
Communicating Process Architectures 2008 149
P.H. Welch et al. (Eds.)
IOS Press, 2008
© 2008 The authors and IOS Press. All rights reserved.

Shared-Clock Methodology
for Time-Triggered Multi-Cores
Keith F. ATHAIDE a, Michael J. PONT a and Devaraj AYAVOO b

a Embedded Systems Laboratory, University of Leicester
b TTE Systems Ltd, 106 New Walk, Leicester LE1 7EA

Abstract. The co-operative design methodology has significant advantages when
used in safety-related systems. Coupled with the time-triggered architecture, the
methodology can result in robust and predictable systems. Nevertheless, use of a co-
operative design methodology may not always be appropriate especially when the
system possesses tight resource and cost constraints. Under relaxed constraints, it
might be possible to maintain a co-operative design by introducing additional
software processing cores to the same chip. The resultant multi-core microcontroller
then requires suitable design methodologies to ensure that the advantages of time-
triggered co-operative design are maintained as far as possible. This paper explores
the application of a time-triggered distributed-systems protocol, called “shared-
clock”, on an eight-core microcontroller. The cores are connected in a mesh
topology with no hardware broadcast capabilities and three implementations of the
shared-clock protocol are examined. The custom multi-core system and the network
interfaces used for the study are also described. The network interfaces share higher
level serialising logic amongst channels, resulting in low hardware overhead when
increasing the number of channels.

Keywords. co-operative, shared-clock, multi-core, multiprocessor, MPSoC.

Introduction

In the majority of embedded systems, some form of scheduler may be employed to decide
when tasks should be executed. These decisions may be made in an “event-triggered”
fashion (i.e. in response to sporadic events) [1] or in a “time-triggered” fashion (i.e. in
response to pre-determined lapses in time) [2]. When a task is due to be executed, the
scheduler can pre-empt the currently executing task or wait for the executing task to
relinquish control co-operatively.

Co-operative schedulers have a number of desirable features, particularly for use in
safety-related systems [1, 3-5]. Compared to a pre-emptive scheduler, co-operative
schedulers can be identified as being simpler, having lower overheads, being easier to test
and having greater support from certification authorities [4]. Resource sharing in co-
operative schedulers is also a straightforward process, requiring no special design
considerations as is the case with pre-emptive systems [6, 7]. The simplicity may suggest
better predictability while simultaneously necessitating a careful design to realise the
theoretical predictions in practice.

One of the simplest implementations of a co-operative scheduler is a cyclic executive
[8, 9]: this is one form of a broad class of time triggered, co-operative (TTC) architectures.
With appropriate implementations, TTC architectures are a good match for a wide range of
applications, such as automotive applications [10, 11], wireless (ECG) monitoring systems
[12], various control applications [13-15], data acquisition systems, washing-machine
control and monitoring of liquid flow rates [16].

150 K. F. Athaide et al. / Shared-clock methodology for TT multi-cores

Despite having many excellent characteristics, a TTC solution will not always be
appropriate. Since tasks cannot interrupt each other, those with long execution times can
increase the amount of time it takes for the system to respond to changes in the
environment. This then imposes a constraint that all tasks must have short execution times
in order to improve system response times [3]. A change in system specifications (e.g.
higher sampling rates) post-implementation could require a re-evaluation of all system
properties and validation that the static schedule still holds.

In this paper, we consider ways in which – by adapting the underlying processor
hardware – we can make it easier to employ TTC architectures in embedded systems. From
the outset we should note that there is a mismatch between generic processor architectures
and time-triggered software designs. For example, most processors support a wide range of
interrupts, while the use of a (pure) time-triggered software architecture generally requires
that only a single interrupt is active on each processor. This leads to design “guidelines”,
such as the “one interrupt per microcontroller rule” [17]. Such guidelines can be supported
when appropriate tools are used for software creation (e.g. [18, 19]). However, it is still
possible for changes to be made (for example, during software maintenance or upgrades)
that lead to the creation of unreliable systems.

The present paper represents the first step in a new research programme in which we
are exploring an alternative solution to this problem. Specifically, we are seeking to
develop a novel “System-on-chip” (SoC) architecture, which is designed to support TTC
software. This approach has become possible since the advent of the reduced cost of field-
programmable gate array (FPGA) chips with increasing gate numbers [20].

