
Communicating Process Architectures 2003 111
Jan F. Broenink and Gerald H. Hilderink (Eds.)
IOS Press, 2003

Sampling and Timing: A Task for the
Environmental Process†

Gerald H. HILDERINK and Jan F. BROENINK
Twente Embedded Systems Initiative,

Drebbel Institute for Mechatronics and Control Engineering,
Faculty of EE-Math-CS, University of Twente,

P.O.Box 217, 7500 AE, Enschede, the Netherlands
g.h.hilderink@utwente.nl

Abstract. Sampling and timing is considered a responsibility of the environment of
controller software. In this paper we will illustrate a concept whereby an
environmental process and multi-way events play an important role in applying
timing for untimed CSP software architectures. We use this timing concept for
building our control applications based on CSP concepts and with our CSP for C++
(CTC++) library. We present a concept of sampling of control applications that is
orthogonal to the application. This implies global timing on the basis of timed
events. We also support traditional local timing on the based of timed processes,

1. Introduction

At Control Engineering at the University of Twente, we use concepts from the theory of
Communicating Sequential Processes (CSP) [1; 2] to design real-time control software
architectures and to reason about concurrency and their reactive/real-time behaviours [3].
The CSP concepts contribute in managing complexities and provide guidelines for a clean
and prescribed software development approach. The CSP concepts provide an excellent
separation of concerns at a high level of abstraction in terms of processes and their
interrelationships. The result is that nothing will be designed or implemented in an ad-hoc
manner and students easily learn these abstract concepts of designing and implementing
real-time software.

The real-time control software is the software part of a mechatronic system that aims at
improving the dynamics of the system or to automate it. The dynamic behaviour of the
plant, i.e. the ‘machine’-part of the mechatronic system, imposes timing requirements on
the software. The control loop from obtaining sensor data via processing to sending
actuator signals must be completely processed within every sampling period Ts. This
sample period Ts is determined by the dynamic behaviour of the plant and lies in our
domain typically between 0.1 to 10 ms. Furthermore, all sensors must be sampled at the
same moment causing as little jitter as possible (sampling). The actuators too must set their
new value at the same moment (actuation). In practice it is often required that sampling is
done before actuation in order to avoid disturbance of the measurements by the actuation.
The distance between sampling and actuation is fixed within the sampling period. See
Figure 1. The inputs can be done in parallel and the outputs can be done in parallel, or a

† This research is supported by PROGRESS, the embedded system research program of the Dutch organization
for Scientific Research, NWO, the Dutch Ministry of Economic Affairs and the Technology Foundation STW.

112 G.H. Hilderink and J.F. Broenink / Sampling and Timing: A Task for the Environmental Process

fixed sequence can sometimes be more practical when converters are under control of the
software.

Real-time implies on the one hand that the response is expected before a deadline or
precisely on a specified moment (neither before nor after). Its timeliness implies
correctness. On the other hand real-time systems are intrinsically concurrent because they
are coupled to the real world. Discrete control systems require a constant and precise
sampling rate of their inputs and outputs to the real world they control. With precise we
mean a predefined moment in time within a narrow range of variation that is acceptable to
ensure a reliable and stable control system. Furthermore, the processes between these inputs
and outputs should guarantee that they perform their tasks and deliver their outputs for
actuation before their deadlines expire. Each control loop deals with a parallel aspect of the
system and therefore control loops are naturally parallel to each other.

Sensors and actuators require signal conversions between the continuous-time and real
world representation and discrete-time and digital representation. Common converters are
Analog to Digital Converters (ADCs), Digital to Analog Converters (DACs), and counters.
These converters require accurate timing with as less jitter as possible between the input
sampling and output actuation, and with a fixed distance between the successive sampling
events.

A shared clock between the converters is the fastest and therefore the most accurate
solution, but not every interface card has timers providing a shared external timer among all
peripheral devices. Often configurations require the system timer; the internal timer on the
computer board where the software (e.g. the interrupt service routine) has control over the
converters. The correspondence between these different configurations of external and
internal timers is that timing is part of the environment of the application and orthogonal to
the application. This separation of concerns can be used to our advantage when we make an
untimed design timed through encapsulation within its environment orthogonal to the
design.

