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Abstract. IC2IC links introduce blocking functionality to a low latency high per-
formance data link between independent processors. The blocking functionality was
achieved with the so-called alternating bit protocol. Furthermore, the protocol hardens
the link against message loss and message duplication. The result is a reliable way to
transfer bit level information from one IC to another IC. This paper provides a detailed
discussion of the link signals and the protocol layer. The practical part shows an exam-
ple implementation of the IC2IC serial link. This example implementation establishes
an IC2IC link between two configurable hardware devices. Each device incorporates a
process network which implements the IC2IC transceiver functionality. This example
implementation helped us to explore the practical properties of the IC2IC serial inter-
connect. First, we verified the blocking capability of the link and second we analysed
different reset conditions, such as disconnect and bit-error.
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Introduction

Parallel processing systems must exchange data in a timely fashion between multiple physi-
cally separate processors. According to C. R. Anderson et al [1] effective exploitation of mul-
tiple processors in a distributed computing environment relies on a low latency, high band-
width, inter-processor communication network. In the late 1980s the INMOS transputer was
a pioneering attempt to built a communication network with these properties for multipro-
cessor computing [2]. The basic design of the transputer included serial links, that allowed it
to communicate with up to four other transputers. The links operated at 5, 10 or 20 Mbit/s —
which at the time was faster than existing networks such as Ethernet. The link speed matched
the processing speed well, therefore the available resources could be used efficiently. This
led to some notable and diverse applications such as neurocomputers [3] and architectures
for graphics [4].

While the transputer was simple but powerful compared to many contemporary designs,
it never came close to meeting its goal of being used universally in both CPU and microcon-
troller roles. In the microcontroller realm, the market was dominated by 8-bit machines where
cost was the only serious consideration. Here, even the 16-bit transputers were too powerful
and expensive for most applications. Furthermore, the concept of communicating processes
alienated many users. These are only some of the reasons why the transputer family was not
developed further. However, even after the development stopped, the link technology was
still used in a limited number of applications. In 1995 the communication links were even
standardised as IEEE-1355 [5]. This standard details also “Wormhole Routing” [6], which
allows packets of unlimited length to be routed within the network of processors.
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The IEEE-1355 link standard continues to generate interest. One reason for this contin-
ued interest is the ease of implementation when compared with competing technology such
as Ethernet. All twisted pair versions of Ethernet require analogue signal processing of the
received signals to extract data — a silicon hungry process [7]. This even led to the claim:
“IEEE 1355 data-strobe links: ATM speed at RS232 cost”, by Barry M. Cook [8]. On the
application side, Greve, O. J. ef al [9] argue that for heavy mechatronic and robot applica-
tions, transputer links can be used to achieve a high-performance and real-time communica-
tion between discrete system components. Marcel Boosten et al [10] have investigated the
construction of a parallel computer using IEEE 1355 high-throughput low-latency DS link
networks and high-performance commodity processors running a standard operating system.

Apart from direct applications, the IEEE-1355 technology has influenced a number of
other communication standards. The IEEE-1355 encoding scheme has been adopted for the
IEEE-1394 standard [11] and the Apple Computer version of IEEE-1394 known as FireWire.
Space applications have very high demand on system reliability, because it is difficult, if not
impossible, to make changes after the launch of a space craft. These requirements provided
the reason why the transputer link technology was adopted as a new communication standard
for space applications with relatively minor changes [12]. The European Space Agency plans
to use the new SpaceWire standard for most of its future missions. The SpaceWire standard
constitutes something like the rebirth of IEEE-1355. Therefore, most of the recent practical
projects focus on this standard instead of the original IEEE-1355. In space applications radia-
tion tolerance is very important. B. Fiethe et al [13] argue that protection against such effects
can be achieved by using parts built of special technology, such as SpaceWire. In a similar
argument, Sanjit A. Seshia er al [14] state that technology scaling' causes reliability prob-
lems to become a dominant design challenge. They support their statement with a case study
where they analyse the stability of a publicly available implementation of SpaceWire end-
nodes. Despite the name, there are attempts to use SpaceWire in earth-bound applications.
Sergio Saponara et al [15] introduce the SpaceWire standard to the automotive field. This
approach is justified, because both space and automotive applications have high demands on
reliability of the communication standard.

