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Abstract. The refinement of a theoretical model which includes external choice over
output and input of a channel transaction into an implementation model is a long-
standing problem. In the theory of communicating sequential processes this type of
external choice translates to resolving input and output guards. The problem arises
from the fact that most implementation models incorporate only input guard resolu-
tion, known as alternation choice. In this paper we present the transaction request bro-
ker process which allows the designer to achieve external choice over channel ends
by using only alternation. The resolution of input and output guards is refined into
the resolution of input guards only. To support this statement we created two models.
The first model requires resolving input and output guards to achieve the desired func-
tionality. The second model incorporates the transaction request broker to achieve the
same functionality by resolving only input guards. We use automated model checking
to prove that both models are trace equivalent. The transfer request broker is a single
entity which resolves the communication between multiple transmitter and receiver
processes.
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Introduction

Communicating processes offer a natural and scalable architecture for distributed systems,
because they make it possible to design networks within networks and the dependencies
within these networks are always explicit. The process algebra CSP provides a formal basis
to describe the processes and the communication between them. CSP semantics are power-
ful enough to allow the analysis of systems in order that failures such as non-determinism,
deadlock and livelock can be detected. Within the CSP algebra external choice over input
and output of a channel transaction are an important abstraction for the design of distributed
systems. These constructs allow natural specification of many programs, as in programs with
subroutines that contain call-by-result parameters. Furthermore, they ensure that the exter-
nally visible effect and behaviour of every parallel command could be modeled by some
sequential command [1,2].

However, problems arise during the transition from theoretical CSP models to practical
implementations. To ease this transition, Hoare [1] introduced the concept of channels. Chan-
nels are used for communication in only one direction and between only two processes. The
combination of message and channel constitutes the output guard for the sender and the input
guard for the receiver. This combination makes up a CSP event that constitutes the theoretical
concept of a guard. External choice over input and output of a channel transaction describes
the situation when sender processes offer sets of output guards and receiver processes offer
sets of input guards for the environment to choose from. This situation is explicitly allowed
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by the CSP process algebra and indeed necessary to ensure that every parallel command can
be modelled by some sequential command [3]. Very early in the history of CSP Bernstein [4]
pointed out the practical difficulties in the resolution of directed guards. In general external
choice is possible between both channel inputs and outputs, but in this paper we consider only
external choice of channel inputs for the implementation model. This concession is necessary
to keep the solution simple enough so that it can be implemented in hardware logic.

As stated in the previous paragraph, to resolve output and input guards is an old problem.
There are many proposed solutions for sequential or semi-parallel processing machines. For
example, Buckley and Silberschatz [2] claim that they did an effective implementation for
the generalized input-output construct of CSP. However, programming languages (such as
occam-π [5]) and libraries (CTJ [6], JCSP [7,8], libCSP [9], C++CSP [10], etc), offering CSP
primitives and operators do not incorporate these solutions. The main reason for this absence
is the high computational overhead which results from the complexity of the algorithm used
to resolve input and output guards [11]. To avoid this overhead, these programming environ-
ments provide synchronous message passing mechanisms to conduct both communication
and synchronisation between two processes. Under this single phase commit mechanism, a
sender explicitly performs an output of a message on a channel while the corresponding re-
ceiver inputs the message on the same channel. Such a communication will be delayed until
both participants are ready. Choice is only possible over input channels; an outputting process
always commits. In other words, only input guards can be resolved.

More recent attempts to solve choice problems involve an external entity. Welch et al.
propose an external entity (oracle) which resolves choice between arbitrary multiway syn-
chronisation events [12,13]. The advantage is that this method can be implemented with the
binary handshake mechanism. The method was proposed for machine architectures in the
form of an extension to programming languages and libraries. These extensions allow the im-
plementation of sophisticated synchronisation concepts, such as the alting barrier [14]. How-
ever, the oracle uses lists to resolve the choice between arbitrary multiway sync events. These
lists are not practical in hardware implementations, because in hardware process networks
there is no dynamic allocation of memory. Similarly, Parrow and Sjödin propose a solution
to the problem of implementing multiway synchronisation in a distributed environment [15].
Their solution involves a central synchroniser which resolves the choice.

This paper presents a solution for the choice resolution problem, suitable for implemen-
tation in hardware logic, that only supports input choice resolution. We introduce the Transfer
Request Broker (TRB), an external entity which resolves output and input guards. The sys-
tem relies entirely on a single phase commit mechanism. Therefore, no fundamental changes
are required on the communication protocol. This solution is particularly sound for process
networks implemented in hardware logic. These hardware processes are never descheduled
and they never fail for reasons other than being wrongly programmed. Furthermore, all hard-
ware processes are executed in parallel, therefore the TRB concept does not introduce delay
caused by scheduling.

