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Abstract. We prove the correctness of a two-way sliding window protocol with pig-
gybacking, where the acknowledgements of the latest received data are attached to
the next data transmitted back into the channel. The window sizes of both parties are
considered to be finite, though they can be different. We show that this protocol is
equivalent (branching bisimilar) to a pair of FIFO queues of finite capacities. The pro-
tocol is first modeled and manually proved for its correctness in the process algebraic
language of µCRL. We use the theorem prover PVS to formalize and mechanically
prove the correctness of the protocol. This implies both safety and liveness (under the
assumption of fairness).
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Introduction

A sliding window protocol [7] (SWP) ensures successful transmission of messages from a
sender to a receiver through a medium in which messages may get lost. Its main characteristic
is that the sender does not wait for incoming acknowledgments before sending next messages,
for optimal use of bandwidth. Many data communication systems include a SWP, in one of
its many variations.

In SWPs, both the sender and the receiver maintain a buffer. We consider a two-way
SWP, in which both parties can both send and receive data elements from each other. One way
of achieving full-duplex data transmission is to have two separate communication channels
and use each one for simplex data traffic (in different directions). Then there are two separate
physical circuits, each with a forward channel (for data) and a reverse channel (for acknowl-
edgments). In both cases the bandwidth of the reverse channel is almost entirely wasted. In
effect, the user is paying for two circuits but using the capacity of one. A better idea is to
use the same circuit in both directions. Each party maintains two buffers, for storing the two
opposite data streams. In this two-way version of the SWP, an acknowledgment that is sent
from one party to the other may get a free ride by attaching it to a data element. This method
for efficiently passing acknowledgments and data elements through a channel in the same
direction, which is known as piggybacking, is used broadly in transmission control protocols,
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see [39]. The main advantage of piggybacking is a better use of available bandwidth. The
extra acknowledgment field in the data frame costs only a few bits, whereas a separate ac-
knowledgment would need a header and a checksum. In addition, fewer frames sent means
fewer ‘frame arrived’ interrupts.

The current paper builds on a verification of a one-way version of the SWP in [1, 9]. The
protocol is specified in µCRL [15], which is a language based on process algebra and abstract
data types. The verification is formalized in the theorem prover PVS [29]. The correctness
proof is based on the so-called cones and foci method [10, 18], which is a symbolic approach
towards establishing a branching bisimulation relation. The starting point of the cones and
foci method are two µCRL specifications, expressing the implementation and the desired
external behavior of a system. A state mapping φ relates each state of the implementation
to a state of the desired external behavior. Furthermore, the user must declare which states
in the implementation are focus points, whereby each reachable state of the implementation
should be able to get to a focus point by a sequence of hidden transitions, carrying the label τ .
If a number of matching criteria are met, consisting of equations between data objects, then
states s and φ(s) are branching bisimilar. Roughly, the matching criteria are: (1) if s τ→ s′

then φ(s) = φ(s′), (2) each transition s a→ s′ with a 6= τ must be matched by a transition
φ(s)

a→ φ(s′), and (3) if s is a focus point, then each transition of φ(s) must be matched by a
transition of s.

The crux of the cones and foci method is that the matching criteria are formulated syn-
tactically, in terms of relations between data terms. Thus, one obtains clear proof obligations,
which can be verified with a theorem prover. The cones and foci method provides a general
verification approach, which can be applied to a wide range of communication protocols and
distributed algorithms.

The main motivations for the current research is to provide a mechanized correctness
proof of the most complicated version of the SWP in [39], including the piggybacking mech-
anism. Here we model buffers (more realistically) as ordered lists, without multiple occur-
rences of the same index. Therefore two buffers are equal only if they are identical. That is,
any swapping or repetition of elements results in a different buffer. It was mainly this shift to
ordered lists without duplications (i.e. each buffer is uniquely represented with no more that
once occurrence of each index), that made this verification exercise hard work. Proving that
each reachable state can get to a focus point by a sequence of τ -transitions appeared to be
considerably hard (mainly because communication steps of the two data streams can happen
simultaneously).

The medium between the sender and the receiver is modeled as a lossy queue of capacity
one. With buffers of sizes 2n1 and 2n2, and windows of sizes n1 and n2, respectively, we
manually (paper-and-pencil) prove that the external behavior of this protocol is branching
bisimilar [43] to a pair of FIFO queues of capacity 2n1 and 2n2. This implies both safety and
liveness of the protocol (the latter under the assumption of fairness, which intuitively states
that no message gets lost infinitely often).

The structure of the proof is as follows. First, we linearize the specification, meaning
that we get rid of parallel operators. Moreover, communication actions are stripped from their
data parameters. Then we eliminate modulo arithmetic, using an idea from Schoone [35].
Finally, we apply the cones and foci technique, to prove that the linear specification without
modulo arithmetic is branching bisimilar to a pair of FIFO queues of capacity 2n1 and 2n2.
The lemmas for the data types, the invariants, the transformations and the matching criteria
have all been checked using PVS 2.3. The PVS files are available via http://www.cs.
utwente.nl/~vdpol/piggybacking.html.

The remainder of this paper is set up as follows. In Section 1 the µCRL language is ex-
plained. In Section 2 the data types needed for specifying the protocol are presented. Section
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3 features the µCRL specifications of the two-way SWP with piggybacking, and its external
behavior. In Section 4, three consecutive transformations are applied to the specification of
the SWP, to linearize the specification, eliminate arguments of communication actions, and
get rid of modulo arithmetic. In Section 5, properties of the data types and invariants of the
transformed specification are formulated; their proofs are in [2]. In Section 6, it is proved
that the three transformations preserve branching bisimilarity, and that the transformed spec-
ification behaves as a pair of FIFO queues. In Section 7, we present the formalization of the
verification of the SWP in PVS. We conclude the paper in Section 8.

Related Work

Sliding window protocols have attracted considerable interest from the formal verification
community. In this section we present an overview. Many of these verifications deal with
unbounded sequence numbers, in which case modulo arithmetic is avoided, or with a fixed
finite buffer and window size at the sender and the receiver. Case studies that do treat arbitrary
finite buffer and window sizes mostly restrict to safety properties.

Unbounded sequence numbers Stenning [38] studied a SWP with unbounded sequence
numbers and an infinite window size, in which messages can be lost, duplicated or reordered.
A timeout mechanism is used to trigger retransmission. Stenning gave informal manual
proofs of some safety properties. Knuth [25] examined more general principles behind Sten-
ning’s protocol, and manually verified some safety properties. Hailpern [19] used temporal
logic to formulate safety and liveness properties for Stenning’s protocol, and established their
validity by informal reasoning. Jonsson [22] also verified safety and liveness properties of
the protocol, using temporal logic and a manual compositional verification technique. Rusu
[34] used the theorem prover PVS to verify safety and liveness properties for a SWP with
unbounded sequence numbers.

Fixed finite window size Vaandrager [40], Groenveld [12], van Wamel [44] and Bezem and
Groote [4] manually verified in process algebra a SWP with window size one. Richier et al.
[32] specified a SWP in a process algebra based language Estelle/R, and verified safety prop-
erties for window size up to eight using the model checker Xesar. Madelaine and Vergamini
[28] specified a SWP in Lotos, with the help of the simulation environment Lite, and proved
some safety properties for window size six. Holzmann [20, 21] used the Spin model checker
to verify safety and liveness properties of a SWP with sequence numbers up to five. Kaivola
[24] verified safety and liveness properties using model checking for a SWP with window
size up to seven. Godefroid and Long [11] specified a full duplex SWP in a guarded com-
mand language, and verified the protocol for window size two using a model checker based
on Queue BDDs. Stahl et al. [37] used a combination of abstraction, data independence, com-
positional reasoning and model checking to verify safety and liveness properties for a SWP
with window size up to sixteen. The protocol was specified in Promela, the input language
for the Spin model checker. Smith and Klarlund [36] specified a SWP in the high-level lan-
guage IOA, and used the theorem prover MONA to verify a safety property for unbounded
sequence numbers with window size up to 256. Jonsson and Nilsson [23] used an automated
reachability analysis to verify safety properties for a SWP with a receiving window of size
one. Latvala [26] modeled a SWP using Coloured Petri nets. A liveness property was model
checked with fairness constraints for window size up to eleven.

Arbitrary finite window size Cardell-Oliver [6] specified a SWP using higher order logic,
and manually proved and mechanically checked safety properties using HOL. (Van de Snep-
scheut [41] noted that what Cardell-Oliver claims to be a liveness property is in fact a safety
property.) Schoone [35] manually proved safety properties for several SWPs using assertional
verification. Van de Snepscheut [41] gave a correctness proof of a SWP as a sequence of
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correctness preserving transformations of a sequential program. Paliwoda and Sanders [30]
specified a reduced version of what they call a SWP (but which is in fact very similar to the
bakery protocol from [13]) in the process algebra CSP, and verified a safety property mod-
ulo trace semantics. Röckl and Esparza [33] verified the correctness of this bakery protocol
modulo weak bisimilarity using Isabelle/HOL, by explicitly checking a bisimulation relation.
Chkliaev et al. [8] used a timed state machine in PVS to specify a SWP with a timeout mech-
anism and proved some safety properties with the mechanical support of PVS; correctness is
based on the timeout mechanism, which allows messages in the mediums to be reordered.

