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Overview
 Aims
 Execution policies

– Co-operative
– Pre-emptive

 Execution architectures
 Shared-clock architecture

– Algorithm for non-broadcast topologies
 Multi-processor microcontroller architecture
 Case study description
 Results
 Conclusions
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Aims
 Maintain the predictability and robustness of co-operative 

single-processor systems
– Custom system-on-chip (SoC) 
– Time-triggered applications

 Heterogeneous processors
 How to synchronise the different processors?
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Execution policy
 System has many functions
 Functions often decomposed into discretely executing 

blocks called tasks
– Periodic or aperiodic tasks

 Periodic tasks may have static or dynamic periods
 Tasks have deadlines
 Tasks are executed according to a policy

– Co-operative execution policy
– Pre-emptive execution policy
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Co-operative execution policy

Time

Time

 Tasks must yield control when required
 Resource sharing needs no complex locking 

mechanisms
– Same processor, one execution thread

 System responsiveness inversely related to longest task 
execution time
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Pre-emptive execution policy

Time

 Tasks can interrupt each other
 Interruption controlled by priorities
 Predictability dependent on uniformity in pre-empting 

instructions
 Problems such as priority inversion
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Scheduler architectures
 Event-triggered

– Multiple events
– Feasibility depends on 

 the number of events expected
 the number of events serviceable by hardware

– “Construct by correction”
 Time-triggered

– Single event
– Other events sensed by polling
– “Correct by construction”
– Can be power hungry
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Shared-clock architecture
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Shared-clock non-broadcast topology
 Existing implementations 

need communication 
topologies supporting 
broadcasts

– Buses like CAN
 Can be simulated by 

point-to-point 
transmissions

– Hardware or software
 Tree broadcast

– MPI collective 
communication algorithm

 Lag due to point-to-point 
transmissions
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Multiprocessor architecture

 Network Interface Module (NIM)
– Messaging component as peripheral or co-processor

 Debug cluster
– Write to memories
– Set breakpoints, stepping, etc.
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Network interface modules (NIMs)
 Asynchronous communication
 Error detection

– 12-bit checksums (CRCs)
 No automatic error correction

– Errors cause no extra communication
– Software notes and corrects errors

 Static routing
 Serial-parallel communication
 Variable number of channels
 Lack of predictability in 

communication latency might affect 
overall predictability of the shared-
clock system
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PH Processor
 Single interrupt

– Built for time-triggered applications
– Multiplexed from any number of sources

 Soft-core processor (VHDL source available)
 32-bit reduced instruction set computer (RISC)
 MIPS I ISA (excluding patented instructions)
 Harvard architecture
 32 registers
 5-stage pipeline
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Hardware implementation
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Hardware usage of NIMs
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Case study description
 Nine nodes

– Mesh topology
 Three scheduler types

– SCH1: P1 as master; P1 
sends Ticks only when 
previous is acknowledged

– SCH2: P1 as master; P1 
sends Ticks in turn

– SCH3: Tree broadcast
 Relative times measured
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Timer sense times (microseconds)
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Timer sense times for SCH3 (microseconds)
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Timer sense time jitter (microseconds)
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Timer sense time jitter in SCH3 (microseconds)
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Conclusions
 A custom multiprocessor microcontroller was developed 

for time-triggered applications
 The shared-clock protocol was employed on a 9 node 

mesh version of this microcontroller using a broadcast 
simulation algorithm

 Absorption of the broadcast simulation algorithm into 
software allows the node sending the ticks to worry only 
about the ones it is connected to – a scalable situation

 The delay and jitter in SCH3 could be improved
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