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Abstract. We shall develop a simple and natural formalization of the idea ofclient-
server architectures, and, based on this, define a notion oforthogonalitybetween
clients and servers, which embodies strong correctness properties, and exposes the
rich logical structure inherent in such systems. Then we generalize from pure clients
and servers tocomponents, which provide some services to the environment, and re-
quire others from it. We identify the key notion ofcompositionof such components, in
which some of the services required by one component are supplied by another. This
allows complex systems to be built from ultimately simple components. We show that
this has the logical form of theCut rule, a fundamental principle of logic, and that it
can be enriched with a suitable notion ofbehavioural typesbased on orthogonality, in
such a way that correctness properties are preserved by composition. We also develop
the basic ideas of how logical constructions can be used to developstructured inter-
facesfor systems, with operations corresponding to logical rules. Finally, we show
how the setting can be enhanced, and made more robust and expressive, by using
names(as in theπ-calculus) to allow clients to bind dynamically to generic instances
of services.
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Introduction

Concurrent programming has been a major topic of study in Computer Science for the past
four decades. It is coming into renewed prominence currently, for several reasons:

• As the remit of Moore’s law finally runs out, further performance increases must be
sought from multi-core architectures.

• The spread of web-based applications, and of mobile, globaland ubiquitous comput-
ing, is making programming with multiple threads, across machine boundaries, and
interacting with other such programs, the rule rather than the exception.

These trends raise major questions ofprogrammability: how can high-quality software be
produced reliably in these demanding circumstances? Communicating process architectures,
which offer general forms, templates and structuring devices for building complex systems
out of concurrent, communicating components, have an important part to play in addressing
this issue.
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Hot Topics and Timeless Truths

Our aim in this paper is to explore some general mechanisms and structures which can be
used for building communicating process architectures. Weshall show how ideas from logic
and semantics can play a very natural rôle here.

The paper is aimed at the broad CPA community with some prior exposure to formal
methods, so we shall try to avoid making the technical development too heavy, and emphasize
the underlying intuitions.

Our plan is as follows:

• We shall develop a simple and natural formalization of the idea ofclient-server ar-
chitectures, and, based on this, define a notion oforthogonalitybetween clients and
servers, which embodies strong correctness properties, and exposes the rich logical
structure inherent in such systems.

• Then we generalize from pure clients and servers tocomponents, which provide some
services to the environment, and require others from it. We identify the key notion
of compositionof such components, in which some of the services required byone
component are supplied by another. This allows complex systems to be built from
ultimately simple components. We show that this has the logical form of theCut rule,
a fundamental principle of logic, and that it can be enrichedwith a suitable notion of
behavioural typesbased on orthogonality, in such a way that correctness properties
are preserved by composition.

• We also develop the basic ideas of how logical constructionscan be used to develop
structured interfacesfor systems, with operations corresponding to logical rules.

• Finally, we show how the setting can be enhanced, and made more robust and expres-
sive, by usingnames(as in theπ-calculus) to allow clients to bind dynamically to
generic instances of services.

We shall build extensively on previous work by the author andhis colleagues, and others.
Some references are provided in the final section of the paper. Our main aim in the present
paper is to find a simple and intuitive level of presentation,in which the formal structures
flow in a natural and convincing fashion from the intuitions and the concrete setting of com-
municating process architectures.

1. Background: Clients and Servers

Our basic structuring paradigm is quite natural and familiar: we shall view interactions as
occurring betweenclientsandservers. A server is a process which offers services to its en-
vironment; a client makes uses of services.1 Moreover, we will assume that services are styl-
ized into aprocedural interface: a service interface is structured into a number ofmethods,
and each use of a method is initiated by acall, and terminated by areturn. Thus service
methods are very much like methods in object-oriented programming; and although we shall
not develop an extensive object-oriented setting for the ideas we shall explore here, they
would certainly sit comfortably in such a setting. However,our basic premise is simply that
client-server interactions are structured into procedure-like call-return interfaces.