We use a graphical CSP notation by Hilderink [4] to illustrate the examples in the form
of CSP diagrams.

In this paper we propose a conceptual approach to incorporate timing for accurate
sampling on external CSP channels in software. This approach differs from the solution
found in the programming language occam [5] and the CSP for Java libraries JCSP [6] and

Computer I/O Plant

k

Controller
process

Sample Actuate

k-1 k+1

Sampling Period Ts

Actuate Sample

Figure 1 Real-time control loop (above) and timing of one sample–process–
actuate–loop where the kth sample is shown (below)

 G.H. Hilderink and J.F. Broenink / Sampling and Timing: A Task for the Environmental Process 113

CTJ [7]. This proposal may become a basic concept behind the timing framework of CT
developed by Hilderink [7]. CT stands for Communicating Threads which provides
concurrent programming where multithreading in execution is encapsulated in CSP-like
abstractions of processes and channels. Currently, this timing framework has been
successfully implemented in CT for C++ (CTC++).

Section 2 discusses the problem with timed processes as a result of local timing. The
conceptual background to this proposal from which our solution is derived is discussed in
Section 3. The solution in the form of environmental services is presented in Section 4.
Section 5 applies these services in two examples.

2. Sampling problems with timed processes

In occam and on the transputer, time was provided by a TIMER object [5]. The TIMER
object is a kind of channel on which processes can read the time or on which processes get
blocked until the specified time has expired. The same syntax is used to specify a timeout-
guard in the alternative construct. A similar object, called CSTimer, is defined in JCSP [6].
CTJ implements a Java-like static sleep method that will block a process for a specified
time and CTJ provided separate timeout-guards for timeouts on alting. These timing
concepts in occam, JCSP and CTJ are encapsulated in processes, called timed processes.
The problem is that these processes cannot guarantee precise sampling on channel
communication. In particular, external channels are concerned with data conversion
between the digital computer and the analog world at specified moments in time. The timed
processes do not provide an adequate solution to sampling and timing issues on channels.

In this example, we illustrate a few problems with timed processes concerning sampling.
Consider two independent controller processes, LController and HController, as depicted in
Figure 2. The channels c1, c2, and d1 are connected to sensors and channels c3 and d2 are
connected to actuators. In this example, input-channels c1, c2, and d1 communicate with an
AD converter each and output-channels c3 and d2 communicate with a DA converter each.
Of course, processes see channels and not the converters. In this sense they are hardware
independent. They only depend on the integrity of the values. The HController process
repeatedly reads values from channel d1 and after computation the result is sent to channel
d2. The LController process repeatedly reads values from channel c1 and c2 and after
computation the result is send over channel c3.

At the open-ends of the arrows one can imagine processes in hardware to which
processes in software communicate. These processes in hardware are not rendered in the
diagram, because they are out of the context of the control software.

The sensor data on channels c1, c2 should be sampled at the same time. Channel c3
should be actuated shortly after c1 and c2 are sampled, in order to not disturb the
measurements at c1 and c2. This is similar for the channels d1 and d2 of HController but this
can be done at the same or a different sampling interval than for LController.

LController

c1 c2 c3

HController

d1 d2

Figure 2 Example: control application consisting of a higher-priority controller
process and a lower-priority controller process

114 G.H. Hilderink and J.F. Broenink / Sampling and Timing: A Task for the Environmental Process

In this example we will assume that HController operates at a higher sampling frequency
than LController. This requires that HController executes at a higher priority then
LController. The problems that rise in this situation are common problems with timed
processes. We will illustrate this by the following example in which LController consists of
three sub-processes each carrying out a computational task, see Figure 3a. We will omit
their functional descriptions.

