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Abstract.  The co-operative design methodology has significant advantages when 
used in safety-related systems. Coupled with the time-triggered architecture, the 
methodology can result in robust and predictable systems. Nevertheless, use of a co-
operative design methodology may not always be appropriate especially when the 
system possesses tight resource and cost constraints. Under relaxed constraints, it 
might be possible to maintain a co-operative design by introducing additional 
software processing cores to the same chip. The resultant multi-core microcontroller 
then requires suitable design methodologies to ensure that the advantages of time-
triggered co-operative design are maintained as far as possible. This paper explores 
the application of a time-triggered distributed-systems protocol, called “shared-
clock”, on an eight-core microcontroller. The cores are connected in a mesh 
topology with no hardware broadcast capabilities and three implementations of the 
shared-clock protocol are examined. The custom multi-core system and the network 
interfaces used for the study are also described.  The network interfaces share higher 
level serialising logic amongst channels, resulting in low hardware overhead when 
increasing the number of channels. 
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Introduction 

In the majority of embedded systems, some form of scheduler may be employed to decide 
when tasks should be executed. These decisions may be made in an “event-triggered” 
fashion (i.e. in response to sporadic events) [1] or in a “time-triggered” fashion (i.e. in 
response to pre-determined lapses in time) [2]. When a task is due to be executed, the 
scheduler can pre-empt the currently executing task or wait for the executing task to 
relinquish control co-operatively.  

Co-operative schedulers have a number of desirable features, particularly for use in 
safety-related systems [1, 3-5].  Compared to a pre-emptive scheduler, co-operative 
schedulers can be identified as being simpler, having lower overheads, being easier to test 
and having greater support from certification authorities [4].  Resource sharing in co-
operative schedulers is also a straightforward process, requiring no special design 
considerations as is the case with pre-emptive systems [6, 7].  The simplicity may suggest 
better predictability while simultaneously necessitating a careful design to realise the 
theoretical predictions in practice. 

One of the simplest implementations of a co-operative scheduler is a cyclic executive 
[8, 9]: this is one form of a broad class of time triggered, co-operative (TTC) architectures.  
With appropriate implementations, TTC architectures are a good match for a wide range of 
applications, such as automotive applications [10, 11], wireless (ECG) monitoring systems 
[12], various control applications [13-15], data acquisition systems, washing-machine 
control and monitoring of liquid flow rates [16]. 
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Despite having many excellent characteristics, a TTC solution will not always be 
appropriate.   Since tasks cannot interrupt each other, those with long execution times can 
increase the amount of time it takes for the system to respond to changes in the 
environment.  This then imposes a constraint that all tasks must have short execution times 
in order to improve system response times [3].  A change in system specifications (e.g. 
higher sampling rates) post-implementation could require a re-evaluation of all system 
properties and validation that the static schedule still holds. 

In this paper, we consider ways in which – by adapting the underlying processor 
hardware – we can make it easier to employ TTC architectures in embedded systems.  From 
the outset we should note that there is a mismatch between generic processor architectures 
and time-triggered software designs.  For example, most processors support a wide range of 
interrupts, while the use of a (pure) time-triggered software architecture generally requires 
that only a single interrupt is active on each processor.  This leads to design “guidelines”, 
such as the “one interrupt per microcontroller rule” [17].  Such guidelines can be supported 
when appropriate tools are used for software creation (e.g.  [18, 19]).  However, it is still 
possible for changes to be made (for example, during software maintenance or upgrades) 
that lead to the creation of unreliable systems. 

The present paper represents the first step in a new research programme in which we 
are exploring an alternative solution to this problem.  Specifically, we are seeking to 
develop a novel “System-on-chip” (SoC) architecture, which is designed to support TTC 
software.  This approach has become possible since the advent of the reduced cost of field-
programmable gate array (FPGA) chips with increasing gate numbers [20]. 

Following the wider use of FPGAs, SoC integrated circuits have been used in 
embedded systems, from consumer devices to industrial systems.  These complex circuits 
are an assembly upon a single silicon die from several simpler components such as 
instruction set processors, memories, specialised logic, etc.  A SoC with more than one 
instruction set processor (or simply “processor”) is referred to as a multi-core or 
multiprocessor system-on-chip (MPSoC). 