1. µCRL

µCRL [15] (see also [17]) is a language for specifying distributed systems and protocols in an
algebraic style. It is based on the process algebra ACP [3] extended with equational abstract
data types [27]. We will use≈ for equality between process terms and = for equality between
data terms.

A µCRL specification of data types consists of two parts: a signature of function symbols
from which one can build data terms, and axioms that induce an equality relation on data
terms of the same type. They provide a loose semantics, meaning that it is allowed to have
multiple models. The data types needed for our µCRL specification of a SWP are presented
in Section 2. In particular we have the data sort of booleans Bool with constants true and
false, and the usual connectives ∧, ∨, ¬,→ and↔. For a boolean b, we abbreviate b = true

to b and b = false to ¬b.
The process part of µCRL is specified using a number of pre-defined process algebraic

operators, which we will present below. From these operators one can build process terms,
which describe the order in which the atomic actions from a set A may happen. A process
term consists of actions and recursion variables combined by the process algebraic operators.
Actions and recursion variables may carry data parameters. There are two predefined actions
outside A: δ represents deadlock, and τ a hidden action. These two actions never carry data
parameters.

Two elementary operators to construct processes are sequential composition, written p·q,
and alternative composition, written p+q. The process p·q first executes p, until p terminates,
and then continues with executing q. The process p+q non-deterministically behaves as either
p or q. Summation

∑
d:D p(d) provides the possibly infinite non-deterministic choice over a

data type D. For example,
∑

n:N a(n) can perform the action a(n) for all natural numbers n.
The conditional construct p� b� q, with b a data term of sort Bool, behaves as p if b and as q
if ¬b. Parallel composition p ‖ q performs the processes p and q in parallel; in other words, it
consists of the arbitrary interleaving of actions of the processes p and q. For example, if there
is no communication possible between actions a and b, then a ‖ b behaves as (a·b) + (b·a).
Moreover, actions from p and q may also synchronize to a communication action, when this is
explicitly allowed by a predefined communication function; two actions can only synchronize
if their data parameters are equal. Encapsulation ∂H(p), which renames all occurrences in
p of actions from the set H into δ, can be used to force actions into communication. For
example, if actions a and b communicate to c, then ∂{a,b}(a ‖ b) ≈ c. Hiding τI(p) renames
all occurrences in p of actions from the set I into τ . Finally, processes can be specified by
means of recursive equations

X(d1:D1, . . . , dn:Dn) ≈ p

where X is a recursion variable, di a data parameter of type Di for i = 1, . . . , n, and p
a process term (possibly containing recursion variables and the parameters di). For exam-
ple, let X(n:N) ≈ a(n)·X(n + 1); then X(0) can execute the infinite sequence of actions
a(0)·a(1)·a(2) · · · · .
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Definition 1 (Linear process equation) A recursive specification is a linear process equa-
tion (LPE) if it is of the form

X(d:D) ≈
∑
j∈J

∑
ej :Ej

aj(fj(d, ej))·X(gj(d, ej)) / hj(d, ej) . δ

with J a finite index set, fj : D × Ej → Dj , gj : D × Ej → D, and hj : D × Ej → Bool.

Note that an LPE does not contain parallel composition, encapsulation and hiding, and uses
only one recursion variable. Groote, Ponse and Usenko [16] presented a linearization algo-
rithm that transforms µCRL specifications into LPEs.

To each µCRL specification belongs a directed graph, called a labeled transition system.
In this labeled transition system, the states are process terms, and the edges are labeled with
parameterized actions. For example, given the µCRL specificationX(n:N) ≈ a(n)·X(n+1),

we have transitions X(n)
a(n)→ X(n + 1). Branching bisimilarity ↔b [43] and strong bisim-

ilarity ↔ [31] are two well-established equivalence relations on states in labeled transition
systems.1 Conveniently, strong bisimilarity implies branching bisimilarity. The proof theory
of µCRL from [14] is sound with respect to branching bisimilarity, meaning that if p ≈ q can
be derived from it then p↔b q.

Definition 2 (Branching bisimulation) Given a labeled transition system. A strong bisimu-
lation relation B is a symmetric binary relation on states such that if sB t and s `→ s′, then
there exists t′ such that t `→ t′ and s′ B t′. Two states s and t are strongly bisimilar, denoted
by s↔ t, if there is a strong bisimulation relation B such that sB t.

A strong and branching bisimulation relation B is a symmetric binary relation on states
such that if sB t and s `→ s′, then

- either ` = τ and s′ B t;
- or there is a sequence of (zero or more) τ -transitions t τ→ · · · τ→ t̂ such that sB t̂ and
t̂

`→ t′ with s′ B t′.
Two states s and t are branching bisimilar, denoted by s↔b t, if there is a branching bisim-
ulation relation B such that sB t.

See [42] for a lucid exposition on why branching bisimilarity constitutes a sensible equiva-
lence relation for concurrent processes.

The goal of this section is to prove that the initial state of the forthcoming µCRL spec-
ification of a two-way SWP is branching bisimilar to a pair of FIFO queues. In the proof of
this fact, in Section 6, we will use three proof techniques to derive that two µCRL specifica-
tions are branching (or even strongly) bisimilar: invariants, bisimulation criteria, and cones
and foci. An invariant I : D → Bool [5] characterizes the set of reachable states of an LPE
X(d:D). That is, if I(d) = true and X can evolve from d to d′ in zero or more transitions,
then I(d′) = true.

Definition 3 (Invariant) I : D → Bool is an invariant for an LPE in Definition 1 if for all
d:D, j ∈ J and ej:Ej . (I(d) ∧ hj(d, ej)) → I(gj(d, ej)).

If I holds in a state d and X(d) can perform a transition, meaning that hj(d, ej) = true

for some ej:E, then it is ensured by the definition above that I holds in the resulting state
gj(d, ej).

1The definitions of these relations often take into account a special predicate on states to denote successful
termination. This predicate is missing here, as successful termination does not play a role in our SWP specifi-
cation.
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Bisimulation criteria rephrase the question whether X(d) and Y (d′) are strongly bisim-
ilar in terms of data equalities, where X(d:D) and Y (d′:D′) are LPEs. A state mapping φ
relates each state inX(d) to a state in Y (d′). If a number of bisimulation criteria are satisfied,
then φ establishes a strong bisimulation relation between terms X(d) and Y (φ(d)).

Definition 4 (Bisimulation criteria) Given two LPEs,

X(d:D) ≈
∑

j∈J

∑
ej :Ej

aj(fj(d, ej))·X(gj(d, ej)) / hj(d, ej) . δ

Y (d′:D′)≈
∑

j∈J

∑
e′
j :E′

j
aj(f

′
j(d

′, e′j))·X(g′j(d
′, e′j)) / h

′
j(d

′, e′j) . δ

and an invariant I : D → Bool for X . A state mapping φ : D → D′ and local mappings
ψj : Ej → E ′

j for j ∈ J satisfy the bisimulation criteria if for all states d ∈ D in which
invariant I holds:

I ∀j∈J ∀ej:Ej (hj(d, ej) ↔ h′j(φ(d), ψj(ej))),
II ∀j∈J ∀ej:Ej (hj(d, ej) ∧ I(d)) → (aj(fj(d, ej)) = aj(f

′
j(φ(d), ψj(ej)))),

III ∀j∈J ∀ej:Ej (hj(d, ej) ∧ I(d)) → (φ(gj(d, ej)) = g′j(φ(d), ψj(ej))).

Criterion I expresses that at each summand i, the corresponding guard of X holds if and only
if the corresponding guard of Y holds with parameters (φ(d), ψj(ej)). Criterion II (III) states
that at any summand i, the corresponding action (next state, after applying φ on it) ofX could
be equated to the corresponding action (next state) of Y with parameters (φ(d), ψj(ej)).

Theorem 5 (Bisimulation criteria) Given two LPEs X(d:D) and Y (d′:D′) written as in
Definition 4, and I : D → Bool an invariant for X . Let φ : D → D′ and ψj : Ej → E ′

j for
j ∈ J satisfy the bisimulation criteria in Definition 4. Then X(d) ↔ Y (φ(d)) for all d ∈ D
in which I holds.

This theorem has been proved in PVS. The proof is available at http://www.cs.
utwente.nl/~vdpol/piggybacking.html.

The cones and foci method from [10, 18] rephrases the question whether τI(X(d)) and
Y (d′) are branching bisimilar in terms of data equalities, where X(d:D) and Y (d′:D′) are
LPEs, and the latter LPE does not contain actions from some set I of internal actions. A state
mapping φ relates each state in X(d) to a state in Y (d′). Furthermore, some d:D are declared
to be focus points. The cone of a focus point consists of the states in X(d) that can reach this
focus point by a string of actions from I. It is required that each reachable state in X(d) is in
the cone of a focus point. If a number of matching criteria are satisfied, then φ establishes a
branching bisimulation relation between terms τI(X(d)) and Y (φ(d)).