Process P receives information from channel c1, process Q receives information from
channel c2, and process R determines the output and sends the results to channel c3. The
processes P and Q send the results of their calculations to process R via the internal
channels c4 and c5. All processes are part of the same control loop and therefore the
channels c1 and c2 should be sampled and c3 should also be actuated at the same sampling
frequency. As mentioned in Section 1, the order of reading and writing should be fixed and
reads and writes should be very close to each other: first input on c1 then input on c2 then
output on c3. Any varying delay between the inputs and outputs can cause significant jitter
that may bring the system into an unstable state. Figure 3b shows that all three processes
are meant to execute in parallel, P || Q || R. This example suffers from the following
problem when we apply the timed processes for sampling.

Sampling cannot be based solely on reading and writing on channels. Pre-emption and

arbitrary scheduling of processes can cause a varying delay between reading and writing on
channels. Thus, sampling on reading and actuation on writing on channels is not an
adequate solution. The resulting variation in sampling intervals or jitter can make plant
unstable and unpredictable. It is important that jitter is negligibly small which makes any
delay approximately constant compared to the sample time Ts. Thus, scheduling of the
processes does not guarantee a fixed order of inputs and outputs. Any order is possible.
Serializing these processes does not really solve the problem. This is because the
computations that are performed by the processes cause a distance (delay) between the
inputs and outputs. To overcome this problem we need to make sure that sampling and
actuation is done fast and in direct sequence. Disassembling the processes and moving the
inputs and outputs to another sequential process is not an option because we want to specify
three parallel tasks for some reason that is not addressed here. Serializing requires breaking
the internal loops of the processes into a common outer loop. The problem increases when
multiple frequencies are involved. This approach has tremendous effect on architectural

(a) Communication relationships

Process
P

Process
Q

Process
R

Process
P

Process
Q

Process
R

(b) Compositional relationships

c1 c2 c3

c4

c5 HController

d1 d2

HController

Figure 3 Lower-priority controller process divided into sub-processes

 G.H. Hilderink and J.F. Broenink / Sampling and Timing: A Task for the Environmental Process 115

changes and prevents reusing processes.
A common problem with the sleep/after method of the timer object is that after its

wakeup the process can be delayed by a higher priority process. This is obvious the case
when two controllers at two different sampling frequencies are performed. In order to fulfil
the real-time requirements we apply the rate-monotonic priority ordering; the process with
the higher frequency gets higher priority than a process with a lower frequency. Atomic
coherency between conversions during sampling and actuation in a control loop is required,
which a (timed) process cannot provide. This particular order of sampling and actuation
should be orthogonal to the software architecture otherwise this would have a tremendous
impact on the design.

In order to achieve sampling, special precautions in hardware or in software have to be
taken. In hardware, a common external timer on which peripheral devices are triggered and
an atomic sequence of inputs and outputs is guaranteed. In software, this implies some sort
of ceiling priority for each sequence of pairs of inputs and outputs to guarantee adequate
sampling and actuation; the processor interrupt handling can be used for this.

After conversion the devices usually generate an external interrupt that reflects a timed
event on which values are read from peripherals into memory or values are copied from
memory to the device. Unfortunately, not all devices are supplied with a common timer
whereby devices are triggered at the same time. More often devices are triggered by a timed
interrupt service routine of low-level instructions using the internal timer of the computer.
Often, this is a flexible solution whereby the software stays in control over the devices.

In this paper we bring this concept of internal and external timing to a higher level of
abstraction conform the CSP concepts on which we build our applications. We will apply
timed events instead of timed processes, which proposal conceptually resembles with
timing in hardware and timing in software. With the latter we mean that we can also create
timed processes based on the same proposal. If this proposal is carefully applied then the
software architecture becomes independent of external timing such as sampling and
actuation.

3. Timing concept

3.1 Timing in CSP

Timing in CSP primarily concerns events, because an event is an occurrence in time and
space. An event happens at a certain moment in time (e.g. periodic or sporadic) and
somewhere in the system. We can observe the real-time behaviour of processes by
measuring the time between events in which the processes engage. This is a simplified and
a more pragmatic approach than determining the exact execution time of processes. Traces
of events help determining the possible patterns of events in time. This takes into account
the compositional relationships between processes. The worst case time can help in
determining that processes can guarantee their deadlines. Timing analysis is not discussed
in this paper.