Following the wider use of FPGAs, SoC integrated circuits have been used in
embedded systems, from consumer devices to industrial systems. These complex circuits
are an assembly upon a single silicon die from several simpler components such as
instruction set processors, memories, specialised logic, etc. A SoC with more than one
instruction set processor (or simply “processor”) is referred to as a multi-core or
multiprocessor system-on-chip (MPSoC).

MPSoCs running decomposed single-processor software as TTC software may have
time-triggered tasks running concurrently on separate, simpler, heterogeneous cores, with
the tasks synchronising and exchanging timing information through some form of network.
In this configuration, MPSoCs resemble micro versions of distributed systems, without the
large amount of cabling and high installation and maintenance costs. Like a distributed
system, an MPSoC requires software that is reliable and operates in real-time.

Previously, shared-clock schedulers have been found to be a simple and effective
means of applying TTC concepts to distributed systems communicating on a single shared
channel [17, 21, 22]. This paper explores the use of shared-clock schedulers for a custom
MPSoC where communication may take place on multiple channels.

The remainder of this paper is organised as follows. In Section 1, previous work on
design methodologies for software on MPSoCs is reviewed, while Section 2 proposes an
enhancement to the shared-clock design. Section 3 then describes the MPSoC and network
interface module being used in this work. In Section 4, the results of applying the shared-
clock design enhancement to the MPSoC are presented. Finally, our conclusions are
delivered in Section 5.

1. Previous work

Previous research on MPSoC software design has advocated a modular approach, either
composing a system from pre-existing modules or producing an executable from a high-

 K. F. Athaide et al. / Shared-clock methodology for TT multi-cores 151

level model, with the entire system running on either a bare-bones or a fully fledged real-
time operating system (RTOS) [23, 24].

Virtuoso is a RTOS with a pre-emptive microkernel for heterogeneous multiprocessor
signal-processing systems [25]. Communication between processors is packetised with
packets inheriting the priority of the generating task. Tasks share no common memory and
communicate and synchronise via message-passing. This RTOS allows an MPSoC to be
programmed as a virtual single processor, allowing for processor and communication
topology independence but at the expense of a larger code base and greater communication
overheads.

Alternatively, the multiprocessor nature can be exposed to the designer, as in [26]
where a model based design process is proposed for an eight processor MPSoC running
time-triggered software. The MPSoC is considered to be composed of various chunks
communicating through a network-on-chip (NoC) partitioned into channels using a global
time-division-multiple-access (TDMA) schedule. The TDMA scheme which is employed
is similar to that of the time-triggered protocol (TTP) used in distributed systems [27],
where cores synchronise by comparing their locally maintained time with the global time
maintained on the network. This synchronisation is crucial to ensuring that cores transmit
only in their allocated timeslots. However, this global TDMA scheme may be constrained
by transmission times to distant nodes on certain topologies, requiring unsuitably large
timeslots for such nodes.

Another implementation of a NoC for time-triggered software also uses the TTP
method of synchronising the attached processors [28]. The broadcast requirements of this
implementation limit it to processors connected in a unidirectional ring topology. It also
faces the same global TDMA problem described above – as the number of nodes increases,
the schedule table quickly becomes full of delay slots.

In the domain of distributed systems, shared-clock scheduling (SCS) is a simple and
effective method of applying the TTP principles [17]. In contrast to TTP where all nodes
have the same status, SCS follows a single master-multiple slave model, with the global
time maintained at the master. The global time is propagated by the master using an
accurate time source to generate regular Ticks or messages, which then trigger schedulers in
the slave nodes, which send back Acknowledgements (Figure 1).

Figure 1: shared clock design.

Timer
overflow

[Timer overflow]

Run
tasks

Send Ticks

Timer
overflow

Master

Receive
ACKs

Hardware

Receive
Tick

Slave

Run
tasks

Send
ACK

Receive
Tick

Slave

Run
tasks

Send
ACK

152 K. F. Athaide et al. / Shared-clock methodology for TT multi-cores

The Ticks and Acknowledgements can also be used for master-to-slave and slave-to-
master communication. Slave-to-slave communication can be carried out through the
master or by snooping (if allowed by the communication media). The healthiness of a node
is indicated by the presence and contents of its Acknowledgement message. A shared-bus
is most often used as the communication medium.

SCS also faces the global TDMA problem resulting in either limited Tick intervals
and/or slow slave responses. This paper looks at a way of alleviating this problem by
taking advantage of underlying topologies with an SCS design for multiple communication
channels.