MPSoCs running decomposed single-processor software as TTC software may have 
time-triggered tasks running concurrently on separate, simpler, heterogeneous cores, with 
the tasks synchronising and exchanging timing information through some form of network. 
In this configuration, MPSoCs resemble micro versions of distributed systems, without the 
large amount of cabling and high installation and maintenance costs.  Like a distributed 
system, an MPSoC requires software that is reliable and operates in real-time. 

Previously, shared-clock schedulers have been found to be a simple and effective 
means of applying TTC concepts to distributed systems communicating on a single shared 
channel [17, 21, 22].  This paper explores the use of shared-clock schedulers for a custom 
MPSoC where communication may take place on multiple channels. 

The remainder of this paper is organised as follows.  In Section 1, previous work on 
design methodologies for software on MPSoCs is reviewed, while Section 2 proposes an 
enhancement to the shared-clock design.  Section 3 then describes the MPSoC and network 
interface module being used in this work.  In Section 4, the results of applying the shared-
clock design enhancement to the MPSoC are presented.  Finally, our conclusions are 
delivered in Section 5. 

1. Previous work 

Previous research on MPSoC software design has advocated a modular approach, either 
composing a system from pre-existing modules or producing an executable from a high-
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level model, with the entire system running on either a bare-bones or a fully fledged real-
time operating system (RTOS) [23, 24]. 

Virtuoso is a RTOS with a pre-emptive microkernel for heterogeneous multiprocessor 
signal-processing systems [25].  Communication between processors is packetised with 
packets inheriting the priority of the generating task.  Tasks share no common memory and 
communicate and synchronise via message-passing.  This RTOS allows an MPSoC to be 
programmed as a virtual single processor, allowing for processor and communication 
topology independence but at the expense of a larger code base and greater communication 
overheads. 

Alternatively, the multiprocessor nature can be exposed to the designer, as in [26] 
where a model based design process is proposed for an eight processor MPSoC running 
time-triggered software.  The MPSoC is considered to be composed of various chunks 
communicating through a network-on-chip (NoC) partitioned into channels using a global 
time-division-multiple-access (TDMA) schedule.  The TDMA scheme which is employed 
is similar to that of the time-triggered protocol (TTP) used in distributed systems [27], 
where cores synchronise by comparing their locally maintained time with the global time 
maintained on the network.  This synchronisation is crucial to ensuring that cores transmit 
only in their allocated timeslots.  However, this global TDMA scheme may be constrained 
by transmission times to distant nodes on certain topologies, requiring unsuitably large 
timeslots for such nodes. 

Another implementation of a NoC for time-triggered software also uses the TTP 
method of synchronising the attached processors [28].  The broadcast requirements of this 
implementation limit it to processors connected in a unidirectional ring topology.  It also 
faces the same global TDMA problem described above – as the number of nodes increases, 
the schedule table quickly becomes full of delay slots. 

In the domain of distributed systems, shared-clock scheduling (SCS) is a simple and 
effective method of applying the TTP principles [17].  In contrast to TTP where all nodes 
have the same status, SCS follows a single master-multiple slave model, with the global 
time maintained at the master.  The global time is propagated by the master using an 
accurate time source to generate regular Ticks or messages, which then trigger schedulers in 
the slave nodes, which send back Acknowledgements (Figure 1).   
 

Figure 1: shared clock design. 
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The Ticks and Acknowledgements can also be used for master-to-slave and slave-to-
master communication.  Slave-to-slave communication can be carried out through the 
master or by snooping (if allowed by the communication media).  The healthiness of a node 
is indicated by the presence and contents of its Acknowledgement message.  A shared-bus 
is most often used as the communication medium. 

SCS also faces the global TDMA problem resulting in either limited Tick intervals 
and/or slow slave responses.  This paper looks at a way of alleviating this problem by 
taking advantage of underlying topologies with an SCS design for multiple communication 
channels. 