1At a later stage, we shall pursue the obvious thought that in asufficiently global perspective, a given process
may be seen as both a client and a server in various contexts; but it will be convenient to start with a simple-
minded but clear distinction between the two, which roughlymatches the standard network architecture concept.
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1.1. Datatypes and Signatures

Each service method call and return will have some associated parameters. We assume a
standard collection of basic data types,e.g.int, bool. The type of a service methodm will
then have the form

m : A1 × · · · × An −→ B1 × · · · × Bm

where eachAi andBj is a basic type. We allown = 0 or m = 0, and writeunit for the
empty product, which we can think of as a standard one-element type.

Examples

• A integer counter service has a method

inc : unit −→ nat

It maintains a local counter; each time the method is invoked, the current value of the
counter is returned, and the counter is incremented.

• A stack service has methods

push : D −→ unit

pop : unit −→ unit

top : unit −→ D

A signatureΣ is a collection of such named, typed methods:

Σ = {m1 : T1, . . . ,mk : Tk} .

A signature defines the interface presented by a service or collection of services to an envi-
ronment of potential clients.

A more refined view of such an interface would distinguish a number of service types,
each with its own collection of methods. This would be analogous to introducingclasses
as in object-oriented programming. We shall refrain from introducing this refined structure,
since the notions we wish to explore can already be defined at the level of “flat” collections
of methods.

1.2. Client-Server Interactions

Although we have written service method types in a convenient functional form

m : A1 × · · · × An −→ B1 × · · · × Bm

a method interaction really consists of two separateevents, each of which consists of asyn-
chronized interactionbetween a client and server. From the point of view of a serveroffer-
ing a methodm, it will offer a call m↓(x1, . . . , xn) to the environment. Here the variables
x1, . . . , xn will be bound by the call, and used in the subsequent computation to perform
the service method. A client performing a method call onm is trying to perform an action
m↑(v1, . . . , vn) with actual values for the parameters. The method is actually invoked when
such a call by the client synchronizes with a matching call offer by the server.

Dually, a service return involves the synchronization of anactionm↓(w1, . . . , wm) by
the server with an actionm↑(y1, . . . , ym) by the client, which binds the values returned by
the server for future use in the client.
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Server Client

...
m↓(~x)

~x := ~v
...
...

m↓(~w)
...

...
m↑(~v)

...

...
m↑(~y)

~y := ~w
...

Whereas in a sequential program, the caller simply waits after the call for the return, and
dually the subroutine simply waits to be invoked, here we areassuming a concurrent world
where multiple threads are running in both the server and theclient. We should really think
of the ‘server’ and ‘client’ as parallel compositions

s =
n

i∈I

si, c =
n

j∈J

cj

where eachsi is offering one or more service methods. Thus multiple methods are being
offered concurrently by the servers, and are being called concurrently by the clients.

To proceed further, we need some formal representation of processes. We shall not need
to delve into the details of process algebra, nor do we need tocommit ourselves to a partic-
ular choice from the wide range of process models and equivalences which have been pro-
posed. Nevertheless, for definiteness we shall assume that the behaviour of processes is spec-
ified by labelled transition systems[21], which can fairly be described as the workhorses of
concurrency theory.

Recall that a labelled transition system on a set of labelsL is a structure(Q,R) where

Q is a set of states, andR ⊆ Q × L × Q is the transition relation. We writep
a
- q for

(p, a, q) ∈ R. We assume, in a standard fashion, thatL contains asilent or unobservable

actionτ [21]; transitionsp
τ
- q represent internal computational steps of a system, without

reference to its environment.
Now fix a server signatureΣ. We define

Σs = {m↓(~x),m↓(~w) | m ∈ Σ}

the set of server-side actions overΣ. Dually, we define

Σc = {m↑(~v),m↑(~y) | m ∈ Σ}

the set of client-side actions overΣ.
A Σ-server is a process defined by a labelled transition system over a setof labelsL

such thatΣs ⊆ L andΣc ∩ L = ∅. A Σ-client is a process defined by a labelled transition
system over a set of labelsM such thatΣc ⊆ M andΣs ∩ L = ∅.

