
Communicating Process Architectures 2008 271
P.H. Welch et al. (Eds.)
IOS Press, 2008
© 2008 The authors and IOS Press. All rights reserved.

A Critique of JCSP Networking
Kevin CHALMERS, Jon KERRIDGE and Imed ROMDHANI

School of Computing, Napier University, Edinburgh, EH10 5DT
{k.chalmers, j.kerridge, i.romdhani}@napier.ac.uk

Abstract. We present a critical investigation of the current implementation of JCSP
Networking, examining in detail the structure and behavior of the current
architecture. Information is presented detailing the current architecture and how it
operates, and weaknesses in the implementation are raised, particularly when
considering resource constrained devices. Experimental work is presented that
illustrate memory and computational demand problems and an outline on how to
overcome these weaknesses in a new implementation is described. The new
implementation is designed to be lighter weight and thus provide a framework more
suited for resource constrained devices which are a necessity in the field of
ubiquitous computing.

Keywords. JCSP, JCSP.net, distributed systems, ubiquitous computing.

Introduction

JCSP (Communicating Sequential Processes for Java) [1, 2] is a Java implementation of
Hoare’s CSP [3] model of concurrency. Previous work was presented [4] that brought
about the integration of the differing versions of JCSP, as well as augmenting and
extending some of the underlying mechanisms inside the core package. In this paper, we
present information on the current implementation of the network package and raise some
issues with the current approach. This allows us to address these limitations in a new
implementation of JCSP networking, while also attempting to bring the networking
package closer to the same level of functionality as the core package.

The rest of this paper is broken up as follows. In Section 1, we present some
background information on JCSP and network based approaches for CSP. In Section 2,
motivation for this work is given. Section 3 provides a description of the current
architecture of JCSP Networking and in Section 4 an analysis and criticism of the current
implementation is given. Finally, in Section 5, conclusions are drawn and future work
considered.

1. Background

In this article we are concerned with the networking capability of JCSP [5] as opposed to
the core functionality. The main library for JCSP is aimed at concurrency internal to a
single JVM, whereas the network library was designed to permit transparent distributed
parallelism using the same basic interfaces as present in core JCSP. Unlike core JCSP, there
is no channel object that spans the network. Instead, JCSP networking operates using a
channel end concept, with a node (a single JVM within the network) declaring an input end,
and other nodes connecting to this input end via an output end. The input end and output
end make up a virtual networked channel between two nodes. The input end and output end

272 K. Chalmers et al. / A Critique of JCSP Networking

have the same interfaces as ChannelInput and ChannelOutput in the core JCSP
package. Beyond this, JCSP networking adds little to the functionality of the main
packages, and due to the recent improvements in JCSP [4] can now be considered lacking
certain constructs that would make it on par with core JCSP.

Of particular importance in this case are the lack of a basic network synchronisation
primitive (the JCSP Barrier) and the multi-way synchronisation primitive (JCSP
AltingBarrier) which leads to a lack of transparency between locally synchronizing
processes and distributed synchronizing processes. These constructs and other, Java 1.5
specific, considerations were given as future work in [4]. This paper brings these constructs
closer to implementation by illustrating the need to address some of the underlying
architectural decisions made for JCSP networking. First we shall look at other
implementations of CSP inspired networking architectures.

1.1 Network Based CSP Implementations

There is now a wealth of CSP inspired distributed concurrency libraries available, ranging
from occam-π and the pony architecture [6] through C++CSP [7] and Python [8]. Most
base their architecture on the T9000 model [9] for creating virtual channels across a
communication mechanism.

JCSP Networking [5] enables the virtual connections to be created via
NetChannelLocation structures sent between nodes to allow virtual connections to be
created. A NetChannelLocation signifies the location of a NetChannelInput end
which a NetChannelOutput end can connect to; the input end acts as a server
connection to an output end. The location structures are fairly trivial, being formed by the
address of the node on which the channel is declared, and a Virtual Channel Number
(VCN) uniquely identifying the channel on said node, although other methods involving
channel names may be used. Initial interaction between nodes is usually managed by a
Channel Name Server (CNS) which allows registration of channel names by the server end
of a connection, and the resolution of these names – thus providing the location – by a
client end of a connection. After initial interaction, locations can be exchanged directly
using networked channels or all channels may be declared with the CNS.
NetConnections are also available, and methods for permitting the mobility of channels
and processes (via code mobility [10]) are also available [11].

C++CSP networking [7] enhances the original C++CSP library [12] by adding the
capability for two C++CSP programs to communicate via TCP/IP based sockets. Unlike
JCSP, there is no CNS – channels connect using unique names on the node. VCNs exist in
the underlying exchanges between nodes. C++CSP networking is limited by how it sends
data, due to differing machine architectures that may be in operation, and a lack of an
object serialisation approach in C++ similar to that found in Java. Recently C++CSP was
updated to version 2 [13], a move that concentrated more on utilizing multi-core systems
than implementation of a networking architecture.

pony [6] is the occam-π approach to networking, and shares a number of similarities
with JCSP. Instead of a CNS, pony uses an Application Name Server (ANS) and controls
the system of nodes via a main node. Channel mobility is also controlled and there is no
current implementation of process mobility. The architecture of pony has been inspired by
the need to implement transparent concurrency and parallelism in a cluster computing
environment, which are more controlled than standard distributed systems architectures,
towards which JCSP is more aimed.

CSP.NET [14] is an implementation of CSP for Microsoft’s .NET Framework,
inspired a great deal by JCSP. Developed in C#, the main advantage of this library over

 K. Chalmers et al. / A Critique of JCSP Networking 273

JCSP is the number of languages in .NET that can now utilize the library. CSP.NET does
rely on the remoting capabilities of .NET, and is therefore technology restricted – remoting
being the RPC system built explicitly into .NET, requiring .NET to operate. JCSP operates
in a manner that is decoupled from the communication mechanism, and is thus independent
of it. Initial performance analysis of CSP.NET has shown little difference in performance
in comparison to JCSP. The most recent version of CSP.NET is now available
commercially (www.axon7.com) and no longer relies on specific features of .NET, but this
has yet to be formally reported.

Finally, PyCSP [8] is implemented in the Python programming language. Although at
last reporting only having basic networking capabilities, the current approach uses remote
objects as opposed to an underlying communication mechanism. The aim of PyCSP
appears to be geared towards cluster computing, making a solid networking infrastructure
essential in the future.

1.2 Performance Evaluations of Network Based CSP Implementations

Some work towards measuring performance of network enabled CSP implementations has
been conducted in previous research. Many of these approaches have focused only briefly
on the performance of the communication mechanism, and instead examine the
performance of parallelized tasks within the architecture. Brown [7] has examined latency
and performance overheads in C++CSP, but no extensive testing of performance of the
communication mechanism using different data packet sizes was made. Instead, work was
allocated and different packet sizes used to measure performance. Although this can lead to
some information about the communication performance, it does not analyze it in great
enough detail to find the difference in performance between C++CSP networking and
standard communication mechanisms.