Apart from these rather high level communication standard considerations, the ideas of
transputer links also play a role in the design style for the communication between inde-
pendent digital circuits. The main reason for this interest is the fact that the communication
between independent circuits provides the basis for CSP style hardware design [16]. The
two main problems are clock and reset synchronisation between independent circuits. The
IEEE-1355 standard provides a solution for both problems. For wire bound communication
the clock synchronisation is solved via self-clocking data-strobe signal communication. The
reset synchronisation problem is solved with the exchange of silence protocol. However, CSP
style communication between independent circuits requires a blocking capability which is
not provided by IEEE-1355. The blocking capability ensures that a circuit which is commit-
ted to a data transfer can only make progress if the data is exchanged with the communication
partner. A minor problem is that many hardware implementations require a higher degree of
payload flexibility than the standard can offer. IEEE-1355 defines only data packets with 8
bit payload. This might be too much or too little, depending on the particular application.

This paper discusses the implementation of IC2IC, a lightweight serial interconnect link
for multiprocessor networks. This implementation combines IEEE-1355 style synchronisa-
tion and encoding with a protocol based blocking functionality. We use an adaptation of the
alternating bit protocol (ABP) to ensure the blocking functionality. The protocol guarantees
that a particular data packet gets delivered to the receiver. The result is a stiff> communica-

Decreasing feature size of digital integrated circuits over the years.
2The term ‘stiff” describes the characteristic of the implementation with respect to the commitment of the
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tion channel which is susceptible to external influences on the physical means of data ex-
change. We discuss the problems which arise from external influences, such as: bit-error,
asynchronous reset and disconnect. To solve these problems was a design challenge, be-
cause the logic must react to each problem differently and in some cases ‘remember’ the
system state during which the problem occurred. Both, hardening against message loss and
formalised synchronisation, are the core concepts which make the IC2IC serial link reliable.
Compared with the problems caused by external influences, the introduction of payload flex-
ibility was relatively easy. Nevertheless, payload flexibility is an important feature of the
IC2IC link.

The following section provides an in-depth discussion of the IC2IC serial interconnect
channel. This includes a short introduction of the alternating bit protocol, which establishes
the blocking functionality. Sections 1.1 and 1.2 introduce link signals and packet level of
the protocol. After the definition of both signals and packets we define the IC2IC protocol.
This protocol handles initialisation, data transfer and error conditions. Section 2 details an
example implementation of the IC2IC serial link between two configurable logic devices.
Each logic device executes an IC2IC transceiver circuit. With this setup we show blocking
and error recovery in an implementation system.

1. IC2IC

This section introduces IC2IC, a lightweight bidirectional channel between two hardware
components. The IC2IC functionality extends IEEE-1355 with blocking functionality. From
the protocol standard IC2IC inherits the following functionality:

1. Self clocking — This ensures variable transmission speeds.

2. Asynchronous reset — Implemented through exchange of silence.

3. Disconnect detection — Both communication partners can detect and recover from
disconnect.

The blocking communication causes problems after an asynchronous reset. The sender needs
to know the state of the receiver when the data transfer resumes. The transfer of the last
receiver state is a crucial part of the IC2IC protocol, without it the system is prone to data
loss and deadlock.

1.1. Alternating Bit Protocol

Figure 1 shows a basic setup of a point to point communication system. In this system, port
A (sender) sends data packets to port B (receiver) over a lossy communication channel. The
channel can swallow a finite number of packets and duplicate the same packet a finite number
of times. The first formalised solution for this problem emerged 1969 as a note on reliable
full-duplex transmission over half-duplex links [17]. The solution involves an “alternation
bit”. This idea was picked up by A. W. Roscoe [18, page 130] who proposed a method called
alternating bit protocol to establish a secure communication of the lossy channel. This pro-
tocol involves a back channel from port B to port A. This back channel has the same char-
acteristic as the data communication channel. The name alternating bit protocol comes from
the fact that each packet is extended by one bit which alternates between 0 and 1 before it
is sent along the lossy channel. Multiple copies of the same data packet are sent from port
A to port B until port A receives a control packet which acknowledges this data packet. The
behaviour of port B depends on the environment. If the environment of port B has picked up

communication partners which engage in a message exchange over this link. Once a communication partner has
committed there is no way to withdraw.
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Figure 1. Basic communication system

the data from the previous packet then as soon as port B gets a new packet via the commu-
nication channel it sends an acknowledgement packet and offers the data to the environment.
Port B acknowledges all resends of this data packet with a copy of the initial acknowledge-
ment packet. In the case that the environment did not pick up the last message port B does
not acknowledge the reception of a new data packet. Needless to say that port B does not
acknowledge subsequent copies of this data packet until the environment picks up the data of
the previous data packet. The two ports can always spot a new message or acknowledgement
because of the alternating bit.