We approach the discussion in classical CSP style. Section 1.1 specifies the problem and
Section 1.2 introduces a specification model. This model is a process network which incor-
porates the resolution of input and output guards. Section 1.3 discusses the choice resolution
problem which results from the specification model with input and output guards. We provide
evidence that input and output choice is not possible with a single phase commit mechanism.
Therefore, the next step is to refine the specification into an implementation model which uses
only input choice resolution. This refinement makes the implementation model less expres-
sive but easier to implement. From a theoretical perspective, we have to increase the model
complexity to compensate for this lack of expression. Section 1.4 details the implementation
model which incorporates an additional TRB process. On the down side, the TRB process
makes the implementation model more complex. On the upside, only choice resolution of
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Figure 1. SPECIFICATION process network

input guards is required and this resolution can be achieved with the single phase commit
mechanism. Having specification and implementation models leads us naturally to refine-
ment checks. In Section 2 we prove that specification and implementation are trace equiva-
lent. However, we could not establish the same equivalence for failures and divergences. This
point is addressed in the discussion in Section 3. Also in the discussion section we introduce
a practical example which shows the benefits of having the ability to allow external choice
over input and output of a channel transaction in an implementation model. This also shows
the practicality of the TRB concept. The paper finishes with concluding remarks.

1. Transfer Request Broker

The idea behind the TRB concept is to have a mediator or broker, which matches multiple
inputs against multiple outputs, resolving those choices in a way that guarantees progress in
the overall system where possible. The big advantage of this concept arises from the fact that
all entities or nodes involved in the system need only comply with a simple binary handshake
mechanism.

1.1. Problem Specification

We illustrate the problem by specifying an example process network which involves the res-
olution of input and output guards. The network incorporates receiver and transmitter pro-
cesses which communicate over channels. External choice ensures that the environment can
choose to transfer a message from one of multiple transmitters to one of multiple receivers.

In the specification environment a sender process can transfer messages over one of
multiple output channels. Similarly, a receiver process is able to receive messages from
one of multiple input channels. The SPECIFICATION process network, shown in Fig-
ure 1, depicts such a scenario. The process network contains two producer processes,
P SPEC(0) and P SPEC(1). These producer processes generate messages and offer the
environment the choice over which channels these are transferred to consumer processes.
The SPECIFICATION process network contains three consumer processes, C SPEC(0),
C SPEC(1) and C SPEC(2). Figure 1 shows five net channels. These channels transfer
messages from producer to consumer. The following list describes the network setup:

1. net channel.0.0 connects P SPEC(0) to C SPEC(0);
2. net channel.0.1 connects P SPEC(0) to C SPEC(1);
3. net channel.0.2 connects P SPEC(0) to C SPEC(2);
4. net channel.1.0 connects P SPEC(1) to C SPEC(0);
5. net channel.1.2 connects P SPEC(1) to C SPEC(2).



166 O. Faust et al. / Transfer Request Broker

Mathematically, the net channels establish a relation between producers and consumers.
A relation exists when a channel between producer and consumer exists. We can express such
a relation as a matrix where a ‘1’ indicates a relation exists and a ‘0’ indicates that no relation
exists. We construct a matrix which relates producers to consumers in the following way: the
0s and 1s in a particular matrix row describe the connection of one producer. Similarly, the
entries in a column describe the connection of a particular consumer. The network, shown
in Figure 1, contains 2 producers and 3 consumers, therefore the relation matrix is 2 by 3.
We define: row 1 contains the connections of producer P SPEC(0) and row 2 contains the
connections of producer P SPEC(1). Furthermore, the connections of consumer C SPEC(0)
are described in column 1. Similarly, the connections of C SPEC(1) and C SPEC(2) are
described in columns 2 and 3 respectively. These definitions result in the following relation
matrix:

C SPEC(0) C SPEC(1) C SPEC(2)
P SPEC(0) 1 1 1
P SPEC(1) 1 0 1

(1)

This relationship matrix provides the key to an elegant solution of the output and input
guard resolution problem. But, before we attempt to explain the problem and solution in
greater detail, the following section provides a formal model of the functionality we want to
achieve.

1.2. Specification Model

A specification model is entirely focused on functionality. Therefore, we use the full set of
abstract constructs provided by the CSP theory. To be specific, we use external choice for
reading and writing. This leads to a very compact specification model which describes the
desired functionality. This model serves two purposes. First, it allows the designer to focus
on functionality. Second, the model provides a specification with which an implementation
model can be compared.