2. A Multi-Channel Shared-Clock Scheduler

The shared-clock scheme works well because of the implicit broadcast nature of a bus:
anything placed on the bus is visible to all connected nodes. However, to maintain cost
effectiveness, buffer-heavy features such as broadcasts may be omitted from the NoC in an
MPSoC [29].

Without hardware broadcast functionality, the master is then required to address each
node separately for each Tick. One method to achieve this would be to send a Tick to a
slave, wait for its Acknowledgement and then contact the next one. However, it is easily
seen that this method will suffer from excessive jitter as the Acknowledgement time may
well vary from Tick to Tick. The time spent communicating will increase as the number of
nodes increase, eventually leaving very little time to do anything else.

Another method is to send all Ticks immediately either using a hardware buffer or a
software polling loop. Again, however, scaling to a large number of nodes would either
require a very large hardware buffer or would consume too much processor time.
Transmission times might also mean that it is never possible to send all of one Tick’s
messages before the next Tick needs to be signalled.

An alternative is to broadcast the Tick in a tree-like manner, having more than one
master in the network [30]. In this scheme, the slave of one master acts as the master of
other nodes, propagating Tick messages, or multiples thereof through the network. In this
scheme, a master only receives Acknowledgements from the immediate slaves and is
unaware of the presence of the other nodes.

An example of this scheme is seen in the mesh arrangement in Figure 2, where for
illustrative purposes, the initial master is located at the bottom left corner.

Figure 2: example of tree propagation.

0

0.0

0.0.0 0.1.0.0

0.1.0

0.1 0.1.1

0.1.1.0

0.1.1.0.0

 K. F. Athaide et al. / Shared-clock methodology for TT multi-cores 153

The number in the node is obtained by joining the number of the node that sent it the
Tick and the order in which it received the Tick. For example, the initial master first sends
its Tick north (to 0.0), then east (to 0.1). The east node then sends its own Tick north (to
0.1.0) and east (to 0.1.1) and so on. The lines represent existing physical connections with
the arrowheads showing the direction of propagation of messages. Lines without
arrowheads are unused by the scheduling scheme and may be used for additional
application-dependent inter-slave communication.

This decentralisation resembles a broadcast done through software, however it is more
predictable as the “broadcast” message will always come from a pre-determined node down
a pre-determined channel (with static routing). The overhead on a single master can be kept
within limits, as opposed to a scheme that only possesses a single master. However, it will
cause distant nodes to lag behind the initial master in Ticks. For example, if transmission
time equalled half a Tick, a sample Tick propagation of the Figure 2 network is seen in
Figure 3. The most distant node eventually lags two Ticks behind the initial master, and any
data it generates can reach the initial master only two further Ticks later. This lag needs to
be considered during system design and node placement.

Figure 3: Tick propagation when transmission time is half the Tick period.

3. The TT MPSoC

The MPSoC is formed from several processor clusters linked together by a network-on-chip
(Figure 4).

Figure 4: MPSoC architecture.

0

0.1
0.0

0.1.1

0.1.0
0.0.0

0.1.1.0
0.1.0.0

0.1.1.0.0

t0 t1 t2 t3

0

0.1
0.0

0.1.1

0.1.0
0.0.0

0.1.1.0
0.1.0.0

0

0.1
0.0

Processor

Debug

Messaging
peripheral

Timer GPIO

NIM

Memory

Cluster

Cluster

Network-on-chip (NoC)

NIM

Cluster

NIM

Cluster

NIM

154 K. F. Athaide et al. / Shared-clock methodology for TT multi-cores

Each processor cluster contains one processor and associated peripherals. A cluster
interfaces to the NoC using a network interface module (NIM).

A development TT MPSoC will always contain a special debug cluster that is used as
the interface between a developer’s computer and the MPSoC. This debug cluster allows
processor cores to be paused, stopped, etc as well as allowing memory in the cluster to be
read from or written to. These capabilities are provided by a separate debug node in each
cluster connected to the processor and memory in that cluster. Special logic in the cluster
recognises when a debug message has been received and multiplexes it appropriately.

The MPSoC has currently been designed for a 32-bit processor called the PH processor
[31]. The PH processor was designed for time-triggered software and has a RISC design
which is compatible with the MIPS I ISA (excluding patented instructions): it has a
Harvard architecture, 32 registers, a 5-stage pipeline and support for precise exceptions. In
the present (MPSoC) design, the number and type of peripherals connected to each
processor is independently configurable, as is the frequency at which each processor is
clocked.