Definition 6 (Matching criteria) Given two LPEs:

X(d:D) ≈
∑

j∈J

∑
ej :Ej

aj(fj(d, ej))·X(gj(d, ej)) / hj(d, ej) . δ

Y (d′:D′)≈
∑

{j∈J |aj 6∈I}
∑

ej :Ej
aj(f

′
j(d

′, ej))·Y (g′j(d
′, ej)) / h

′
j(d

′, ej) . δ

Let FC: D → Bool be a predicate which designates the focus points, and I ⊂ {aj | j ∈ J}.
A state mapping φ : D → D′ satisfies the matching criteria for d:D if for all j ∈ J with
aj 6∈ I and all k ∈ J with ak ∈ I:

I. ∀ek:Ek (hk(d, ek) → φ(d) = φ(gk(d, ek)));
II. ∀ej:Ej (hj(d, ej) → h′j(φ(d), ej));
III FC (d) → ∀ej:Ej (h′j(φ(d), ej) → hj(d, ej));
IV ∀ej:Ej (hj(d, ej) → fj(d, ej) = f ′j(φ(d), ej));
V ∀ej:Ej (hj(d, ej) → φ(gj(d, ej)) = g′j(φ(d), ej)).
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Matching criterion I requires that the internal transitions at d are inert, meaning that d and
gk(d, ek) are branching bisimilar. Criteria II, IV and V express that each external transition
of d can be simulated by φ(d). Finally, criterion III expresses that if d is a focus point, then
each external transition of φ(d) can be simulated by d.

Theorem 7 (Cones and foci) Given LPEs X(d:D) and Y (d′:D′) written as in Definition 6.
Let I : D → Bool be an invariant for X . Suppose that for all d:D with I(d):

1. φ : D → D′ satisfies the matching criteria for d; and
2. there is a d̂:D such that FC (d̂) and X can perform transitions d

c1→ · · · ck→ d̂ with
c1, . . . , ck ∈ I.

Then for all d:D with I(d), τI(X(d)) ↔b Y (φ(d)).

PVS proof of this is in [10]. For example, consider the LPEs X(b:Bool) ≈ a·X(b) � b� δ+
c·X(¬b) � ¬b� δ and Y (d′:D′) ≈ a·Y (d′), with I = {c} and focus point true. Moreover,
X(false)

c→ X(true), i.e., false can reach the focus point in a single c-transition. For any
d′:D′, the state mapping φ(b) = d′ for b:Bool satisfies the matching criteria.

Given an invariant I , only d:D with I(d) = true need to be in the cone of a focus point,
and we only need to satisfy the matching criteria for d:D with I(d) = true.

2. Data Types

In this section, the data types used in the µCRL specification of the two-way SWP are pre-
sented: booleans, natural numbers supplied with modulo arithmetic, buffers, and lists. Fur-
thermore, basic properties are given for the operations defined on these data types. The µCRL
specification of the data types, and of the process part are presented in here.

Booleans. We introduce constant functions true, false of type Bool. ∧ and ∨ both
of type Bool × Bool → Bool represent conjunction and disjunction operators, also → and
↔ of the same exact type, denote implication and bi-implication, and ¬ : Bool → Bool
denotes negation. For any given sort D we consider a function if : Bool × D × D → D
which functions an If-Then-Else operation, and also a mapping eq : D × D → Bool such
that eq(d, e) holds if and only if d = e. For notational convenience we take the liberty to
write d = e instead of eq(d, e).

Natural Numbers. 0: → N denotes zero and S:N → N the successor function. The
infix operations +, .− and · of type N × N → N represent addition, monus (also called cut-
off subtraction) and multiplication, respectively. The infix operations ≤, <, ≥ and > of type
N × N → Bool are the less-than(-or-equal) and greater-than(-or-equal) operations. |, div of
type N×N → N are modulo (some natural number) and dividing functions respectively. The
rewrite rules applied over this data type, are explained in detail in Section 2 in [2].

Since the buffers at the sender and the receiver in the SWP are of finite size, modulo
calculations will play an important role. i|n denotes i modulo n, while i div n denotes i in-
teger divided by n. In the proofs we will take notational liberties like omitting the sign for
multiplication, and abbreviating ¬(i =j) to i 6=j, (k<`)∧(`<m) to k<`<m, S(0) to 1, and
S(S(0)) to 2. We will also use the standard induction rule to prove some properties.

Buffers. Each party in the two-way SWP will both maintain two buffers containing the
sending and the receiving window (outside these windows both buffers will be empty).

[] :→ Buf ; inb, add : ∆× N× Buf → Buf ;
|, ‖ : Buf × N → Buf ;
smaller, test : N× Buf → Bool; sorted : Buf → Bool;
retrieve : N× Buf → ∆; remove : N× Buf → Buf ;
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release, release|n : N× N× Buf → Buf ;
next-empty, next-empty|n : N× Buf → N;
in-window : N× N× N → Bool and
max : Buf → N

are the functions we use for buffers. And, the rewrite rules are:

add(d, i, []) = inb(d, i, [])
add(d, i, inb(e, j, q)) = if(i>j, inb(e, j, add(d, i, q)),

inb(d, i, remove(i, inb(e, j, q))))
[]|n = [] and inb(d, i, q)|n = inb(d, i|n, q|n)
[]‖n = [] and inb(d, i, q)‖n = add(d, i|n, q‖n)
smaller(i, []) = true and smaller(i, inb(d, j, q)) = i < j ∧ smaller(i, q)
sorted([]) = true and sorted(inb(d, j, q)) = smaller(j, q) ∧ sorted(q)
test(i, []) = false and test(i, inb(d, j, q)) = i=j ∨ test(i, q)
retrieve(i, inb(d, j, q)) = if(i=j, d, retrieve(i, q))
remove(i, []) = []
remove(i, inb(d, j, q)) = if(i=j, remove(i, q), inb(d, j, remove(i, q)))
release(i, j, q) = if(i ≥ j, q, release(S(i), j, remove(i, q)))
release|n(i, j, q) = if(i|n=j|n, q, release|n(S(i), j, remove(i|n, q)))
next-empty(i, q) = if(test(i, q), next-empty(S(i), q), i)
next-empty|n(i, q) = if(next-empty(i|n, q) < n, next-empty(i|n, q),

if(next-empty(0, q) < n, next-empty(0, q), n))
in-window(i, j, k) = i ≤ j < k ∨ k < i ≤ j ∨ j < k < i
max([])=0 and max(inb(d, i, q))=if(i ≥ max(q), i,max(q))

More explanation on this is in [2] Section 2.
∆ represents the set of data elements that can be communicated between the two parties.

The buffers are modeled as a list of pairs (d, i) with d:∆ and i:N, representing that cell (or
sequence number) i of the buffer is occupied by datum d; cells for which no datum is specified
are empty. The empty buffer is denoted by [], and inb(d, i, q) is the buffer that is obtained
from q by simply putting (d, i) on top of the buffer q.

add inserts data into the queue, while keeping it sorted (if the queue itself is so) and
avoiding duplications. q|n is taking the sequence numbers in q of modulo n, and With q‖n

the resulting buffer is further sorted out. sorted announces whether or not a buffer is sorted.
smaller makes sure that the first data in the queue is having the smallest index number.

test(i, q) is true if and only if the ith location in q is occupied. retrieve(i, q) reveals
q’s ith element 2 remove(i, q) wipes the ith element out. release(i, j, q) empties ith to jth
locations, where release|n(i, j, q) does the analogous modulo n. next-empty(i, q) reveals
the first empty cell in q as of i, where next-empty|n(i, q) operates the same modulo n.
in-window(i, j, k) is true if and only if i ≤ j ≤ k .− 1, modulo n. Finally, max(q) reports
the greatest occupied place in q.

Lists. List is used for the specification of the external behavior of the protocol. 〈〉 :→
List, inl : ∆ × List → List, length : List → N, top : List → ∆, tail : List → List,
append : ∆×List→ List, ++ : List×List→ List and λ, λ′ : List represent the functions,
where 〈〉 denotes the empty list, and inl(d, λ) adds datum d at the top of list λ. A special datum
d0 is specified to serve as a dummy value for data parameters. length(λ) denotes the length
of λ, top(λ) produces the datum that resides at the top of λ, tail(λ) is obtained by removing

2Note that retrieve(i, []) is undefined. One could choose to equate it to a default value in ∆, or to a fresh error
element in ∆. However, with the first approach an occurrence of retrieve(i, []) might remain undetected, and
the second approach would needlessly complicate the data type ∆. We prefer to work with an under-specified
version of retrieve, which is allowed in µCRL, since data types have a loose semantics. All operations in µCRL
data models, however, are total; partial operations lead to the existence of multiple models.
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the top position in λ, append(d, λ) adds datum d at the end of λ, and λ++λ′ represents list
concatenation. Finally, q[i..j〉 is the list containing the elements in buffer q at positions i up
to but not including j. The rewrite rules which are being used are:

length(〈〉) = 0 and length(inl(d, λ)) = S(length(λ))
top(inl(d, λ)) = d, tail(inl(d, λ)) = λ
append(d, 〈〉) = inl(d, 〈〉)
append(d, inl(e, λ)) = inl(e, append(d, λ))
〈〉++λ = λ and inl(d, λ)++λ′ = inl(d, λ++λ′)
q[i..j〉 = if(i ≥ j, 〈〉, inl(retrieve(i, q), q[S(i)..j〉))

Detailed description on this data type is written in [2] Section 2.