Schweigler [6] has done extensive tests examining the CPU overhead and throughput
of pony, as well as some comparisons with JCSP and work allocation. Again, little analysis
as to the actual costs of sending messages between nodes is given, and most of the
conclusions on such overheads are interpreted from the throughput and comparison when
parallelizing a task.

Lehmberg’s analysis of CSP.NET [14] provides only simple analysis of performance
without comparison to other approaches, although a brief comparison to JCSP has been
made. The authors note that the tests performed are by no means thorough enough to
constitute a benchmark.

For JCSP, little real analysis of the performance of the communication mechanisms
has been made. Schaller [15] assessed the different speed ups of Java parallel computing
libraries when performing certain tasks across multiple nodes. Vinter [16] has examined
similar properties with other packages in Java, performing different tasks but forgoing any
analysis of the communication mechanism. Kumar [17] has examined JCSP performance
in the context of multiplayer computer games, and although providing some interesting
results on the scalability of JCSP, little analysis of the communication was made.

To fully understand how suitable JCSP is in comparison with other approaches to
communication, analysis of the current mechanisms has to be made. In Section 4, we
provide some of the required parameters. First, a brief description of Java serialisation and
object migration is presented to help understand these parameters more fully.

1.3 Serialisation and Object Migration in Java

It is important to understand serialisation in Java as it puts into context some of the
performance values we shall be discussing in Section 4. Java serialisation is the process of

274 K. Chalmers et al. / A Critique of JCSP Networking

converting a Java object into a sequence of bytes for storage or transfer via a
communication mechanism. This is usually performed by an ObjectOutputStream
which acts as a filter on another output stream type to serialize objects. Reflection (the
ability to interrogate an object to discover its properties and methods) is used to gather the
values within the object and the recreation of the object at the destination from its name
(i.e. java.lang.Integer).

Control signals are sent with serialized object data to allow recreation of the object at
the destination. As a case study, we shall examine the bytes representing an Integer
object, highlighting some of these control signals as necessary. Further information on
serialisation is found in the Java 2 SDK documentation (http://java.sun.com/
j2se/1.3/docs/guide/). All values are single bytes unless stated otherwise.

When a new ObjectOutputStream is instantiated, a handshake message is sent to
allow correct behavior at the destination. Normally four bytes are sent which represent two
16-bit integers: STREAM_MAGIC (-21267) and PROTOCOL_VERSION (5). These are sent
once between an output stream and an input stream. We will not consider the handshake as
normal data for this reason.

The next value represents the type of message being sent. For Integer this is
TC_OBJECT (115), which signifies a standard object. Other control signals for base data
and arrays also exist. Next is a control signal for the class description, TC_CLASSDESC
(114), followed by the name of the class as a string (with a 16-bit length header). For
Integer this is java.lang.Integer. A 64-bit integer representing the unique
serialisation identifier follows and is used to ensure that the class of the given name is the
same at the destination.

A single byte representing control flags to determine how the object was serialized (for
example, custom methods can be used within an object) is next and then a 16-bit value
representing the number of object attributes. With Integer there is only the wrapped
primitive integer. The attribute types are given which may be other objects, thus invoking
the previous steps for describing the object. For Integer the attribute is a primitive
integer represented by ‘I’ (74). The attribute names are given as strings with length headers
– Integer’s attribute being value. A final control signal for the end of the class
description is then written – TC_ENDBLOCKDATA (120).

If the class of the sent object is a subclass the description of the parent class must also
be sent. The parent class may declare attributes not visible to the subclass, but are used by
inherited methods. Integer extends Number (java.lang.Number), which has no
internal attributes.

When all classes have been described, a byte to signal the attribute values of the object,
TC_BASE (112) is written. The values of the attributes are written to the stream in the
order they were declared. For Integer, the 4 bytes representing the 32-bit integer value
are written.

Taking into account the control signals and descriptions sent for an Integer object,
we can calculate a total of 77 bytes sent to represent a 4 byte value. This is a significant
overhead although Integer is a special case with a direct primitive representation of the
sent object. However, it does point to the need to avoid serialisation if possible. We have
not discussed the recreation of the object at the destination which involves using reflection
on the sent name to get the specific class, creating a new instance of the class, and assigning
the values of the properties using reflection. This is a costly process in comparison to
sending primitives.

 K. Chalmers et al. / A Critique of JCSP Networking 275

Java serialisation tries to overcome overhead problems by using references to
previously sent objects and classes within the object stream. For example, if an object is
sent twice over a stream, instead of a new complete message, a TC_REFERENCE (113) byte
is sent, followed by a 32-bit value representing the place in the stream of the object. Class
descriptions may also be referenced if an object of the same type is sent more than once.
The former cuts the 77 bytes of Integer to 5 bytes and the latter cuts the message to 10
bytes. This requires lookup tables within the stream object to accomplish. Over time, these
lookup tables can become large, and may cause a memory exception. To combat this, the
object streams can be explicitly reset, which causes the output stream to clear its lookup
table and send a signal to the input stream to do likewise. This does mean that complete
descriptions of classes need to be sent again. Also, the serialiser has no method to
determine if an object has been modified between sends, therefore any modification will
not be seen at the destination if the object stream is not reset. The serialiser has no method
to distinguish between mutable and immutable objects.

The reason to examine serialisation is that JCSP networking relies heavily upon it. To
avoid referencing problems, the underlying streams are reset after each message, thus every
object is sent as a new object. The first instinct for doing this is the possibility that a user
may be optimizing their own application to avoid garbage collection, thus using a pool of
messages. JCSP uses this mechanism internally within the networked channels. Each
output channel is allocated two message packets that are swapped between sending. If the
underlying object streams were not reset after every communication the channel would
appear to only send two objects, and then only ever send those two objects. Unfortunately,
resetting the streams in this manner leads to other problems, which we shall discuss in
Section 4. It should be possible to replace the serialiser with a more efficient
implementation, but this is currently left for future work.

2. Motivation

We are examining JCSP in the context of ubiquitous computing (UC) [18], which is the
idea of having an environment populated by numerous computationally able elements, that
interact together to provide new and unique services. To accomplish UC, dynamic
architectures and movement is envisioned; for example to enable agents to move between
elements to accomplish goals. An architecture the size and complexity envisioned by UC
requires abstractions that enable simpler design and reasoning. The π-Calculus [19] and
similar mobile abstractions have been put forward as a possible model for this
understanding [20], and we are interested in the practical examination of such abstractions,
using JCSP as a case study. The scalability of mobile channels and processes has been
shown by the work of Ritson [21], with an architecture involving millions of interacting
mobile processes operating simply with no great problems for design or analysis.