2. A Multi-Channel Shared-Clock Scheduler 

The shared-clock scheme works well because of the implicit broadcast nature of a bus: 
anything placed on the bus is visible to all connected nodes.  However, to maintain cost 
effectiveness, buffer-heavy features such as broadcasts may be omitted from the NoC in an 
MPSoC [29]. 

Without hardware broadcast functionality, the master is then required to address each 
node separately for each Tick.  One method to achieve this would be to send a Tick to a 
slave, wait for its Acknowledgement and then contact the next one.  However, it is easily 
seen that this method will suffer from excessive jitter as the Acknowledgement time may 
well vary from Tick to Tick.  The time spent communicating will increase as the number of 
nodes increase, eventually leaving very little time to do anything else. 

Another method is to send all Ticks immediately either using a hardware buffer or a 
software polling loop.  Again, however, scaling to a large number of nodes would either 
require a very large hardware buffer or would consume too much processor time.  
Transmission times might also mean that it is never possible to send all of one Tick’s 
messages before the next Tick needs to be signalled.  

An alternative is to broadcast the Tick in a tree-like manner, having more than one 
master in the network [30].  In this scheme, the slave of one master acts as the master of 
other nodes, propagating Tick messages, or multiples thereof through the network.  In this 
scheme, a master only receives Acknowledgements from the immediate slaves and is 
unaware of the presence of the other nodes. 

An example of this scheme is seen in the mesh arrangement in Figure 2, where for 
illustrative purposes, the initial master is located at the bottom left corner.  

 
Figure 2: example of tree propagation. 
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The number in the node is obtained by joining the number of the node that sent it the 
Tick and the order in which it received the Tick.  For example, the initial master first sends 
its Tick north (to 0.0), then east (to 0.1).  The east node then sends its own Tick north (to 
0.1.0) and east (to 0.1.1) and so on.  The lines represent existing physical connections with 
the arrowheads showing the direction of propagation of messages. Lines without 
arrowheads are unused by the scheduling scheme and may be used for additional 
application-dependent inter-slave communication. 

This decentralisation resembles a broadcast done through software, however it is more 
predictable as the “broadcast” message will always come from a pre-determined node down 
a pre-determined channel (with static routing). The overhead on a single master can be kept 
within limits, as opposed to a scheme that only possesses a single master. However, it will 
cause distant nodes to lag behind the initial master in Ticks. For example, if transmission 
time equalled half a Tick, a sample Tick propagation of the Figure 2 network is seen in 
Figure 3. The most distant node eventually lags two Ticks behind the initial master, and any 
data it generates can reach the initial master only two further Ticks later.  This lag needs to 
be considered during system design and node placement. 

Figure 3: Tick propagation when transmission time is half the Tick period. 

3. The TT MPSoC 

The MPSoC is formed from several processor clusters linked together by a network-on-chip 
(Figure 4). 

Figure 4: MPSoC architecture. 
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Each processor cluster contains one processor and associated peripherals.  A cluster 
interfaces to the NoC using a network interface module (NIM).   

A development TT MPSoC will always contain a special debug cluster that is used as 
the interface between a developer’s computer and the MPSoC.  This debug cluster allows 
processor cores to be paused, stopped, etc as well as allowing memory in the cluster to be 
read from or written to.  These capabilities are provided by a separate debug node in each 
cluster connected to the processor and memory in that cluster.  Special logic in the cluster 
recognises when a debug message has been received and multiplexes it appropriately. 

The MPSoC has currently been designed for a 32-bit processor called the PH processor 
[31].  The PH processor was designed for time-triggered software and has a RISC design 
which is compatible with the MIPS I ISA (excluding patented instructions): it has a 
Harvard architecture, 32 registers, a 5-stage pipeline and support for precise exceptions.  In 
the present (MPSoC) design, the number and type of peripherals connected to each 
processor is independently configurable, as is the frequency at which each processor is 
clocked.  