3. Two-Way SWP with Piggybacking

This section contains the specification of the protocol in µCRL. Figure 1 illustrates the the
protocol we work on (i.e. a two-way SWP with piggybacking). In this protocol sender (S/R)
stores data elements that it receives via channel A in a buffer of size 2n, in the order in which
they are received. It can send a datum, together with its sequence number in the buffer, to
a receiver R/S via a medium that behaves as a lossy queue of capacity one, represented by
the medium K and the channels B and C. Upon receipt, the receiver may store the datum
in its buffer, where its position in the buffer is dictated by the attached sequence number. In
order to avoid a possible overlap between the sequence numbers of different data elements
in the buffers of sender and receiver, no more than one half of each of these two buffers
may be occupied at any time; these halves are called the sending and the receiving window,
respectively. The receiver can pass on a datum that is located at the first cell in its window
via channel D; in that case the receiving window slides forward by one cell. Furthermore, the
receiver can send the sequence number of the first empty cell in (or just outside) its window
as an acknowledgment to the sender via a medium that behaves as a lossy queue of capacity
one, represented by the medium L and the channels E and F. If the sender receives this
acknowledgment, its window slides forward accordingly. In a two-way SWP, data streams
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Figure 1. A two sided Sliding window protocol

are in both directions, meaning that S/R and R/S both act as sender and receiver at the
same time. In addition to this, in our protocol when a datum arrives, the receiver may either
send an acknowledgment back to the channel or it might instead wait until the network layer
passes on the next datum. In latter case, once this new datum is to be sent into the channel,
the awaited acknowledgment can be attached to it, and hence get a free ride. This technique
is known as piggybacking.
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3.1. Specification

The sender/receiver S/R is modeled by the process S/R(`,m, q, q′2, `
′
2), where q is its send-

ing buffer of size 2n, ` is the first cell in the window of q, and m the first empty cell in (or
just outside) this window. Furthermore, q′2 is the receiving buffer of size 2n2, and `′2 is the
first cell in the window of q2.

The µCRL specification of S/R consists of seven clauses. The first clause of the specifi-
cation expresses that S/R can receive a datum via channel A and place it in its sending win-
dow, under the condition that this window is not yet full. The next two clauses specify that
S/R can receive a datum/acknowledgment pair via channel F; the data part is either added to
q2 if it is within the receiving window (second clause), or ignored if it is outside this window
(third clause). In both clauses, q is emptied from ` up to but not including the received ac-
knowledgment. The fourth clause specifies the reception of a single (i.e., non-piggybacked)
acknowledgment. According to the fifth clause, data elements for transmission via channel
B are taken (at random) from the filled part of the sending window; the first empty position
in (or just outside) the receiving window is attached to this datum as an acknowledgment. In
the sixth clause, S/R sends a single acknowledgment. Finally, clause seven expresses that if
the first cell in the receiving window is occupied, then S/R can send this datum into channel
A, after which the cell is emptied.

S/R(`:N,m:N, n:N, n2:N, q:Buf , q′
2:Buf , `′

2:N)
≈

∑
d:∆ rA(d)·S/R(`, S(m)|2n, add(d, m, q), q′

2, `
′
2) / in-window(`,m, (` + n)|2n) . δ

+
∑

d:∆

∑
i:N

∑
k:N rF(d, i, k)·S/R(k, m, release|2n(`, k, q), add(d, i, q′

2), `
′
2)

/ in-window(`′
2, i, (`

′
2 + n2)|2n2) . δ

+
∑

d:∆

∑
i:N

∑
k:N rF(d, i, k)·S/R(k, m, release|2n(`, k, q), q′

2, `
′
2)

/ ¬in-window(`′
2, i, (`

′
2 + n2)|2n2) . δ

+
∑

k:N rF(k)·S/R(k, m, release|2n(`, k, q), q′
2, `

′
2)

+
∑

k:N sB(retrieve(k, q), k, next-empty|2n2(`
′
2, q

′
2))·S/R(`,m, q, q′

2, `
′
2) / test(k, q) . δ

+ sB(next-empty|2n2(`
′
2, q

′
2))·S/R(`,m, q, q′

2, `
′
2)

+ sA(retrieve(`′
2, q

′
2))·S/R(`,m, q, remove(`′

2, q
′
2), S(`′

2)|2n2) / test(`′
2, q

′
2) . δ

The µCRL specification of R/S (in [2] Appendix A) is symmetrical to the one of S/R.
In the process R/S(`2,m2, q2, q

′, `′), q′ is the receiving buffer of size 2n, and `′ is the first
position in the window of q. Furthermore, q2 is the sending buffer of size 2n2, `2 is the first
position in the window of q2, and m2 the first empty position in (or just outside) this window.

Mediums K and L, introduced below, are of capacity one. These mediums are specified
in a way that they may lose frames or acknowledgments:

K ≈
∑

d:∆

∑
k:N

∑
i:N rB(d, k, i)·(j·sC(d, k, i) + j)·K +

∑
i:N rB(i)·(j·sC(i) + j)·K

L ≈
∑

d:∆

∑
k:N

∑
i:N rE(d, k, i)·(j·sF(d, k, i) + j)·L +

∑
i:N rE(i)·(j·sF(i) + j)·L.

For each channel i∈{B,C,E,F}, actions si and ri can communicate, resulting in the action
ci. The initial state of the SWP is expressed by τI(∂H(S/R(0, 0, [], [], 0) ‖ R/S(0, 0, [], [], 0) ‖
K ‖ L)) where the set H consists of the read and send actions over the internal channels B,
C, E, and F, namelyH={sB, rB, sC, rC, sE, rE, sF, rF}while the set I consists of the commu-
nication actions over these internal channels together with j, namely I={cB, cC, cE, cF, j}.

3.2. External Behavior

Data elements that are read from channel A should be sent into channel D in the same order,
and vice versa data elements that are read from channel D should be sent into channel A in
the same order. No data elements should be lost. In other words, the SWP is intended to be a
solution for the following linear µCRL specification, representing a pair of FIFO queues of
capacity 2n and 2n2.
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Z(λ1:List, λ2:List) ≈
∑

d:∆ rA(d)·Z(append(d, λ1), λ2) / length(λ1) < 2n . δ

+ sD(top(λ1))·Z(tail(λ1), λ2) / length(λ1) > 0 . δ

+
∑

d:∆ rD(d)·Z(λ1, append(d, λ2)) / length(λ2) < 2n2 . δ

+ sA(top(λ2))·Z(λ1, tail(λ2)) / length(λ2) > 0 . δ

Note that rA(d) can be performed until the list λ1 contains 2n elements, because in that
situation the sending window of S/R and the receiving window of R/S will be filled. Fur-
thermore, sD(top(λ1)) can only be performed if λ1 is not empty. Likewise, rD(d) can be per-
formed until the list λ2 contains 2n2 elements, and sA(top(λ2)) can only be performed if λ2

is not empty.

4. Modifying the Specification

This section witnesses three transformations, one to eliminate parallel operators, one to elim-
inate arguments of communication actions, and one to eliminate modulo arithmetic.

Linearization. The starting point of our correctness proof is a linear specification
Mmod , in which no parallel composition, encapsulation and hiding operators occur. Mmod

can be obtained from the µCRL specification of the SWP without the hiding operator, i.e.,
∂H(S/R(0, 0, [], [], 0) ‖ R/S(0, 0, [], [], 0) ‖ K ‖ L) by means of the linearization algorithm
presented in [16]; and according to [16], the following result can be obtained:

Proposition 8 ∂H(S/R(0, 0, [], [], 0) ‖ R/S(0, 0, [], [], 0) ‖ K ‖ L) ↔
Mmod(0, 0, [], [], 0, 5, 0, d0, 0, 5, 0, d0, 0, 0, 0, [], [], 0).

Mmod contains eight extra parameters: e, e2:D and g, g′, h, h′, h2, h
′
2:N. Intuitively, g

is 5 when medium K is inactive, is 4 or 2 when K just received a data frame or a single
acknowledgment, respectively, and is 3 or 1 when K has decided to pass on this data frame
or acknowledgment, respectively. The parameters e, h and h′2 represent the memory of K,
meaning that they can store the datum that is being sent from S/R to R/S, the position
of this datum in q, and the first empty position in the window of q′2, respectively. Initially,
or when medium K is inactive, g, e, h and h′2 have the values 5, d0, 0 and 0. Likewise, g′

captures the five states of medium L, and e2, h2 and h′ represent the memory of L.
The linear specification Mmod of the SWP, with encapsulation but without hiding, is

written below. For the sake of presentation, in states that results after a transition we only
present parameters whose values have changed. In this specification

• The first summand describes that a datum d can be received by S/R through channel
A, if q’s window is not full (in-window(`,m, (`+ n)|2n)). This datum is then placed
in the first empty cell of q’s window (q:=add(d,m, q)), and the next cell becomes the
first empty cell of this window (m:=S(m)|2n).

• By the 2nd summand, a frame (retrieve(k, q), k, next-empty|2n2
(`′2, q

′
2)) can be com-

municated to K, if cell k in q’s window is occupied (test(k, q)). And by the 19th
summand, an acknowledgment next-empty|2n2

(`′2, q
′
2) can be communicated to K.

• The fifth and third summand describe that medium K decides to pass on a frame or
acknowledgment, respectively. The fourth summand describes that K decides to lose
this frame or acknowledgment.