The reason for examining JCSP is that it is more mature than similar frameworks when
considering distributed mobility [11]. Java is also a more commonly available framework,
particularly for mobile devices which enable a close approximation of the capabilities of the
elements available in a UC environment. Work on the Transterpreter [22] may lead to
occam-π being available on more devices, but there is currently no network capability.

We are also hoping to develop a universal mechanism to allow the abstractions that we
require within multiple frameworks, a discussion of which is given in Section 5. Although
we have taken JCSP as a case study, it cannot be considered that Java will be available on
all the elements in a UC environment. As an outcome of our work we also address some of
the future work given in [4].

276 K. Chalmers et al. / A Critique of JCSP Networking

3. Current JCSP Networking

Figure 1 illustrates the current architecture of JCSP networking. Within the diagram, ovals
represent processes and rectangles objects. Channels are represented by arrows, and dashed
lines between components represent object based connections (uses, contains). Channels
that have potential infinite buffering are indicated with an infinity symbol. This diagram
appears different from those previously presented for JCSP networking as there is no
NetChannelOutputProcess. To reduce the number of Java threads supporting the JCSP
infrastructure, this has been integrated into NetChannelOutput object.

Figure 1: current JCSP network architecture.

The Link encapsulates the connection to another node within the system by sending
and receiving messages via the underlying stream mechanism, which is dependent on the
inter-node communication fabric. The Link process has two sub-processes: LinkTX
which is responsible for sending messages, and LinkRX which is responsible for receiving
messages. As a node may be connected to multiple remote nodes, there may be multiple
pairs of these processes.

The other form of connection is the LoopbackLink which simulates a local
connection. The LoopbackLink allows a channel output to connect to a channel input on
the same node. Because JCSP allows for this eventuality, the LoopbackLink must always
be in operation. There is only ever one LoopbackLink and corresponding TX and RX
processes active on a node.

The LinkServer processes listen for incoming connections from other nodes, and
start up a new Link process accordingly. With TCP/IP the LinkServer process
encapsulates a normal server socket. In most cases, only one LinkServer is created; but
if different communication mechanisms are in use or the node must listen on multiple
interfaces, then multiple LinkServer processes may be active.

The Link processes are managed by a LinkManager process. LinkServer
processes connect to the LinkManager process to communicate new connections. Link
processes are also connected to the LinkManager to allow notification of a connection
failure. An EventProcess is spawned by the LinkManager, which is used to

Application
Process

Application
Process

Application
Process

Application
Process

Net
Channel

Net
Channel

Net
Channel

Net
Channel

Application
Process

Event
Process

Link
Server Link TX

Net Channel
Input Process

Net Channel
Input Process

Link RX

Loopback Link Lin

Link Lost
Event

Channels

Communication Mechanism

Link TX Link RX

Link
Manager

∞

∞ ∞

∞

∞

 K. Chalmers et al. / A Critique of JCSP Networking 277

communicate link failures to the application level. An application process must create a
new LinkLostEventChannel to allow this message to be received. The
EventProcess is a sequential delta outputting upon the LinkLostEventChannels any
LinkLost message it receives.

Channels similarly have a manger called IndexManager. This is not shown in Figure
1, but it contains connections to all networked channel constructs. Unlike LinkManager,
this is a shared data object controlled via Java synchronized methods. Whenever a new
channel is created, it is registered with the IndexManager. The Link processes use the
IndexManager to access the channel ends during operation.

As mentioned, networked channels come in two forms: NetChannelInput and
NetChannelOutput. An output end is connected directly to its corresponding LinkTX
process. As network channels are Any2One, an input end may receive messages from any
LinkRX process. The messages are not sent directly to the channel end, but are sent to a
NetChannelInputProcess which then forwards the message onto the channel end.
The channels from the LinkRX to the channel end / process are buffered with an infinite
buffer, meaning that there is no risk of deadlock on the LinkRX process when it sends the
message to a channel. The amount of buffering needed is bounded by the number of
external processes trying to communicate to that particular network channel. It holds
received, but not yet accepted, messages. That number cannot be pre-calculated, since it
may, of course, change during run-time. However, it will always be finite!

3.1 Current Functionality

The basic operation during a send / receive operation occurs as follows:

1. An application calls write on the NetChannelOutput.
2. The NetChannelOutput wraps the sent object inside a message object, and

writes this to the LinkTX process. The message object contains details on
destination and source to allow delivery and subsequent acknowledgement.
The NetChannelOutput then waits for an acknowledgement message from
the LinkRX, blocking the writer (so as to maintain synchronisation semantics
of CSP channels).

3. The LinkTX serializes the message onto the connection stream to the remote
node.

4. The LinkRX on the remote node deserializes the message from the stream,
retrieves the destination index, and requests the channel from the
IndexManager.

5. To allow quick acknowledgement, the LinkRX attaches the channel to its
partner LinkTX to the message. The message is then written to the
NetChannelInputProcess.

6. The NetChannelInputProcess reads the message and writes the data part to
the channel end. This is a blocking write, so until the receiving process is
ready to read the message the NetChannelInputProcess waits. Once the
write has completed, an acknowledgement message is written to the channel
attached to the message during the previous step.

7. The LinkTX serializes the message onto the connection stream to the remote
node.

8. The LinkRX on the remote node deserializes the message from the stream,
retrieves the destination index, and requests the corresponding channel from the
IndexManager.

278 K. Chalmers et al. / A Critique of JCSP Networking

9. As the message is an acknowledgement, the message is written directly to the
channel end.

10. On receiving the acknowledgment message, the NetChannelOutput
message can complete the write operation and release the writer.

These ten steps capture most of the functionality underlying the network architecture.

Other conditions, such as link failure, message rejection, etc, are not covered here. With
these steps in mind, we can move forward and critique the current implementation.

4. Critique of JCSP Networking

Our test bed consists of a PC communicating to a PDA device via a wireless network. The
PC is a Pentium IV 3 GHz machine with 512 MB of RAM running Ubuntu Linux. The
PDA is an HP iPaq 2210 with a 400 MHz processor and 64 MB of memory, shared
between storage and applications. The operating system on the device is Windows Mobile
4.2, and thus provides a similar API to a standard Windows based desktop. The wireless
network is an 802.11b network running at 11 Mbps. The PC is connected via a standard
Ethernet interface to the router, and the PDA is connected via a wireless interface.
Considering how small and resource restrictive components in ubiquitous computing may
be, this test bed is fairly powerful. However, this setup allows us to discover limitations.
Of particular note is the JVM running on the PDA. This is an IBM J9 JVM, and due to
resource limitations can only create just under 400 simple threads with little internal stack.
As every process in JCSP is handled by a thread, this allows us to examine JCSP
networking in a very limited environment, not envisioned during original development.

We are interested in analyzing the resource usage and general performance of JCSP,
and have therefore sent objects of various sizes and complexities via normal networked
streams, buffered network streams, normal JCSP network channels and unacknowledged
JCSP network channels. The buffered streams are required as JCSP buffers its own streams
when used within a TCP/IP environment. The unacknowledged channels are a feature of
JCSP networking and it was hoped that examination of these would permit understanding
of the overheads of message sending. As we shall see, it has helped us discover another
problem instead. As JCSP sets Nagle1 ‘off’ for its TCP/IP connections, all the results
presented also have Nagle deactivated.