Sputh et al made relevant adjustments to the alternating bit protocol [19]. They establish
safety, stability and functionally of the resettable receiver alternating bit protocol (RRABP).
This extended alternating bit protocol creates a reliable and blocking channel between sender
and receiver over unreliable non-blocking communication channels. Furthermore, this proto-
col allows the system to restart the sender at any time: however, not under all conditions with-
out losing a message. The IC2IC serial link protocol is a practical realisation of the formal
RRABP.

1.2. Link Signals

Each IC2IC port is connected to four link signals. The two signals tx_data and tx_strobe
establish outgoing communication and rx_data and rx_strobe handle incoming communica-
tion. Figure 2 shows an IC2IC port as a self-contained entity with the ability to exchange data
via the external communication signals. On the signal level the communication happens in
two distinct phases, first synchronisation and then data transfer.

Figure 3 shows the timing diagram of the transmission signals in the synchronisation
phase of the data exchange. This phase ensures that both communication partners are ready
for the data transfer. During this initial phase both data and strobe signals have the same tim-
ing. The figure shows two signals, the transmitted data signal tx_data and the received data
signal rx_data. At time point 1, the IC2IC transceiver under discussion is ready to transfer
data, therefore it assigns low to the tx_data signal. A low timer circuit ensures that the low
stays assigned for 100us before it changes to high for 10us. At time point 2, the communi-
cation partner starts the transmission, by assigning an active low on the rx_data signal. At
time point 3, the transceiver generates a falling edge on the tx_data signal. This falling edge
causes the communication partner to reset the low timer. This reset synchronises both com-
munication partners. The timer reset is the reason why the 10us high pulse is not present at
time point 4. At time point 5, the falling edges of both communication partners are in sync.
This is the start signal for the data transfer. After time point 5, the timing diagram shows the
bit pattern for the stop packet.

Figure 4 shows a timing diagram of the IC2IC protocol data transfer signals. The first
signal shows the bit-sequence to be transmitted. The second row shows the data (tx_data)
signal. The third row shows the strobe (tx_strobe) signal. The data signal encodes the bit
sequence directly, i.e. the signal is low when a O bit is transmitted and the signal is high when
a 1 bit is transmitted. The strobe signal generates an edge whenever the data signal stays
constant for more then one bit period 7. In Figure 4, we assume an initial reset condition.
Time point 1 indicates the start of a second consecutive 0 data bit. To communicate the start of
the second O to the receiver, the strobe signal generates a rising edge. Time point 2 indicates
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the start of a second consecutive 1. At this time point the strobe signal transits from high

to low thereby creating a falling edge. Similarly, time point 3 indicates the start of a third
consecutive 1. At this time point, the strobe signal generates a rising edge.
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Figure 4. IC2IC data transfer pattern

1.3. Packet Level

The ABP functionality requires data and control packets. Data packets contain header and
payload. Control packets are more complex, because they are used for acknowledgement
and protocol synchronisation. The following paragraphs detail the composition of data and
control packets.

Figure 5 shows the data packet structure. L is the number of payload data bits and L + 3
is the total number of bits in one data packet. P is the parity bit, it is set for odd parity in
the parity region. C indicates not control packet, therefore C = 0. ABP is the alternating bit
protocol bit.
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Figure 5. Data packet structure
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Figure 6 shows the control packet structure. A control packet always has 6 bits. Setting
bit C to 1 identifies this packet as a control packet. P is the parity bit which ensures odd parity
in the parity region.

C P cnt(3) | ent(2) | ent(1) | cnt(0)

5 4 3 2 1 0

Figure 6. Control packet structure

The four control packet bits cnt(3) — cnt(0) encode a maximum of 2* = 16 control
messages. Table 1 details all messages which are used in the example implementation. The
stop_xy and start_xy messages are used for RRABP protocol synchronisation. zero_ack and
one_ack are the ABP acknowledgement messages sent from port B to port A. The alive
packet ensures a continuous data stream between the ports.