The CSP concepts we use are based on untimed CSP [1; 2] which theory does not deal
with intrinsic timing concerns. Timed CSP [8] does deal with timing, but it does not offer a
pragmatic approach to be useful in software. The problem is that the timeout operator in
timed CSP is far too complex and inefficient to build in software. Furthermore, the timeout
operator requires semantically changes to original CSP operators.

We will address a different timing concept for untimed CSP designs, which does not
need any semantically changes to the original CSP operators (i.e. ;, , and) and to

116 G.H. Hilderink and J.F. Broenink / Sampling and Timing: A Task for the Environmental Process

extended CSP operators (i.e. , , and ∆). In this approach, exceptions are involved but
these exceptions are orthogonal to the original semantics—the original semantics of these
CSP constructs remain intact. The exact exception handling is not discussed in this paper.

CSP defines that processes communicate with each other through shared channel
objects. Processes that are willing to communicate on a channel will be blocked until the
other side is willing to communicate. When a reader process and a writer process engage in
communication then data is passed from writer to reader. At that moment both processes
will continue in parallel. This moment is called the communication event. For sampling it is
important that those communication events occur at periodic moments in time. This
involves external channels that connect the controller processes in software to processes in
hardware such as signal converters to which sensors and actuators are connected.

Considering the notion of events, we believe that the time stamp of occurrence is a
property of an event (see previous definition of event) and not a property of a channel.
However, timing can be performed by channel communication when some sort of process
at a peer-end of a channel is willing to communicate at a precise moment in time.

3.2 Environmental process and timing

In CSP, an event requires two or more processes to engage in—an event is multi-way.
However, a communication event with channels is considered to be strictly two-way—one
producer process and one consumer process must be willing to communicate in order to let
the communication event happen. Another form of communication between multiple
processes is a barrier object as described in the theory of BSP [9]. When all participating
processes synchronize (block) on a barrier object then data exchange between the processes
takes place and successively the barrier releases the processes to continue in parallel. The
rendezvous is the communication event. With a barrier object a communication event is
two-way or multi-way which value is equal to the number of participating processing (#≥2).

In CSP textbooks, the environment is often mentioned as an external or environmental
process that also must be willing to accept events. We will assume that this includes
communication events. In this approach we take the environmental process into account
which also participates in communication events. An environmental process is basically
another CSP process that synchronizes on internal events. In this case a communication
event can be considered to be (n+1)-way, where n=2 for channel synchronization and n≥2
for barrier synchronization. This is exactly what this approach is about.

The environment can influence the behaviour of concurrent software in several ways.
This concerns the acceptance of events. In an ideal environment all events are accepted in
the application. This idealness is usually the starting-point of a design. In reality, things can
go wrong whereby the environment can become partially disabled. In this case the system
may not engage in certain events. For example, consider a plant with embedded systems
and field-busses whereby a communication cable is accidentally cut or plugged-out. When
that happens no communication events will happen over a disconnected channel. The
reverse is also possible when a disconnect channel becomes connected. These disabilities
and abilities can rise in time. The non-idealness of the environment is considered during the
refinement of the design.

More generally, when a producer process and a consumer process are willing to
communicate then the environment should also accept the event in order to let the event
happen. It is possible that the environment cannot accept the event.

The environment is time-variant (depending on time) and memory-based (non-
anticipating) and can contain multiple timelines. The timelines can be divided in continuous
time, discrete time, or a hybrid of both. For example, a processor performs its tasks in

 G.H. Hilderink and J.F. Broenink / Sampling and Timing: A Task for the Environmental Process 117

discrete time. The entire system, consisting of the computer (discrete time) connected to the
real world (continuous time), is called a hybrid system. Therefore, we consider time a
property of the environment being not pre-emptable. Time and the environment are
orthogonal to the application. Of course, the sampling period could be a constant parameter
used by the control laws that are performed by the control application, but this is simply
and solely a value derived from the dynamics of the system.