As mentioned, different complexities and sizes of objects have been examined. By
complexity, we refer to the number of aliased objects that exist within the sent object itself.
Here we will be presenting TestObject4 to demonstrate properties. TestObject4 is
the largest object we have used, in byte size, and is complex. It inherits from TestObject.
The class definitions are:

public class TestObject implements Serializable {
 protected Integer[] ints;
 protected Double[] dbls;
 ...}

public class TestObject4 extends TestObject {
 private TestObject testObject;
 private Integer[] localInts;
 private Double[] localDbls;

1 Nagle increases performance for small packet sizes by condensing numerous small messages into single
packets.

 K. Chalmers et al. / A Critique of JCSP Networking 279

 public TestObject4(int size) {
 ints = new Integer[size];
 dbls = new Double[size];
 localInts = new Integer[size];
 localDbls = new Double[size];
 for (int i = 0; i < size; i++) {
 ints[i] = localInts[i] = new Integer(i);
 dbls[i] = localDbls[i] = new Double(i);
 }
 }

 public static TestObject create(int size) {
 TestObject4 tObj1 = new TestObject4(size);
 TestObject4 tObj2 = new TestObject4(size);
 tObj1.setTest(tObj2);
 tObj2.setTest(tObj1);
 return tObj1;
 }
}

To create an instance of the object, create (int size) is used. A single

TestObject4 has four internal arrays (two for Integer and two for Double), with the
internal objects within these arrays being aliased. TestObject4 has a reference to another
TestObject4, which in turn references the original object. Therefore, there are numerous
aliases within the objects being sent. The tests use internal array sizes from 0 to 100.

To understand the complexity and size of TestObject4, we can use the following
formulae. For the number of unique objects sent, relative to n (the size of the internal
arrays) we have:

2·(TestObject4 (1) + Inherited Array Objects (2) + Own Array Objects (2) + 2·n)

The number of object references sent is greater than this value as the objects in the

arrays declared in TestObject are sent as reference data. The total number of object
references can be gained by multiplying n by 2 again:

2·(TestObject4 (1) + Inherited Array Objects (2) + Own Array Objects (2) + 2·2·n)

Calculating the amount of data in bytes is more difficult, due to the message headers as

described in Section 1.3. The simplest method is:

(n = 0) → 326 bytes
(n = 1) → 500 bytes
(n > 1) → 500 + ((n – 1) * 68) bytes

The increase of 68 bytes per increment in size of the message is due to the size of the

object being sent. An Integer wraps 4 bytes, and Double 8 bytes. Two of each object
type is created in total – one for each TestObject4 – for a total of 32 bytes. Each object
also takes up 4 bytes of reference information, and eight object references are created in
total – four for the new objects and each new object is aliased once. This requires 36 bytes,
which gives us 68 bytes in total.

The reason to use complex objects that are however small in size is threefold. Firstly,
the platform used is restricted in performance, and thus small message sizes are the most

280 K. Chalmers et al. / A Critique of JCSP Networking

likely to be sent. As we are concerned with UC, it is the abstraction we are more concerned
with, and it may be that numerous communications are occurring between these devices.
This is unlike parallel computing approaches, where large blocks of data are processed to
try and increase performance by having a processor spend most of its time processing as
opposed to communicating. Tests have also been conducted using large byte arrays of data,
but this does not allow capturing of the serialisation and message overhead we present here.

Secondly, we are trying to discover the cost of sending messages via JCSP, taking into
account serialisation. Sending large objects is not the norm within Java if we consider
other remote communication mechanisms such as Java Remote Method Invocation (RMI).
Therefore, we hope to analyze the overheads of sending messages via JCSP in comparison
to the underlying stream mechanism. A comparison with RMI is left for future work as
RMI is not a standard feature on mobile devices.

Thirdly, the maximum size of the object we present is smaller than the buffer
underlying the network streams within JCSP. With these experiments, we are hoping to
avoid the operation of the buffer being automatically flushed due to filling. Any overhead
associated with this operation can be captured during large block sending.

4.1 Resource Usage

Our first criticism of JCSP networking is the required resources to start a networked node.
If we examine Figure 1, we can see that each connection to another node requires two
processes; each input channel requires a process; and a LinkServer, a LinkManager, an
EventProcess, and two processes for loopback are created at startup. For an initial
unconnected node, with no input channels declared we have 6 threads created (including
the main thread). Of these processes, the LinkServer is required to accept incoming
connections.

When the node connects to a remote Channel Name Server (CNS) during initialisation,
the number of threads required is 11 (including main). The connection to the CNS involves
the two Link processes, a service process for connection to the CNS, a
NetChannelInputProcess for the connection from the CNS to the service process, and
when the first NetChannelOutput is created, a small process to handle link failures is
spawned also. Only the two Link processes are required.

During a connection operation, five processes are created and subsequently destroyed
to handle handshaking between the two nodes. The Parallel in standard JCSP is robust,
and will try its best to manage all the used process threads in the system. However, many
of these processes are spawned using the ProcessManager object; therefore the threads
are not taken from the standard pool but are recreated every time, although it would be
possible to modify ProcessManager to utilize the Parallel pool. The starting and
subsequent destruction of threads may not be considered a serious strain on the system per
se, but it may increase the active thread count beyond the system limit. Links may also be
created to connect to a remote node already connected to, and the handshake process takes
place to determine if the new Link should be kept. This requires the creation and
subsequent destruction of temporary threads, which again may cause the thread count to
increase beyond system capabilities.

The number of processes created as operations continue is also substantial. Each
connection to a new node requires two further processes, and each new
NetChannelInput requires a further process. It can be seen that it is not hard to reach
the 400 thread limit within the PDA without inclusion of the application processes. As an
example, being connected to five nodes, with ten input channels (two for each node) and
the initial CNS connection will require a total of 31 processes.

 K. Chalmers et al. / A Critique of JCSP Networking 281

The main reason for the heavy resource usage would appear to stem from the common
CSP / occam philosophy of when in doubt, use a process. In Java this is sometimes an
expensive approach to take, particularly when considering resource constrained devices.
One of the main problems is the use of extra processes as managers, and processes for
controlling the NetChannelInput. Channels should be lightweight, but a thread in Java
is not lightweight so using a thread for a channel is wasteful. This approach is also
dangerous in a dynamic architecture when, for example, the application process forgets to
destroy the channel when it is finished with it, resulting in the process being lost and the
resources not reclaimed. The garbage collector will not recover these as there is still an
active thread holding the resources. As one of the goals of JCSP is to transparently allow
channels to be either local or distributed, we cannot rely on a process actively destroying an
unused channel if it has no knowledge of whether it is networked or not. Modifying the
existing input channel so that it uses fewer resources is therefore a necessary goal.