• The sixth and seventh summand describe that the frame in medium K is com-
municated to R/S. In the sixth summand the frame is within the window of q′

(in-window(`′, h, (`′ + n)|2n)), so it is included (q′:=add(e, h, q′)). In the seventh
summand the frame is outside the window of q′, so it is omitted. In both cases, the
first cell of the window of q′ is moved forward to h′2 (`2:=h′2), and the cells before h′2
are emptied (q2:=release|2n2

(`2, h
′
2, q2)).
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• The twentieth and last summand describes that the acknowledgment in medium K is
communicated to R/S. Then the first cell of the window of q′ is moved forward to h′2,
and the cells before h′2 are emptied.

• By the eighth summand, R/S can send the datum at the first cell in the window of
q′ (retrieve(`′, q′)) through channel D, if this cell is occupied (test(`′, q′)). This cell
is then emptied (q′:=remove(`′, q′)), and the first cell of the window of q′ is moved
forward by one (`′:=S(`′)|2n).

• Other summands are symmetric counterparts to the ones described above.

Mmod(`,m, q, q′
2, `

′
2, g, h, e, h′

2, g
′, h2, e2, h

′, `2,m2, q2, q
′, `′)

≈
∑

d:∆ rA(d)·Mmod(m:=S(m)|2n, q:=add(d, m, q)) / in-window(`,m, (` + n)|2n) . δ (A1)

+
∑

k:N cB(retrieve(k, q), k, next-empty|2n2(`
′
2, q

′
2))·Mmod(g:=4, e:=retrieve(k, q), h:=k,

h′
2:=next-empty|2n2(`

′
2, q

′
2)) / test(k, q) ∧ g = 5 . δ (B1)

+ j·Mmod(g:=1, e:=d0, h:=0) / g = 2 . δ (C1)

+ j·Mmod(g:=5, e:=d0, h:=0, h2:=0) / g = 2 ∨ g = 4 . δ (D1)

+ j·Mmod(g:=3) / g = 4 . δ (E1)

+ cC(e, h, h′
2)·Mmod(`2:=h′

2, q
′:=add(e, h, q′), g:=5, e:=d0, h:=0, h′

2:=0,
q2:=release|2n2(`2, h

′
2, q2)) / in-window(`′, h, (`′ + n)|2n) ∧ g = 3 . δ (F1)

+ cC(e, h, h′
2)·Mmod(`2:=h′

2, g:=5, e:=d0, h:=0, h′
2:=0, q2:=release|2n2(`2, h

′
2, q2))

/ ¬in-window(`′, h, (`′ + n)|2n) ∧ g = 3 . δ (G1)

+ sD(retrieve(`′, q′))·Mmod(`′:=S(`′)|2n, q′:=remove(`′, q′)) / test(`′, q′) . δ (H1)

+ cE(next-empty|2n(`′, q′))·Mmod(g′:=2, h2:=0, h′:=next-empty|2n(`′, q′)) / g′ = 5 . δ (I1)

+ j·Mmod(g′:=1, e2:=d0, h2:=0) / g′ = 2 . δ (J1)

+ j·Mmod(g′:=5, h2:=0, e2:=d0, h
′:=0) / g′ = 2 ∨ g′ = 4 . δ (K1)

+ j·Mmod(g′:=3) / g′ = 4 . δ (L1)

+ cF(h′)·Mmod(`:=h′, q:=release|2n(`, h′, q), g′:=5, h2:=0, e2:=d0, h
′:=0) / g′ = 1 . δ (M1)

+
∑

d:∆ rD(d)·Mmod(m2:=S(m2)|2n, q2:=add(d, m2, q2))
/ in-window(`2,m2, (`2 + n2)|2n2) . δ (N1)

+
∑

k:N cE(retrieve(k, q2), k, next-empty|2n(`′, q′))·Mmod(g′:=4, e2:=retrieve(k, q2),
h2:=k, h′:=next-empty|2n(`′, q′)) / test(k, q2) ∧ g′ = 5 . δ (O1)

+ cF(e2, h2, h
′)·Mmod(`:=h′, q′

2:=add(e2, h2, q
′
2), g

′:=5, e2:=d0, h2:=0, h′:=0,
q:=release|2n(`, h′, q)) / in-window(`′

2, h2, (`′
2 + n2)|2n2) ∧ g′ = 3 . δ (P1)

+ cF(e2, h2, h
′)·Mmod(`:=h′, g′:=5, e2:=d0, h2:=0, h′:=0, q:=release|2n(`, h′, q))

/ ¬in-window(`′
2, h2, (`′

2 + n2)|2n2) ∧ g′ = 3 . δ (Q1)

+ sA(retrieve(`′
2, q

′
2))·Mmod(`′

2:=S(`′
2)|2n2 , q

′
2:=remove(`′

2, q
′
2)) / test(`′

2, q
′
2) . δ (R1)

+ cB(next-empty|2n2(`
′
2, q

′
2))·Mmod(g:=2, h:=0, h′

2:=next-empty|2n2(`
′
2, q

′
2)) / g = 5 . δ (S1)

+ cC(h′
2)·Mmod(`2:=h′

2, q2:=release|2n2(`2, h
′
2, q2), g:=5, h:=0, e:=d0, h

′
2:=0) / g = 1 . δ (T1)

Nmod : No Communication Action’s Arguments.
The linear specification Nmod (Written in [2] Appendix A) is obtained from Mmod by renam-
ing all arguments from communication actions (e.g. cF(e2, h2, h

′)) to a fresh action c. Since
we want to show that the “external” behavior of this protocol is branching bisimilar to a pair
of FIFO queues (of capacity 2n and 2n2), the internal actions can be removed. The following
proposition is then a trivial result of this renaming:
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Proposition 9 τI(Mmod(0, 0, [], [], 0, 5, 0, d0, 0, 5, 0, d0, 0, 0, 0, [], [], 0)) ↔
τ{c,j}(Nmod(0, 0, [], [], 0, 5, 0, d0, 0, 5, 0, d0, 0, 0, 0, [], [], 0)).

Nnonmod : No Modulo Arithmetic.
The specification of Nnonmod is obtained by eliminating all occurrences of |2n (resp. |2n2

)
from Nmod , and replacing all guards of the form in-window(i, j, (i+ k)|2n) (respectively
in-window(i, j, (i+ k)|2n2

)) with i≤j<i + n (respectively i≤j<i + n2). According to what
just mentioned, only A1, F1, G1, N1, P1 and Q1 whose guards are of this form, will be
subjected to change. We name each new clause after its corresponding one by removing the
index 1 from it, that is e.g. A1 will become A, and so forth. As an example we show this
clause below, the whole specification of Nnonmod is in [2] Appendix A.∑

d:∆ rA(d)·Nnonmod(m:=S(m), q:=add(d,m, q)) / l < m < `+n . δ (A)

In Section 6.1, we will prove that Nnonmod and Nmod are strongly bisimilar. In order to
demonstrate the correctness of Nnonmod (see Section 6.2) there will be a number of proper-
ties on the Data Types which should be investigated first. In the next section we list these
properties, and thereafter, in its following section, we will prove the correctness.

5. Properties of Data Types

This section presents some properties of the data types and the ordered buffers, also some
invariants of the final specification of the system; all proofs are in [2] Appendix B.

5.1. Basic Properties

These properties contain some mathematical reasoning over the functions in our spec-
ification of the system, with/without modulo arithmetic. One of them for example is:
test(k, q) → add(retrieve(k, q), k, q)[i..j〉 = q[i..j〉. The entire list is in [2] Appendix B.1.

5.2. Ordered Buffers

Lemma 10 Some properties on add(., .) function:

1. test(i, q) → test(i, add(d, j, q))
2. next-empty(i, add(d, j, q)) ≥ next-empty(i, q)
3. test(i, add(d, j, q)) = (i=j ∨ test(i, q))
4. retrieve(i, add(d, j, q)) = if(i=j, d, retrieve(i, q))
5. remove(i, add(d, i, q)) = remove(i, q)
6. j 6= next-empty(i, q) → next-empty(i, add(d, j, q)) = next-empty(i, q)
7. next-empty(i, add(d, next-empty(i, q), q)) = next-empty(S(next-empty(i, q)), q)
8. i < j → remove(i, add(d, j, q)) = add(d, j, remove(i, q))
9. i 6= j → add(e, i, add(d, j, q)) = add(d, j, add(e, i, q))

Lemma 11 Ordered buffers maintain the following properties:

1. smaller(i, q) → smaller(i, remove(j, q))
2. i < j ∧ smaller(i, q) → smaller(i, add(d, j, q))
3. smaller(i, q) → remove(i, q) = q
4. i < j ∧ smaller(j, q) → smaller(i, q)
5. sorted(q) → sorted(add(d, i, q))
6. smaller(i, q) → add(d, i, q) = inb(d, i, q)
7. sorted(q) ∧ j < i → remove(i, add(d, j, q)) = add(d, j, remove(i, q))
8. sorted(q) → add(d, i, q) = add(d, i, remove(i, q))
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Lemma 12 For n > 0, the following results hold on q‖n.

