Transfer Request Broker: Resolving Input-Output Choice

Oliver Faust, Bernhard H.C. Sputh, Alastair R. Allen

University of Aberdeen

September 8, 2008

Motivation

- Problem: resolving input and output choice
 - Know the network state
 - Store the network state
 - Update the network state
- Solution: Transfer Request Broker (TRB)
 - Relation matrix, an efficient way to store and update the network state
 - Compact representation
 - ▶ The size of the relation matrix is known during design time \rightarrow no infinite buffers required
- Realisation: formal model
 - Matrix operation support for CSPM
 - Classical CSP model for specification and implementation

Agenda

This session is structured as follows:

- Problem specification
 - Problem statement
 - ► CSP SPECIFICATION model
- Refinement from specification to implementation
 - Matrix based network topology
 - CSP IMPLEMENTATION model
- Discussion of the CSP models
 - Sequential nature of the search algorithm.
 - Model checking.
- Conclusions

Water Risk Management Europe

The project was sponsored by the EC:

- EC FP6 IST Water Risk Management EuRope (WARMER)
- EC no. 034472 FP6-2005-IST-5

The aims of the WARMER project are:

- Sensor development;
 - In-situ Monitoring Station development;
 - In-situ Sensing Data Collection and Presentation;
 - Remote Sensing Data Collection and Presentation;
 - Fusion and Presentation of In-situ and Remote Sensing Data.

Problem statement

Two conflicting facts:

- The CSP process algebra explicitly allows resolving input and output guards.
 - Symmetry
 - Choice over input and output ensures that every parallel command can be translated into a sequential equivalent.
- Programming languages which offer CSP primitives resolve only input choice (alternation).
 - Computational complexity
 - Code size

Refine a system which uses input and output choice into a system which uses only input choice.

SPECIFICATION process network

CSP model

Define the individual processes:

$$\begin{array}{lcl} P_SPEC(i) & = & \textit{in.i}?x \rightarrow \square_{j \in p_set(i)} \underbrace{\textit{net_channel.i.j!}x}_{\text{output guards}} \rightarrow P_SPEC(i) \\ \\ C_SPEC(j) & = & \square_{i \in c_set(j)} \underbrace{\textit{net_channel.i.j?}x}_{\text{input guards}} \rightarrow \textit{out.j!}x \rightarrow C_SPEC(j) \end{array}$$

Define producer and consumer groups:

$$\begin{array}{lcl} \textit{PRODUCER_SPEC} & = & \left| \left| \right|_{i \in \{0..n-1\}} \textit{P_SPEC}(i) \\ \textit{CONSUMER_SPEC} & = & \left| \left| \right|_{j \in \{0..m-1\}} \textit{C_SPEC}(j) \end{array} \right.$$

Make producer and consumer communicate over the net_channels:

Link signals

- $net_channel.0.0$ connects $P_SPEC(0)$ to $C_SPEC(0)$;
- net_channel.0.1 connects P_SPEC(0) to C_SPEC(1);
- **1** $net_channel.0.2$ connects $P_SPEC(0)$ to $C_SPEC(2)$;
- $net_channel.1.0$ connects $P_SPEC(1)$ to $C_SPEC(0)$;
- **1** $net_channel.1.2$ connects $P_SPEC(1)$ to $C_SPEC(2)$.

Relation matrix

	$C_SPEC(0)$	$C_SPEC(1)$	$C_SPEC(2)$
$P_SPEC(0)$	1	1	1
$P_SPEC(1)$	1	0	1

Solution

One independent entity which resolves input and output choice.

This entity must have the following properties:

- It needs to know (get informed) about the network state.
- Efficiency of the choice resolution algorithm.
- Efficiency in storing and updating the network state.
- It needs to communicate the choice result.

IMPLEMENTATION process network

Example

The mathematics are in the paper and not in the presentation.

This motto leads to a visual example which explains the TRB functionality. The following list sets the goals for the example:

- The individual channel transactions are shown.
- The change of the relation matrix in response to these transactions is shown.

Example: initial setup

Example: C(1) communicates with the TRB

Example: update *c_array*

Example: P(1) communicates with the TRB

Example: update *p_array*

Example: C(2) communicates with the TRB

Example: update *c_array*

Example: reset P(1) row vector in p_array

Example: the TRB communicates with P(1)

Example: reset C(2) column vector in c_array

Example: the TRB communicates with C(2)

Example: data transfer

Model checking

- Setup:
 - ► SPECIFICATION model
 - ► IMPLEMENTATION model
- Checks:
 - Deadlock
 - Divergence
 - Deterministic
 - ▶ Trace refinement

IMPLEMENTATION process network with the communication to and from the TRB hidden

Model checking results

FDR output:

- SPECIFICATION deadlock free [F]
- ✓ SPECIFICATION livelock free
- IMPLEMENTATION deadlock free [F]
- ✓ IMPLEMENTATION livelock free
- SPECIFICATION deterministic [FD]
- X. IMPLEMENTATION deterministic [FD]
- IMP deterministic [FD]
- ✓ SPECIFICATION [T= IMPLEMENTATION]
- ✓ IMPLEMENTATION [T= SPECIFICATION]

Absent checks:

- Failure refinement.
- Failure divergence refinement

Conclusions

Summary:

- Problem: resolving input and output choice
- **Solution:** Transfer Request Broker (TRB)
- Realisation: formal model

Main ideas presented:

- An external / independent which controls the network.
- Represent the network with a relation matrix.
- Extend CSP_M with matrix operations.

Further work

There are only two points for future work:

- Scalability:
 - Remove the single point of failure.
 - ▶ Remove the bottle neck.
- Priority
- Mobility

Question and Answers

- An external / independent which controls the network.
- Represent the network with a relation matrix.
- Extend CSP_M with matrix operations.

