Communicating Process Architectures 2008 1
P.H. Welch et al. (Eds.)

IOS Press, 2008

(© 2008 The authors and IOS Press. All rights reserved.

Types, Orthogonality and Genericity:
Some Tools for Communicating Process
Architectures

Samson ABRAMSKY

Oxford University Computing Laboratory,
Wolfson Building, Parks Road, Oxford OX1 3QD, U.K.

samson@omn ab. ox. ac. uk

Abstract. We shall develop a simple and natural formalization of tresidfclient-
server architecturesand, based on this, define a notionasthogonality between
clients and servers, which embodies strong correctnegsepres, and exposes the
rich logical structure inherent in such systems. Then weeg#ize from pure clients
and servers teomponentswhich provide some services to the environment, and re-
quire others from it. We identify the key notion cdmpositiorof such components, in
which some of the services required by one component ardiedfjy another. This
allows complex systems to be built from ultimately simplenpmnents. We show that
this has the logical form of th€ut rule a fundamental principle of logic, and that it
can be enriched with a suitable notiontehavioural typebased on orthogonality, in
such a way that correctness properties are preserved byositiop. We also develop
the basic ideas of how logical constructions can be usedvelalestructured inter-
facesfor systems, with operations corresponding to logicalsukenally, we show
how the setting can be enhanced, and made more robust anessixger, by using
namegas in ther-calculus) to allow clients to bind dynamically to genenstances
of services.

Keywords. client, server, type, orthogonality, genericity, inteia.

Introduction

Concurrent programming has been a major topic of study iniiaen Science for the past
four decades. It is coming into renewed prominence cugiatt several reasons:

e As the remit of Moore’s law finally runs out, further perfornte increases must be
sought from multi-core architectures.

e The spread of web-based applications, and of mobile, glha@lubiquitous comput-
ing, is making programming with multiple threads, acrossinm@e boundaries, and
interacting with other such programs, the rule rather thareiception.

These trends raise major questionspadgrammability how can high-quality software be
produced reliably in these demanding circumstances? Conaatting process architectures,
which offer general forms, templates and structuring devifor building complex systems
out of concurrent, communicating components, have an itapbpart to play in addressing
this issue.

2 S. Abramsky / Types, Orthogonality and Genericity

Hot Topics and Timeless Truths

Our aim in this paper is to explore some general mechanismhstanctures which can be
used for building communicating process architecturesshiéd show how ideas from logic
and semantics can play a very natufdérhere.

The paper is aimed at the broad CPA community with some pxpogure to formal
methods, so we shall try to avoid making the technical dgraknt too heavy, and emphasize
the underlying intuitions.

Our plan is as follows:

e We shall develop a simple and natural formalization of themidfclient-server ar-
chitectures and, based on this, define a notionosthogonalitybetween clients and
servers, which embodies strong correctness propertiesexgmoses the rich logical
structure inherent in such systems.

e Then we generalize from pure clients and serverotoponentsvhich provide some
services to the environment, and require others from it. femtify the key notion
of compositionof such components, in which some of the services requiregniey
component are supplied by another. This allows complexesystto be built from
ultimately simple components. We show that this has the&dorm of theCut rule,

a fundamental principle of logic, and that it can be enrichwttl a suitable notion of
behavioural typebased on orthogonality, in such a way that correctness piepe
are preserved by composition.

e We also develop the basic ideas of how logical constructiamsbe used to develop
structured interfacefor systems, with operations corresponding to logicalgule

e Finally, we show how the setting can be enhanced, and made noloust and expres-
sive, by usingnames(as in ther-calculus) to allow clients to bind dynamically to
generic instances of services.

We shall build extensively on previous work by the author arglcolleagues, and others.
Some references are provided in the final section of the p@pgrmain aim in the present
paper is to find a simple and intuitive level of presentationyhich the formal structures
flow in a natural and convincing fashion from the intuitiomslahe concrete setting of com-
municating process architectures.