Table 1. Mapping of the control messages onto the 4 cnt bits

Message cnt bits | Message cnt bits
stop_msg 0000 | stop_ack 1111
start_msg 1110 | start_O_ack 1101
start_1_ack 1100 | start_rst_ack 1011
zero_ack 1010 | ome_ack 1000
alive 0111

The parity bit P of a data packet covers the ABP bit, the L data payload bits and the data /
control flag in the next packet. Similarly, the parity bit of a control packet covers the 4 control
bits cnt(3) — cnt(0) and the data / control flag in the next packet. Figure 7 shows a parity
coverage example. In the example scenario a control packet is followed by a data packet. The
parity coverage ensures that an error in any single bit of a packet, including the packet type
flag, can be detected even though the packets are not all the same length. The parity bit is set
such that the total number of 1s in all the bits covered (including the parity bit) is odd.

Control packet Data packet

~
~

C P cnt(3) | cnt(2) | cnt(1) | cnt(0) C P

~
~

Parity coverage

Figure 7. Parity coverage example

1.4. The IC2IC Protocol

The resettable receiver alternating bit protocol, introduced in Section 1.1, handles the proto-
col synchronisation between port A and port B. However, even the RRABP struggles to han-
dle problems introduced by the physical means of data transmission. These problems include
disconnect and bit-errors. In this section we extend the protocol further such that it addresses
the practical problems of the IC2IC serial link.

Figure 8 shows the communication diagram for normal operation. Normal operation
means there are no errors introduced by the physical means of communication. The figure
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shows protocol synchronisation, normal data transfer as well as receiver and sender blocking.

Port A Time Port B

Initial state  »
: First stop_msg received
Follow up with the protocol %
127 stop_msg received

W Start after reset
Data transfer start W
kw Acknowledge data
d
Toggle ABP u Environment
starts blocking
/W

Initial data_0 W
: Environment blocks

d

Resend of data_0 ata_|()
 » Environment proceeds
Avoid timeout W
Packet filtered
Continue transfer W

Figure 8. Protocol diagram for normal operation

After synchronisation on the physical layer, shown in Figure 3, the IC2IC protocol takes
over. The protocol synchronisation starts with a sfop_msg control packet sent from port A
(sender) to port B (receiver). Port B must receive 127 consecutive stop_msg messages be-
fore the link is considered fit for data transfer. Port B acknowledges the reception of 127
stop_msg packets with a stop_ack packet. After port A receives the stop_ack packet it sends
out start_msg packets. Upon reception of such a start_msg packet, port B responds with
start_rst_ack packet. This packet indicates that port B came out of a global reset condition.
After having received the start_rst_ack packet, port A sends out the first data packet, data_0,
with ABP bit 0. Port B acknowledges the reception of this packet with the zero_ack control
packet. Upon reception of the zero_ack packet port A toggles the ABP bit and sends out the
second data packet. Port B receives and acknowledges this data packet, however it is not
picked up by the environment of port B. In other words, the environment on the receiver side
blocks the communication and port B acts as a buffer (with one place). Upon reception of the
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acknowledgement, port A sends a data_0 packet. This packet is not acknowledged by port
B, because the buffer is full and the environment still blocks. The absence of acknowledge-
ment forces port A to resend data_0. After the receiver environment empties the buffer, port
B acknowledges data_0. After port A receives this acknowledgement (zero_ack) the trans-
mitter recognises that there are no further data vectors to be transmitted. In other words, the
transmitter environment blocks. To ensure continuous data traffic between port A and B on
the physical layer, port A sends an alive control packet. This packet is filtered by port B. At
any time port A can resume the data transfer by sending out a data_1 packet.

Figure 9 shows the communication diagram for the case that a bit error in the stop_msg
control packet occurs. Upon detection of a bit-error in the stop_msg port B forces an asyn-
chronous reset by putting a permanent low on the output signals. This behaviour is detected
as a disconnect by port A. In reaction to this disconnect, port A also puts its output signals
on low. This silence is observed by both ports for 10ms. Port B remembers that the error
occurred during the initial protocol synchronisation. After this silence the communication
resumes with the initial synchronisation pattern, described in Section 1.2. After the physi-
cal synchronisation, the protocol synchronisation starts. Port B concludes the protocol syn-
chronisation by sending start_rst_ack. This indicates that port B came out of a global reset
condition and the expected ABP bit value for the first data packet is 0.