We shall now define an operation which expresses how a client interacts with a server.
Let s be aΣ-server, andc a Σ-client. We define the behaviour ofs �Σ c by specifying its
labelled transitions. Firstly, we specify that for actionsoutside the interfaceΣ, s andc proceed
concurrently, without interacting with each other:

s
λ
- s′

s �Σ c
λ
- s′ �Σ c

(λ 6∈ Σs)
c

λ
- c′

s �Σ c
λ
- s �Σ c′

(λ 6∈ Σc)
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Then we give the expected rules describing the interactionscorresponding to method calls
and returns:

s
m↓(~x)

- s′ c
m↑(~v)

- c′

s �Σ c
m↓↑(~x:~v)

- s′[~v/~x] �Σ c′

s
m↓(~w)

- s′ c
m↑(~y)

- c′

s �Σ c
m↓↑(~w:~y)

- s′ �Σ c′[~w/~y]

Heres′[~v/~x] denotes the result of binding the values~v to the variables~x in the continuation
processs′, and similarly forc′[~w/~y].

2. Orthogonality

Intuitively, there is an obviousdualitybetween clients and servers; and where there is duality,
there should be somelogical structure. We now take a first step towards articulating this
structure, which we shall use to encapsulate the keycorrectness propertiesof a client-server
system.

We fix a server signatureΣ. Let s be aΣ-server, andc a Σ-client. A computationof the
server-client systems �Σ c is a sequence of transitions

s �Σ c
λ1

- s1 �Σ c1
λ2

- · · ·
λk

- sk �Σ ck .

We shall only consider finite computations.
For every such computation, we have an associatedobservation, which is obtained by

concatenating the labelsλ1 · · ·λk on the transitions. For each methodm ∈ Σ, we obtain an
m-observationby erasing all labels in this sequence other than those of theform m↓↑(~x : ~v)
andm↓↑(~w : ~y), and replacing these bym↓↑ andm↓↑ respectively.

We say thats �Σ c is Σ-activeif for some computation starting froms �Σ c, and some
m ∈ Σ, the correspondingm-observation is non-empty. A similar notion applies to clientsc
considered in isolation.

We say thats is orthogonal toc, writtens⊥c, if for every computation

s �Σ c
λ1

- · · ·
λk

- sk �Σ ck

the following conditions hold:

Σ-receptiveness. If ck is Σ-active, then so issk �Σ ck.

Σ-completion. The computation can be extended to

s �Σ c
λ1

- · · ·
λk

- sk �Σ ck · · ·
λk+l

- sk+l �Σ ck+l

with l ≥ 0, whosem-observationom, for eachm ∈ Σ, is a sequence of alternating calls and
returns ofm:

om ∈ (m↓↑m↓↑)
∗ .

This notion of orthogonality combines several important correctness notions, “localized” to
the client-server interface:

• It incorporates a notion ofdeadlock-freedom. Σ-receptiveness ensures that whenever
the client wishes to proceed by calling a service method, a matching offer of such a
service must eventually be available from the server.Σ-completion ensures that every
method execution which is initiated by a call must be completed by the correspond-
ing return. Note that, since this condition is applied alongall computations, it takes
account of non-deterministic branching by the server and the client; no matter how
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the non-deterministic choices are resolved, we cannot get into a state where either the
client or the server get blocked and are unable to participate in the method return.

• There is also an element oflivelock-freedom. It ensures that we cannot get indefinitely
delayed by other concurrent activities from completing a method return. Note that
our definition in terms of extensions of finite computations in effect incorporates a
strong fairness assumption; that transitions which are enabled infinitely often must
eventually be performed. An alternative treatment could begiven in terms of maximal
(finite or infinite) computations, subject to explicit fairness constraints.

• Finally, notice that this notion of orthogonality also incorporates aserialization re-
quirement: once a given method has been invoked, no further offers of that method
will be made until the invocation has been completed by the method return. The obvi-
ous way of achieving this is to have each method implementation running as a single
sequential thread within the server. This may seem overly restrictive, but we shall see
later how with a suitable use ofnamesas unique identifiers for multiple instances of
generic service methods, this need not compromise expressiveness.