The CSP model starts with the definition of the relationship matrix. This matrix describes
the complete network, therefore it is called net. Equation 2 states the relation matrix for the
network shown in Figure 1.

net =

[
1 1 1
1 0 1

]
(2)

The net matrix is the only parameter in the model, therefore all other constants are derived
from this matrix. Equation 3 defines data as the set of messages which can be transferred
over the net channels. To keep the complexity of the model low, the set contains only two
messages (0, 1).

data = {0..1} (3)

The following two equations define the constants n as the number of rows and m as the
number of columns of the net matrix respectively.

n = dim n(net) (4)

m = dim m(net) (5)

where the function dim n(A) extracts the number of rows from a matrix A and dim m(A)
extracts the number of columns of a matrix A.

Next, we interpret the process network, shown in Figure 1, in a process-centric way.
Each producer is connected to a set of consumers. This consumer set is entirely governed by
the indexes of the consumers, therefore it is sufficient to state only the consumer IDs in the
index set. The following function extracts the connection set of a particular producer process
P(i).
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p set(i) = locate(get n(i, net), 1) (6)

where the function get n(i, A) extracts the row vector i from matrix A and the function
locate(vec, val) returns a set with the positions of val in the vector vec.

The following function extracts the connection set of a particular consumer process C(j).

c set(j) = locate(get m(j, net), 1) (7)

where the function get m(j, A) extracts the column vector j for the matrix A.
After having defined all necessary constants and helper sets, we start with the process

definitions. The first process to be defined is P SPEC(i), where i is the process index. The
process reads a message x from the input channel in.i. After that, P SPEC(i) is willing to
send the message over one of the net channels which connects the producer process to a
consumer process. After the choice is resolved and the message is sent, the process recurses.

P SPEC(i) = in.i?x →2
j∈p set(i)

net channel.i.j!x︸ ︷︷ ︸
output guards

→ P SPEC(i) (8)

where 2
j∈p set(i)

net channel.i.j!x indicates an indexed external choice over all connected

net channels. The channel-messages which are sent out constitute the output guards for par-
ticular P SPEC processes.

The C SPEC(j) process waits for a message from one of its connected net channels.
After having received a message x the process is willing to send it on via the output channel
out.j before it recurses.

C SPEC(j) = 2
i∈c set(j)

net channel.i.j?x︸ ︷︷ ︸
input guards

→ out.j!x → C SPEC(j) (9)

The channel-messages which are sent out constitute the input guards for particular C SPEC
processes.

The specification system composition follows the process network diagram shown in
Figure 1. We start by observing that the producers, in this case P SPEC(0) and P SPEC(1),
do not share a channel. That means they can make progress independently from one another.
In Equation 10 we use the interleave operator ‘|||’ to model this independence. Similarly, the
consumers exchange no messages. Therefore, Equation 11 combines all consumer processes
C SPEC(j) into the CONSUMER SPEC process with the interleave operator.

PRODUCER SPEC = |||
i∈{0..n−1}

P SPEC(i) (10)

CONSUMER SPEC = |||
j∈{0..m−1}

C SPEC(j) (11)

where |||
i∈{0..1}

P SPEC(i) represents the indexed interleave operator which expresses:

P SPEC(0) ||| P SPEC(1).
The SPECIFICATION process combines CONSUMER SPEC and PRODUCER SPEC.

In this case the processes which are combined depend on one another to make progress. To be
specific, the PRODUCER SPEC process sends messages to the CONSUMER SPEC process
via the net channels. We say that PRODUCER SPEC and CONSUMER SPEC execute in
parallel, however they have to agree upon all messages which can be transferred via the
net channels. Equation 12 models this behaviour by combining PRODUCER SPEC and
CONSUMER SPEC via the alphabetised parallel operator.
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SPECIFICATION = CONSUMER SPEC ‖
{|net channel|}

PRODUCER SPEC (12)

where ‖{|net channel|} is the alphabetised parallel operator. The expression {| net channel |}
indicates the set of all events which can be transferred over net channel, i.e.:

{| net channel |} =
{net channel.i.j.x | i ∈ {0..1}, j ∈ {0..2}, x ∈ {0..1} ∧ ¬((i = 1) ∧ (j = 1))}

The definition of the SPECIFICATION process concludes our work on the functionality
model. We have now a model against which we can measure any implementation model.

1.3. Transfer Request Broker Model

In the specification model external choice allows the environment to choose over which chan-
nel P SPEC(i) outputs a message and the same operator enables the environment to choose
over which channel C SPEC(i) inputs a message. The fundamental problem for an imple-
mentation system is: Who resolves this choice? Neither producers (P SPEC) nor consumers
(C SPEC) are able to perform this task with a single phase commit algorithm. To support this
point, we analyse three different transfer scenarios which could occur in the process network
shown in Figure 1.