1. Background: Clientsand Servers

Our basic structuring paradigm is quite natural and familiee shall view interactions as
occurring betweeglientsandservers A server is a process which offers services to its en-
vironment; a client makes uses of serviédgoreover, we will assume that services are styl-
ized into aprocedural interfacea service interface is structured into a numbematthods
and each use of a method is initiated bygall, and terminated by &turn. Thus service
methods are very much like methods in object-oriented rogning; and although we shall
not develop an extensive object-oriented setting for tleasdwe shall explore here, they
would certainly sit comfortably in such a setting. Howewarr basic premise is simply that
client-server interactions are structured into procedileecall-return interfaces.

1At a later stage, we shall pursue the obvious thought thasirffciently global perspective, a given process
may be seen as both a client and a server in various contesttd;\ill be convenient to start with a simple-
minded but clear distinction between the two, which roughétches the standard network architecture concept.

S. Abramsky / Types, Orthogonality and Genericity 3

1.1. Datatypes and Signatures

Each service method call and return will have some assacjzeameters. We assume a
standard collection of basic data typegy.int, bool. The type of a service methad will
then have the form

m:A1><"'><An—>Bl><---XBm

where eachd; and B; is a basic type. We allow = 0 or m = 0, and writeunit for the
empty product, which we can think of as a standard one-eletype.

Examples
e Ainteger counter service has a method
inc : unit — nat

It maintains a local counter; each time the method is involeslcurrent value of the
counter is returned, and the counter is incremented.
e A st ack service has methods

push: D — unit
pop :unit — unit
top :unit — D

A signatureX: is a collection of such named, typed methods:
Y= {m1 IT17...,mkITk}.

A signature defines the interface presented by a servicellection of services to an envi-
ronment of potential clients.

A more refined view of such an interface would distinguish enbar of service types,
each with its own collection of methods. This would be analggto introducingclasses
as in object-oriented programming. We shall refrain frotndducing this refined structure,
since the notions we wish to explore can already be defindtedevel of “flat” collections
of methods.

1.2. Client-Server Interactions

Although we have written service method types in a converiigrctional form
m:A; x---xA,— By x---xB,

a method interaction really consists of two sepaeatents each of which consists ofsyn-
chronized interactiorbetween a client and server. From the point of view of a seoffer-
ing a methodn, it will offer a call m!(z4,...,z,) to the environment. Here the variables
x1,...,x, Will be bound by the call, and used in the subsequent compat&b perform
the service method. A client performing a method callens trying to perform an action
m!(vy,...,v,) with actual values for the parameters. The method is agtiralbked when
such a call by the client synchronizes with a matching cédrdfy the server.

Dually, a service return involves the synchronization ofaationm, (w, ..., w.,) by
the server with an actiom, (v, ..., y,) by the client, which binds the values returned by
the server for future use in the client.

4 S. Abramsky / Types, Orthogonality and Genericity

Server Client

Whereas in a sequential program, the caller simply waits dffte call for the return, and
dually the subroutine simply waits to be invoked, here weamsuiming a concurrent world
where multiple threads are running in both the server andltaat. We should really think
of the ‘server’ and ‘client’ as parallel compositions

S:”Si, C:HCj
el jeJ

where eachs; is offering one or more service methods. Thus multiple meéshare being
offered concurrently by the servers, and are being calledwoently by the clients.

To proceed further, we need some formal representationoafsses. We shall not need
to delve into the details of process algebra, nor do we needrtomit ourselves to a partic-
ular choice from the wide range of process models and eauneak which have been pro-
posed. Nevertheless, for definiteness we shall assuméthbéehaviour of processes is spec-
ified by labelled transition systen{21], which can fairly be described as the workhorses of
concurrency theory.