Port A Time Port B

SI0p_msg with bit error

 ’ Bit error detected

v stop_msg ~ Remember: reset

Start_mg g

W Start after reset
ABP =1
d.

Toggle ABP W
/W

by

Figure 9. Protocol diagram for stop_msg with bit error

Figure 10 shows the communication diagram for the case when a bit error in the data_1
packet occurs. When port B detects this bit error it sets both output signals to low. This
communicates an asynchronous reset to port A. After the silence period has passed, both
port A and port B resume the transmission with the physical initialisation sequence. Port B
sends out the start_zero_msg control packet. This indicates that the value of the last correct
received ABP bit was 0. After port A receives this packet it resumes the data transmission
with an ABP bit equal to 1, in Figure 10 this is indicated by data_1.

Figure 11 shows the communication diagram for the case when a bit error in the control
packet zero_ack occurs. The error handling is similar to the previous scenario. However, this
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Figure 10. Protocol diagram for data_1 with bit error

time port A detects the error in the control packet and initiates the exchange of silence. The
last correct ABP bit port B has seen was 1, therefore the initialisation protocol is concluded
with port B sending start_zero_ack.

Figure 12 shows the communication diagram for the case that both ports detect a dis-
connect during a normal data transfer. Therefore, both initiate the exchange of silence. Af-
ter the silence period has elapsed, port A and port B are ready to continue the data transfer.
The physical synchronisation signals ensure that the link resumes after the ports are con-
nected again. In case of a reconnect, port B concludes the initialisation protocol by sending
a start_one_ack packet. This indicates that the ABP value of the last correctly received data
packet was 1.

2. Example Implementation

The process network of the implementation is organised in a decentralised way. That means,
there is no central process which controls the IC2IC functionality. Each process within the
network has its own functionality and to a certain extent its own agenda. This leads to a
hierarchically flat model.

Figure 13 shows the implementation process network. This process network consists of
nine processes and CSP style, i.e. blocking, channels for data transfer. All channels are named
from2to where from indicates the sender process name and fo indicates the receiver process
name. The process network communicates with the local processing environment via in and
out channel. tx_data and tx_strobe are output signals, i.e. they leave the local processing
environment. Similarly, rx_data and rx_strobe are input signals. The network functionality
can roughly be partitioned into two parts. The first part implements the data handling and the
second part implements the ABP functionality.

The data handling starts with messages flowing from the environment to the P process
via the in channel. The P process appends the ABP protocol bit and sends the extended
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Figure 11. Protocol diagram for zero_ack with bit error

message to the MUXER process. The MUXER extends the message with parity bit and control
bit before the message is sent to the 7X process. The TX process translates the message into
the self clocking line code for transmission from IC to IC. The message is received with the
RX process. The RX process decodes the transmission signal and sends the received message
bits to the DEMUX process. The DEMUX process assembles and checks the message. The
control and parity bit is removed before the message is sent to the C process. The C process
removes the ABP bit before the message is sent to the environment via the out channel.

Table 2 shows the packet composition on the TX side and the decomposition on the
RX side. The environment provides an L dimensional data vector Data; . The IC2IC? process
network adds a three bit header which ensures security and robustness of the data transfer. On
the RX side (port B) the IC2IC process network removes the header and offers the received
L dimensional data vector to the environment.

Table 2. IC2IC layer structure. Data, is an L dimensional data vector.

TX RX
Entity Packet Entity Packet
Environment Data;, Environment Data;,
P ABP & Datay, C ABP & Data;,
MUXER | C & ABP & Data;, DEMUX | C & ABP & Datay
Physical layer

The three remaining processes, 7X_ABP, RX_ABP and CNTMSG implement the ABP
protocol functionality. TX_ABP controls the ABP protocol on the TX side. Therefore, it is
connected to the P process via a bidirectional channel. This bidirectional channel enables
the 7X_ABP process to react to input. Furthermore, 7X_ABP is connected with the MUXER

3Capitalised italic fonts indicate a process name. In this case IC2IC is the name of the process which imple-
ments the IC2IC functionality.
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Figure 12. Protocol diagram disconnect error

process. This channel is used to communicate start and stop messages during the protocol
initialisation. The last connection of the T7X_ABP is with the CNTMSG process. Via this
channel the TX_ABP process receives acknowledgement messages from the communication
partner. The CNTMSG process routes all other control messages to the RX_ABP process. This
process is responsible for the protocol on the receiver side. Apart from the control messages
it also receives the ABP control bit from the C process. Based on this information it generates
control messages for the receiver side of the communication partner. In order to send packets
to the receiver, the RX_ABP process is connected with the MUXER process.