2.1. The Galois Connection

We shall now see how the orthogonality relation allows further structure to be expressed. Let
S be the set ofΣ-servers over a fixed ambient set of labelsL, andC the set ofΣ-clients over
a set of labelsM. We have defined a relation⊥ ⊆ S × C. This relation can be used in a
standard way to define aGalois connection[13] betweenP(S) andP(C).

GivenS ⊆ S, define

S⊥ = {c ∈ C | ∀s ∈ S. s⊥c}

Similarly, givenC ⊆ C, define

C⊥ = {s ∈ S | ∀c ∈ C. s⊥c}

The following is standard [13]:

Proposition 2.1 1. For all S, T ⊆ S: S ⊆ T ⇒ T⊥ ⊆ S⊥.
2. For all C,D ⊆ C: C ⊆ D ⇒ D⊥ ⊆ C⊥.
3. For all C ⊆ C andS ⊆ S: S⊥ ⊇ C ⇐⇒ S ⊆ C⊥.
4. For all C ⊆ C andS ⊆ S: S⊥ = S⊥⊥⊥ andC⊥ = C⊥⊥⊥.

We defineS̄ = S⊥⊥, C̄ = C⊥⊥. The following is also standard:

Proposition 2.2 The mappingsS 7→ S̄ andC 7→ C̄ are closure operators, onP(S) andP(C)
respectively. That is:

S ⊆ S̄, ¯̄S = S̄, S ⊆ T ⇒ S̄ ⊆ T̄

and similarly

C ⊆ C̄, ¯̄C = C̄, C ⊆ D ⇒ C̄ ⊆ D̄ .

We can think of closed sets of servers assaturatedunder “tests” by clients:̄S is the largest
set of servers which passes all the tests of orthogonality under interaction with clients that
the servers inS do. Similarly for closed sets of clients. We shall eventually view such closed
sets asbehavioural types.

2.2. Examples

We shall give some simple examples to illustrate the definitions. We shall use the notation of
CCS [21], but we could just as well have used CSP [16], or otherprocess calculi.
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Firstly, we define a signature with two operations:

inc : unit −→ unit

dec : unit −→ unit

This specifies an interface for a binary semaphore. We define aservers ≡ binsem(0), where:

binsem(0) = inc↓.inc↓.binsem(1)
binsem(1) = dec↓.dec↓.binsem(0)

We define a clientc by

c ≡ inc↑ | inc↑ | dec
↑ | dec↑ .

Thens is orthogonal toc. However,dec↑.c is not orthogonal tos, since Receptivity fails;
while inc↓.s is not orthogonal toc, since Completion fails.

3. The Open Universe

Thus far, we have assumed a simple-minded but convenient dichotomy between clients and
servers. There are many reasons to move to a more general setting. The most compelling is
that the general condition of systems is to beopen, interacting with an environment which is
not completely specified, and themselves changing over time. Rather than thinking of com-
plete systems, we should think in terms ofsystem components.

Relating this to our service-based view of distributed computation, it is natural to take
the view that the general case of a system component is a process which:

1. requirescertain services to be provided to it by its environment
2. providesother services to its environment.

Such a component is aclient with respect to the services in (1), and aserverwith respect to
the services in (2). The interface of such a component has theform

Σ =⇒ ∆

whereΣ and∆ are server signatures as already defined; we assume thatΣ ∩ ∆ = ∅. The
idea is thatΣ describes the interface of the component to its environmentquaclient, and∆
the interfacequaserver.

A processp has this interface type, writtenp :: Σ =⇒ ∆, if it is described by a labelled
transition system on the set of labels

Σc ∪ ∆s ∪ {τ} .

HereΣc is the client-side set of actions ofΣ, and∆s the server-side set of actions of∆, as
previously defined, whileτ is the usual silent action for internal computational steps. Note
that this interface type is now regarded as exhaustive of thepossible actions ofp. Note also
that apure∆-serveris a processs :: =⇒ ∆ with empty client-side signature, while apure
Σ-client is a processc :: Σ =⇒ with empty server-side signature. Thus servers and clientsas
discussed previously are special cases of the notion of component.