A “messaging” peripheral is present with all clusters. This peripheral allows the
processor to receive and transmit messages on the NoC. The PH processor is sensitive to a
single event multiplexed from various sources. In this implementation, events can be
generated by the messaging peripheral and timer peripherals, if present.

An interactive GUI is used to specify the set of files to be compiled for each processor,
generating one binary per processor. These binaries are then uploaded via a JTAG
connection to the debug cluster which transmits them onward to the specified processor.

3.1 The Network Interface Module (NIM)

A network interface module (NIM) forms the interface between a processor cluster and the
NoC. The NIMs use static routing, store-and-forward switching, send data in non-
interruptible packet streams and have no broadcast facilities. Communication is performed
asynchronously with respect to software executing on the processors.

The NIM was designed to be flexible (for research purposes) and supports any number
of channels of communication. By varying the number of channels and the links between
them, various topologies can be obtained.

Figure 5: implemented OSI layers.

Network Layer

Data Link Layer

Channel Channel Channel

 K. F. Athaide et al. / Shared-clock methodology for TT multi-cores 155

The channels constitute the physical layer of the Open Systems Interconnection (OSI)
model [32], with the data link and network layers shared between channels (Error!
Reference source not found.). Each channel uses four handshaking control lines and any
number of bidirectional data lines, as dictated by the application (Figure 6). A channel is
insensitive to the frequency at which the other channel is running. This insensitivity comes
at the cost of a constant overhead (it is independent of the bit-width of the data line) per
data transfer. A channel with n data lines may be referred to as an n-bit channel.

Figure 6: channel OSI layers.

The packet structure for a 6-bit channel is shown in Figure 7. The preamble size was
chosen to match the physical layer data size, with the cluster ID and node ID sizes chosen
so that there is a maximum of 220 clusters each with a maximum of sixteen nodes. Data
was fixed at ninety-six bits to obtain reasonable bandwidth. Fixed-length packets were
chosen to eliminate transmission-time jitter. Each packet is affixed with a 12-bit cyclic
redundancy checksum (CRC)1, which was used for error detection. This checksum is
capable of detecting single bit errors, odd number of errors and burst errors up to twelve
bits. There is no automatic error correction in the present implementation.

Figure 7: Network packet structure.

This packet structure has a theoretical transmission efficiency of approximately 70%.
The packet has a size of 138 bits, which equates to 23 “chunks” with a 6-bit channel. If the
channel uses 7 cycles for each chunk, then the packet in total takes 161 cycles to reach the
destination. At 25 MHz, this equates to a throughput of ~15 Mbps, which increases to ~60
Mbps at 100 MHz. This performance can be improved by increasing either the
communication frequency and/or the channel bit width.

3.2 Hardware Implementation

A prototype with 6-bit wide data channels was implemented on multiple Spartan 3 1000K
FPGAs, using the Digilent Nexys development board [33]. Using one FPGA for each
processor, as opposed to a single one containing all processors, allows for lower synthesis
times and greater design exploration space in addition to supplying a number of useful
debugging peripherals (switches, LEDs, etc.) to each processor.

The hardware usage for the NIM is shown in Table 1 with varying numbers of
channels and data widths. The values were obtained from the synthesis report generated by
the Xilinx ISE WebPACK [34] with the NIM selected as the sole module to be synthesised.

1 Using the standard CRC-12 polynomial: x12 + x11 + x3 + x2 + x + 1

Channel

RTS

ACK

REQ

RDY

DATA

Channel

RTS

ACK

REQ

RDY

DATA

Preamble Cluster ID Node ID Data

12108112 132 137 131 111 107

CRC

011

156 K. F. Athaide et al. / Shared-clock methodology for TT multi-cores

The 8-bit and 16-bit channel implementations have a 144-bit data packet with an 8-bit
preamble and 4-bits of padding added to the 12-bit CRC field.

As can be seen in the table on the next page, logic consumption sees a very minor
increase as the number of channels is increased. There is an initial hump when moving
from one to two channels as multi-channel logic that is optimised away in the single-
channel case (by the synthesis software) is reinserted, but beyond two channels, the trend
appears steady. The number of slices counterintuitively reduces when moving from a 6-bit
data width to an 8-bit one because certain addition/subtraction logic is optimised into
simpler shifts.