Recall that a labelled transition system on a set of laBels a structure @, R) where

Q is a set of states, anl C Q x £ x Q is the transition relation. We write —— ¢ for
(p,a,q) € R. We assume, in a standard fashion, tiatontains asilent or unobservable

actionr [21]; transitiongp —— ¢ represent internal computational steps of a system, withou
reference to its environment.
Now fix a server signature. We define

2y = {m(&),m (@) | m € B}
the set of server-side actions overDually, we define
% = {m(5),m() | m € T}

the set of client-side actions over

A X-serveris a process defined by a labelled transition system over af $abels L
such that, C £ andX.N L = @. A Y-clientis a process defined by a labelled transition
system over a set of labelsf such that:. C M andX, N L = @.

We shall now define an operation which expresses how a chéataicts with a server.
Let s be aX-server, and: a >-client. We define the behaviour ef<iy; ¢ by specifying its
labelled transitions. Firstly, we specify that for actiangside the interfacg, s andc proceed
concurrently, without interacting with each other:

§—u g c ¢

(A &) X (A & Xe)

X
s<dyc—— ' s cC sy c—— s

S. Abramsky / Types, Orthogonality and Genericity 5
Then we give the expected rules describing the interacttonesponding to method calls
and returns:

mb(@) ml (@) my (@) my(¥)

S——> S C—C S§——> S C—C

mil (7.7 my (W:7)

s'VU/z) < s <y c s' <y ¢ [W/y]

Here s'[¢//Z] denotes the result of binding the valuéto the variableg’ in the continuation
process’, and similarly forc' [/ 9].

sy C

2. Orthogonality

Intuitively, there is an obviouduality between clients and servers; and where there is duality,
there should be somlegical structure We now take a first step towards articulating this
structure, which we shall use to encapsulate thedagyectness propertiesf a client-server
system.

We fix a server signaturg. Let s be a¥-server, and: a X-client. A computatiorof the
server-client system <y, ¢ Is a sequence of transitions

S<]§;Ci>81 <]§;Cl£> LSkﬁgck.
We shall only consider finite computations.

For every such computation, we have an associabesgrvation which is obtained by
concatenating the labels - - - A, on the transitions. For each methede X, we obtain an
m-observatiorby erasing all labels in this sequence other than those dbthem!! (7 :)
andm (@ : i), and replacing these by !l andm ; respectively.

We say that <5, ¢ is Y-activeif for some computation starting from<is, ¢, and some
m € Y, the corresponding:-observation is non-empty. A similar notion applies to g
considered in isolation.

We say that is orthogonal toc, written s_L¢, if for every computation

3<1ch i’Sk:<120k
the following conditions hold:
Y-receptiveness. If ¢ is X-active, then so is;, <y, ¢.
Y-completion. The computation can be extended to

A Ak Akt
s ¢ — -+ — > S Ix Cg*++ — Skl]y Cik41
with [> 0, whosem-observatior,,, for eachm € X, is a sequence of alternating calls and
returns ofm:

om € (mmy)*.

This notion of orthogonality combines several importantectness notions, “localized” to
the client-server interface:

e Itincorporates a notion adeadlock-freedon®i-receptiveness ensures that whenever
the client wishes to proceed by calling a service method, ey offer of such a
service must eventually be available from the seietompletion ensures that every
method execution which is initiated by a call must be conguldiy the correspond-
ing return. Note that, since this condition is applied alafigcomputations, it takes
account of non-deterministic branching by the server aedctient; no matter how

6 S. Abramsky / Types, Orthogonality and Genericity

the non-deterministic choices are resolved, we cannonhgieai state where either the
client or the server get blocked and are unable to partieipethe method return.

e There is also an element lnfelock-freedomit ensures that we cannot get indefinitely
delayed by other concurrent activities from completing ahoe return. Note that
our definition in terms of extensions of finite computationseffect incorporates a
strong fairness assumptipthat transitions which are enabled infinitely often must
eventually be performed. An alternative treatment couldiben in terms of maximal
(finite or infinite) computations, subject to explicit fa@$s constraints.

e Finally, notice that this notion of orthogonality also imporates aerialization re-
quirement once a given method has been invoked, no further offersaifrtrethod
will be made until the invocation has been completed by théhatereturn. The obvi-
ous way of achieving this is to have each method implememtatinning as a single
sequential thread within the server. This may seem oveslyicive, but we shall see
later how with a suitable use oamesas unique identifiers for multiple instances of
generic service methods, this need not compromise expeesEss.