4.2 Complexity

The next criticism we level at JCSP networking may be considered subjective. It concerns
the internal complexity of the implementation. The basic premise of JCSP networking is
trivial; there are two arrays of Any2One channels creating a crossbar between the channel
ends and Link processes. One of the supposed properties of JCSP networking is the fact
that the architecture is removed from the underlying communication mechanism, meaning
that JCSP can be implemented over any guaranteed delivery mechanism. The argument is
that if the correct addressing mechanism is used, then JCSP can operate around it.
Although this statement is true, it is difficult to achieve, requiring understanding JCSP
networking internals. Without the source code, it would be incredibly difficult for a custom
communication mechanism to be used. If JCSP truly sat above the communication
medium, then all that should be required are the necessary input and output streams, and an
addressing mechanism.

As an example, the TCP/IP version of the Link process must implement numerous
abstract methods from the Link class, including writing and reading of test objects,
handshaking, waiting for LinkLost replies, and reading and writing of Link decisions
(whether this Link should be used). There are many methods that need implementation for
addressing, protocols, and a NodeFactory (used to initialize a JCSP Node during startup).
Some of these require knowledge of objects such as Profile and Specification
which are undocumented. There is also a reliance on the org.jcsp.net.security and
org.jcsp.net.settings sub-packages. This is to name a few of the hurdles that must
be overcome to allow JCSP to operate upon a new communication mechanism.

4.3 Message Cost

Object messages are an expensive method of transferring data. Any sent object must be
wrapped within the object message before being sent to the other node, and
acknowledgement messages are themselves objects. If we consider the amount of extra
data sent using serialisation and as reflection is used during recreation, this leads to an
overhead. The message types are defined within an object hierarchy, with specialized
messages extending simpler ones. As inheritance information is also sent within a serialized
object, this adds a further overhead.

For instance, a send message to another node requires a source and a destination value,
which are two 64-bit values, but the size of the message object is 249 bytes without any

282 K. Chalmers et al. / A Critique of JCSP Networking

data inside it. An acknowledgment message is 205 bytes. This is a significant overhead
considering that the information required is only 16 bytes (the source and destination).

There is also extra information sent within the message, such as a channel name for
resolution by the receiving node if the destination index is not known, and a flag indicating
if the message should be acknowledged. Name lookup puts an extra strain on the node as it
must find the name in a table prior to message delivery. For named channels the CNS
should really be used.

Having the messages wrapped up in objects also restricts JCSP interacting with other
process based frameworks. Under the current implementation it would be impossible for
JCSP to send a message to pony for example. This reflects badly on the use of JCSP in a
ubiquitous computing environment, as we cannot expect all devices to be able to use a
JVM. The nature of distributed systems also requires a great deal more platform
heterogeneity, and currently JCSP does not offer this.

4.4 Objects Only

Following from the previous point is the inability of JCSP to send anything but objects
between nodes. In principle this is not a problem if we consider JCSP in only the Java
context, but it does again make it difficult to communicate with other platforms. It would
also be useful to send raw data between nodes as required, which can be done in principle
as a byte array in Java is considered an object, but there is again an overhead involved due
to serialisation.

This limitation also means that primitive data must be wrapped in an object prior to
sending. This brings a further overhead. The core JCSP packages implement a primitive
integer channel to allow a slight increase in performance, and it should be reasonable that
JCSP networking do this as well. To achieve this in the current implementation would
require the channel to wrap the primitive in an object for sending, as the message object
only uses an object as data to transfer.

4.5 Performance

We now present experimental data regarding the general performance of JCSP networking
when sending messages. The results presented are the mean of a roundtrip of 60 objects of
a given size, taken from the PDA. The results from the point of view of the PC are the
same. These values are gathered by sending and receiving back an object of the given size,
acquiring the time for performing this action 10 times, and this in turn is performed 10
times. Thus in total 100 objects are sent and received, but this is split into batches of 10 to
allow a finer grained analysis. Finally, of these 10 batches, the largest and smallest two
results are removed to smooth the data. Initially, the average of 100 send-receive operations
was taken, but due to unexpected peaks and valleys in the results, a closer examination was
taken. Although it has shown the peaks and valleys are not the result of individual runs, the
real reason has yet to be determined.

Our first set of data highlights the efficiency gained by placing an 8 KB buffer on the
stream when compared to an unbuffered stream. These are Java BufferedInputStream
and BufferedOutputStream objects surrounding the streams provided by Java Socket
objects. Java serialisation causes individual bytes to be written directly to the stream, which
results in numerous small packets being sent in a TCP/IP environment. As JCSP
networking places these 8 KB buffers on its streams, this allows us to see why initially
JCSP performs better than standard networking on the mobile devices we are investigating.
Some preliminary experiments using standard desktop machines appears to show that this
advantage is lost as normal buffering and processor speed on desktop architectures

 K. Chalmers et al. / A Critique of JCSP Networking 283

compensates for the lack of buffering. It can be deduced that the PDAs have little or no
network buffering to increase performance, leading to the assumption that JCSP is more
efficient than it actually is. The comparison of buffered and unbuffered streams is presented
in Figure 2.

Figure 2: normal streams versus buffered btreams.

There are some interesting points to consider. As previously mentioned, there are
valleys and peaks evident which are currently under investigation, initial signs pointing to
the internal workings of the JVM or the PDA itself when dealing with certain sizes of data
being the cause. The other interesting phenomenon is the steps in the buffered stream
results. These steps reflect the extra packets of data sent as the Maximum Transmission
Unit (MTU) of the network is reached. The MTU is the maximum single packet size that
can be sent in one operation. The MTU for the wirelesos network is 2272 bytes and the
MTU for the Ethernet connection is 1492 bytes as set by Linux. The buffer is greater than
this value and therefore the data is split into separate packets during transmission.

Our next set of results illustrates the difference between networked channel operations
and buffered stream operations. These are presented in Figure 3. The same step increase is
apparent, although the networked channels are distinctly pushed left. This is due to the
extra overhead of sending objects via JCSP as described in Section 4.3. It also appears that
the first step in the results occurs at the MTU size for the Ethernet (1492) and the second
occurs around twice the MTU for wireless packets (2272). The reason for this has not yet
been ascertained. A packet is fragmented by the router when being transmitted from the
PDA to the PC to allow the larger wireless packet to be sent as smaller packets on the
Ethernet. There is no such constraint from the PC to the PDA as the wireless network can
manage packets from the Ethernet. The PC should be capable of handling the
reconstruction of fragmented packets without significant delays. Therefore, the steps should
occur at twice the MTU of the Ethernet, especially as the PDA is capable of sending data
far quicker than it can receive. This is shown in Figure 5.

We can also see the same peaks appearing in the JCSP networked channel results as
the buffered stream results, strengthening our belief that it is not the implementation
causing a problem.