Table 1: logic utilisation of the network interface module.

 Number of channels Data width
(bits) 1 2 3 4

Slices used 637 681 699 723

Percentage used 8.3% 8.9% 9.1% 9.4% 6

Percentage increase — 6.5% 2.6% 3.3%

Slices used 613 653 676 706

Percentage used 8.0% 8.5% 8.8% 9.2% 8

Percentage increase — 6.1% 3.4% 4.2%

Slices used 659 709 751 786

Percentage used 8.6% 9.2% 9.8% 10.2% 16

Percentage increase — 7.1% 5.6% 4.5%

Simulations with ModelSim [35] suggest the interval from transmission request on one

channel to reception notification on another channel to be 2.43 µs, 4.59 µs and 5.79 µs for
the 16-bit, 8-bit and 6-bit data channels respectively. These simulations assumed ideal
propagation times.

Compared to the lightweight circuit-switched PNoC [36], the NIM has a low logic cost
for additional channels. PNoC has also been designed for flexibility and suitability for any
topology and the 8-bit wide, 4-channel implementation uses 249 slices on the Xilinx
Virtex-II Pro FPGA [37]. This is a 66% increase over a 2-channel implementation and
78% less than an 8-channel implementation. In contrast, the 8-bit wide 4-channel NIM
when synthesised for this FPGA uses 707 slices while the 8-channel version uses 722
slices, a relatively miniscule increase (2%). Compared to the PNoC equivalents, the 4-
channel NIM is about 65% larger while the 8-channel version is about 35% smaller.

The time-triggered NoC in [28] is tied to a unidirectional ring topology. It is not
designed to serialise data transfer and completes its 128-bit data transfer in a single cycle.
On the Cyclone II (EP2C70) FPGA [38], it uses 480 logic cells. The 16-bit wide, 2-
channel NIM when synthesised for this FPGA using the Quartus II Web Edition [39], uses
1161 logic cells, about 2.4 times the amount.

Both the above implementations use on-chip memory for buffer storage, while for the
moment the NIM employs registers. The logic utilisation report from the WebPACK
suggests that about 50% of the logic in the NIM is spent on registers, further suggesting
possible logic savings by moving to on-chip memory for storage.

 K. F. Athaide et al. / Shared-clock methodology for TT multi-cores 157

4. Case Study

To illustrate the operation of this MPSoC design, the MPSoC described in Section 3 was
configured to have eight processors and one debug node, arranged in a mesh structure as
seen in Figure 8, with each processor and the NoC clocked at 25 MHz. In this
arrangement, there is no direct path between certain cluster pairs. The XY routing strategy
is employed where a message is propagated first horizontally and then vertically in order to
reach the targeted processor.

Figure 8: testbed topology.

Three types of schedulers were implemented:

• In the first design (SCH1), P1 (i.e. the processor on cluster 1) acts as a master
to all other processors, sending Ticks to them in the same Tick interval, sending
a Tick to a processor only when the previous one has sent its
Acknowledgement.

• In the second design (SCH2), P1 again acts as a master, but this time sends
Ticks to the processors in turns (one Tick per timer overflow).

• In the third design (SCH3), each processor acts as a master to its immediate
slaves (Figure 9), according to the technique described in Section 2. Ticks are
sent to a slave only when the previous one has sent its Acknowledgement.

Figure 9: master-slave tree.

Slave processors toggle a pin when the messaging peripheral raises an interrupt.
Master processors toggle pins on transmitting Ticks or receiving Acknowledgements. All
these pulses are run into a common pulse detection device (with a resolution of 20 ns),
providing relative timing on each of these signals. The Tick transmission times from the
immediate master are shown in Figure 10.

Debug P0 P1

P4

P7 P6

P3 P2

P5

P1

P0 P4

P3 P7

P2 P6

P5

158 K. F. Athaide et al. / Shared-clock methodology for TT multi-cores

Figure 10: Time taken for the transmission of a Tick from P1.

As expected, the Tick transmission times increase as the number of hops increase. The
first and second implementations show near identical transmission times (the difference
between them is due to software overhead). Tick transmission times for SCH3 measured
from the immediate master are the lowest since all transmissions are single hops. The
slight variations observed in the SCH3 line may be due to noise in the transmission medium
and has a range of 4.22 µs. The single hop transmission times averaged at about 6.79 µs,
not including software overheads.