2.1. The Galois Connection

We shall now see how the orthogonality relation allows fertstructure to be expressed. Let
S be the set of-servers over a fixed ambient set of lab&lsandC the set of:-clients over
a set of labelsM. We have defined a relatioh € S x C. This relation can be used in a
standard way to define@alois connectioifl3] betweerP(S) andP(C).

GivenS C S, define

St={ceC|Vse S slc}
Similarly, givenC' C C, define

Ct={s€S8|VceC. slc}
The following is standard [13]:

Proposition 2.1 1. Forall S, TCS: SCT = T+C S+,
2. ForallC,DCC: CCD = D+CC+.
3.ForallC CCandSCS: StDOC «— SCC.
4. ForallC CCandS CS: St =St+tandCt = 0+,

We defineS = S++, C = C++. The following is also standard:

Proposition 2.2 The mapping$ — S andC ~ C are closure operators, oA(S) andP(C)
respectively. Thatis:

scsS §=§5 ScCcT =8cCT
and similarly
ccC, C=C, cCD = CCD.

We can think of closed sets of serverssasuratedunder “tests” by clientsS is the largest
set of servers which passes all the tests of orthogonalitfeuimteraction with clients that
the servers irt do. Similarly for closed sets of clients. We shall eventugiew such closed
sets advehavioural types

2.2. Examples

We shall give some simple examples to illustrate the dedimiti We shall use the notation of
CCS [21], but we could just as well have used CSP [16], or gthecess calculi.

S. Abramsky / Types, Orthogonality and Genericity 7

Firstly, we define a signature with two operations:

inc:unit — unit
dec: unit — unit

This specifies an interface for a binary semaphore. We defirevars = binsem(0), where:

binsem(0) = inc'.inc|.binsem(1)
binsem(1) = dec'.dec|.binsem(0)

We define a client by

¢ = inc!|inc;|dec! |dec;.

Thens is orthogonal tac. However,dec'.c is not orthogonal tas, since Receptivity fails;
while inc).s is not orthogonal te, since Completion fails.

3. TheOpen Universe

Thus far, we have assumed a simple-minded but conveniembtimy between clients and
servers. There are many reasons to move to a more genenad s€tte most compelling is
that the general condition of systems is todpen interacting with an environment which is
not completely specified, and themselves changing over. ftather than thinking of com-
plete systems, we should think in termssgtem components

Relating this to our service-based view of distributed catapon, it is natural to take
the view that the general case of a system component is agzradech:

1. requirescertain services to be provided to it by its environment
2. providesother services to its environment.

Such a component is@dient with respect to the services in (1), anderverwith respect to
the services in (2). The interface of such a component ha®the

Y= A

whereY and A are server signatures as already defined; we assum&thak = @. The
idea is that: describes the interface of the component to its environmeatlient, andA
the interfacequaserver.

A process has this interface type, written:: > — A, if it is described by a labelled
transition system on the set of labels

Y.UA;U{T}.

HereX. is the client-side set of actions &f, and /A, the server-side set of actions Af as
previously defined, while is the usual silent action for internal computational stéste
that this interface type is now regarded as exhaustive opdissible actions gf. Note also
that apure A-serveris a process :: —> A with empty client-side signature, whilepaure
Y-clientis a process :: ¥ = with empty server-side signature. Thus servers and clasts
discussed previously are special cases of the notion of coem.