First, we assume that the choice is resolved by the producer and the consumer engages
in any one transfer which is offered. We dismiss this approach with the following counter ex-
ample. The producer process P SPEC(0) has resolved that it wants to send a message to con-
sumer process C SPEC(2). At the same time the producer process P SPEC(1) has resolved
that it wants to send a message to the same consumer process C SPEC(2). Now, according
to our assumption C SPEC(2) is not able to resolve the choice between the messages offered
by P SPEC(0) and P SPEC(1), at the same time it is impossible to accept both messages.
Clearly, this counter example breaks the approach that the producers resolve the choice.

The second approach is that the consumer resolves the choice and the producer reacts
to the choice. In this case, the counter example is constructed as follows: C SPEC(0) and
C SPEC(1) have resolved to receive a message from P SPEC(1). Now, P SPEC(1) faces a
similar dilemma as C SPEC(2) in the previous example. According to the assumption that
the consumer resolves the choice, P SPEC(1) is not allowed to choose and it is also not
allowed to service both requests.

The last scenario gives both consumer and producer the ability to resolve the choice. We
break this scheme with yet another counter example. P SPEC(0) tries to send to C SPEC(0).
However, C SPEC(0) blocks this message, because it has resolved the input choice such that
it wants to receive a message from P SPEC(1). In this example, P SPEC(1) is unwilling to
send a message to C SPEC(0), because it has resolved to output a message to C SPEC(2).
Unfortunately, C SPEC(2) has decided to wait for a message from P SPEC(0). However,
this message will never come, because P SPEC(0) tries to send to C SPEC(0). A classical
deadlock.

This small discussion shows that there is no simple solution to the choice resolution
problem. The fundamental problem is that individual processes are not aware of what hap-
pens around them in the network. In other words, a process with an overview is missing.
These considerations lead to the proposal of a TRB process. This TRB process is aware of the
network state. This additional process allows us to use the simple receiver choice resolution
method. That means no process in the network incorporates external choice for writing.

For example, the SPECIFICATION process network can be in one of up to 243 (= 35)
different states (5 fairly independent processes, each with 3 states). To achieve the awareness
of the network state the TRB process has to know the state of the individual producer and



O. Faust et al. / Transfer Request Broker 169

TRB

P(0)

P(1)

C(0)

C(1)

C(2)net channel.from.to

p start.from

p return.to

c start.from

c return.to

Figure 2. IMPLEMENTATION process network

consumer processes. In the following text the group of consumers and producers are referred
to as clients of the TRB. The clients transfer their state to the TRB via p start.from and
c start.from channels. The TRB communicates its decision via p return.to and c return.to
channels.

Figure 2 shows the IMPLEMENTATION process network. Each client process is con-
nected to the TRB via a start.from and a return.to channel. The message passing channels
net channel.from.to connect producer processes with consumer processes. The relation ma-
trix of Equation 1 describes the network setup.

1.4. CSP Implementation Model

Similar to the definition of the specification model, we adopt a bottom up design approach
for the definition of the CSP implementation model. First, we define the individual processes,
shown in Figure 2, then we assemble the IMPLEMENTATION process network. The model
uses the network matrix, defined in Equation 2, and the constants defined in Equations 3 to
5.

The first process to be defined is the producer process P(i). Initially, this process waits
for a message from the input channel in.i. After having received a message x the process
registers with the TRB. The registration is done by sending a vector of dimension m to the
TRB via the p start.i channel. The entries in this vector are either 0 or 1. A 1 indicates that the
producer process wants to send a message. The position of the 1 within the vector indicates
the consumer address. The TRB resolves the request and returns the index of the selected
consumer via a message over the p return.i channel. After having received the index (select)
of the consumer process the P(i) process is ready to send out the message x over the channel
p return.i?select before it recurses. The following equation defines the producer process P(i).

P(i) = in.i?x → p start.i!get n(i, net)
→ p return.i?select → net channel.i.select!x → P(i) (13)

where get n(i, A) returns the ith row of matrix A.
Initially, the consumer process C(j) is ready to register with the TRB. In this case reg-

istration means sending the jth column vector of the network matrix net. This indicates that
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C(j) is willing to receive a message from any one of the connected input channels. The TRB
resolves this request and sends the result back to the C(j) process via the c return.j channel.
The result is the index (select) of the producer which is selected to send a message. Now, the
consumer process waits on the particular net channel.select.j channel. After having received
a message from this channel the consumer sends out the message over the out channel before
it recurses. The following equation defines the consumer process C(j).