In our proposal, the environmental process can perform services for the application
processes that are running in the environment. These processes can call upon these services
through call-channels. In this paper we introduce such an environmental process with
services that provides us means for sampling. The environmental process is invisible to the
application and is not part of any compositional construct in the application. This
environmental process can be very complex and we do not always have to know what this
environmental process exactly is. We only need to know in what way the environment can
influence the application. This may or may not be in control of the application. In a
distributed system, every computer system has a separate environmental process.

Figure 4 illustrates the presence of an environmental process in a CSP diagram. Consider
the three processes P, Q, and R communicating over channels c and d in Figure 4a. For
completeness, Figure 4b specifies that P, Q, and R are in parallel and that the objects c and
d are rendezvous channels on which the processes synchronize on communication. For
internal channels we assume that P and Q engage in the communication event when they
both are willing to communicate over channel c whereby ENV always accepts that
communication event. Also we assume that no exceptions occur. This is similar for the
processes Q and R with channel d. This assumption is not general, because we forget the
facts that events can only occur in an environment that accepts them, i.e. the environmental
process ENV must also be willing to engage in these events. The environmental process
ENV is the highest-priority process that is never pre-empted by the application processes.
Usually, process ENV is hidden from the design because it is not explicit part of the design;

Process
P

Process
Q

Process
P

Process
Q

(a) Communication relationships with environmental process ENV

c

Process
ENV

Process
ENV

(b) Compositional relationship with environmental process ENV

Process
E

∆

Process
R

d

Process
R

Process
E

2

Figure 4 Example with visualized environmental process

118 G.H. Hilderink and J.F. Broenink / Sampling and Timing: A Task for the Environmental Process

therefore the process and relationships are dashed. It is clear to see that ENV is connected to
each channel in the design. Process ENV does not send any data. On error, process ENV can
throw an exception to pair P-Q or pair Q-R with an error message that specifies the reason
why the communication event cannot take place. This exception can be handled by the
exception handling construct in the application, see process E and the ∆ -relationship.

4. Environmental services

The following methods are services that can be carried out by the environmental process.
These methods are called by the control application and they are served when the
environmental process is willing to accept the call. We developed an Environment class
that provides a global static call-channel which service can be invoked by any process at
any time. All methods, except for the time() method, act upon a communication event and
require a channel or a barrier. This includes timed-guards in the alternative construct. The
call-channel approach makes these methods automatically thread safe.

We apply these methods systematically by accommodating these to the network building
process that creates the network of processes and channels. Thus, the sampling frequencies
are set at the top-level of the application.

• Accept communication event at specified time

Environment::at(channel, time);

Environment::at(channel, time, Time interval_time);

The producer and consumer processes need to be willing to communicate before the

environmental process is willing to accept the communication event on the specified
channel or barrier at the specified time (in microseconds) or period. If this is not the case
and the processes engage in the event after the specified time expires then any blocked
process will be released and an exception is thrown at the producer and at the consumer.
Hence, the real-time requirement has not been met.

Environment::at(barrier, time); // single-shot

Environment::at(barrier, time, interval_time); // periodical

The environmental process will participate in the barrier synchronization and will

commit to the synchronization at the specified time. If one participant does not sync before
the environmental process then exceptions will be thrown to all processes and all processes
will be released. Hence, the real-time requirement has not been met.

• Accept communication event after specified time

Environment::after(channel, time); // single-shot

Environment::after(channel, time, interval_time); // periodical

The communication between the producer and consumer processes will be delayed until

specified time. Any communication after the specified time will be accepted and they both
immediately continue. No exceptions are thrown. If an interval time is specified then the
next waiting time will be incremented with the interval time.

 G.H. Hilderink and J.F. Broenink / Sampling and Timing: A Task for the Environmental Process 119

Environment::after(barrier, time); // single-shot

Environment::after(barrier, time, interval_time); // periodical

The environmental process will participate in the barrier synchronization and will

commit to the synchronization at specified time. No exceptions are thrown. If an interval
time is specified then the next waiting time will be incremented with the interval time.