3.1. Composition

We now look at a fundamental operation for such systesompositioni.e. plugging one
system into another across its specified interface. It ispa®ition which enables the con-
struction of complex systems from ultimately simple comgmais.

We shall write interface types in a partitioned form:

8 S. Abramsky / Types, Orthogonality and Genericity
Py, a0y = A

This is equivalent tg :: ¥ = A, whereX = ¥, 3J;. Writing the signature in this form
implicitly assumes that the; arepairwise disjoint More generally, we assume from now on
that all signatures named by distinct symbols are pairwisjeidt.

Suppose that we have components

pi A =3, qg: 3 A= 0.

Then we can form the system<iy, ¢q. Note that our definition of <y, ¢ in Section 1 was
sufficently general to cover this situation, taking- p andc = ¢, with £ = AL U X, U {7},
andM =X, UA’uU©,U{r}.

We now define

POrqg=(p<xzq)\X.

The is the process obtained frgmxs, ¢ by replacing all labelsn! (7 :) andm (@ :),
with m € ¥, by 7. This internalizes the interaction betweeandg, in which p provides the
services in required byg.

Proposition 3.1 The procesp Oy ¢ satisfies the following interface specification:
pOnqg: AN AN =06,

The reader familiar with the sequent calculus formulatiblogic will recognize the analogy
with the Cut rule

= A Al'=— B
I.I"— B

This correspondence is no accident, and we will developtla hore of the connection to
logic in the next section, although we will not be able to exelit fully here.

3.2. Behavioural Types

We now return to the idea of behavioural types which we diseddriefly in the previous
Section. Given a signatube, we define

CX)=A{clc: Y=}, SE)={s]|s:= %}
the sets of pur&-clients and servers. We define an orthogonality relation
1y CC(X) x S(X)

just as in Section 1, and operatiofi$- on sets of servers and clients. We use the notation
A[X] for abehavioural type of servers diy i.e.a setA C S(X) such thatd = A++.

Given a component :: ¥ = A and behavioural typed[>] and B[A], we define
p :: A[¥] = BJ|A] if the following condition holds:

VSEA.S@X;Z)EB.

This is the condition for a component to satisfy a behavildypee specification, guaranteeing
important correctness properties across its interface.
Proposition 3.2 The following are equivalent:

1. p: A[¥] = BI[A]
2.Vs€ A,c€ B+.(sOxgp)Lac

S. Abramsky / Types, Orthogonality and Genericity 9
3.Vse€ A,ce Bt.sly(p®ac).

These properties suggest how" plays the éle of a logical negation. For example, one can
think of property (3) as a form afontraposition it says that ifc is in B+, thenp ®x c is

in AL, Note thats @y, p is a A-server, whilep ©4 ¢ is aX-client, so these expressions are
well-typed.

3.3. Soundness of Composition

We now come to a key pointhe soundness of composition with respect to behavioypal ty
specificationsThis means that the key correctness properties acrostaices are preserved
in a compositional fashion as we build up a complex systemlbgging components to-
gether.

Firstly, we extend the definition of behavioural type speaiion for components to
cover the case of partitioned inputs. We define A;[%4], ..., Ax[Xx] = B[A] if:

k
VsleAl,...,skeAk.(” s;))Osp € B.
=1

=

Here||f:1 s; Is the parallel composition of the; note that, since th&, are disjoint, these
processes cannot communicate with each other, and sintplygave their actions freely.
Now we can state our key soundness property for composition:

Proposition 3.3 Suppose we have:: A'[A'] = B[X]| andq :: B[X], A"[A"] = C[O)].
Then

POy q A’[A’], A”[A”] = (C[O].
This can be formulated as an inference rule:

p: A[A'] = B[Y] q:: B[Y], A"[A"] = C[0]
pOx q: A[A], A'[A"] = C[O]

4. Structured Typesand Behavioural Logic

We shall now develop the logical structure inherent in thesspective on communicating
process architectures a little further.

