
JCSP Networking 2.0
(or maybe JCSP 1.1 rc4)

Kevin Chalmers
School of Computing

Napier University

Aims

• Update to JCSP 1.1

– Poisonable network channels

– Remove pesky rejectable channels

– Extended rendezvous

– No networked AltingBarrier (yet!)

• Reduce overheads

– No process per channel

– No LoopbackLink

– LinkManager now a passive data object

– Smaller message size

Aims

• Extensibility, configurability and error handling

– Layered model – easier to add extensions

– NetworkBarrier!

– Better NetworkConnection (soon)

– All networked channels mobile (maybe)

– Priority of communication layer

– Buffer size

– Quick creation of channels (no Channel Name Server required)

– JCSPNetworkException

• Interaction

– Towards a universal protocol

Towards a Universal Protocol

• Messages are no longer objects

– SEND | Destination | Source | <data>

– <1, 0, 0, 0, 54, 0, 0, 0, 49, <data>>

• Data encoding and decoding handled at channel

level

– User defined methods possible

– Object serialization default, raw data and class loading

provided

Layered Model

Layered Model

Creating an Application

• Old way

• Use Channel Name Server

– Can use names – implies lookup on receiving Node

Node.getInstance().init(new TCPIPNodeFactory("CNS_IP"));

NetChannelInput in = CNS.createNet2One("channel_In");

NetChannelOutput out = CNS.createOne2Net("channel_Out");

Creating an Application

• New way
Node.getInstance().init(new TCPIPNodeAddress(5000));

// Create Link to remote Node

TCPIPNodeAddress remoteAddr = new TCPIPNodeAddress("192.168.1.100", 4000);

// Get NodeID

NodeID remoteNode = LinkFactory.getLink(remoteAddr).getRemoteNodeID();

// Create channels

NetChannelInput in = NetChannel.numberedNet2One(55);

NetChannelOutput out = NetChannel.one2net(remoteNode, 49);

• Other methods possible

– Original method

– From NodeAddress and VCN

– From NetChannelLocation

Other Channel Options

• Poison
NetChannelInput in = NetChannel.net2one(10);

NetChannelOutput out = NetChannel.one2net(location, 10);

• Specified encoder / decoder
NetChannelInput in =

NetChannel.net2one(new RawNetworkMessageFilter.FilterRX());

NetChannelOutput out = NetChannel.one2net

(location, new RawNetworkMessageFilter.FilterTX());

NetChannelInput in =

NetChannel.net2one(new CodeLoadingChannelFilter.FilterRX());

NetChannelOutput out = NetChannel.one2net

(location, new CodeLoadingChannelFilter.FilterTX());

NetworkBarrier

• Two tier approach

– Declaring (server) end

– Multiple connecting

(client) ends

– Each end has n enrolled

processes

– Server end MUST have

one enrolled process

NetworkBarrier

• Creation methods – as channels

– Barrier Name Server (BNS)
NetBarrier servBar = BNS.netBarrier("barrier", 10, 10);

NetBarrier clientBar = BNS.netBarrier("barrier", 10);

– Numbered barrier ends
NetBarrier servBar =

NetBarrierEnd.numberedNetBarrier(55, 10, 10);

NetBarrier clientBar =

NetBarrierEnd.netBarrier(nodeID, 55, 10);

• Server end declares both locally enrolled and

expected remote client ends.

Error Handling

• Channels can throw JCSPNetworkException or
NetworkPoisonException
– Unchecked exceptions – no need to explicitly catch

– If connection to input end fails, the output end will throw a
JCSPNetworkException

– If there is a problem during I/O (including encoding / decoding)
a channel will throw a JCSPNetworkException

– If the input end is destroyed, the output end will throw a
JCSPNetworkException during next write operation

– If a message is sent to an input channel that does not exist, a
JCSPNetworkException will be thrown

– If a channel end is poisoned with sufficient strength, every
complement end will throw a NetworkPoisonException

Error Handling

• Barriers can only throw JCSPNetworkException

– If the connection to the server NetBarrier fails, a client
NetBarrier will throw a JCSPNetworkException and fail.

– If the connection to a client NetBarrier fails, a server end
will throw a JCSPNetworkException, decrement the
enrolled network process count, and allow reuse if
required.

– If a client end tries to enrol on a non-existent server end, a
JCSPNetworkException will be thrown.

– If the locally enrolled count on the server end reaches
zero, a JCSPNetworkException will be thrown.

Mobility

• Non-running process mobility via code mobility

– Code loading channel filter

– Reduced model from last years paper

• Running processes still require termination

– Poison

– Migration event

• Channel mobility via message boxes

– Updated model soon....

– Built into protocol?

Wrapping up

• New JCSP networking available on the JCSP

repository (under the Networking-2 branch)

• More information and examples given in handouts

– Set up

– Channel creation, operations and error handling

– Custom encoders and decoders

– Network barriers

– Mobility

– Custom Link protocol creation

Wrapping up

• Hopefully everyone’s existing programs will still work

– Same interfaces

– Some packages not replicated (dynamic, remote, security,
settings)

• More updates soon, once I’m finished writing up

– NetConnections

– Better channel mobility

– AltingBarrier?

• Any requests for functionality / information let me
know, and I’ll try and help as much as I can.

Questions?