C(j) = c start.j!get m(j, net)
→ c return.j?select → net channel.select.j?x → out.j!x → C(j) (14)

The last and most complex process defines the TRB functionality. Indeed this task is so
complex that it is broken into 5 processes. The first of these processes is TRB(p array, c array).
The p array parameter is an n × m matrix which holds the information about the registered
producers. Similarly, the c array parameter is an n × m matrix which holds the informa-
tion about the registered consumers. Initially, the TRB process is ready to receive the reg-
istration information from any one of its clients. This is modelled as external choice over
two indexed external choices. The first indexed external choice chooses between p start
messages and the second indexed external choice chooses between c start messages. If the
complete choice construct is resolved and a message is transferred via the p start channel,
then p array is updated with the registration information before the process behaves like
EVAL(p array, c array, 0, 0). To be specific, p array is updated by replacing the ith row,
where i is the index of the producer which registered, with the registration vector p vector.
As a matter of fact, p vector and the channel index represent the registration information.
Similarly, if the external choice over two indexed external choices is resolved in favour of a
c start message then c array is updated with the registration information before the process
behaves like EVAL(p array, c array, 0, 0).

TRB(p array, c array) =2
i∈{0..n−1}

p start.i?p vector → EVAL(set n(i, p vector, p array), c array, 0, 0)

2

2
j∈{0..m−1}

c start.j?c vector → EVAL(p array, set m(j, c vector, c array), 0, 0)


(15)

where the function set n(i, vec, A) replaces the ith row vector of matrix A with vec and the
function set m(j, vec, A) replaces the jth column vector of matrix A with vec.

The EVAL(p array, c array, i, j) process compares the entries in p array with the en-
tries in c array. The parameters i and j describe row and column of the entry to be compared.
If both p array and c array have a 1 at position i, j then the process resolves the choice such
that producer P(i) has to send a message to consumer C(j). We model this case with the
process RETURN P(p array, c array, i, j). In all other cases the process continues to com-
pare entries at other matrix positions. This is done by checking whether or not j defines the
position of the last entry in a row, i.e. j = m − 1. If this is the case then the process behaves
like TRB′(p array, c array, i, j), in all other circumstances the column index is incremented
(j = j + 1) before the process recurses.

EVAL(p array, c array, i, j) =
if get nm(i, j, c array) = 1 and get nm(i, j, p array) = 1 then

RETURN P(p array, c array, i, j)
else if j = m− 1 then

TRB′(p array, c array, i, j)
else

EVAL(p array, c array, i, j + 1)


(16)
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where the function get nm(i, j, A) returns the entry ai,j of matrix A.
The RETURN P(p array, c array, i, j) sends out the message j, which is the resolution

result, to the producer P(i) via the channel p return.i. After the message is transferred the
process behaves like RETURN C(p array, c array, i, j). In effect, clearing all 1s in row i
indicates that P(i) is unable to send out any more messages in this resolution round.

RETURN P(p array, c array, i, j) =
p return.i!j → RETURN C(set n(i, vzeros(m), p array), c array, i, j) (17)

where the function vzeros(m) generates an m dimensional zero vector.
The RETURN C(p array, c array, i, j) sends out the message i, which is the resolution

result, to the consumer C(j) via the channel c return.i. After the message is transferred the
process clears all 1s in column j of c array and behaves like TRB′(p array, c array, i, j). In
effect, clearing all 1s in column j indicates that C(j) is unable to receive any further messages
in this resolution round.

RETURN C(p array, c array, i, j) =
c return.j!i → TRB′(p array, set m(j, vzeros(n), c array), i, j) (18)

The TRB′(p array, c array, i, j) detects whether or not the entries in the last row were
checked. If this is the case, then the process behaves like TRB(p array, c array). In all other
circumstances the row index i is incremented and the column index j is set to 0 before the
process recurses to EVAL(...) for another round of entry checking.

TRB′(p array, c array, i, j) =


if i = n− 1 then

TRB(p array, c array)
else

EVAL(p array, c array, i + 1, 0)

 (19)

The TRB definition concludes the description of the individual processes in the
IMPLEMENTATION process network. In the next step we connect the individual processes
such that they form the process network, as shown in Figure 2. From this figure we observe
that the TRB process and the additional channels do not alter the fact that the producers do not
communicate among themselves. Therefore, they form an independent group of processes.
This group is modelled as the PRODUCER process in Equation 20. Similarly, the consumers
form a group of independent processes. This group is established as the CONSUMER process
in Equation 21.