We shall consider some ways of combining types. The firstrg staightforward. Sup-
pose we have behavioural typd$:] and B[A] (where, as always, we are assuming that
andA are disjoint). We define the new type

AX]® BI[A] ={s||t|s € Aandt € B}**

over the signatur& U A.
Now we can see the partitioned-input specification

piAS], . Ar[Er] = A
as equivalent to

pu A ®- @ Ag[Xr] = A.
Moreover, we have the “introduction rule”™

p: A[X] = BIA], q:: AY] = B'[A]
pll q: AX], A'Y] = B[A] ® B'[A]

10 S. Abramsky / Types, Orthogonality and Genericity

Thus ® allows us to combine disjoint collections of services, sdcamerge independent
components into a single system.
More interestingly, we can form an implication type

A[Y] — BIA].

This describes the type of components which need a servgpefA in order to produce a
server of typeB:

AS] — B[A] = {p: X = A|Vs€ A.s@sp€ B}.

We can define an introduction rule:
p: A[X], B[A] = C[9]

p:: AX] = B[A] — C[O]
and an elimination rule

C0] = A[X] — BIA], q: C'0] = A[X]

q@sp: C[O],C'0] = B[A]
These correspond to abstraction and application in thegfiy\-calculus [15].
This gives us a first glimpse of how logical and ‘higher-otd#mucture can be found in a

natural way in process architectures built from clientteemterfaces. We refer the interested
reader to [5,6,3] for further details, in a somewhat differgetting.

4.1. Logical Wiring and Copycat Processes
Given a signatur& = {m, : Ty, ..., my : T}.}, itis useful to create renamed variants of it:
2O = {(ml 1y, ... ,m,(f) :Te}.

We can define an “identity component” which behaves like gycapprocess [9,2], relaying
information between input and output:

idy : 20 —= 1@

. — — 1 —\ 2 —\ .
idy =) m(z)i(x).m(m(:v).m%)(y).mi)(y).ldz;
mex

In a similar fashion, we can define a component for functigoliagtion (or Modus Ponens):
apps: A (2(2) —o A(l)) @2l —= A®
appy; » = ids | ida.

To express the key property of this process, we need a seitadilon of equivalence of
components. Givep, ¢ :: ¥ = A, we defingp ~5 A ¢ Iff:

Vs e S(X),c € C(A). (s Opp)Llac <= (s Oz q)Lac.
Now suppose we have processes
p 0 = 2@ o AW, g0, =xU,

Then, allowing ourselves a little latitude with renamings@natures, we can express the key
equivalence as follows:

P 1l 9) O _oa))exn) @8PPs A 12054 ¢ Os P

S. Abramsky / Types, Orthogonality and Genericity 11
5. Genericity and Names

The view of service interfaces presented by signatures\adajeed thus far has some limi-
tations:

e Itis rather rigid, depending on methods having unique dlglzesigned names.
e It is behaviourally restrictive, because of the serialmatrequirement on method
calls.

Note that allowing concurrent method activations wouldseaa problem as things stand:
there would not be enough information available to assecrathod returns with the corre-
sponding calls. The natural way to address this is to assigmgue name to each concur-
rent method invocation; this can then be used to associatiarwith the appropriate call.
The use of distinct names for the various threads which deging) the same generic service
method also allows for more flexible and robust naming.

The notion of names we are using is that of thealculus and other ‘nominal calculi’
[22]. Names can be compared for equality and passed aroumeéssages, and new names
can be generated in a given scope, and these are the onlghdeailperations. We find it
notationally clearer to distinguish between name constant, v, ...and name variables
b, ¢, ... but this is not an essential point.