1. sorted(q‖n)
2. test(i, q|n) = test(i, q‖n)
3. retrieve(i|n, q|n) = retrieve(i|n, q‖n)
4. j 6= i → remove(i, add(d, j, q‖n)) = add(d, j, remove(i, q‖n))
5. ∀j:N(test(j, q) → i ≤ j < i+ n) ∧ i ≤ k ≤ i+ n→

next-empty|2n(k|2n, q|2n) = next-empty|2n(k|2n, q‖2n)
6. ∀j:N(test(j, q)→i≤j<i+n)∧ i≤k≤i+n→ remove(k, q)‖2n = remove(k|2n, q‖2n)
7. ∀j:N(test(j, q)→i≤j<i+ n) ∧ i≤k≤i+ n→ release(i, k, q)‖2n=

release|2n(i|2n, k|2n, q‖2n)
8. ∀j:N(test(j, q)→i≤j<i+ n)∧i≤k≤i+ n→ add(d, k, q)‖2n = add(d, k|2n, q‖2n)

All the abovementioned lemmas are proved in detail in [2] Appendix B.2.

5.3. Invariants

Invariants of a system are properties of data that are satisfied throughout the reachable state
space of the system (see Definition 3). Lemma 13 collects 19 invariants of Nnonmod (and their
symmetric counterparts). Occurrences of variables i, j:N in an invariant are always implicitly
universally quantified at the outside of the invariant.

Invariants 6, 8, 15 and 17 are only needed in the derivation of other invariants. We pro-
vide some intuition for the (first of each pair of) invariants that will be used in the correctness
proofs in Section 6 and in the derivations of the data lemmas. Invariants 4, 11, 12, 13 express
that the sending window of S/R is filled from ` up to but not including m, and that it has size
n. Invariants 7, 10 express that the receiving window of R/S starts at `′ and stops at `′+n. In-
variant 2 expresses that S/R cannot receive acknowledgments beyond next-empty(`′, q′), and
Invariant 9 that R/S cannot receive frames beyond m .− 1. Invariants 16, 18, 19 are based on
the fact that the sending window of S/R, the receiving window of R/S, and K (when active)
coincide on occupied cells and frames with the same sequence number. Invariants 1, 3, 5 and
14 give bounds on the parameters h and h′ of mediums K and L.

Lemma 13 Nnonmod(`,m, q, q′2, `
′
2, g, h, e, h

′
2, g

′, h2, e2, h
′, `2,m2, q2, q

′, `′) satisfies the fol-
lowing invariants.

1. h′ ≤ next-empty(`′, q′) and h′2 ≤ next-empty(`′2, q
′
2)

2. ` ≤ next-empty(`′, q′) and `2 ≤ next-empty(`′2, q
′
2)

3. g′ 6= 5 → ` ≤ h′ and g 6= 5 → `2 ≤ h′2
4. test(i, q) → i < m and test(i, q2) → i < m2

5. (g = 3 ∨ g = 4) → h < m and (g′ = 3 ∨ g′ = 4) → h2 < m2

6. test(i, q′) → i < m and test(i, q′2) → i < m2

7. test(i, q′) → `′ ≤ i < `′ + n and test(i, q′2) → `′2 ≤ i < `′2 + n2

8. `′ ≤ m and `′2 ≤ m2

9. next-empty(`′, q′) ≤ m and next-empty(`′2, q
′
2) ≤ m2

10. next-empty(`′, q′) ≤ `′ + n and next-empty(`′2, q
′
2) ≤ `′2 + n2

11. test(i, q) → ` ≤ i and test(i, q2) → `2 ≤ i
12. ` ≤ i < m → test(i, q) and `2 ≤ i < m2 → test(i, q2)
13. m ≤ `+ n and m2 ≤ `2 + n2

14. (g = 3∨g = 4) → next-empty(`′, q′) ≤ h+ n and
(g′ = 3∨g′ = 4) → next-empty(`′2, q

′
2) ≤ h2 + n2

15. `′ ≤ i < h′ → test(i, q′) and `′2 ≤ i < h′2 → test(i, q′2)
16. (g = 3 ∨ g = 4) ∧ test(h, q) → retrieve(h, q) = e and

(g′ = 3 ∨ g′ = 4) ∧ test(h2, q2) → retrieve(h2, q2) = e2
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17. (test(i, q) ∧ test(i, q′)) → retrieve(i, q) = retrieve(i, q′) and
(test(i, q2) ∧ test(i, q′2)) → retrieve(i, q2) = retrieve(i, q′2)

18. ((g = 3 ∨ g = 4) ∧ test(h, q′)) → retrieve(h, q′) = e and
((g′ = 3 ∨ g′ = 4) ∧ test(h2, q

′
2)) → retrieve(h2, q

′
2) = e2

19. (` ≤ i ∧ j ≤ next-empty(i, q′)) → q[i..j〉 = q′[i..j〉 and
(`2 ≤ i ∧ j ≤ next-empty(i, q′2)) → q2[i..j〉 = q′2[i..j〉

In the initial state Nnonmod(0, 0, [], [], 0, 5, 0, d0, 0, 5, 0, d0, 0, 0, 0, [], [], 0) all these invariants
are satisfied. Also, all invariants are preserved by all summands. So they are satisfied in all
reachable states of Nnonmod . For a proof of this lemma see [2] Appendix B.3.

6. Correctness of Nmod

In Section 6.1, we establish the strong bisimilarity of Nmod and Nnonmod . In order to prove
this, we show that the bisimulation criteria in Definition 4 hold. Then according to Theorem 5,
proof is complete. Section 6.2 demonstrates that Nnonmod behaves like a pair of FIFO queues.
Finally, the correctness of the two-way SWP is established in Section 6.3.

6.1. Equality of Nmod and Nnonmod

Proposition 14 Nnonmod(0, 0, [], [], 0, 5, 0, d0, 0, 5, 0, d0, 0, 0, 0, [], [], 0) ↔
Nmod(0, 0, [], [], 0, 5, 0, d0, 0, 5, 0, d0, 0, 0, 0, [], [], 0).

Proof. By Theorem 5, it suffices to define a state mapping φ and local mappings ψj for
j = 1, 2, . . . , 20 that satisfy the bisimulation criteria in Definition 4, with respect to the
invariants in Lemma 13.

Let Ξ abbreviate N×N×Buf ×Buf ×N×N×N×∆×N×N×N×∆×N×N×N×Buf ×
Buf × N. We use ξ:Ξ to abbreviate (`,m, q, q′2, `

′
2, g, h, e, h

′
2, g

′, h2, e2, h
′, `2,m2, q2, q

′, `′),
then we define φ : Ξ → Ξ by:

φ(ξ) = (`|2n,m|2n, q‖2n, q
′
2‖2n2

, `′2|2n2
, g, h|2n, e, h

′
2|2n2

,
g′, h2|2n2

, e2, h
′|2n, `2|2n2

,m2|2n2
, q2‖2n2

, q′‖2n, `
′|2n)

Furthermore, ψ2 : N → N maps k to k|2n, and ψ15 : N → N maps k to k|2n2
; the other 18

local mappings are simply the identity. We show that φ and the ψj satisfy the bisimulation
criteria. For each summand, we list (and prove) the non-trivial bisimulation criteria that it
induces. For a detailed proof, see [2] Appendix C. �

6.2. Correctness of Nnonmod

We prove that Nnonmod is branching bisimilar to the pair of FIFO queues Z (see Section 3.2),
using cones and foci (see Theorem 7)

The state mapping φ : Ξ → List×List, which maps states of Nnonmod to states of Z, is
defined by:

φ(ξ) = (φ1(m, q, `
′, q′), φ2(m2, q2, `

′
2, q

′
2))

where
φ1(m, q, `

′, q′) = q′[`′..next-empty(`′, q′)〉++q[next-empty(`′, q′)..m〉
φ2(m2, q2, `

′
2, q

′
2) = q′2[`

′
2..next-empty(`′2, q

′
2)〉++q2[next-empty(`′2, q

′
2)..m2〉

Intuitively, φ1 collects data elements in the sending window of S/R and the receiving window
of R/S, starting at the first cell in the receiving window (i.e., `′) until the first empty cell
in this window, and then continuing in the sending window until the first empty cell in that
window (i.e., m). Likewise, φ2 collects data elements in the sending window of R/S and the
receiving window of S/R.
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The focus points are states where in the direction from S/R to R/S, either the sending
window of S/R is empty (meaning that ` = m), or the receiving window from R/S is full and
all data elements in this receiving window have been acknowledged (meaning that ` = `′+n).
Likewise for the direction from R/S to S/R. That is, the focus condition reads

FC (ξ) := (` = m ∨ ` = `′ + n) ∧ (`2 = m2 ∨ `2 = `′2 + n2)

Lemma 15 For each ξ:Ξ with Nnonmod(ξ) reachable from the initial state, there is a ξ̂:Ξ with
FC(ξ̂) such that Nnonmod(ξ)

c1→ · · · cn→ Nnonmod(ξ̂), where c1, . . . , cn ∈ I.

Proof. We prove (see [2] Appendix C) that for each ξ:Ξ where the invariants in Lemma 13
hold, there is a finite sequence of internal actions which ends in a state where (` = m ∨ ` =
`′ + n) ∧ (`2 = m2 ∨ `2 = `′2 + n2). �

Proposition 16 τ{c,j}(Nnonmod(0, 0, [], [], 0, 5, 0, d0, 0, 5, 0, d0, 0, 0, 0, [], [], 0)) ↔b Z(〈〉, 〈〉).