Figure 14 shows the reset network which connects the processes of the IC2IC example
implementation in parallel with the data and control communication network. The local reset
network is used for error handling. A local reset affects the whole IC2IC network imple-
mentation, but not the environment. That means after a local reset the IC2IC network is in
a predefined state. This state is different from the global reset state, because some processes
‘remember’ particular information such as the value of the ABP bit. The DEMUX process
informs the RX process that a protocol error, such as a parity error, happened during transmis-
sion. The RX process is the central point in the reset network, because it controls the local_rst
signal. This signal is asserted after an rx_rst event is received or a disconnect is detected.
This local_rst enables the process network to react to protocol error or disconnect.

The following sections provide an in-depth discussion of the individual processes. This
discussion introduces the functionality of the processes during normal operation and their
behaviour during local reset.

2.1. P Process

In its initial or reset state process P requests the ABP bit value from the 7X_ABP process.
Once P has received this value it is ready to receive a message from the environment via the
in channel. After having received a message the P process appends the ABP token and sends
the resulting packets to the MUXER process. This is the last step before P recurses. A local
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Figure 14. IC2IC reset network

reset forces this process into the initial state. However, it remembers the last data vector from
the environment.

2.2. TX_ABP Process

TX_ABP handles the transmitter part of the ABP protocol. In the initial state, it establishes
the protocol synchronisation with the receiver part of the communication partner. This is
achieved by sending out stop_msg control packet to the MUXER process. The stop_msg are
sent until the first stop_ack control packet is received via the channel which connects it to the
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CNTMSG process. After having received the stop_ack message the TX_ABP process sends
out the start_msg. The receiver can respond to the start message with one of three different
control packets:

1. start_rst_ack — This control packet is used to indicate that port B (receiver) came out
of a global reset.

2. start_zero_ack — This control packet indicates that the ABP bit of the last accepted
data packet had ABP = 0.

3. start_one_ack — This control packet indicates that the ABP bit of the last accepted
data packet had ABP = 1.

After initialisation, the TX_ABP process establishes the ABP functionality on the transmitter
side. It provides the P process with the correct value of the ABP bit. The value of the ABP
bit is negated when the acknowledgement packet (one_ack and zero_ack) indicates the same
value as the current ABP bit. For TX_ABP local and global resets have the same effect. During
the initialisation the communication partner provides the ABP bit information via one of the
three possible responses to start_msg.

2.3. C Process

The C process consumes the messages from the DEMUX process and transfers them to the
environment. The process acts as a message buffer, which means that initially it is able to re-
ceive a packet before the environment can block the acknowledgement of subsequent packets.
The ABP bit is stripped from this packet and internally stored as well as sent to the RX_ABP
process. After the ABP bit is stripped from the packet, the process is ready to communicate
the message to the environment. In case the environment blocks this communication, the C
process consumes all subsequent packets from the MUXER process but it does not send any
ABP bits to the RX_ABP process. This effectively implements the blocking functionality, be-
cause the sender will continuously resend the same packet. In effect, this prevents the sender
side from making progress, i.e. the sender is blocked. This block is released when the receiver
environment picks up the packet from the C process. A local reset forces this process into
the initial state, but it retains all information local to the process. Furthermore, the ability to
deliver buffered data to the environment is not affected.

2.4. RX_ABP Process

The RX_ABP process handles the receiver side of the protocol. In the initial state the pro-
cess is poised to receive 127 stop_msg control packets from the CNTMSG. The 128th and all
subsequent stop_msg are acknowledged by sending stop_ack packets to the MUXER. Subse-
quently, a start_msg is acknowledged with start_rst_ack. This concludes the protocol syn-
chronisation and RX_ABP handles the receiver (port B) functionality of the ABP protocol.
In this state the RX_ABP process waits for input from C or CNTMSG. The C process can
request the acknowledgement of new data packets. In case a stop_msg is received from the
CNTMSG process or a local reset occurs the RX_ABP process returns to the initial protocol
handling state. However, this time, the initial protocol is concluded with either start_zero_ack
or start_one_ack depending on the last data packet which was acknowledged.