A “messaging” peripheral is present with all clusters.  This peripheral allows the 
processor to receive and transmit messages on the NoC.  The PH processor is sensitive to a 
single event multiplexed from various sources.  In this implementation, events can be 
generated by the messaging peripheral and timer peripherals, if present.  

An interactive GUI is used to specify the set of files to be compiled for each processor, 
generating one binary per processor.  These binaries are then uploaded via a JTAG 
connection to the debug cluster which transmits them onward to the specified processor. 

3.1 The Network Interface Module (NIM) 

A network interface module (NIM) forms the interface between a processor cluster and the 
NoC. The NIMs use static routing, store-and-forward switching, send data in non-
interruptible packet streams and have no broadcast facilities. Communication is performed 
asynchronously with respect to software executing on the processors. 

The NIM was designed to be flexible (for research purposes) and supports any number 
of channels of communication.  By varying the number of channels and the links between 
them, various topologies can be obtained. 

 

 

 

 

 

 

 

 

 

Figure 5: implemented OSI layers. 
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The channels constitute the physical layer of the Open Systems Interconnection (OSI) 
model [32], with the data link and network layers shared between channels (Error! 
Reference source not found.).  Each channel uses four handshaking control lines and any 
number of bidirectional data lines, as dictated by the application (Figure 6).  A channel is 
insensitive to the frequency at which the other channel is running.  This insensitivity comes 
at the cost of a constant overhead (it is independent of the bit-width of the data line) per 
data transfer.  A channel with n data lines may be referred to as an n-bit channel. 

 

Figure 6: channel OSI layers. 

The packet structure for a 6-bit channel is shown in Figure 7. The preamble size was 
chosen to match the physical layer data size, with the cluster ID and node ID sizes chosen 
so that there is a maximum of 220 clusters each with a maximum of sixteen nodes.  Data 
was fixed at ninety-six bits to obtain reasonable bandwidth.  Fixed-length packets were 
chosen to eliminate transmission-time jitter. Each packet is affixed with a 12-bit cyclic 
redundancy checksum (CRC)1, which was used for error detection. This checksum is 
capable of detecting single bit errors, odd number of errors and burst errors up to twelve 
bits.  There is no automatic error correction in the present implementation.  

Figure 7: Network packet structure. 

This packet structure has a theoretical transmission efficiency of approximately 70%.  
The packet has a size of 138 bits, which equates to 23 “chunks” with a 6-bit channel. If the 
channel uses 7 cycles for each chunk, then the packet in total takes 161 cycles to reach the 
destination. At 25 MHz, this equates to a throughput of ~15 Mbps, which increases to ~60 
Mbps at 100 MHz. This performance can be improved by increasing either the 
communication frequency and/or the channel bit width. 

3.2 Hardware Implementation 

A prototype with 6-bit wide data channels was implemented on multiple Spartan 3 1000K 
FPGAs, using the Digilent Nexys development board [33].  Using one FPGA for each 
processor, as opposed to a single one containing all processors, allows for lower synthesis 
times and greater design exploration space in addition to supplying a number of useful 
debugging peripherals (switches, LEDs, etc.) to each processor.  

The hardware usage for the NIM is shown in Table 1 with varying numbers of 
channels and data widths.  The values were obtained from the synthesis report generated by 
the Xilinx ISE WebPACK [34] with the NIM selected as the sole module to be synthesised.  
                                                           
1 Using the standard CRC-12 polynomial: x12 + x11 + x3 + x2 + x + 1 
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The 8-bit and 16-bit channel implementations have a 144-bit data packet with an 8-bit 
preamble and 4-bits of padding added to the 12-bit CRC field. 

As can be seen in the table on the next page, logic consumption sees a very minor 
increase as the number of channels is increased.  There is an initial hump when moving 
from one to two channels as multi-channel logic that is optimised away in the single-
channel case (by the synthesis software) is reinserted, but beyond two channels, the trend 
appears steady.  The number of slices counterintuitively reduces when moving from a 6-bit 
data width to an 8-bit one because certain addition/subtraction logic is optimised into 
simpler shifts.  

Table 1: logic utilisation of the network interface module. 