Proof. We prove this using cones and foci method. See [2] Appendix C. �

6.3. Correctness of the Two-Way Sliding Window Protocol

Finally, we can prove the main result of our specification which is:

Theorem 17 (Correctness)
τI(∂H(S/R(0, 0, [], [], 0) ‖ R/S(0, 0, [], [], 0) ‖ K ‖ L)) ↔b Z(〈〉, 〈〉)

Proof. We combine the equivalences that have been obtained so far:

τI(∂H(S/R(0, 0, [], [], 0) ‖ K ‖ R/S(0, 0, [], [], 0) ‖ L))
↔ τI(Mmod(0, 0, [], [], 0, 5, 0, d0, 0, 5, 0, d0, 0, 0, 0, [], [], 0)) (Proposition 8)
↔ τ{c,j}(Nmod(0, 0, [], [], 0, 5, 0, d0, 0, 5, 0, d0, 0, 0, 0, [], [], 0)) (Proposition 9)
↔ τ{c,j}(Nnonmod(0, 0, [], [], 0, 5, 0, d0, 0, 5, 0, d0, 0, 0, 0, [], [], 0)) (Proposition 14)
↔b Z(〈〉, 〈〉) (Proposition 16)

�

7. Formalization in PVS

In this section we show the formalization and verification of the correctness proof of the SWP
with piggybacking in PVS [29].

The PVS specification language is based on simply typed higher-order logic. Its type
system contains basic types such as boolean, nat, integer, real, etc. and type construc-
tors such as set, tuple, record, and function. Tuple types have the form [T1,...,Tn],
where Ti are type expressions. A record is a finite list of fields of the form R:TYPE=[#
E1:T1, ...,En:Tn #], where Ei are record accessor functions. A function type con-
structor has the form F:TYPE=[T1,...,Tn->R], where F is a function with domain
D=T1×...×Tn and range R.

A PVS specification can be structured through a hierarchy of theories. Each theory con-
sists of a signature for the type names and constants introduced in the theory, and a number
of axioms, definitions and theorems associated with the signature. A PVS theory can be para-
metric in certain specified types and values, which are placed between [ ] after the theory
name.

In µCRL, the semantics of a data specification is the set of all its models. Incomplete
data specifications may have multiple models. Even worse, it is possible to have inconsis-
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tent data specifications for which no models exist. Here the necessity of specification with
PVS emerges, because of this probable incompleteness and inconsistency which exists when
working with µCRL. Moreover, PVS was used to search for omissions and errors in the
manual µCRL proof of the SWP with piggybacking.

In Section 7.1 we show examples of the original specification of some data functions,
then we introduce the modified forms of them. Moreover, we show how measure functions are
used to detect the termination of recursive definitions. In Section 7.2 and 7.3 we represent the
LPEs and invariants of the SWP with piggybacking in PVS. Section 7.4 presents the equality
of µCRL specification of the SWP with piggybacking with and without modulo arithmetic.
Section 7.5 explains how the cones and foci method is used to formalize the main theorem,
that is the µCRL specification of the SWP with piggybacking is branching bisimilar to a
FIFO queue of size 2n. Finally, Section 7.6 is dedicated to some remarks on the verification
in PVS.

7.1. Data Specifications in PVS

In PVS, all the definitions are first type checked, which generates some proof obligations.
Proving all these obligations ascertains that our data specification is complete and consistent.

To achieve this, having total definitions is required. So in the first place, partially de-
fined functions need to be extended to total ones. Below there are some examples of par-
tial definitions in the original data specification of the SWP with piggybacking, which we
changed into total ones. Second, to guarantee totality of recursive definitions, PVS requires
the user to define a so-called measure function. Doing this usually requires time and effort,
but the advantage is that recursive definitions are guaranteed to be well-founded. PVS en-
abled us to find non-terminating definitions in the original data specification of the SWP with
piggybacking, which were not detected within the framework of µCRL. After finding these
non-terminating definitions with PVS, we searched for new definition which can express the
operation we look for. Then we replaced the old definitions with new terminating ones in our
µCRL framework. Below we show some of the most interesting examples.

Example 18 We defined a function next-empty which seeks for the first empty position in q
from a given position i. This function is identified as:

next-empty(i, q) = if(test(i, q), next-empty(S(i), q), i).

We also need to have next-empty|n(i, q) as a function which produces the first empty position
in q modulo n, from position i. It looked reasonable to define it as:

next-empty|n(i, q) = if(test(i, q), next-empty|n(S(i)|n, q), i)

Although the definition looks total and well-founded, this was one of the undetected potential
errors that PVS detected during the type checking process. Below we bring an example to
show what happens. Let q = [(d0, 0), (d1, 1), (d2, 2), (d3, 3), (d5, 5)], n = 4, i = 5 then

next-empty|4(5, q) = next-empty|4(6|4, q) = next-empty|4(2, q) = next-empty|4(3, q)
= next-empty|4(0, q) = next-empty|4(1, q) = next-empty|4(2, q) = . . .

which will never terminate. The problem is that modulo n all the places in q are occupied,
and since 0 ≤ i|n < n hence test(i, q) will always be true. Hence each position will call for
its immediate next position and so on. Therefore the calls will never stop.

At the end we replaced it with the following definition, which is terminating and operates
the way as we expect.

next-empty|n(i, q) = if(next-empty(i|n, q) < n, next-empty(i|n, q),
if(next-empty(0, q) < n, next-empty(0, q), n))
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...
D:nonempty_type
Buf:type=list[[D,nat]]
x,i,j,k,l,n: VAR nat
...
dm(i,j,n): nat =

IF mod(i,n)<=mod(j,n)
THEN mod(j,n)-mod(i,n)
ELSE n+mod(j,n)-mod(i,n)
ENDIF

...
release(n)(i,j,q): RECURSIVE Buf=

IF mod(i,n)=mod(j,n) THEN q
ELSE release(n)(mod(i+1,n),j,remove(mod(i,n),q))
ENDIF
measure dm(i,j,n)

...

Figure 2. An example of data specification in PVS

This function first checks whether there is any empty place after i|n (incl. i|n itself). If this is
the case then that position would be the result, otherwise using next-empty(0, q) it will check
if there is any empty position in the buffer modulo n. If so then that position would be the
value of the function since next-empty(i|n, q) will reach it. If all the buffer modulo n is full
then n would be the result, because n is bigger that all the possible values for the function
(i.e. i|n at most) and moreover it indicates that the buffer is full modulo n.

In [2] Appendix D there are similar examples for release(i, j, q) and release|n(i, j, q),
detected errors by PVS, and also our ultimate solutions for them.

We represented the µCRL abstract data types directly by PVS types. This enables us to
reuse the PVS library for definitions and theorems of “standard” data types. Figure 2 illus-
trates part of a PVS theory defining release|n. There D is an unspecified but non-empty type
which represents the set of all data elements that can be communicated between the sender
and the receiver. Buf is list of pairs of type D × N defined as list[[D,nat]]. Here we used
list to identify the type of lists, which is defined in the prelude in PVS. Therefore we simply
use it without any need to define it explicitly. This figure also represents release|n(i, j, q) in
PVS. Since it is defined recursively, in order to establish its termination (or totality), it is
required by PVS to have a measure function. We define a measure function called dm which
is decreasing and non-recursive. Here, PVS uses its type-checker to check the validity of dm.
It generates two type-check proof obligations: if i|n < j|n then j|n − i|n ≥ 0 and if i|n ≥ j|n
then n + j|n − i|n ≥ 0. The first proof obligation is proved in one trivial step. The second
one is proved using Lemma 19.

In [2] Appendix D, we also list the extra data lemmas which had to be proved in PVS
while they are considered to be trivial in the manual proof.

7.2. Representing LPEs

We now reuse [10] to show how the µCRL specification of the SWP with piggybacking (an
LPE) can be represented in PVS. The main distinction will be that we have assumed so far
that LPEs are clustered. This means that each action label occurs in at most one summand, so
that the set of summands could be indexed by the set of action labels. This is no limitation,
because any LPE can be transformed in clustered form, basically by replacing + by

∑
over
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LPE[Act,State,Local:TYPE,n:nat]: THEORY BEGIN
SUMMAND:TYPE= [State,Local-> [#act:Act,guard:bool,next:State#] ]
LPE:TYPE= [#init:State,sums:[below(n)->SUMMAND]#]

END LPE

Figure 3. Definition of LPE in PVS

finite types. Clustered LPEs enable a notationally smoother presentation of the theory. How-
ever, when working with concrete LPEs this restriction is not convenient, so we avoid it in
the PVS framework: an arbitrarily sized index set {0, . . . , n−1} will be used, represented by
the PVS type below(n). A second deviation is that we will assume from now on that every
summand has the same set of local variables. Again this is no limitation, because void sum-
mations can always be added (i.e. p =

∑
d:D p, when d does not occur in p). This restriction

is needed to avoid the use of polymorphism, which does not exist in PVS. The third deviation
is that we do not distinguish action labels from action data parameters. We simply work with
one type of expressions for actions. This allows that a summand can generate transitions with
various labels. This generalization makes the formalization a bit smoother, but was not really
exploited.