Environment::after(guard, time); // single-shot

Environment::after(guard, time, interval_time); // periodical

If the alternative construct is waiting and the alting process at the other end is willing to

communicate before the specified time then the guard will become ready at the specified
time. Otherwise the guard will be ready when the alting process at the other end is willing
to communicate. This guard is called a timed-guard. No exceptions are thrown. A timed
skip-guard is used for specifying a timeout-guard. The skip-guard will be ready at the
specified time and no exceptions are thrown at timeout. As with channels and barriers the
guard can be periodically timed. The specified interval time increments time each period.
Since guards are local to a process, implies that after(guard,time,..) is used locally
and no other process can alter time on a local guard.

The timed-guard can be used with at(channel,time,..) and
after(channel,time,..).

The method after(guard,time1,..) is independent of the time as specified with
at(channel,time2,..) or after(channel,time2,..). The method
after(guard,time1,..) on channel could very well endanger the deadline as specified
by at(channel,time2,..) which results in an exception when time1 > time2. Although
this is a natural behaviour, this combination is not very applicable. Therefore,
after(guard,time1,..) and at(channel,time2,..) should be used with care to avoid
timeout exceptions

We do not support guards for barriers, because we are uncertain about multiple alting on
a barrier; this introduces a conflict that is similar to two-way alting on a channel (i.e. input-
guarding and output-guarding on one channel) at the same time as described by Jones [10].

The (periodic) timing stops when accept(channel) or refuse(channel) are used.

• Accept communication

Environment::accept(channel);

Environment::accept(barrier);

The environmental process will accept any communication event on the specified

channel or barrier. This will cancel any timing as specified with at(..) or after(..), or
any refusal that was specified with refuse(..). Also after a refusal of the channel one can
perform accept to cancel the refusal. If the channel or barrier cannot be accepted then an
exception it thrown. The accept(..) method is synchronized. The method will block when
it was called before at(..), after(..), or refuse(..). This prevents any race hazards
between the methods. A guard is not influenced by the environmental process.

The accept(..) methods can be used to undo any timing on channels or to let the
environment accept an event that it refused. Furthermore, if the environment does not want
to accept the event then the application has no control over it and a
UnacceptableException results.

120 G.H. Hilderink and J.F. Broenink / Sampling and Timing: A Task for the Environmental Process

• Refuse communication and (optionally) throw exception

Environment::refuse(channel, exception_message);

Environment::refuse(barrier, exception_message);

This method will let the environmental process refuse the acceptance of the

communication event on the specified channel or barrier. If an exception message is
specified then it will let the channel or barrier throw the exception message to the
participating processes. The exception message is passed to the producer and consumer
processes. If no exception message is specified then the channel or barrier will block
processes until the environment is willing to accept the events.

The refuse(..) method can be used to command the environment that an artificial
refusal should be carried out. This method can be used for two main reasons:

1. The application can be tested on possible failures on communication. This way
the robustness of the application can be tested.

2. In case the application deadlocks or livelocks then there is no way to terminate
the program or a particular part of the program. If an deadlock or livelock is
detected then with refuse(..) one can throw exceptions to channels or barriers
that will release synchronization and exception handling must gracefully
terminate the program.

A UnacceptableException results if the environmental process cannot refuse events on
the specified channel or barrier.

• Get the actual time

Environment.time() : Time

Returns the absolute time read by the environmental timer.

• Let a process sleep or sleepUntil a specified time

Besides the Environment class CTJ supports the Thread class that is similar as the Java

Thread class in order to manipulate the thread of control in processes. Since no channel or
barrier is directly involved we cannot use the environmental process. Thus we need the help
of the Thread class instead of the Environment class. The services by the Thread class are
local to the process and thread-oriented rather than communication event oriented.

Thread.sleep(relative_time)

Let the thread of control in a process sleep for the specified relative time.

Thread.sleepUntil(absolute_time)

Let the thread of control in a process sleep until the specified absolute time.

These methods may internally use the Environment methods to perform temporarily
blocking of the process on some hidden timed event. For sampling and steering we do not
use these methods.