 Number of channels Data width 
(bits)  1 2 3 4 

Slices used 637 681 699 723 

Percentage used 8.3% 8.9% 9.1% 9.4% 6 

Percentage increase — 6.5% 2.6% 3.3% 

Slices used 613 653 676 706 

Percentage used 8.0% 8.5% 8.8% 9.2% 8 

Percentage increase — 6.1% 3.4% 4.2% 

Slices used 659 709 751 786 

Percentage used 8.6% 9.2% 9.8% 10.2% 16 

Percentage increase — 7.1% 5.6% 4.5% 

 
Simulations with ModelSim [35] suggest the interval from transmission request on one 

channel to reception notification on another channel to be 2.43 µs, 4.59 µs and 5.79 µs for 
the 16-bit, 8-bit and 6-bit data channels respectively.  These simulations assumed ideal 
propagation times. 

Compared to the lightweight circuit-switched PNoC [36], the NIM has a low logic cost 
for additional channels. PNoC has also been designed for flexibility and suitability for any 
topology and the 8-bit wide, 4-channel implementation uses 249 slices on the Xilinx 
Virtex-II Pro FPGA [37].  This is a 66% increase over a 2-channel implementation and 
78% less than an 8-channel implementation.  In contrast, the 8-bit wide 4-channel NIM 
when synthesised for this FPGA uses 707 slices while the 8-channel version uses 722 
slices, a relatively miniscule increase (2%).  Compared to the PNoC equivalents, the 4-
channel NIM is about 65% larger while the 8-channel version is about 35% smaller. 

The time-triggered NoC in [28] is tied to a unidirectional ring topology.  It is not 
designed to serialise data transfer and completes its 128-bit data transfer in a single cycle. 
On the Cyclone II (EP2C70) FPGA [38], it uses 480 logic cells.  The 16-bit wide, 2-
channel NIM when synthesised for this FPGA using the Quartus II Web Edition [39], uses 
1161 logic cells, about 2.4 times the amount. 

Both the above implementations use on-chip memory for buffer storage, while for the 
moment the NIM employs registers.  The logic utilisation report from the WebPACK 
suggests that about 50% of the logic in the NIM is spent on registers, further suggesting 
possible logic savings by moving to on-chip memory for storage.  
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4. Case Study 

To illustrate the operation of this MPSoC design, the MPSoC described in Section 3 was 
configured to have eight processors and one debug node, arranged in a mesh structure as 
seen in Figure 8, with each processor and the NoC clocked at 25 MHz.  In this 
arrangement, there is no direct path between certain cluster pairs.  The XY routing strategy 
is employed where a message is propagated first horizontally and then vertically in order to 
reach the targeted processor. 

 
Figure 8: testbed topology. 

Three types of schedulers were implemented: 

• In the first design (SCH1), P1 (i.e. the processor on cluster 1) acts as a master 
to all other processors, sending Ticks to them in the same Tick interval, sending 
a Tick to a processor only when the previous one has sent its 
Acknowledgement. 

• In the second design (SCH2), P1 again acts as a master, but this time sends 
Ticks to the processors in turns (one Tick per timer overflow). 

• In the third design (SCH3), each processor acts as a master to its immediate 
slaves (Figure 9), according to the technique described in Section 2.  Ticks are 
sent to a slave only when the previous one has sent its Acknowledgement. 

Figure 9: master-slave tree. 
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these pulses are run into a common pulse detection device (with a resolution of 20 ns), 
providing relative timing on each of these signals.  The Tick transmission times from the 
immediate master are shown in Figure 10. 
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Figure 10: Time taken for the transmission of a Tick from P1. 

As expected, the Tick transmission times increase as the number of hops increase.  The 
first and second implementations show near identical transmission times (the difference 
between them is due to software overhead).  Tick transmission times for SCH3 measured 
from the immediate master are the lowest since all transmissions are single hops.  The 
slight variations observed in the SCH3 line may be due to noise in the transmission medium 
and has a range of 4.22 µs.  The single hop transmission times averaged at about 6.79 µs, 
not including software overheads. 