0
5000

10000
15000
20000
25000
30000
35000
40000
45000
50000

326 2132 3832 5532 7232

Ti
m

e
m

s

Size of Sent Object (Bytes)

Normal Streams Buffered Streams

284 K. Chalmers et al. / A Critique of JCSP Networking

Figure 3: buffered streams versus networked channels.

These results allow us to show that JCSP does have an overhead within its
communication mechanism. This overhead can have consequences, especially for resource
constrained devices. As Figure 3 illustrates, an object that is sent via a channel may take
two seconds on a roundtrip when the buffered stream equivalent has minimal time. This is
due to sending extra data packets and if the overhead was reduced, the difference in
performance could be compensated. The extra bytes sent for the message (249) and the
Ethernet packet size (1492) imply that one sixth of a single packet is taken up by
information beyond the sent data. Therefore there is a one in six chance that a message sent
via JCSP will require an extra packet in a normal network. For a send-receive operation (as
presented in Figure 3), this increases the time by two seconds within our test bed.

4.6 High Priority Links

Our next set of results illustrates a danger in the implementation of JCSP Links. These
processes are given highest priority in JCSP to decrease latency by having the TX/RX
processes start as soon as possible. The argument is that these processes may be blocked
while trying to send or receive data if they are not given high enough priority. There is a
converse to this argument. To illustrate the danger, we present the results of the PDA only
receiving (and not sending back) messages from normal networked channels and
unacknowledged network channels. These are given in Figure 4.

As this chart illustrates, sending unacknowledged messages takes more time than
acknowledged ones. This should not be the case. First, there are fewer messages sent (no
acknowledgements), and second the PC should be able to send messages faster than the
PDA can read them, due to performance differences between the two machines and their
network interfaces. What is happening here is that the PC is sending messages too fast for
the PDA to cope. Data is appearing on the network before the PDA has time to process the
previous message. The readings are taken from the application level process, and it is being
superseded by the LinkRX process as it receives new messages. his results in the
application process taking longer to receive messages as it must wait for the LinkRX.
Underlying every network channel is an infinite buffer to receive messages upon to avoid a
LinkRX process deadlocking. This leads to the LinkRX being capable of constantly writing
to the channel if it has data ready, without the channel having time to respond.

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

326 2132 3832 5532 7232

Ti
m

e
m

s

Size of Sent Object (Bytes)

Buffered Streams Networked Channels

 K. Chalmers et al. / A Critique of JCSP Networking 285

Figure 4: normal versus unacknowledged network channels receiving.

This may appear an unfair comment since unacknowledged channels should not be
used in such a manner (they are used to avoid the Channel Name Server and networked
connections from blocking).

The problem can also lie in channels which are buffered, have multiple incoming
connections, and are accepting large packet sizes. This can lead to an application process
waiting until data is received by the LinkRX processes. As the user has no control over the
priority of the Link processes, they have no method to decide whether distributed I/O or
application processes should be given highest priority.

A simple analogy of this is a producer-consumer program that operates with an
infinitely buffered channel. If the sender is given higher priority than the receiver, then the
receiver is theoretically starved as it cannot continue until the sending process has
completed sending. Over time, the buffer in the channel grows and we are in danger of
running out of memory. In practice this is not strictly true, as the receiver will be allowed
to consume some of the messages. This may occur in JCSP over time using a standard
infinitely buffered channel.

Buffered networked channels are also present in the current JCSP implementation.
These are implemented by buffering the channel between the NetChannelInputProcess
and NetChannelInput. Therefore the NetChannelInputProcess may not be blocked
while writing a message to the NetChannelInput, depending on the buffer used within
the channel. The standard JCSP buffers may be used within these channels, and thus there
may in fact be two infinite buffers filling into one another.

The other interesting point that this graph illustrates is the repetition of the step
function for the receiving results on the PDA. When comparing the results for
communication from PC to PDA and from PDA to PC (Figure 5) we see that the greatest
time is taken when the PDA is receiving data. Reducing this time would increase
performance in our test bed considerably and is worth future investigation. The
communication synchronizes, so the results should be the same if it were network
capabilities restricting performance.

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

326 2132 3832 5532 7232

Ti
m

e
m

s

Size of Sent Object (Bytes)

Network Channel Receive Unacked Channel Receive

286 K. Chalmers et al. / A Critique of JCSP Networking

Figure 5: network channel sending and receiving on PDA.

4.7 Lack of Exceptions

The next limitation of JCSP is the lack of well documented exceptions being passed up to
the application level processes. JCSP networking relies on I/O operations, and these can
fail for reasons outside the control of JCSP. To combat this, exceptions such as LinkLost
may be thrown, or a LinkLostEventChannel can be checked for any lost connections.
These are not always caught. An example of such an operation is when an output end sends
a message to the corresponding input end. If, prior to the acknowledgement being sent, the
connection between the two nodes fails, the output end is not informed, and is left to hang
waiting for the acknowledgement that will never come. As we do not have guarded output
in JCSP networking we cannot recover from such an eventuality and must restart the
system. A simple solution to overcome this problem is given in Section 5.

We may get an exception when something bad happens in the form of a
ChannelDataRejectedException. This is a strange exception to be thrown for failed
I/O operations. RejectableChannels are a deprecated construct within the core library
and the reliance of JCSP networking on them should be removed. It would appear that the
reason for having RejectableChannels was originally to handle I/O exceptions so that
exceptions could be passed to the application level. As these I/O exceptions may still occur,
a mechanism must be put in place to pass the exceptions onto the application process in a
manner that allows a networked channel end to still appear as a normal channel end if
required. This is described in Section 5.

4.8 Lack of Universal Protocol

Our final concern reflects on the issues raised in sections 4.3 and 4.4. JCSP utilizes objects
as messages between distributed nodes. This is not a concern if we only wish JCSP to
communicate with itself. However, we now have a numerous implementations of
networked CSP inspired architectures across a great number of platforms. It is impossible
for JCSP to communicate with pony or PyCSP in its current form without some form of
Java object interpreter built into the respective frameworks. This is a limitation. When
concerned with distributed systems, we should strive to allow inter-system communication
whenever possible. It is reasonable for JCSP to communicate with pony, and vice-versa,

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

326 2132 3832 5532 7232

Ti
m

e
m

s

Size of Sent Object (Bytes)

Network Channel Receiving Network Channel Sending

 K. Chalmers et al. / A Critique of JCSP Networking 287

but this is not possible. A universal communication mechanism and protocol should be
developed to allow these separate frameworks to communicate as much as possible. This is
covered in Section 5.