Figure 11: Time from P1 timer overflow to Tick receipt.

Figure 11 shows the time from when the initial master, P1, receives notification of a
timer overflow to when a node receives notification of a Tick message. SCH1 has a high
overhead as the number of nodes increases, while SCH2 and SCH3 maintain a more or less
steady overhead. The overhead for SCH2 depends solely on the number of hops required to
reach the node while for SCH3 it is dependent on the number of slaves and the distance
from the initial master.

The SCH3 Tick receipt trend might be better understood by comparing the master-
slave chain in Figure 9 and Figure 12. In Figure 12, the times have been plotted in the
order in which the nodes receive their Ticks, each master-slave chain plotted separately.
The order is based on the averages, but since chains can be independent (for example, the
P0-P3 and the P4-P7 chains), the order could vary in particular Tick instances.

In SCH3, masters wait for slave Acknowledgements before contacting other slaves. In
that implementation, when the timer overflows, P1 sends a Tick to P0 and waits. On
receiving the Tick, P0 sends an Acknowledgement to P1 and then immediately sends a Tick
to P3. However, since the channels share their higher layers, the Acknowledgement must

0

20

40

P0 P2 P3 P4 P5 P6 P7

Ti
m

e
(µ

s)

SCH1 SCH2 SCH3 (from local master)

0

100

200

300

P0 P2 P3 P4 P5 P6 P7

Ti
m

e
(µ

s)

SCH1 SCH2 SCH3

 K. F. Athaide et al. / Shared-clock methodology for TT multi-cores 159

be sent before Tick transmission can commence. Because of this, the Acknowledgement
reaches P1 at about the same time that P0 starts to send the Tick to P3. A few microseconds
later (spent in software processing), P1 sends a Tick to P4. Since both are single hops, the
Tick to P4 reaches slightly later than the Tick to P3. The same trend can be observed for P5
and P6.

P0

P4P3P3

P6

P7

P5

P2

P4

0

20

40

60

80

Ti
m

e
(µ

s)

P1 P0 P3 P4 P2

Figure 12: SCH3 times from P1 timer overflow in order of Tick receipt.

The jitter in transmission times can be seen in Figure 13. The jitter increases as the
number of hops increases, most easily seen in the graphs of SCH1 and SCH2. SCH1 and
SCH2 start out with the same amount of jitter, though it quickly starts to increase for SCH1.
This is because SCH1 waits for Acknowledgements before sending further Ticks, so the
jitter in receiving Acknowledgements is added to that of Ticks sent later.

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

P0 P2 P3 P4 P5 P6 P7

Ji
tte

r (
µs

)

SCH1 SCH2 SCH3 (from P1) SCH3 (from local master)

Figure 13: Jitter in transmission times.

The jitter for SCH3 is shown both for transmission from the immediate master and
from P1, though the jitter when measured from P1 is more important as it is a measure of
the variation in sensing the timer overflow. The jitter when measured from P1 follows the
same trend as the transmission time measured in the same way – it increases when
travelling down the master-slave chains (Figure 14).

The SCH3 jitter measurement is further affected by the channels sharing higher layers.
That is why the jitter for P6 is very low; no other messages have been queued for
transmission from P3 at that time.

While SCH2 appears to be a better choice in most of the comparisons, it is worth
noting that since it sends a message to only one node per timer overflow, the frequency of

160 K. F. Athaide et al. / Shared-clock methodology for TT multi-cores

Ticks a node receives will decrease as the number of nodes increases. A mix of SCH1 and
SCH2 where certain nodes are can be sent Ticks more frequently might prove better. It
could also be mixed with SCH3 to introduce a degree of scalability.

P0

P4

P0

P3P3
P2

P6P7

P2

P5

P4

0

0.5

1

1.5

2

Ji
tte

r (
µs

)

P1 P0 P3 P4 P2

Figure 14: SCH3 jitter from P1 in the order of Tick receipt.

While SCH2 appears to be a better choice in most of the comparisons, it is worth
noting that since it sends a message to only one node per timer overflow, the frequency of
Ticks a node receives will decrease as the number of nodes increases. A mix of SCH1 and
SCH2 where certain nodes are can be sent Ticks more frequently might prove better. It
could also be mixed with SCH3 to introduce a degree of scalability.