3.1. Composition

We now look at a fundamental operation for such systems:composition, i.e. plugging one
system into another across its specified interface. It is composition which enables the con-
struction of complex systems from ultimately simple components.

We shall write interface types in a partitioned form:
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p :: Σ1, . . . Σk =⇒ ∆ .

This is equivalent top :: Σ =⇒ ∆, whereΣ =
⋃k

i=1 Σi. Writing the signature in this form
implicitly assumes that theΣi arepairwise disjoint. More generally, we assume from now on
that all signatures named by distinct symbols are pairwise disjoint.

Suppose that we have components

p :: ∆′ =⇒ Σ, q :: Σ,∆′′ =⇒ Θ .

Then we can form the systemp �Σ q. Note that our definition ofs �Σ c in Section 1 was
sufficently general to cover this situation, takings = p andc = q, with L = ∆′

c ∪ Σs ∪ {τ},
andM = Σc ∪ ∆′′

c ∪ Θs ∪ {τ}.
We now define

p ⊙Σ q = (p �Σ q)\Σ .

The is the process obtained fromp �Σ q by replacing all labelsm↓↑(~x : ~v) andm↓↑(~w : ~y),
with m ∈ Σ, by τ . This internalizes the interaction betweenp andq, in whichp provides the
services inΣ required byq.

Proposition 3.1 The processp ⊙Σ q satisfies the following interface specification:

p ⊙Σ q :: ∆′,∆′′ =⇒ Θ .

The reader familiar with the sequent calculus formulation of logic will recognize the analogy
with theCut rule:

Γ =⇒ A A,Γ′ =⇒ B

Γ,Γ′ =⇒ B

This correspondence is no accident, and we will develop a little more of the connection to
logic in the next section, although we will not be able to explore it fully here.

3.2. Behavioural Types

We now return to the idea of behavioural types which we discussed briefly in the previous
Section. Given a signatureΣ, we define

C(Σ) = {c | c :: Σ =⇒}, S(Σ) = {s | s ::=⇒ Σ}

the sets of pureΣ-clients and servers. We define an orthogonality relation

⊥Σ ⊆ C(Σ) × S(Σ)

just as in Section 1, and operations(·)⊥ on sets of servers and clients. We use the notation
A[Σ] for a behavioural type of servers onΣ, i.e. a setA ⊆ S(Σ) such thatA = A⊥⊥.

Given a componentp :: Σ =⇒ ∆ and behavioural typesA[Σ] andB[∆], we define
p :: A[Σ] =⇒ B[∆] if the following condition holds:

∀s ∈ A. s ⊙Σ p ∈ B .

This is the condition for a component to satisfy a behavioural type specification, guaranteeing
important correctness properties across its interface.

Proposition 3.2 The following are equivalent:

1. p :: A[Σ] =⇒ B[∆]
2. ∀s ∈ A, c ∈ B⊥. (s ⊙Σ p)⊥∆c
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3. ∀s ∈ A, c ∈ B⊥. s⊥Σ(p ⊙∆ c).

These properties suggest how(·)⊥ plays the r̂ole of a logical negation. For example, one can
think of property (3) as a form ofcontraposition: it says that ifc is in B⊥, thenp ⊙∆ c is
in A⊥. Note thats ⊙Σ p is a∆-server, whilep ⊙∆ c is aΣ-client, so these expressions are
well-typed.

3.3. Soundness of Composition

We now come to a key point:the soundness of composition with respect to behavioural type
specifications. This means that the key correctness properties across interfaces are preserved
in a compositional fashion as we build up a complex system by plugging components to-
gether.

Firstly, we extend the definition of behavioural type specification for components to
cover the case of partitioned inputs. We definep :: A1[Σ1], . . . , Ak[Σk] =⇒ B[∆] if:

∀s1 ∈ A1, . . . , sk ∈ Ak. (
kn

i=1

si) ⊙Σ p ∈ B .

Here
fk

i=1 si is the parallel composition of thesi; note that, since theΣi are disjoint, these
processes cannot communicate with each other, and simply interleave their actions freely.