2.5. MUXER Process

The MUXER process relays or multiplexes the packets from P, TX_ABP and RX_ABP to
the TX process. Furthermore, the MUXER process inserts an alive message if none of the
connected processes supplies a message. This ensures a constant data transmission which
allows the RX process in the receiver (port B) to detect a disconnect. The message transfer
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to the TX process is a serial bit-stream. For the MUXER process local and global reset are
identical.

2.6. DEMUX Process

The DEMUX process receives a serial bit-stream from the RX process. This bit-stream is de-
coded and the individual messages are assembled. During this assembly the parity is checked.
If the parity check is successful, control packets are passed to the CNTMSG process and data
packets are passed to the C process. All packets are passed on without the parity bit. In case
the parity check fails the DEMUX process sends out a reset signal to the RX process via the
rx_rst channel. For the DEMUX process local and global reset are identical.

2.7. RX Process

The RX process performs either control or data extraction tasks. In normal operation, RX
extracts the data bits from the received rx_data and rx_strobe signals and sends them on
to the DEMUX process. During control tasks the RX process asserts the local_rst signal
and manages the output signals: tx_data and tx_strobe. RX has two distinct control tasks,
exchange of silence and physical synchronisation. There are two conditions which cause RX
to start an exchange of silence:

1. No signal transition (edge) was observed during a 1 ms time window on either rx_data
or rx_strobe. The absence of signal transitions indicates a disconnect from the com-
munication partner.

2. An event is received via the rx_rst line. This indicates the DEMUX process has de-
tected a bit error.

During exchange of silence tx_data and tx_strobe are set to low. After the silence period has
elapsed, RX performs initial synchronisation. Initial synchronisation is also triggered by a
global reset. During initial synchronisation RX behaves according to the specification given
in Section 1.2.

2.8. TX Process

The TX process abstracts the layer-0 functionality of the transmitter. This abstraction involves
synchronisation and data transfer functionality. Section 1.2 describes the physical synchroni-
sation and data transfer which is carried out by the TX process. When a local reset signal is
received the TX process hands over the control of the output signals to the RX process.

2.9. IC2IC test setup

Figure 15 shows the block diagram of the IC2IC test setup. Each FPGA executes the IC2IC
process network. The test setup provides the means to introduce bit errors and disconnect the
link at arbitrary time points. To have more testing flexibility, in addition to the IC2IC process
network the ML403 hosts also a soft processor. This soft-processor was used to generate
test sequences and monitor the received and transmitted messages. The SRSv02 hosts an
additional process which mirrors all the messages. In other words, the test setup constitutes
a loop, where data source and sink are located in the ML403.
The following list details the tests conducted with this setup:

e The system starts up and transfers data according to the protocol diagram for normal
operation, shown in Figure 8. The data transfer starts regardless of the sequence in
which the communication partners come online.
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MLA403 with | IC2IC cable .| SRSv02 with
Virtex 4 FPGA | 4 wire duplex link | Virtex 2 FPGA

Figure 15. Block diagram of the IC2IC test setup

e The data stream was interrupted by disconnect at various time points. The stream
recovered according to the protocol diagram for disconnect error shown in Figure 12.

e The data stream was interrupted by bit errors at various time points. The stream recov-
ered according to the protocol diagrams for bit errors in various packets, see Figures
9,10and 11.

All these tests were conducted with a payload of DATA; = 8,16 and 32 bits. For each
payload setup the test duration was at least 10 hours, i.e. the stream was running for this
time. According to the test software, executed by the soft-processor, during all these tests no
messages were lost or duplicated. This establishes confidence in the implementation stability.

The tests validate all IC2IC protocol features which were discussed in Section 1.4. Fur-
thermore, the IC2IC process network was implemented in two different flexible logic de-
vices*. This shows that the implementation is portable to a wide range of flexible logic de-
vices. Finally, the link was tested with the help of a soft-processor. The results show that the
blocking functionality is pervasive. That means, if the link is interrupted the software, exe-
cuted by the soft-processor, is not able to send or receive a message, i.e. it is blocked. This
shows blocking communication over two borders, software / hardware and IC (Virtex 4) / IC
(Virtex 2).

3. Conclusion

In this paper we introduced IC2IC a lightweight serial interconnect channel for multiproces-
sor networks. This serial link establishes a low latency high performance data link between
independent processors. The result is a reliable way to transfer bit level information from
one IC to another IC. The blocking functionality and ability to recover from various error
conditions distinguishes the IC2IC link from other serial interconnect links.

