the same way for all existing applications. However, for Native JCSP, the
copy of the thread descriptor at the top of the stack was modified (in fact, we need only copy
this one field, but it must be at the same offset), so that the field that is supposed to point
back to its parent structure actually points back to the original thread descriptor. This means
that all thread operations now occurred on the same thread descriptor, so all JCSP Processes
effectively appeared as the same thread.

J. Moores / Native JCSP – CSP for Java with a Low-Overhead CSP Kernel 271

7 The current prototype

The current prototype was developed with the modified LinuxThreads library and the same
principles as the Native Thread implementation. It can successfully launch JCSP processes
that run under a single Java Thread and allow the use of standard Thread operations. The
JCSP processes are context-switched correctly by the underlying CCSP kernel and prelimi-
nary performance results are available. The source code to the performance test follows:

import jcsp.lang.Process;
import java.io.*;

class P1 extends Process {
public P1() {

this.start();
}
public void run() {

System.out.println("Time read in P1 is :"+
System.currentTimeMillis());

long t1 = System.currentTimeMillis();
for (int i=0; i<1000000; i++) {

this.reschedule();
}
long t2 = System.currentTimeMillis();
System.out.println("Time read in P1 (after loop) is :"+

System.currentTimeMillis());
System.out.println("difference is:"+(t2-t1));

}
}

class P2 extends Process {
public P2() {

this.init();
this.start();

}
public void run() {

for (int i=0; i<1000000; i++) {
this.reschedule();

}
}

}

class tst {
public static void main(String[] args) {

Process np2 = new P2();
Process np1 = new P1();
np1.stop(); // stop() is static so it means

// the current thread should enter
// the kernel to allow out two Processes
// to start running

}
}

7.1 Performance

The prototype currently only supports the interpreted JVM although it is thought that it should
be relatively straightforward to refine the implementation to support both the JIT and Hotspot.

272 J. Moores / Native JCSP – CSP for Java with a Low-Overhead CSP Kernel

Threading System Context Switch Time
Java Native Threads (JDK1.2.1) 20 � s
Java Green Threads (JDK1.2.1) 11 � s
Native JCSP (JDK1.2.1) 0.8 � s
CCSP (EGCS1.1) 0.35 � s

Figure 3: Performance on a 300MHz Intel Celeron

Figure 3 gives some performance figures. These should not change substantially when all
the JCSP features are implemented.

Although a context switch may appear a rather crude measure of performance, most other
kernel functions should take approximately the same time as nearly all operations are O(1).
Additionally, the most expensive part of a kernel function is usually the context switch. Some
functions will even be faster if they do not require a switch.

There is some slack (function calls going down through the layers of APIs) that could be
removed to further speed the Native JCSP version.

It should also be noted that although Native JCSP is around 15–25 times faster than
the standard threads in JDK1.2.x, it is well over 100 times faster than the JDK1.1 Threads
implementation.

8 Future developments

The basic framework is complete. The prototype’s structuring of its Process class does
not actually fit very well with the JCSP class model. The class has since been remodelled to
work correctly in JCSP’s class hierarchy. This primarily involved deciding where to locate
the native methods involved with launching processes. In fact the best place to put them is
in the JCSP Parallel class directly rather than providing a lower-level Process class as
is done in the prototype. CCSP also needed to be extended to add new List functions that
take arrays of Processes, Channels and so on, to ease the implementation all the other
primitives via the JNI.

The primary aim is to implement the full JCSP API. Once this is done, there are several
other interesting possibilities.

CCSP does have some support for running in multiple system threads. This is imple-
mented as a global spin lock that all entries to the kernel must aquire. Because kernel calls
are mostly very short, there should be little lock contention. This is the same method of
avoiding race conditions as is used to enable Linux 2.0 to be used with SMPs. To allow
greater scalability, Vella’s lock-free algorithms [11] for a KRoC CSP kernel could be imple-
mented. This would allow excellent scalability as the only thing used is atomic swaps, so
contention is never for more than one instruction.

The global spin-lock option was designed to spread computation over Shared Memory
Multiprocessors, but could equally be used to support multiple Java Threads. It should be
possible to use this to transparently allow JCSP to continue processing other processes if one
blocks due to a blocking I/O operation. It should also be relatively easy to allow Native JCSP
to take advantage of SMPs by running separate copies of the kernel in different Java Threads.
The operating system should then load-balance them over multiple CPUs (in the absence of
processor affinity facilities).

J. Moores / Native JCSP – CSP for Java with a Low-Overhead CSP Kernel 273

9 Conclusion

The current implementation successfully demonstrates the viability of a native version of
JCSP. The performance benefits alone should allow much more concurrency to be used within
Java applications. It is hoped that soon the full API will be supported and that the system will
work under just-in-time compilers and the Hotspot dynamic compiler.

The prototype has demonstrated excellent performance and has shown the levels of per-
formance that are possible.

The future is then focussed on ultra-efficient SMP implementations and enabling the use
of blocking method calls more easily.

References

[1] Peter H. Welch. JCSP Home Page http://www.cs.ukc.ac.uk/projects/ofa/jcsp/

[2] D. C. Wood & P. H. Welch. The Kent Retargetable occam Compiler. Proceedings of
WoTUG-19: Parallel Processing Developments, edited by B. C. O’Neill. IOS press,
1996. ISBN 90–5199–261–0.

[3] M. Debbage, M. Hill, S. Wykes and D. Nicole. Southampton’s Portable Occam Com-
piler (SPOC) Proceedings of WoTUG-17: Progress in Transputer and occam Research,
edited by R. Miles and A. Chalmers. IOS press, 1994. ISBN 90–5199–163–0.

[4] B. M. Cook. A Fast C Kernel for Portable occam Compilers Proceedings of WoTUG-
18: Transputer and occam Developments, edited by P. Nixon. IOS press, 1995. ISBN
90–5199–222–X.

[5] J. Moores. CCSP – A portable CSP-based run-time system supporting C and occam
Proceedings of WoTUG-22: Architectures, Languages and Techniques, edited by B. M.
Cooke. IOS press, 1999. ISBN 90–5199–480–X.

[6] Peter H. Welch and Jeremy M. R. Martin. Formal Analysis of Concurrent Java Systems
Proceedings of Communicating Process Architectures – 2000, edited by P. H. Welch
and A. W. P. Bakkers. IOS press, 2000.

[7] Bill Venners. Inside the Java virtual machine New York, London, McGraw-Hill, 1998.
ISBN 0–07–913248–0

[8] Per Brinch Hansen. Efficient Parallel Recursion SIGPLAN Notices 30(12): 9-16
(1995).

[9] David C. Wood. An Experiment with Recursion in occam. Proceedings of Communi-
cating Process Architectures – 2000, edited by P. H. Welch and A. W. P. Bakkers, pp.
193-204. IOS press, 2000.

[10] Sandpile.org – The world’s leading source for pure technical 80x86 processor informa-
tion. http://www.sandpile.org/

[11] K. Vella and P. H. Welch. CSP/occam on shared-memory multiprocessor workstations.
Proceedings of WoTUG-22: Architectures, Languages and Techniques, edited by B. M.
Cooke. IOS press, 1999. ISBN 90–5199–480–X.

274