Choosing between scheduler implementations or a mix of all three scheduler
implementations will be highly application dependent and requires a deeper analysis into
the rationale behind such choices.

5. Conclusions

This paper has presented results from a study which has explored the use of the time-
triggered shared-clock distributed protocol on a non-broadcast, statically routed NoC
employed in an MPSoC for time-triggered software. A scheduler design that used a tree-
based form of broadcasting clock information was described and implemented on an
MPSoC with eight processors connected in a mesh. This design offered a fast response and
low overhead, promising to scale well to a large number of nodes, though at the cost of
increased jitter and latency when compared to the other implementations.

Acknowledgments

This project is supported by the University of Leicester (Open Scholarship award) and TTE
Systems Ltd.

References

[1] N. Nissanke, Realtime Systems: Prentice-Hall, 1997.
[2] H. Kopetz, "Time Triggered Architecture," ERCIM NEWS, pp. 24-25, Jan 2002.
[3] S. T. Allworth, Introduction to Real-Time Software Design: Macmillan, 1981.
[4] I. J. Bate, "Introduction to scheduling and timing analysis," in The Use of Ada in Real-Time Systems,

2000.

 K. F. Athaide et al. / Shared-clock methodology for TT multi-cores 161

[5] N. J. Ward, "The static analysis of a safety-critical avionics control system," in Air Transport Safety:
Proceedings of the Safety and Reliability Society Spring Conference, 1991.

[6] H. Wang, M. J. Pont, and S. Kurian, "Patterns which help to avoid conflicts over shared resources in
time-triggered embedded systems which employ a pre-emptive scheduler," in 12th European
Conference on Pattern Languages of Programs (EuroPLoP 2007) Irsee Monastery, Bavaria, Germany,
2007.

[7] A. Maaita and M. J. Pont, "Using 'planned pre-emption' to reduce levels of task jitter in a time-triggered
hybrid scheduler," in Proceedings of the Second UK Embedded Forum, Birmingham, UK, 2005, pp. 18-
35.

[8] T. Baker and A. Shaw, "The cyclic executive model and Ada," Real-Time Systems, vol. 1, pp. 7-25,
1989.

[9] C. D. Locke, "Software architecture for hard real-time applications: cyclic executives vs. fixed priority
executives," Real-Time Systems, vol. 4, pp. 37-53, 1992.

[10] D. Ayavoo, M. J. Pont, and S. Parker, "Using simulation to support the design of distributed embedded
control systems: a case study," in Proceedings of the UK Embedded Forum 2004, Birmingham, UK,
2004, pp. 54 - 65.

[11] M. Short and M. J. Pont, "Hardware in the loop simulation of embedded automotive control system," in
Proceedings of the 8th IEEE International Conference on Intelligent Transportation Systems (IEEE
ITSC 2005), 2005, pp. 426 - 431.

[12] T. Phatrapornnant and M. J. Pont, "Reducing jitter in embedded systems employing a time-triggered
software architecture and dynamic voltage scaling," IEEE Transactions on Computers, vol. 55, pp. 113-
124, 2006.

[13] R. Bautista, M. J. Pont, and T. Edwards, "Comparing the performance and resource requirements of
‘PID’ and ‘LQR’ algorithms when used in a practical embedded control system: A pilot study," in
Proceedings of the Second UK Embedded Forum, Birmingham, UK, 2005.

[14] T. Edwards, M. J. Pont, P. Scotson, and S. Crumpler, "A test-bed for evaluating and comparing designs
for embedded control systems," in Proceedings of the first UK Embedded Forum, Birmingham, UK,
2004, pp. 106-126.

[15] S. Key and M. J. Pont, "Implementing PID control systems using resource-limited embedded
processors," in Proceedings of the first UK Embedded Forum, Birmingham, UK, 2004, pp. 76-92.

[16] M. J. Pont, Embedded C. London: Addison-Wesley, 2002.
[17] M. J. Pont and Association for Computing Machinery, Patterns for time-triggered embedded systems :

building reliable applications with the 8051 family of microcontrollers. Harlow: Addison-Wesley,
2001.

[18] C. Mwelwa, M. J. Pont, and D. Ward, "Code generation supported by a pattern-based design
methodology," in Proceedings of the first UK Embedded Forum, Birmingham, UK, 2004, pp. 36-55.