So an LPE is parameterized by sets of actions (Act), global parameters (State) and
local variables (Local), and by the size of its index set (n). Note that the guard, action and
next-state of a summand depend on the global parameters d : State and on local variables
e : Local. This dependency is represented in the definition SUMMAND by a PVS function type.
In Figure 3 an LPE consists of an initial state and a list of summands indexed by below(n).

A concrete LPE by a fragment of the linear specification Nmod of SWP with piggyback-
ing in PVS (see Figure 6 in Appendix D in [2]) is introduced as an lpe of a set of actions:
Nnonmod_act, states: State, local variables: Local, and a digit: 20 referring to the
number of summands. The LPE is identified as a pair, called init and sums, where init
is introducing the initial state of Nmod and sums the summands. The first LAMBDA maps
each number to the corresponding summand in Nmod . The second LAMBDA is representing
the summands as functions over State and Local. Here, State is the set of states and
Local is the data type D × N of all pairs (d, k) of the summation variables, which is con-
sidered as a global variable regarding the property: p =

∑
(d,k):local p, which is mentioned

before.

7.3. Representing Invariants

Invariants are boolean functions over the set of states. In Figure 4, we explain how to represent
an invariant of the µCRL specification, in PVS. This figure illustrates the (first part of the)
Invariant 13.9 from Section 5.3

7.4. Equality of Nmod and Nnonmod

Strong bisimilarity of Nmod and Nnonmod (Proposition 14) is depicted in Figure 5. state_f
and local_f are introduced to construct the state mapping between Nnonmod and Nmod .
In PVS we introduce the state mapping (state_f, local_f) from the set of states and
local variables of Nnonmod to those of Nmod . Then we use the corresponding relation to this
state mapping, and we show that this relation is a bisimulation between Nnonmod and Nmod .

In PVS we defined an LPE as a list of summands (not as a recursive equation), equipped
with the standard LTS semantics. It could be proved directly that state mappings preserve
strong bisimulation.
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...
l,m,l12,g,h,h12,g1,h2,h1,l2,m2,l1: var nat
q,q1,q2,q12 : var Buf
e,e2: var D
...
inv(l,m,q,q12,l12,g,h,e,h12,g1,h2,e2,h1,l2,m2,q2,q1,l1): bool= next_empty(l1,q1)<=m
...

Figure 4. An example of representing invariants in PVS

...
state_f(l,m,q,q12,l12,g,h,e,h12,g1,h2,e2,h1,l2,m2,q2,q1,l1): State=

(mod(l,2*n),mod(m,2*n),modulo2(q,2*n),modulo2(q12,2*n2),mod(l12,2*n2),
g,mod(h,2*n),e,mod(h1,2*n2),g1,mod(h2,2*n2),e2,mod(h1,2*n),
mod(l2,2*n2),mod(m2,2*n2),modulo2(q2,2*n2),modulo2(q1,2*n),
mod(l1,2*n)),

local_f(l:Local,i:below(20)): Local=
LET (e,k)=l IN
IF i=4 THEN (e,mod(k,2*n)) ELSE (IF i=9 THEN (e,mod(k,2*n2)) ELSE(e,k)) ENDIF

...
Propsimilaosition_6_22: proposition bisimilar (lpe2lts(Nnonmod),lpe2lts(Nmod))
...

Figure 5. Equality of Nmod and Nnonmod in PVS

By contrast, the manual proof that Nmod and Nnonmod are strongly bisimilar is based on
the proof principle CL-RSP [5], which states that each LPE has a unique solution, modulo
strong bisimilarity. An advantage of this approach is that by using algebraic principles only,
the stated equivalence also holds in non-standard models for process algebra + CL-RSP. We
did not formalize CL-RSP in PVS because it depends on recursive process equations; this
would have required a laborious embedding of µCRL in PVS, which would complicate the
formalization too much.

7.5. Correctness of Nmod

The branching bisimilarity verification of Nmod and Z (Theorem 17) is pictured in Figure 6.
The function fc(l,m,q,q12,l12,g,h,e,h12,g1,h2,e2,h1,l2,m2,q2,q1,l1)
defines the focus condition for Nnonmod(`,m, q, q′2, `

′
2, g, h, e, h

′
2, g

′, h2, e2, h
′, `2,m2, q2, q

′, `′)
as a boolean function on set of states. qlist(q,i,j) is used to describe the function
q[i..j〉, which is defined as an application on triples. The state mapping h maps states of
Nnonmod to states of Z, which is called φ : Ξ → List × List in Section 6.2. k is a Boolean
function which is used to match each external action of Nnonmod to the corresponding one of
Z. This is done by corresponding the number of each summand of Nnonmod to one of Z. As
PVS requires, this function must be total, therefore without loss of generality we map all the
summands with an internal action, from Nnonmod ’s specification, to the second summand of
Z’s specification.

According to cones and foci proof method [10], to derive that Nnonmod and Nmod are
branching bisimilar, it is enough to check the matching criteria and the reachability of focus
points. The two conditions of the cones and foci proof method are represented by mc and WN,
namely matching criteria and the reachability of focus points, respectively. mc establishes that



B. Badban et al. / Mechanical Verification of a Two-Way SWP 199

...
fc(l,m,q,q12,l12,g,h,e,h12,g1,h2,e2,h1,l2,m2,q2,q1,l1): bool =

(l=m OR l=l1+n) AND (l2=m2 OR l2=l12+n2)
k(i): below(2)= IF i=18 THEN 0 ELSE

IF i=10 THEN 1 ELSE
IF i=11 THEN 2 ELSE 3 ENDIF ENDIF ENDIF

h(l,m,q,q12,l12,g,h,e,h12,g1,h2,e2,h1,l2,m2,q2,q1,l1): [List_,List_]=
(concat(qlist(q1,l1,next_empty(l1,q1)),qlist(q,next_empty(l1,q1),m)),

concat(qlist(q12,l12,next_empty(l12,q12)),qlist(q2,next_empty(l12,q12),m2)))
mc: THEOREM FORALL d: reachable(Nnonmod)(d) IMPLIES MC(Nnonmod,Z,k,h,fc)(d)
WN: LEMMA FORALL S: reachable(Nnonmod)(S) IMPLIES WN(Nnonmod,fc)(S)
main: THEOREM brbisimilar(lpe2lts(Nmod),lpe2lts(Z))
...

Figure 6. Correctness of Nmod in PVS

all the matching criteria (see Section 1) hold for every reachable state d in Nnonmod, with
the aforementioned h, k and fc functions. WN represents the fact that from all reachable
states S in Nnonmod, a focus point can be reached by a finite series of internal actions. The
function lpe2lts provides the Labeled Transition System semantics of an LPE (see [10]).

7.6. Remarks on the Verification in PVS

We used PVS to find the omissions and undetected potential errors that have been ignored
in the manual µCRL proofs; some of them have been shown as examples in Section 7.1.
PVS guided us to find some important invariants. We affirmed the termination of recursive
definitions by means of various measure functions. We represented LPEs in PVS and then
introduced Nmod and Nnonmod as LPEs. We verified the bisimulation of Nnonmod and Nmod .
Finally we used the cones and foci proof method [10], to prove that Nmod and the external
behavior of the SWP with piggybacking, represented by Z, are branching bisimilar.

8. Conclusions

In this paper we verify a two-way sliding window protocol which has the acknowledgments
piggybacked on data. This way acknowledgments take a free ride in the channel. As a result
the available bandwidth is used better. We present a specification of a sliding window protocol
with piggybacking in µCRL, and then verify the specification with the PVS theorem prover.

An important aim of this paper is to show how one can incrementally extend a PVS ver-
ification effort, in this case the one described in [1]. PVS verification can be reused to check
modifications of the SWP nearly automatically. We benefited from the PVS formalizations
and lemmas in [1], e.g. properties of data types and those invariants which are not directly
working with the internal structure of buffers (i.e. ordered lists). These are also mentioned
in [2]. Note that a large part of the complete formalization consists of developing the meta
theory. This part is split in generic PVS files with proofs. This generic part can be reused for
the correctness proof of many other protocols. In particular, the generic part consists of the
definition of an LTS, various forms of bisimulation (with proofs that they form equivalence
relations), the definition of LPEs, their operational semantics, the notions of state mappings
between LPEs, the notion of an invariant of an LPE (and its relation with reachable states),
the proof rules for tau-reachability (with a soundness proof), and the matching criteria (in-
cluding the proof of the theorem, that from the cones and foci method one may conclude
branching bisimilarity).
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For a specific protocol verification one must formalize the used data types (or find them
in PVS’s prelude), define LPEs for the specification and implementation, list the invariants,
the focus conditions and the state mapping. From this, all proof obligations (like invariants
and matching criteria) are generated automatically. Most obligations can be discharged au-
tomatically, but still many must be proven manually. Also, tau-reachability must typically
be proven manually, using the predefined proof rules. However, some steps remain protocol-
specific, such as the transition from modulo to full arithmetic in the case of the Sliding Win-
dow Protocol.

Here, we model the medium between the sending and receiving window as a queue of
capacity one. So a possible extension of this work would be to verify this protocol with
mediums of unbounded size, i.e. we can define the mediums as lists of pairs (d, i) by:

cons : [] :→ Medium
func : add : ∆× N×Medium → Medium
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