 G.H. Hilderink and J.F. Broenink / Sampling and Timing: A Task for the Environmental Process 121

5. Example

In this example we will illustrate the use and mechanism for sampling. Consider the two
controller processes HController and LController depicted in Figure 2. The external
channels d1 and d2 are timed on sample interval Ts1 and external channels c1, c2 and c3 on
sample interval Ts2. In the following code we create the external channels and assign them
to the environmental process with specified start time and sampling interval. The sampling
rate for HController is 1 kHz and the sampling rate for LController is 0.1 kHz. The start
time is specified such that sampling starts when everything is constructed otherwise
deadlines may be passed on start-up.

//--- create external channels

Channel<int> d1 = new ADC(0);

Channel<int> d2 = new DAC(0);

Channel<int> c1 = new ADC(1);

Channel<int> c2 = new IncCounter(0);

Channel<int> c3 = new DAC(1);

//--- set up sampling timing and register channels to environment

long Ts1 = 1000; // in usec

long Ts2 = 10000; // in usec

long starttime = Environment::time() + 100000;

// firstly the inputs

Environment::at(d1, starttime, Ts1);

Environment::at(c1, starttime, Ts2);

Environment::at(c2, starttime, Ts2);

// secondly the outputs

Environment::at(d2, starttime, Ts1);

Environment::at(c3, starttime, Ts2);

//--- create processes and compositional relationships

...

Although processes can read and write on these channels in parallel, the conversions will

be in some sequence. This is because the environment uses the interrupt service routine that
demands an atomic sequence.

Every registration with the same start time and sampling interval belong to the same
atomic group and its order of execution is determined by the sequence of registration.
Therefore, the sequence of registration can be important. The sequence of inputs and
outputs will be sorted by its time stamp and when the time stamps are equal then the
sequence is determined by the sequence of registration. Due to this constraint, the
programmer can minimize conversion latencies be choosing a most optimal order of
registration. We will not discuss the implementation of how this is achieved in this paper.

We will illustrate this mechanism in Figure 5 using CSP diagram notations. Figure 5a
shows the communication relationships of both controllers with their input-output
counterparts in hardware (the input/output bubbles in the grey rectangle). In Figure 5b-d,
the compositional relationships between these the hardware inputs/outputs are rendered for

122 G.H. Hilderink and J.F. Broenink / Sampling and Timing: A Task for the Environmental Process

different scenarios. This is the solution for using interrupt handling on the internal timer.
Process LController has a lower sampling frequency (1/Ts2) than the sampling frequency

HController

d1@Ts1 d2@Ts1

LController

c1@Ts2 c2@Ts2 c3@Ts2

(a) Communication relationships

(b) Compositional relationships on t = ts1 = ts2

! ? ?! !

Processes in hardware (environment)

Figure 5 Atomic sequence of inputs and outputs by the environmental process

↑=

(c) Compositional relationships on t = ts1 and t ≠ ts2

HController LController

! ?

Processes in hardware (environment)
atomic

(d) Compositional relationships on t = ts2 and t ≠ ts1

HController LController

?! !

Processes in hardware (environment)
atomic

↑=

HController LController

!

?

!

Processes in hardware (environment)

2
atomic

!

?

 G.H. Hilderink and J.F. Broenink / Sampling and Timing: A Task for the Environmental Process 123

(1/Ts1) of process HController, with Ts1 < Ts2. Thus, we specify that LController gets a
lower priority than HController.

The conversions of the devices are done atomically. That is, they cannot be interrupted
by the application. This is depicted by the atomic rectangles in grey. Processor interrupt
mechanisms are sequential and mostly priority or pre-emption based. Therefore, the
sequential compositions and the prioritized parallel composition with the hardware
input/output processes are enforced by this environment.

This mechanism adapt to three scenarios, where:

1. t = ts1 = ts2 ⇔ ts1 = ts2
2. t = ts1 and t ≠ ts2 ⇒ ts1 ≠ ts2
3. t = ts2 and t ≠ ts1 ⇒ ts1 ≠ ts2

with variable t be the actual time. The sampling times are defined as:

ts1 ∈ {starttime + k1*Ts1| for k1 = 0,1,2,3,…}

ts2 ∈ {starttime + k2*Ts2| for k2 = 0,1,2,3,…}

Scenario 1: Figure 5b shows two equal time stamps. Sampling and actuation of all

channels will be done in a predefined sequence. Firstly, all sampling processes must be
performed and secondly all actuation processes must be performed. This introduces some
jitter between sampling and a varying distance between sampling and actuation. Usually
this jitter is so small that it does not endanger the stability or the accuracy of the controllers.

