
Shared-clock methodology for time-triggered multi-cores

Keith F. Athaide

Project supervisor: Michael J. Pont
Technical supervisor: Devaraj Ayavoo

Communicating Process Architectures 
(CPA) 2008
8th-10th September 2008



2

Overview
 Aims
 Execution policies

– Co-operative
– Pre-emptive

 Execution architectures
 Shared-clock architecture

– Algorithm for non-broadcast topologies
 Multi-processor microcontroller architecture
 Case study description
 Results
 Conclusions



3

Aims
 Maintain the predictability and robustness of co-operative 

single-processor systems
– Custom system-on-chip (SoC) 
– Time-triggered applications

 Heterogeneous processors
 How to synchronise the different processors?



4

Execution policy
 System has many functions
 Functions often decomposed into discretely executing 

blocks called tasks
– Periodic or aperiodic tasks

 Periodic tasks may have static or dynamic periods
 Tasks have deadlines
 Tasks are executed according to a policy

– Co-operative execution policy
– Pre-emptive execution policy



5

Co-operative execution policy

Time

Time

 Tasks must yield control when required
 Resource sharing needs no complex locking 

mechanisms
– Same processor, one execution thread

 System responsiveness inversely related to longest task 
execution time



6

Pre-emptive execution policy

Time

 Tasks can interrupt each other
 Interruption controlled by priorities
 Predictability dependent on uniformity in pre-empting 

instructions
 Problems such as priority inversion



7

Scheduler architectures
 Event-triggered

– Multiple events
– Feasibility depends on 

 the number of events expected
 the number of events serviceable by hardware

– “Construct by correction”
 Time-triggered

– Single event
– Other events sensed by polling
– “Correct by construction”
– Can be power hungry



8

Shared-clock architecture

Receive
Tick

Send
ACK

Run
tasks

Slaves

Timer
Overflow

Send
Ticks

Run
tasks

Receive
ACKs

Master

Timer
Overflow

Hardware

[overflow]



9

Shared-clock non-broadcast topology
 Existing implementations 

need communication 
topologies supporting 
broadcasts

– Buses like CAN
 Can be simulated by 

point-to-point 
transmissions

– Hardware or software
 Tree broadcast

– MPI collective 
communication algorithm

 Lag due to point-to-point 
transmissions

a
d b

ceg
h f

i

g

a

d

h

e

b c

f

i



10

Multiprocessor architecture

 Network Interface Module (NIM)
– Messaging component as peripheral or co-processor

 Debug cluster
– Write to memories
– Set breakpoints, stepping, etc.

Processor

Debug

Messaging 
peripheral

Timer GPIO

NIM

Memory

Cluster

Cluster

Network-on-chip (NoC)

NIM

Cluster

NIM

Cluster

NIM
Processor



11

Network interface modules (NIMs)
 Asynchronous communication
 Error detection

– 12-bit checksums (CRCs)
 No automatic error correction

– Errors cause no extra communication
– Software notes and corrects errors

 Static routing
 Serial-parallel communication
 Variable number of channels
 Lack of predictability in 

communication latency might affect 
overall predictability of the shared-
clock system

Transport

Network

Data link

Channel Channel



12

PH Processor
 Single interrupt

– Built for time-triggered applications
– Multiplexed from any number of sources

 Soft-core processor (VHDL source available)
 32-bit reduced instruction set computer (RISC)
 MIPS I ISA (excluding patented instructions)
 Harvard architecture
 32 registers
 5-stage pipeline



13

Hardware implementation



14

Hardware usage of NIMs

1 2 3 4
600

650

700

750

800

Bits per
channel

6
8
16

Number of channels

H
ar

dw
ar

e 
sl

ic
es

 u
se

d



15

Case study description
 Nine nodes

– Mesh topology
 Three scheduler types

– SCH1: P1 as master; P1 
sends Ticks only when 
previous is acknowledged

– SCH2: P1 as master; P1 
sends Ticks in turn

– SCH3: Tree broadcast
 Relative times measured

P5

P2

Debug

P6 P7

P3 P4

P0 P1

P1
P0 P4

P3 P7
P2 P6

P5



16

Timer sense times (microseconds)

P0 P2 P3 P4 P5 P6 P7
0

50

100

150

200

250

300

SCH1
SCH2
SCH3



17

Timer sense times for SCH3 (microseconds)

P0 P3 P4 P2 P7 P5 P6
0

10

20

30

40

50

60

70

80



18

Timer sense time jitter (microseconds)

P0 P2 P3 P4 P5 P6 P7
0

0.5

1

1.5

SCH1
SCH2
SCH3
SCH3 
(local)



19

Timer sense time jitter in SCH3 (microseconds)

P0 P3 P4 P2 P7 P5 P6
0

0.5

1

1.5

P1
local



20

Conclusions
 A custom multiprocessor microcontroller was developed 

for time-triggered applications
 The shared-clock protocol was employed on a 9 node 

mesh version of this microcontroller using a broadcast 
simulation algorithm

 Absorption of the broadcast simulation algorithm into 
software allows the node sending the ticks to worry only 
about the ones it is connected to – a scalable situation

 The delay and jitter in SCH3 could be improved


	Deploying a time-triggered shared-clock architecture in a multiprocessor system-on-chip design
	Overview
	Aims
	Slide 4
	Co-operative scheduling
	Pre-emptive scheduling
	Scheduler architectures
	Slide 8
	Shared clock non-bus
	Multiprocessor architecture
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Results 1
	Slide 17
	Slide 18
	Slide 19
	Conclusions