[19] C. Mwelwa, K. Athaide, D. Mearns, M. J. Pont, and D. Ward, "Rapid software development for reliable
embedded systems using a pattern-based code generation tool," in Society of Automotive Engineers
(SAE) World Congress, Detroit, Michigan, USA, 2006.

[20] J. Gray, "Designing a Simple FPGA-Optimized RISC CPU and System-on-a-Chip," Gray Research
LLC, 2000.

[21] D. Ayavoo, M. J. Pont, M. Short, and S. Parker, "Two novel shared-clock scheduling algorithms for use
with 'Controller Area Network' and related protocols," Microprocessors & Microsystems, vol. 31, pp.
326-334, 2007.

[22] M. Nahas, M. J. Pont, and A. Jain, "Reducing task jitter in shared-clock embedded systems using
CAN," in Proceedings of the UK Embedded Forum 2004, A. Koelmans, A. Bystrov, and M. J. Pont,
Eds. Birmingham, UK: Published by University of Newcastle upon Tyne, 2004, pp. 184-194.

[23] L. Benini and G. De Micheli, Networks on Chips: Technology and Tools: Morgan Kaufmann, 2006.
[24] A. A. Jerraya and W. H. Wolf, Multiprocessor systems-on-chips: Morgan Kaufmann, 2005.
[25] E. Verhulst, "The Rationale for Distributed Semantics as a Topology Independent Embedded Systems

Design Methodology and its Implementation in the Virtuoso RTOS," Design Automation for Embedded
Systems, vol. 6, pp. 277-294, 2002.

[26] H. Kopetz, R. Obermaisser, C. E. Salloum, and B. Huber, "Automotive Software Development for a
Multi-Core System-on-a-Chip," in Proceedings of the 4th International Workshop on Software
Engineering for Automotive Systems: IEEE Computer Society, 2007.

[27] H. Kopetz and G. Grünsteidl, "TTP - A Protocol for Fault-Tolerant Real-Time Systems," Computer,
vol. 27, pp. 14-23, 1994.

[28] M. Schoeberl, "A Time-Triggered Network-on-Chip," in International Conference on Field-
Programmable Logic and Applications (FPL 2007), Amsterdam, Netherlands, 2007, pp. 377-382.

162 K. F. Athaide et al. / Shared-clock methodology for TT multi-cores

[29] A. Rădulescu and K. Goossens, "Communication services for networks on silicon," in Domain-Specific
Processors: Systems, Architectures, Modeling, and Simulation, S. S. Bhattacharyya, E. Deprettere, and
J. Teich, Eds.: Marcel Dekker, 2002.

[30] T. Kielmann, R. F. H. Hofman, H. E. Bal, A. Plaat, and R. A. F. Bhoedjang, "MagPIe: MPI’s collective
communication operations for clustered wide area systems," in Proceedings of the Seventh ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP’99). vol. 34
Atlanta, GA, 1999, pp. 131-140.

[31] Z. M. Hughes, M. J. Pont, and H. L. R. Ong, "The PH Processor: A soft embedded core for use in
university research and teaching," in Proceedings of the Second UK Embedded Forum, Birmingham,
UK, 2005, pp. 224-245.

[32] H. Zimmermann, "OSI Reference Model - The ISO Model of Architecture for Open Systems
Interconnection," IEEE Transactions on Communications, vol. 28, pp. 425- 432, April 1980.

[33] Digilent Inc., "Nexys," http://www.digilentinc.com/Products/Detail.cfm?Prod=NEXYS, 2006.
[34] Xilinx, "Xilinx ISE WebPACK," http://www.xilinx.com/ise/logic_design_prod/webpack.htm.
[35] Mentor Graphics, "ModelSim," http://www.model.com/.
[36] C. Hilton and B. Nelson, "PNoC: a flexible circuit-switched NoC for FPGA-based systems," IEE

Proceedings of Computers and Digital Techniques, vol. 153, pp. 181-188, 2006.
[37] Xilinx, "Virtex-II Pro FPGAs,"

http://www.xilinx.com/products/silicon_solutions/fpgas/virtex/virtex_ii_pro_fpgas/index.htm.
[38] Altera Corporation, "Cyclone II FPGAs," http://www.altera.com/products/devices/cyclone2/cy2-

index.jsp.
[39] Altera Corporation, "Quartus II Web Edition Software,"

http://www.altera.com/products/software/producots/quartus2web/sof-quarwebmain.html.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