5. Conclusions and Ongoing Work

We have shown that JCSP networking currently has a number of problems – especially
when considering small power/memory devices – and our hope is to address these with a
new implementation of JCSP networking. In summary, we have argued that:

• The architectural implementation leads to high resource overhead
• The architectural implementation is complex when compared to the basic

premise of JCSP networking, making extension difficult
• Message packets are large in comparison to the amount of information actually

sent within them
• The current implementation by default only allows serializable objects to be

sent
• Performance of the basic communication mechanism is almost on par with the

underlying stream, but message overheads have an effect
• The default high priority link is restrictive as some applications may require

lower priority I/O
• Exception raising is not guaranteed
• There is no interoperability between frameworks due to JCSP relying on

objects as transmitted messages

Our new implementation of JCSP networking aims to overcome these problems while

also trying to bring the new architecture to the same level as the core for functionality.

5.1 A New Architecture for JCSP Networking

Our new architecture is based on the existing JCSP networking implementation, as well as
taking inspiration from C++CSP Networked and pony. We have aimed to retain the
existing interfaces whenever possible to allow existing users the same familiarity with the
library.

The new architecture has the initial aim of reducing the resource overheads discovered
in JCSP networking by removing unnecessary processes. To support this, we have removed
NetChannelInputProcess and LoopbackLink, as well as converting the management
processes into shared data objects.

Our new approach is based on a layered model. This allows functional separation and
allows simple extension / modification. The underlying process model is still in effect, and
the new architecture model is almost exactly the same. Figure 6 illustrates the new
architectural model.

The key difference is how the components communicate together. Each layer only
understands certain message types, thus promoting separation. As a layered approach is
taken, messages only travel as far up or down the layered model as required, providing a
further degree of separation. This allows simple additions and modifications in specific
components to allow extension of the architecture. For example, networked barriers have
been implemented by providing the same mechanisms in the Event Layer as there are for
channels.

288 K. Chalmers et al. / A Critique of JCSP Networking

Figure 6: new JCSP architectural model.

5.1.1 Networked Barrier and AltingBarrier

The barrier operates on a client-server basis, with one JCSP node acting as a server for n
client barriers. Each barrier end may have a number of processes synchronizing upon it,
and for optimisation purposes it is only when all locally enrolled processes have
synchronized does a client barrier end communicate with the server end. Once all client
ends have synchronized, the server end releases them. Thus, the networked barrier operates
in two phases; local synchronisation and then distributed synchronisation

We are also considering how to implement a networked multi-way synchronisation
within the architecture, but this is far more difficult. The two phase approach used in the
standard barrier cannot be reused for a direct networked implementation of
AltingBarrier due to the implementation within the JCSP core. Here, a central control
object is used, which ensures that only one process is actively alting on any
AltingBarrier at any one time. This is irrespective of the number of AltingBarriers
in the system. This controls the multi-way synchronisation in a manner that allows fast
resolution of choice between multiple multi-way synchronizing events.

The problem with this controlled model is that it does not scale to multiple processors.
If each process must wait to access this coordination object, then only one process is in
operation at any time. This is fine in a single processor, concurrent system as only one
process can only ever be in operation. With a multi-processor environment the problem is
that all processors must wait while one accesses the coordination object. This is a worst
case scenario, but does highlight the problem faced. A distributed event based system faces
the same problem. However, we currently believe the two phase approach used for
networked barriers is the most likely approach for efficiency reasons when dealing with a
distributed multi-way synchronisation. A possible approach is to use a process within the
networked AltingBarrier client end to control the synchronisation and communicate
with the declaring AltingBarrier server end. This approach should allow a single
networked AltingBarrier to exist on a single node. However, the goal would be to
allow multiple networked AltingBarriers on a node.

 K. Chalmers et al. / A Critique of JCSP Networking 289

Another key feature is the use of a communication protocol independent of Java or any
other platform. Instead of relying on Java objects, data primitives are used.

5.1.2 A Universal Protocol for CPA Based Networking

The aim of our new protocol is to promote communication independent from the data being
sent. Through this we hope to achieve a standard mechanism that can be exploited across
the various CSP based network architectures. It is perfectly reasonable to expect JCSP to
communicate with KRoC, and thus we have aimed at a simple protocol that is easily
portable to other platforms. The standard message types can be well defined, and thus far
we have encountered only message types that require three values: a type, and two
attributes. These can be expressed using a byte and two 32 bit signed integers. We are also
removing the need for object messages which reduces the message overhead. At present,
this reduces the 249 byte message header to 9 or 13 bytes.

This does not take into account data passed within the message itself, and this is
considered a special case. We define message types using values, therefore the message
type can also be used to determine whether or not the message has a data segment. If it
does, the number of bytes can be sent as a 32 bit integer, and then the data itself can be
transferred. The new key feature is that channels are now responsible for converting objects
to and from bytes, and the messages themselves must only contain byte data. The
conversion method can be specified by the JCSP user, thus providing data independence as
there is no longer a reliance on Java serialisation. For example, a JCSP system could send a
message to a pony system by utilising a converter that implemented strict occam rules for
data structures. Schweigler’s [6] work in this area provides a strong basis to build upon.

5.1.3 Channel Mobility

We are also hoping to build channel mobility directly into the protocol to allow mobility of
channels between platforms. Unfortunately, at present this cannot be fully accomplished
due to conflicting approaches for mobility proposed for JCSP [11] and pony [6]. Both of
these approaches have advantages and disadvantages, and a coming together is required for
mobility to be implemented directly into the protocol.

5.1.4 Other Features

One shortcoming overcome in the new model is the exception handling mechanism, as
specified in Section 4.7. There is now a unique exception that can be thrown by a
networked JCSP system; the JCSPNetworkException. This is a silent exception, in that
it does not need to be caught explicitly by the JCSP user, thus permitting channel
operations to throw the exception but not break the existing core channel interfaces.

We have also implemented a solution to the deadlock caused by an output channel
waiting indefinitely for an acknowledgement from a broken connection.
NetChannelOutput objects now register with their respective Link components on
creation, and unregister on destruction / failure. This allows a Link to send a message to
the NetChannelOutput on failure. As this message is written to the same channel as an
acknowledgement would be expected the NetChannelOutput can receive this message
and act accordingly. As this message may also be sent prior to an initial write, the channel
can be checked at the start of a write operation, avoiding unnecessary attempts to write to a
dead Link.

290 K. Chalmers et al. / A Critique of JCSP Networking

5.1.5 Verified Model

Our design has been approached with model checking in mind. We have performed some
preliminary investigation with Spin [23], with promising results thus far. We do have a
number of properties we still wish to examine. The reason to use Spin as opposed to FDR is
due to the usage of mobile channels within the JCSP architecture, and Spin allows channel
mobility explicitly within its models. The model built within Spin can be directly composed
into Java due to the core of JCSP being in place.

5.1.6 Ongoing Work

There is still work to do on the new implementation of JCSP networking. In particular, if
the defined protocol is to be considered as a method to allow intercommunication between
different platforms, then further investigation must be undertaken for other common /
expected messages within these frameworks. As an example, the protocol currently does
not implement any notion of claiming a channel end, although this is used within pony for
shared channel ends.