These considerations lead to the following revised viewhefdctions associated with a
methodm:

e On the server side, a server offerdogated instanceof a call of m, as an action
{a)m!(Z). Several such calls with distinct locatiorise(namesa) may be offered
concurrently, thus alleviating the serialization reqment. The corresponding return
action will be (o)m | (w). The name can be used to match this action up with the
corresponding call.

e On the client side, there are two options for a call: the tlimay either invoke a
located instance it already knows:

(aym!(7)
or it may invoke a generic instance with a name variable:
(a)m! (7).

This can synchronize with any located instance which isreffewitha being bound
to the name of that instance. A return will be on a specificinsg:

{ymy (7)) -
The definition of the operation <y, ¢ is correspondingly refined in the rules specifying the
client-server interactions, as follows:

<a)ml(f) / (a)mT (77) /
S —mm S C C

(czaym T (z:7)

s g ¢ ————— §'[U/Z] <g [a/al
(ym(®) o c (ym1 (%) o 5 ()ym (@) (ymy(§)

v s (a)ymp(
to)m”) s'vU/z) < ¢ s <y ¢

sy C

It is easy to encode these operations inthealculus [22], or other nominal calculi. They
represent a simple design pattern for such calculi, whishvéty naturally with the server-
client setting we have been considering.

Note that in generic method calls, the clientrézeivingthe name while sending the
parameters to the call, while conversely the server is sgnttie name and receiving the

12 S. Abramsky / Types, Orthogonality and Genericity

parameters. This “exchange of values” [20] can easily beded, but is a natural feature of
these interactions.

5.1. Orthogonality and Types Revisited

It is straightforward to recast the entire previous develept in the refined setting. The main
point is that the orthogonality relation is now defined imterof the symbolga)m!" and
(aymy. Thus serialization is only required on instances.

6. Further Directions

The ideas we have presented can be developed much furtdelp aome extent have been;
see the references in the next section.

One aspect which we would have liked to include in the prepaper concerndata
assertionsThe notion of orthogonality we have studied in this papeaisleith control flow
and synchronization, but ignores the flow of data betweantdiand servers through the
parameters to method calls and returns. In fact, the coresstproperties of this data-flow
can also be encapsulated elegantly in an extended notiatholgmnality. We plan to describe
this in a future publication.

Acknowledgements

This paper builds on much previous work, mainly by the autimat his colleagues, although
the specific form of the presentation, and the emphasis artegdual interfaces and client-
server interactions, has not appeared previously in gudgdisorm.

We mention some of the main precursors.

e Particularly relevant is the work dnteraction categorieandSpecification structures
— although no categories appear in the present paper! Mutthsofvas done jointly
with the author’s former students Simon Gay and Raja Nagardj,9,5,6,7,8]. See
also [12] with Dusko Pavlovic.

e Ideas from Game semantics [2,10,9,11], many developedleboration with Radha
Jagadeesan and Pasquale Malacaria, have also been iafiuentexample, the four
types of actions associated with method calls correspotietiour-fold classification
of moves in games as Player/Opponent and Question/Answer.

e \Various notions of orthogonality in the same general spisitthat used here, but
mainly applied in logical and type-theoretic settings,dappeared over the past 15—
20 years. Some examples include [15,19,17]. The applitatianotions in concur-
rency originated with the present author [1,5,6,3].

e The closest precursor of the present paper is an unpubligichare given by the
author in 2002 [4].

e General background is of course provided by work in conciyeéheory, especially
process algebra [16,21,22].

Recent work in a related spirit includes work on sessiongygee e.g. [23]. Another pos-
sibly relevant connection, of which the author has only ndgebecome aware, is with the
Handshake algebra developed for asynchronous circuijsghl a game semantics for this
algebra which has appeared recently [14].

S. Abramsky / Types, Orthogonality and Genericity 13
References

[1] S. Abramsky. Interaction categories (extended ab§tracG. L. Burn, S. J. Gay, and M. D. Ryan, editors,
Theory and Formal Methods 1998ages 57—69. Springer-Verlag, 1993.