Now we can state our key soundness property for composition:

Proposition 3.3 Suppose we havep :: A′[∆′] =⇒ B[Σ] and q :: B[Σ], A′′[∆′′] =⇒ C[Θ].
Then

p ⊙Σ q :: A′[∆′], A′′[∆′′] =⇒ C[Θ] .

This can be formulated as an inference rule:

p :: A′[∆′] =⇒ B[Σ] q :: B[Σ], A′′[∆′′] =⇒ C[Θ]

p ⊙Σ q :: A′[∆′], A′′[∆′′] =⇒ C[Θ]

4. Structured Types and Behavioural Logic

We shall now develop the logical structure inherent in this perspective on communicating
process architectures a little further.

We shall consider some ways of combining types. The first is very straightforward. Sup-
pose we have behavioural typesA[Σ] andB[∆] (where, as always, we are assuming thatΣ
and∆ are disjoint). We define the new type

A[Σ] ⊗ B[∆] = {s ‖ t | s ∈ A andt ∈ B}⊥⊥

over the signatureΣ ∪ ∆.
Now we can see the partitioned-input specification

p :: A1[Σ1], . . . , Ak[Σk] =⇒ ∆

as equivalent to

p :: A1[Σ1] ⊗ · · · ⊗ Ak[Σk] =⇒ ∆ .

Moreover, we have the “introduction rule”:

p :: A[Σ] =⇒ B[∆], q :: A′[Σ′] =⇒ B′[∆′]

p ‖ q :: A[Σ], A′[Σ′] =⇒ B[∆] ⊗ B′[∆′]
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Thus⊗ allows us to combine disjoint collections of services, so asto merge independent
components into a single system.

More interestingly, we can form an implication type

A[Σ] ⊸ B[∆] .

This describes the type of components which need a server of typeA in order to produce a
server of typeB:

A[Σ] ⊸ B[∆] = {p :: Σ =⇒ ∆ | ∀s ∈ A. s ⊙Σ p ∈ B} .

We can define an introduction rule:

p :: A[Σ], B[∆] =⇒ C[Θ]

p :: A[Σ] =⇒ B[∆] ⊸ C[Θ]

and an elimination rule

C[Θ] =⇒ A[Σ] ⊸ B[∆], q :: C ′[Θ′] =⇒ A[Σ]

q ⊙Σ p :: C[Θ], C ′[Θ′] =⇒ B[∆]

These correspond to abstraction and application in the (linear)λ-calculus [15].
This gives us a first glimpse of how logical and ‘higher-order’ structure can be found in a

natural way in process architectures built from client-server interfaces. We refer the interested
reader to [5,6,3] for further details, in a somewhat different setting.

4.1. Logical Wiring and Copycat Processes

Given a signatureΣ = {m1 : T1, . . . ,mk : Tk}, it is useful to create renamed variants of it:

Σ(i) = {m
(i)
1 : T1, . . . ,m

(i)
k : Tk} .

We can define an “identity component” which behaves like a copycat process [9,2], relaying
information between input and output:

idΣ :: Σ(1) =⇒ Σ(2)

idΣ =
∑

m∈Σ

m(2)↓(~x).m(1)↑(~x).m
(1)
↑ (~y).m

(2)
↓ (~y).idΣ

In a similar fashion, we can define a component for function application (or Modus Ponens):

appΣ,∆ :: (Σ(2)
⊸ ∆(1)) ⊗ Σ(1) =⇒ ∆(2)

appΣ,∆ = idΣ ‖ id∆ .

To express the key property of this process, we need a suitable notion of equivalence of
components. Givenp, q :: Σ =⇒ ∆, we definep ≈Σ,∆ q iff:

∀s ∈ S(Σ), c ∈ C(∆). (s ⊙Σ p)⊥∆c ⇐⇒ (s ⊙Σ q)⊥∆c .

Now suppose we have processes

p :: Θ1 =⇒ Σ(2)
⊸ ∆(1), q :: Θ2 =⇒ Σ(1) .