If it is really required that this variety is not allowed then all conversions should be done
at the same time at a fixed sequence. This can also be specified with a sequence of
at(…,starttime,Ts) registrations. In this case scenario 2 and 3 do not exist. The
problems can be that this solution consumes more energy and the quality and costs of all
components depend on the highest sampling frequency in the system. This may require
more expensive converters. Scenario 2: Figure 5c shows the situation when only time
stamp ts1 is reached. Scenario 3: Figure 5d shows the situation when only time stamp ts2 is
reached. However, in the practical case presented in this paper, Scenario 3 will never occur
when frequencies are multiplicities like in our JIWY case study of 1 kHz and 0.1 kHz. It is
included here for completeness.

We have applied the environmental process concept successfully for a mechatronic
system, called JIWY [11]. The control software is programmed in C++ with CTC++. A
small variation of jitter between sampling and actuation is allowed, and therefore both
scenario 1 and 2 apply for JIWY.

6. Conclusions

In this paper we described a concept of timing for untimed CSP architectures which
involves an environmental process that participates in communication events. An
environmental process is basically another CSP process that synchronizes on internal
events. This approach allows adequate timing on external channel communication that
provides sampling for control systems; something that was not possible with a timer object
or a sleep method. Proposing multi-way events contributed in an orthogonal concept that
does not require changes to an untimed CSP architecture. This concept may increase the
extendibility, portability, and maintainability of CSP based software designs.

124 G.H. Hilderink and J.F. Broenink / Sampling and Timing: A Task for the Environmental Process

References

[1] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall. London, UK, 1985.
[2] A.W. Roscoe. The Theory and Practice of Concurrency. C. A. R. Hoare and R. Bird Series in Computer

Sciences, Prentice-Hall. 1998. 0-13-674409-5.
[3] G.H. Hilderink, A.W.P. Bakkers and J.F. Broenink. A Distributed Real-Time Java System Based on

CSP. In The Third IEEE International Symposium on Object-Oriented Real-Time Distributed Computing
(ISORC-2000), IEEE Computer Society. Newport Beach, California: pp. 400-407, 2000.

[4] G.H. Hilderink. A Graphical Modelling Language for Specifying Concurrency based on CSP. In IEE
Proceedings Software, IEE. 150: 108-120, 2002. ISSN 1462-5970.

[5] INMOS. occam 2 Reference Manual. C. A. R. Hoare International Series in Computer Science, Prentice
Hall. 1988. ISBN 0-13-629312-3.

[6] P.H. Welch and P.D. Austin. The JCSP home page, http://www.cs.ukc.ac.uk/projects/ofa/jcsp, 1999.
[7] G.H. Hilderink. Communicating Threads for Java (CTJ) home page, http://www.rt.el.utwente.nl/javapp,

2002.
[8] S. Schneider. Concurrent and Real-time Systems. S. U. U. D. Barron and B. U. U. P. Wegner Worldwide

series in computer science, John Wiley & Sons. Chichester, UK, 2000. 0-471-62373-3.
[9] U.o. Oxford. Better Ways to Program Parallel Processors,

http://oldwww.comlab.ox.ac.ul/oucl/ocpara/methods.html, (UK).
[10] G. Jones. On Guards. In E. T. Muntean 7th Occam User Group & International Workshop on Parallel

Programming of Transputer based Machines, LGI-IMAG. Grenoble, 1987.
[11] D.S. Jovanovic, G.H. Hilderink and J.F. Broenink. A Communicating Threads (CT) Case Study: JIWY.

In J. S. Pascoe, P. H. Welch, R. J. Loader and V. S. Sunderam Communicating Process Architecture
2002, IOS Press. University of Reading, UK. 60: pp. 311-320, 2002. ISSN 1383-7575.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