Figure 11: Time from P1 timer overflow to Tick receipt. 

Figure 11 shows the time from when the initial master, P1, receives notification of a 
timer overflow to when a node receives notification of a Tick message.  SCH1 has a high 
overhead as the number of nodes increases, while SCH2 and SCH3 maintain a more or less 
steady overhead.  The overhead for SCH2 depends solely on the number of hops required to 
reach the node while for SCH3 it is dependent on the number of slaves and the distance 
from the initial master.  

The SCH3 Tick receipt trend might be better understood by comparing the master-
slave chain in Figure 9 and Figure 12. In Figure 12, the times have been plotted in the 
order in which the nodes receive their Ticks, each master-slave chain plotted separately.  
The order is based on the averages, but since chains can be independent (for example, the 
P0-P3 and the P4-P7 chains), the order could vary in particular Tick instances. 

In SCH3, masters wait for slave Acknowledgements before contacting other slaves.  In 
that implementation, when the timer overflows, P1 sends a Tick to P0 and waits.  On 
receiving the Tick, P0 sends an Acknowledgement to P1 and then immediately sends a Tick 
to P3.  However, since the channels share their higher layers, the Acknowledgement must 
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be sent before Tick transmission can commence.  Because of this, the Acknowledgement 
reaches P1 at about the same time that P0 starts to send the Tick to P3. A few microseconds 
later (spent in software processing), P1 sends a Tick to P4. Since both are single hops, the 
Tick to P4 reaches slightly later than the Tick to P3. The same trend can be observed for P5 
and P6. 
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Figure 12: SCH3 times from P1 timer overflow in order of Tick receipt. 

The jitter in transmission times can be seen in Figure 13.  The jitter increases as the 
number of hops increases, most easily seen in the graphs of SCH1 and SCH2.  SCH1 and 
SCH2 start out with the same amount of jitter, though it quickly starts to increase for SCH1. 
This is because SCH1 waits for Acknowledgements before sending further Ticks, so the 
jitter in receiving Acknowledgements is added to that of Ticks sent later. 
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Figure 13: Jitter in transmission times. 

The jitter for SCH3 is shown both for transmission from the immediate master and 
from P1, though the jitter when measured from P1 is more important as it is a measure of 
the variation in sensing the timer overflow.  The jitter when measured from P1 follows the 
same trend as the transmission time measured in the same way – it increases when 
travelling down the master-slave chains (Figure 14). 

The SCH3 jitter measurement is further affected by the channels sharing higher layers.  
That is why the jitter for P6 is very low; no other messages have been queued for 
transmission from P3 at that time. 

While SCH2 appears to be a better choice in most of the comparisons, it is worth 
noting that since it sends a message to only one node per timer overflow, the frequency of 
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Ticks a node receives will decrease as the number of nodes increases.  A mix of SCH1 and 
SCH2 where certain nodes are can be sent Ticks more frequently might prove better.  It 
could also be mixed with SCH3 to introduce a degree of scalability. 
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Figure 14: SCH3 jitter from P1 in the order of Tick receipt. 

While SCH2 appears to be a better choice in most of the comparisons, it is worth 
noting that since it sends a message to only one node per timer overflow, the frequency of 
Ticks a node receives will decrease as the number of nodes increases.  A mix of SCH1 and 
SCH2 where certain nodes are can be sent Ticks more frequently might prove better.  It 
could also be mixed with SCH3 to introduce a degree of scalability. 

Choosing between scheduler implementations or a mix of all three scheduler 
implementations will be highly application dependent and requires a deeper analysis into 
the rationale behind such choices. 

5. Conclusions 

This paper has presented results from a study which has explored the use of the time-
triggered shared-clock distributed protocol on a non-broadcast, statically routed NoC 
employed in an MPSoC for time-triggered software.  A scheduler design that used a tree-
based form of broadcasting clock information was described and implemented on an 
MPSoC with eight processors connected in a mesh.  This design offered a fast response and 
low overhead, promising to scale well to a large number of nodes, though at the cost of 
increased jitter and latency when compared to the other implementations.   
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