Connections are currently not implemented in the new architecture. It is possible to
implement connections using normal networked channels, but this requires building a
connection message protocol that will be sent via the communication protocol. A more
practical approach is to implement these message types directly into the communication
protocol, and then develop management and component ends within the Event Layer.

5.2 Future Work

We have highlighted a number of other pieces of future work beyond the new
implementation of JCSP networking. Work on enhancing the serialisation capabilities of
Java to accommodate JCSP will likely lead to an increase in performance for both small
factor and desktop applications. We also hope to perform comparisons with RMI, taking
into account simplicity, code mobility and performance. With networked connections, it
should be possible to create remote interfaces that are externally similar to RMI. Finally,
for our own experimental test bed, the possibility of increasing performance for the PDA
receiving data is interesting.

5.3 Conclusions

We have shown that JCSP networking has a significant number of problems which lead to
certain impracticalities when considering JCSP in small factor devices. Particularly, we
have shown that that there are overheads due to excess process creation and destruction, as
well as overheads for message transfer. We have also illustrated some dangers and argued
on the complexity of the implementation.

Finally, we have discussed a new approach for JCSP networking which will lead to a
more ubiquitous approach for CSP networking as a whole. We hope that this approach can
be replicated across the various CSP based frameworks to allow stronger integration,
allowing simpler exploitation of multiple platforms.

References

[1] P. H. Welch, "Process Oriented Design for Java: Concurrency for All," in H. R. Arabnia (Ed.),

International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA
'2000)Volume 1, pp. 51-57, CSREA Press, 2000.

 K. Chalmers et al. / A Critique of JCSP Networking 291

[2] D. Lea, "Section 4.5: Active Objects," in Concurrent Programming in Java: Second Edition, Boston:
Addison-Wesley, 2000, pp. 367-376.

[3] C. A. R. Hoare, Communicating Sequential Processes. Prentice Hall, Inc., 1985.
[4] P. H. Welch, N. Brown, J. Moores, K. Chalmers, and B. H. C. Sputh, "Integrating and Extending JCSP,"

in A. McEwan, S. Schneider, W. Ifill, and P. H. Welch (Eds.), Communicating Process Architectures
2007, pp. 349-370, IOS Press, Amsterdam, 2007.

[5] P. H. Welch, J. R. Aldous, and J. Foster, "CSP Networking for Java (JCSP.net)," in P. M. A. Sloot, C. J.
K. Tan, J. J. Dongarra, and A. G. Hoekstra (Eds.), International Conference Computational Science —
ICCS 2002, Lecture Notes in Computer Science 2330, pp. 695-708, Springer Berlin / Heidelberg, 2002.

[6] M. Schweigler and A. T. Sampson, "pony - The occam-π Network Environment," in P. H. Welch, J.
Kerridge, and F. R. M. Barnes (Eds.), Communicating Process Architectures 2006, pp. 77-108, IOS
Press, Amsterdam, 2006.

[7] N. Brown, "C++CSP Networked," in I. East, J. Martin, P. H. Welch, D. Duce, and M. Green (Eds.),
Communicating Process Architectures 2004, pp. 185-200, IOS Press, Amsterdam, 2004.

[8] J. M. Bjørndalen, B. Vinter, and O. Anshus, "PyCSP - Communicating Sequential Processes for
Python," in A. McEwan, S. Schneider, W. Ifill, and P. H. Welch (Eds.), Communicating Process
Architectures 2007, pp. 229-248, IOS Press, Amsterdam, 2007.

[9] Inmos Limited, "The T9000 Transputer Instruction Set Manual," SGS-Thompson Microelectronics
1993.

[10] A. Fuggetta, G. P. Picco, and G. Vigna, "Understanding Code Mobility," IEEE Transactions on
Software Engineering, 24(5), pp. 342-361, 1998.

[11] K. Chalmers, J. Kerridge, and I. Romdhani, "Mobility in JCSP: New Mobile Channel and Mobile
Process Models," in A. McEwan, S. Schneider, W. Ifill, and P. H. Welch (Eds.), Communicating
Process Architectures 2007, pp. 163-182, IOS Press, Amsterdam, 2007.

[12] N. Brown and P. H. Welch, "An Introduction to the Kent C++CSP Library," in J. F. Broenink and G. H.
Hilderink (Eds.), Communicating Process Architectures 2003, pp. 139-156, IOS Press, Amsterdam,
2003.

[13] N. Brown, "C++CSP2: A Many-to-Many Threading Model for Multicore Architectures," in A.
McEwan, S. Schneider, W. Ifill, and P. H. Welch (Eds.), Communicating Process Architectures 2007,
pp. 183-205, IOS Press, Amsterdam, 2007.

[14] A. A. Lehmberg and M. Olsen, "An Introduction to CSP.NET," in P. H. Welch, J. Kerridge, and F. R.
M. Barnes (Eds.), Communicating Process Architectures 2006, pp. 13-30, IOS Press, Amsterdam, 2006.

[15] N. C. Schaller, S. W. Marshall, and Y.-F. Cho, "A Comparison of High Performance, Parallel
Computing Java Packages," in J. F. Broenink and G. H. Hilderink (Eds.), Communicating Process
Architectures 2003, pp. 1-16, IOS Press, Amsterdam, 2003.

[16] B. Vinter and P. H. Welch, "Cluster Computing and JCSP Networking," in J. Pascoe, P. H. Welch, R.
Loader, and V. Sunderam (Eds.), Communicating Process Architectures 2002, pp. 203-222, IOS Press,
Amsterdam, 2002.

[17] S. Kumar and G. S. Stiles, "A JCSP.net Implementation of a Massively Multiplayer Online Game," in P.
H. Welch, J. Kerridge, and F. R. M. Barnes (Eds.), Communicating Process Architectures 2006, pp.
135-149, IOS Press, Amsterdam, 2006.

[18] M. Weiser, "The Computer for the 21st Century," Scientific American, September, 1991.
[19] R. Milner, J. Parrow, and D. Walker, "A Calculus of Mobile Processes, I," Information and

Computation, 100(1), pp. 1-40, 1992.
[20] R. Milner, "Ubiquitous Computing: Shall we Understand It?," The Computer Journal, 49(4), pp. 383-

389, 2006.
[21] C. G. Ritson and P. H. Welch, "A Process-Oriented Architecture for Complex System Modelling," in A.

McEwan, S. Schneider, W. Ifill, and P. H. Welch (Eds.), Communicating Process Architectures 2007,
pp. 249-266, IOS Press, Amsterdam, 2007.

[22] C. L. Jacobsen and M. C. Jadud, "The Transterpreter: A Transputer Interpreter," in I. East, D. Duce, M.
Green, J. Martin, and P. H. Welch (Eds.), Communicating Process Architectures 2004, pp. 99-107, IOS
Press, Amsterdam, 2004.

[23] G. J. Holzmann, The Spin Model Checker: Primer and Reference Manual. Addison-Wesley, Boston,
2003.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