Then, allowing ourselves a little latitude with renaming ofsignatures, we can express the key
equivalence as follows:

(p ‖ q) ⊙(Σ(2)
⊸∆(1))⊗Σ(1) appΣ,∆ ≈Θ1⊗Θ2,∆ q ⊙Σ p .
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5. Genericity and Names

The view of service interfaces presented by signatures as developed thus far has some limi-
tations:

• It is rather rigid, depending on methods having unique globally assigned names.
• It is behaviourally restrictive, because of the serialization requirement on method

calls.

Note that allowing concurrent method activations would cause a problem as things stand:
there would not be enough information available to associate method returns with the corre-
sponding calls. The natural way to address this is to assign aunique name to each concur-
rent method invocation; this can then be used to associate a return with the appropriate call.
The use of distinct names for the various threads which are offering the same generic service
method also allows for more flexible and robust naming.

The notion of names we are using is that of theπ-calculus and other ‘nominal calculi’
[22]. Names can be compared for equality and passed around inmessages, and new names
can be generated in a given scope, and these are the only available operations. We find it
notationally clearer to distinguish between name constantsα, β, γ, . . . and name variablesa,
b, c, . . . but this is not an essential point.

These considerations lead to the following revised view of the actions associated with a
methodm:

• On the server side, a server offers alocated instanceof a call of m, as an action
〈α〉m↓(~x). Several such calls with distinct locations (i.e. namesα) may be offered
concurrently, thus alleviating the serialization requirement. The corresponding return
action will be 〈α〉m↓(~w). The name can be used to match this action up with the
corresponding call.

• On the client side, there are two options for a call: the client may either invoke a
located instance it already knows:

〈α〉m↑(~v)

or it may invoke a generic instance with a name variable:

(a)m↑(~v) .

This can synchronize with any located instance which is offered, witha being bound
to the name of that instance. A return will be on a specific instance:

〈α〉m↑(~y) .

The definition of the operations �Σ c is correspondingly refined in the rules specifying the
client-server interactions, as follows:

s
〈α〉m↓(~x)

- s′ c
(a)m↑(~v)

- c′

s �Σ c
〈α:a〉m↓↑(~x:~v)

- s′[~v/~x] �Σ c′[α/a]

s
〈α〉m↓(~x)

- s′ c
〈α〉m↑(~v)

- c′

s �Σ c
〈α〉m↓↑(~x:~v)

- s′[~v/~x] �Σ c′

s
〈α〉m↓(~w)

- s′ c
〈α〉m↑(~y)

- c′

s �Σ c
〈α〉m↓↑(~w:~y)

- s′ �Σ c′[~w/~y]

It is easy to encode these operations in theπ-calculus [22], or other nominal calculi. They
represent a simple design pattern for such calculi, which fits very naturally with the server-
client setting we have been considering.

Note that in generic method calls, the client isreceiving the name while sending the
parameters to the call, while conversely the server is sending the name and receiving the
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parameters. This “exchange of values” [20] can easily be encoded, but is a natural feature of
these interactions.

5.1. Orthogonality and Types Revisited

It is straightforward to recast the entire previous development in the refined setting. The main
point is that the orthogonality relation is now defined in terms of the symbols〈α〉m↓↑ and
〈α〉m↓↑. Thus serialization is only required on instances.

6. Further Directions

The ideas we have presented can be developed much further, and to some extent have been;
see the references in the next section.

One aspect which we would have liked to include in the presentpaper concernsdata
assertions. The notion of orthogonality we have studied in this paper deals with control flow
and synchronization, but ignores the flow of data between clients and servers through the
parameters to method calls and returns. In fact, the correctness properties of this data-flow
can also be encapsulated elegantly in an extended notion of orthogonality. We plan to describe
this in a future publication.
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• Various notions of orthogonality in the same general spiritas that used here, but
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20 years. Some examples include [15,19,17]. The application to notions in concur-
rency originated with the present author [1,5,6,3].
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Recent work in a related spirit includes work on session types, see e.g. [23]. Another pos-
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algebra which has appeared recently [14].
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