PRODUCER = |||
i∈{0..n−1}

P(i) (20)

CONSUMER = |||
j∈{0..m−1}

C(j) (21)

The parallel combination of PRODUCER and CONSUMER forms the NETWORK pro-
cess. The two processes, which engage in the parallel construct, must agree on all messages
sent over the net channels. This is modelled in the following equation:

NETWORK = PRODUCER ‖
{|net channel|}

CONSUMER (22)

Now, we are able to define the IMP process as the parallel combination of NETWORK
and TRB processes. Equation 23 shows that the TRB process is initialised with two zero
matrices, i.e. both p array and c array are initialised with n× m zero matrices.
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IMP = NETWORK ‖
{|p start,c start,p return,c return|}

TRB(zeros(n, m), zeros(n, m)) (23)

where the function zeros(n, m) returns an n× m zero matrix. The alphabetised parallel oper-
ator ensures that all clients can register with and receive a solution from the TRB process.

IMPLEMENTATION = IMP \ {| p start, c start, p return, c return |} (24)

where P \ {a} is the hiding operation which makes all events (messages) a internal to P.
Hiding the communication to and from the TRB is necessary for model checking.

For the sake of clarity this section introduced particular scenarios, i.e. network setups to
explain the TRB concept. These particular network setups do not prove that the concept works
with other network configurations. To build up trust, the algorithm was tested with other
network setups. The tests are described in the following section. These tests were successful,
therefore confidence is growing that the algorithm works for arbitrary network configurations
which can be described by a relation matrix.

2. Automated Refinement Checks

We use the FDR tool [16] to establish that both SPECIFICATION and IMPLEMENTATION
do not contain any pathological behaviours. This is done in the following section. Further-
more, we use FDR to compare SPECIFICATION and IMPLEMENTATION. This is done in
Section 2.2.

2.1. Basic Checks: Deadlock, Divergence and Non-determinism

Parallel and concurrent systems can exhibit pathological behaviours such as deadlocks and
livelocks. These problems arise from the fact that in such systems independent entities com-
municate. To be specific, a deadlock occurs if two or more independent entities prevent each
other from making progress. A livelock occurs when a system can make indefinite progress
without engaging with the outside world. CSP models the independent entities as processes
which communicate over channels. Equation 25 instructs the automated model checker FDR
to verify that the SPECIFICATION process is deadlock and divergence (livelock) free.

assert SPECIFICATION :[ deadlock free [F] ]
assert SPECIFICATION :[ divergence free ] (25)

In the CSP community it is custom to publish the output of the model checker to support the
claim that a particular test was successful. Figure 3 shows the output of the model checker. A
X indicates that this particular test was successful.

In Equation 26 we instruct FDR to verify that the IMPLEMENTATION process is dead-
lock and divergence free.

assert IMPLEMENTATION :[ deadlock free [F] ]
assert IMPLEMENTATION :[ divergence free ] (26)

Figure 3 shows that both tests were successful.
As a final test on individual processes we establish whether or not a process is determin-

istic. A process is deterministic if it reacts in the same way to the same input. In the follow-
ing equation we instruct FDR to verify that both SPECIFICATION and IMPLEMENTATION
processes are deterministic.
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assert SPECIFICATION :[ deterministic [FD] ]
assert IMPLEMENTATION :[ deterministic [FD] ] (27)

Figure 3 shows that the IMPLEMENTATION process is not deterministic. Hiding the com-
munication to and from the TRB process causes this behaviour. To support this statement, in
Equation 28 we test whether or not the IMP process is deterministic. The IMP process is the
IMPLEMENTATION with no hidden communication.

assert IMP :[ deterministic [FD] ] (28)

Figure 3 shows that IMP is deterministic.

2.2. Trace Refinement

The refinement operation relates two processes. There are different types of refinement, such
as trace and failure refinement. In this section we consider only trace refinement. Trace re-
finement tests the safety of a particular process. A trace is a sequence of events observed
by the outside world (outside of the process itself). A system is safe if and only if the
IMPLEMENTATION can only exhibit a subset of the traces from the SECIFICATION. In
other words, the IMLEMENTATION refines the SPECIFICATION.