The practical part of the paper introduces the alternating bit protocol. This protocol con-
stitutes the cornerstone of the IC2IC implementation, because it provides blocking function-
ality and hardens the link against message loss and message duplication. It was not possible
to implement the alternating bit protocol directly, because in the basic form the protocol does
not have the flexibility to cope with various practical reset conditions. Therefore, we extended
the alternating bit protocol in order to cope with error conditions such as disconnect, bit error
and receiver reset. The extended version of the protocol is called IC2IC. On the physical layer
the IC2IC link uses a data strobe signal setup and the initial synchronisation is done with a
specific synchronisation pattern.

The example implementation constitutes an IC2IC transceiver system. We designed the
system as a network of independent processes which communicate via blocking channels.
With this approach we carried on the idea of blocking channels. Apart from the communi-
cation channels the processes are also connected to a local reset signal. A local reset is as-
serted in case of an error on the physical link. The local reset signal interrupts all processes
and forces them into a predefined state. The processes have the ability to ‘remember’ certain
information after local reset. We use this memory functionality to avoid deadlock states and
possible data loss after resynchronisation.

“Two different generations of the Xilinx Virtex family.
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Process networks for hardware logic are a very elegant way to utilise the inherent par-
allelism of these devices. Key to these process networks are the blocking communication
channels between them. It is relatively easy to establish blocking channels between processes
within one chip. However, due to degrading effects on the physical means of communica-
tion and the unpredictability of the communication partner, it is difficult to establish blocking
communication between logic circuits located in different ICs. The properties of the IC2IC
serial link were validated with various tests on a hardware setup. These tests built up confi-
dence in the claim that IC2IC serial links release process networks from the prison of only
one IC. The IC2IC link enables blocking communication between two ICs. This blocking
point to point communication is the corner stone for CSP style process networks which span
over multiple ICs.

With the IC2IC protocol each individual payload message is acknowledged. Therefore,
the IC2IC serial link is best described as buffered channel. The buffer has room for two mas-
sages, one in the producer (P) and one in the consumer (C). These buffers are necessary to
expose a uniform interface to the environment. So, to their environment the IC2IC input and
output looks like an ordinary hardware channel — even though the messages are transferred
or received from another chip. If this interface is not enforced, back to back synchronisation
on individual messages is possible. The possibility of back to back synchronisation is one of
the strongest points in favour of the ABP protocol and indeed the IC2IC serial link. With a
buffered channel there is always the uncertainty about whether or not a message has reached
the destination. This uncertainty is potentially dangerous especially when important control
messages are transferred. This predictability of the IC2IC serial link leads to simple abstract
models. In CSP the IC2IC serial link with uniform interfaces is modelled as a buffered chan-
nel with two places. In case these interfaces are not enforced, the IC2IC serial link can be
abstracted as a CSP style channel.

3.1. Future Work

The development of the IC2IC protocol is the first step towards process networks imple-
mented in multiple ICs. The next development step is concerned with particular examples.
These examples help to establish the merits of the protocol. The translation step from the the-
oretical model to the implementation is not proven, therefore examples are necessary to built
up trust in the protocol. Based on particular examples, speed and robustness properties can
be tested. The speed property is concerned with the data rate. There is a theoretical maximum
data rate and specific data rates for individual applications. To compare the individual with
the maximum data rates reveals some insights into the IC2IC protocol. Robustness considera-
tions are concerned with particulars of the channel. The communication channel between two
ICs might introduce bit errors. Future work will be concerned with analysing the effects of
bit errors on the protocol. Furthermore, the communication channel might not be stable. That
means, there are random disconnects due to bouncing connections. Some work will focus on
simulating such bouncing conditions and analysing the performance of the IC2IC protocol.

After having established trust in the protocol implementation we can start looking to-
wards more involved systems. Process networks are the most widely used mechanism to
model complex systems with non-linear behaviour. The size of the process networks, i.e.
the number of processes involved, depends on the complexity of the task. For many prac-
tical problems the task is ill defined, therefore the complexity of the system is not defined.
However, more complex systems can react to a wider range of environments. That means,
systems which model artificial intelligence tend to work better with larger process networks.
The IC2IC protocol might be one way to extend such networks beyond the borders of a sin-
gle IC without functional side effects. The only negative side effect might be insufficient
communication speed. But, this is a field of further research.
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