[2] S. Abramsky. Semantics of Interaction: an introductiorGame Semantics. In P. Dybjer and A. Pitts,
editors,Proceedings of the 1996 CLICS Summer School, Isaac Newdtitutg pages 1-31, Cambridge
University Press, 1997.

[3] S. Abramsky. Process realizability. In F. L. Bauer andI&inbiiggen, editorsiFoundations of Secure
Computation: Proceedings of the 1999 Marktoberdorf SumBohioo] pages 167—-180. IOS Press, 2000.

[4] S. Abramsky. Reactive refinement. Oxford University Gurting Laboratory seminar, 2002.

[5] S. Abramsky, S. Gay, and R. Nagarajan. Interaction aateg and the foundations of typed concurrent
programming. In M. Broy, editoRroceedings of the 1994 Marktoberdorf Summer Sxhool on G&eu
Program Designpages 35-113. Springer-Verlag, 1996.

[6] S. Abramsky, S. Gay, and R. Nagarajan. Specificationcsiras and propositions-as-types for con-
currency. In G. Birtwistle and F. Moller, editorogics for Concurrency: Structure vs. Automata—
Proceedings of the VI I Ith Banff Higher Order Workshppges 5—-40. Springer-Verlag, 1996.

[7]1 S. Abramsky, S. Gay, and R. Nagarajan. A type-theorgtfir@ach to deadlock-freedom of asynchronous
systems. In M. Abadi and T. Ito, editor§heoretical Aspects of Computer Softwarelume 1281 of
Springer Lecture Notes in Computer Scienuages 295-320. Springer-Verlag, 1997.

[8] S. Abramsky, S. J. Gay, and R. Nagarajan. A specificatiarcsire for deadlock-freedom of synchronous
processes. litheoretical Computer Sciencenlume 222, pages 1-53, 1999.

[9] S. Abramsky and R. Jagadeesan. Games and full comptetémemultiplicative linear logicJournal of
Symbolic Logic59(2):543-574, 1994.

[10] S. Abramsky and R. Jagadeesan. New foundations for ¢loengtry of interaction.Information and
Computation, 111(1)pages 53-119, 1994.

[11] S. Abramsky, R. Jagadeesan, and P. Malacaria. Fullabistn for PCF. Innformation and Computatign
volume 163, pages 409-470, 2000.

[12] S. Abramsky and D. Pavlovic. Specifying processes..IN&ggi and G. Rosolini, editor®roceedings of
the International Symposium on Category Theory In Compstézncevolume 1290 ofSpringer Lecture
Notes in Computer Sciengeages 147-158. Springer-Verlag, 1997.

[13] B. A. Davey and H. A. Priestleyntroduction to Lattices and OrdeilCambridge University Press, second
edition, 2002.

[14] L. Fossati. Handshake gamdslectronic Notes in Theoretical Computer Scientgl(3):21-41, 2007.

[15] J.-Y. Girard. Linear logicTheoretical Computer Sciencio87.

[16] C. A. R. Hoare.Communicating Sequential ProcessBsentice Hall, 1985.

[17] M. Hyland and A. Schalk. Glueing and orthogonality foodels of linear logic.Theoretical Computer
Science294:183-231, 2003.

[18] M. B. Josephs, J. T. Udding, and J. T. Yantchev. Handsladdebra. Technical Report SBU-CISM-93-1,
South Bank University, 1993.

[19] R. Loader. Linear Logic, Totality and Full Completere&ICS 1994: 292-298, 2004.

[20] G. Milne and R. Milner. Concurrent processes and thgitax. Journal of the ACM26(2):302-321,
1979.

[21] R. Milner. Communication and Concurrencirentice Hall International, 1989.

[22] R. Milner. Communication and Mobile Systems: thealculus Cambridge University Press, 1999.

[23] V. Vasconcelos, S. J. Gay, and A. Ravara. Type checkmgléithreaded functional language with session
types.Theoretical Computer Sciencg68((1-2)):64—87, 2006.