In this particular case we establish that the IMPLEMENTATION process can exhibit the
same traces as the SPECIFICATION process. Therefore, the IMPLEMENTATION is also
safe. With Equation 29, we test whether or not the SPECIFICATION process is refined by
the IMPLEMENTATION process.

assert SPECIFICATION vT IMPLEMENTATION (29)

where vT is the trace refinement operator.
Next, we establish that the SPECIFICATION process exhibits a subset of all IMPLE-

MENTATION traces.

assert IMPLEMENTATION vT SPECIFICATION (30)

Figure 3 shows that both refinement tests were successful. That means, the IMPLEMENTATION
process is able to exhibit a subset of the SPECIFICATION traces and the SPECIFICATION
process exhibits a subset of the IMPLEMENTATION traces. This implies that both processes
exhibit exactly the same traces. This is a very important result, because it establishes that the
SPECIFICATION is trace equivalent with the IMPLEMENTATION. The SPECIFICATION
process models the desired functionality, therefore we have established that the implementa-
tion model, i.e. the IMPLEMENTATION process complies with the specification on the level
of traces.

3. Discussion

This section discusses three issues raised in the main body of the paper. First, we examine the
theoretical concept of failure refinement and its application to the TRB model. We highlight
practical difficulties and point out possible solutions. The second issue under discussion is
the practical application of the TRB concept. Even though input and output choice resolution
appears to be such a natural concept, there are not many text book applications. One reason
for this absence is that in the past such systems were difficult to implement and therefore
text book authors focused on structures which did not include such constructs. For example,
many text books discuss structures such as: farmer-worker and client-server. The final issue
is the relevance of the TRB concept to hardware logic implementation.
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Figure 3. Output of the FDR model checker.

3.1. Failure Refinement

Failure (deadlock or/and livelock) refinement ensures that a particular process exhibits only
a subset of the allowed traces and a subset of allowed stable failures associated with a par-
ticular trace. Section 1.1 defines the SPECIFICATION process and Section 1.4 defines the
IMPLEMENTATION or implementation process. The IMPLEMENTATION process does not
refine the SPECIFICATION in terms of stable failures. In this case, IMPLEMENTATION
exhibits more stable failures then SPECIFICATION. The reason for this failure to refine is
the sequential nature of the resolution operation in the TRB process. Sequential nature means
that the TRB establishes a fixed sequence in which the individual sender and receiver can
communicate. This sequence is enforced by stepping through Equations 16, 17 and 18. In
contrast the SPECIFICATION process is free from such prioritisation and therefore it has
fewer stable failures.

One way to overcome this difficulty is to introduce prioritisation into the SPECIFICATION.
The idea is to show that a specification with prioritised external choice can be refined into an
implementation which incorporates the TRB concept and therefore requires only prioritised
alternation (PRI ALT). However, this paper aims to introduce the TRB concept. Therefore,
we limited the scope of the automated checks to trace refinement. Failure refinement would
have shifted the scope away from this introduction, because prioritised alternation requires
extensive introduction.

3.2. Application

As mentioned before, there are not many textbook examples of systems which require input
and output choice resolution. One of the few examples is an N lift system in a building with
F floors. This example was presented by Forman [17] to justify the introduction of multiparty
interactions in Raddle87. The lift problem concerns the logic to move lifts between floors.
We limit the discussion to the following constraints:

1. Each lift has a set of buttons, one button for each floor. These illuminate when pressed
and cause the lift to visit the corresponding floor. The illumination is cancelled when
the corresponding floor is visited (i.e. stopped at) by the lift.

2. Each floor has two buttons (except ground and top), one to request an up-lift and
one to request a down-lift. These buttons illuminate when pressed. The buttons are
cancelled when a lift visits the floor and is either travelling in the desired direction, or
visiting the floor with no requests outstanding. In the latter case, if both floor request
buttons are illuminated, only one should be cancelled. The algorithm used to decide
which floor to service should minimise the waiting time for both requests.

3. When a lift has no requests to service, it should remain at its final destination with its
doors closed and await further requests (or model a “holding” j floor).
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4. All requests for lifts from floors must be serviced eventually, with all floors given
equal priority.

5. All requests for floors within lifts must be serviced eventually, with floors being ser-
viced sequentially in the direction of travel.

From these constraints it is clear that there is a need for an external entity which manages the
requests from the various buttons. The TRB concept can be used to solve this problem. All
we have to do is to reinterpret the IMPLEMENTATION process network shown in Figure 2.
The producer processes P model the buttons of the lift system and the consumer C processes
model the lifts. Now, whenever a lift is free it registers with the TRB and whenever a button
is pressed it illuminates and registers with the TRB. The TRB matches the requests from the
buttons with the available lifts. After the choice is resolved, the consumer (lift) knows where
to go and the producer (button) knows where to send the message to. The message is only
exchanged when the lift stops at the desired floor. After the message is transferred, the button
illumination is cancelled.

The TRB functionality, defined in Section 1.4 is a very crude solution to this particular
problem, because it does not incorporate any algorithms to minimise the waiting time. How-
ever, the IMPLEMENTATION, shown in Figure 2, is proven to be deadlock and divergence
free and transmitter processes can send messages to one of multiple receiver processes. Fur-
thermore, it offers the same traces as a specification system which resolves input and output
guards.

3.3. On Hardware Logic Implementation

In the introduction of his article about output guards and nondeterminism in CSP Bernstein
mentions that an external entity which resolves input and output guards is impractical [4]. His
argument was basically that this external entity would create a serious bottleneck, because of
all the context switches necessary to schedule all processes involved in the message exchange.
Now, this is only true for systems which have a scheduler. Say, all machine architectures with
a multitasking operating system have such a scheduler. However, there is no scheduler in
hardware process networks. In such systems all processes are executed in parallel, there are
no context switches necessary. From this perspective the TRB concept does not introduce a
performance penalty.

Another big advantage of hardware logic implementation is the trade-off relationship
between execution time and silicon area. The TRB process, defined in Equations 15 to 19, has
a complexity of roughly O(TRB) = n × m where n is the number of producer processes and
m is the number of consumer processes. However, in hardware logic systems this does not
mean that the processing time increases with n × m. Depending on the implementation, the
processing time might stay constant and the silicon area increases with n×m. Therefore, the
processing time bottleneck which is introduced by the TRB concept depends on the particular
implementation.

A last point which highlights the practicality of the IMPPLEMENTATION model of the
TRB concept is the efficiency with which binary matrices and vectors can be implemented
in hardware logic. All hardware description languages provide direct support for such con-
structs. Due to this direct support there is no resource waste. Say, the 3 dimensional binary
vector, which is transferred over the p start channels, is represented by only 3+2 signals. The
two additional signals are necessary for the channel functionality. This efficiency keeps the
routing overhead manageable.
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4. Conclusion

In this paper we present a solution to the long-standing problem of refining a model with in-
put and output guards into a model which contains only input guards. The problem has prac-
tical relevance, because most implementation models incorporate only the resolution of input
guards. We approach the solution in classic CSP style by defining a specification model which
requires the resolution of input and output guards. This specification model provides the op-
portunity to test the functionality of the implementation model. The implementation model
resolves only input guards. In other words the implementation model utilises only alternation.
We achieved this by incorporating the transfer request broker process. The TRB concept is
an elegant solution to the arbitration problem. The concept comes from fusing graph theory
with CSP and introducing matrix manipulation functionality to CSPM. The combination of
these three points makes the TRB concept unique.

Automated model checking establishes that specification as well as implementation
models are deadlock and divergence free. Furthermore, we prove that specification and im-
plementation are trace equivalent. This is a strong statement in terms of safety, i.e. if the
specification exhibits only safe traces then the implementation exhibits also only safe traces.
However, trace equivalence is a weak statement about the functionality of the implementa-
tion, because it implies that the implementation is able to exhibit the same traces as the spec-
ification. The phrase ‘is able to’ indicates that the implementation can choose not to exhibit
a particular event, even if it is within its traces. In other words, the implementation may have
more stable failures then the specification. To resolve this problem may require prioritised ex-
ternal choice in the specification model, but these considerations would shift the focus away
from the introduction of the TRB concept, therefore we leave this for further work.

The TRB concept allows us to extend the set of standard implementation models with
systems which require the resolution of input and output guards. One of these examples is
the N lift system. The TRB is used to mediate or broker between the requests from various
buttons in the system and the individual lifts. Apart from introducing additional standard
problems, the TRB concept eases also the refinement of specification into implementation
models. Many specification models incorporate the resolution of output and input guards.
With the TRB concept such models can be refined into implementation models which have to
resolve only input guards without loss of functionality. These implementation models can be
easily mapped into communicating sequential hardware processes executed by flexible logic
devices. Under the assumption that there was no error in the mapping operation, the resulting
implementation has the same properties as the implementation model.

The implementation model is particularly relevant for process networks in hardware
logic. All hardware processes are executed in parallel, this limits the performance penalty
incurred by introducing the additional TRB process. This is a big difference to software pro-
cesses where scheduling problems might make the TRB impracticable. One last thought on
system speed. The most expensive operation in the TRB process is the matrix checking. This
is a logic operation therefore it can be done with a registered logic circuit which takes only
one clock cycle to do the matrix checking. However, the area requirement for the logic circuit
is of the order O(n × m) where n is the number of senders and m is the number of receivers.
This makes the TRB concept very fast but not area efficient. But this constitutes no general
problem for practical systems, because it is always possible to exchange processing speed
and chip area. Therefore, the TRB concept benefits the design of many practical systems.
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