Communicating Process Architectures 2008 347
P.H. Welch et al. (Eds.)

IOS Press, 2008

© 2008 The authors and 10S Press. All rights reserved.

CSPBuilder — CSP based Scientific
Workflow Modelling

Rune Mgllegrd FRIBORG and Brian VINTER

Department of Computer Science, University of Copenhagen,
DK-2100 Copenhagen, Denmark

{runef ,vinter} @i ku. dk

Abstract. This paper introduces a framework for building CSP basedicgijns,
targeted for clusters and next generation CPU designs. @Risroduced with sev-
eral cores today and every future CPU generation will fesitwcreasingly more cores,
resulting in a requirement for concurrency that has notiptesly been called for. The
framework is CSP presented as a scientific workflow modetiafized for scientific
computing applications. The purpose of the framework isnabée scientists to ex-
ploit large parallel computation resources, which hasiptesty been hard due of the
difficulty of concurrent programming using threads and kck

Keywords. CSP, Python, eScience, computational science, workflom)iph
concurrency, SMP.

Introduction

This paper presents a software development frameworktetder clusters and tomorrow’s
CPU designs. CPUs are produced with multiple cores todagaey future CPU generation
will feature increasingly more cores. To fully exploit thiscreasingly parallel hardware,
more concurrency is required in developed applications.

The framework is presented as a scientific workflow modelgigfized for scientific
computing. The purpose of the framework is to enable s@titd gain access to large com-
putation resources, which have previously been off linbe;ause of the difficulty of con-
current programming — thireads-and-lockapproach does not scale well.

The major challenges faced in this work include creatingaplgical user interface to
create and edit CSP [1] networks, design a component sybworks well with CSP and
Python, create an execution model of the designed CSP rehwod run experiments on the
framework to find the possibilities and limitations. CSPBar can be downloaded from [2].

1. Background

Over the past few decades, companies producing CPUs hasisteorily increased processor
speeds in each new edition by decreasing the size of trarsatd increasing the complexity
of the processor. The number of transistors on a chip havielddevery 2 years over the last
40 years, as declared by Moore’s Law [3]. However, doublirgrtumber of transistors does
not automatically lead to faster CPU speeds, and requiris@uhl control logic to manage
these. Speed and throughput have typically been incregsadding more control logic and
memory logic, in addition to increasing the length of theqassor pipeline. Unfortunately
more pipelines mean more branch-prediction logic, withdfiect that it becomes very ex-

348 R.M. Friborg and B. Vinter / CSPBuilder

pensive to flush the pipeline when a branch is wrongly predidvlany other extensions and
complexities, e.g. SIMD pipelines, have been added to thd @&sign during the past 40
years to increase CPU performance.

Today, numerousvalls have been hit. The amount of transistors is still doubledyeve
two years, so Moore’s Law still applies. However, three jpgots have been raised: thewer
wall, the frequency walland thememory wall According to Intel [4], heat dissipation and
power consumption increase by 3 percent for every 1 peroenéase in processor perfor-
mance. Intel also explain that because of bigger relatifferdnce between memory access
and CPU speeds, memory also becomes a bottleneck. Furttegiitne pipeline has become
too long, so the cost of flushing outweighs the performanagegieby increasing the pipeline
length. All of these mean that we can go no further with curdasigns, and Intel suggest in
[4] that the next step is parallel computation.

With several processing units, tmwer wall frequency walland memory wallare
avoided, since there is no longer a need to increase thegsmcperformance for a single
unit. Instead you must be aware of communication and symitatbon between threads,
which can cause overhead, deadlocks, livelocks and siamidtused wrongly.

Computers of tomorrow are getting more and more processiitg, which can be uti-
lized by creating concurrent applications that will scalevdards many processors. We are
already at 128+ cores in graphic processors, 9 cores in thé ®BE processor from IBM,
SONY and TOSHIBA and recently Intel announced that they apeementing with an 80-
core CPU [5].

1.1. Motivation

Many scientists (chemists, physicists, etc.) are not egpeed programmers, but are able
to do scientific computing by programming sequential appilons. So far they have been
relying on the hardware manufactures to produce hardwarehwtas improved the perfor-
mance of their applications — allowing for more sophistgcband computationally intensive
science.

Due to the limitations of sequential computing already d$sed, scientists must now
developconcurrentapplications, in order to take advantage of parallel hardvaad to ad-
vance the science. The amount of difficulty involved in dreatoncurrent applications, de-
pends on the programming language and methodology. Twadltconcurrent programming,
with threadsandlocks makes it difficult to program even simple applications —iaganore
parallelism to an already threaded program tends to resploblems, not solutions. As a di-
rect result, concurrent programming is seehasl, and is generally avoided by the majority
of programmers.

We want to encourage scientists to develop concurrent @nagiusing a CSP [6] based
approach, where applications are built as layered netwadrg@mmunicating processes. Such
an approach igeliable, no unexpected surprises;alable to different numbers of processes
and processors; armdmpositionalenabling processes to be ‘glued’ together to build increas
ingly complex functionality.

A feature of CSP based designs is that every process can ljgeateiyn isolated from the
global namespace, only interacting with other processesitfin well-defined mechanisms
such as channel inputs and outputs — processemao®ntext sensitive. This in turn permits
a high level of code reuse within scientific communities, Eviusly built components can
be connected in different ways, corresponding to the data-df a particular computation.

Recent reports of using the GPaind CELL-BE for scientific computing, have reported
performance increases of up to 100-fold for some scientifiorathms. However, the diffi-

1Graphics Processing Unit general-purpose graphics hardware found in high-end statikns, e.g. the
NVidia GeForce2.

R.M. Friborg and B. Vinter / CSPBuilder 349

culty of programming on a GPU or the CELL-BE is evident, anddesire a high level of
code reuse — i.e. algorithms written should be able to run oaoraber of different archi-
tectures, without a significant porting effort. This inchsdwithin a single-processor system,
heterogeneous multi-core systems, and distributed oveonles of machines. A CSP based
design, of communicating processes, allows us to mix andlm@bcessing architectures —
selecting the best performing implementations of procegseparticular architectures.

While architectures have differing performance charasties, programming in different
languages can also affect performance. Development inaleigl language such as Python
is usually faster, but produces code that runs slower thamitas implementation in a low-
level language, such as C. By programming the computati@msive parts in C, and using
Python as the ‘glue’, we optimize the execution time and@dbaiving to program the entire
application in C, saving development time.

When doing scientific work, which often relies on particutaathematics libraries to do
the “number crunching”, the functions provided are not ssa€ly all implemented in the
same language. By using tools such as SWIG [7] and F2PY [8]ope ko address this issue,
making it possible to use code from C, C++ and Fortran in alsisgentific application.

Our solution is to provide a framework, written in Pythomattlassists scientists in cre-
ating concurrent applications based on a CSP design. Theetvark uses a graphical user
interface similar to otheflow-basedprogramming environments already available, and as
such, we hope that scientists will find our framework usefu accessible.

1.2. PyCSP

PyCSP [9] is the CSP [1] library for Python used in this pajiés.a new implementation and
is currently evolving into a stable library. At the momensitpports four different channel
types, that can be used for connecting parallel processesto-oneone-to-anyany-to-one
andany-to-any Similar to occam, support for guarded choices is only atéé on the reading
ends ofone-to-oneandany-to-onechannels. When more than one process is attached to the
any end of a channel, only one process at that end is involvedarcttimmunication, and
gueue in a FIFO. Communication on channels is synchronouschaanel output will not
complete until the inputting process has accepted the bhathe future, we hope to support
all types of guards for channel communication, as well asnggfull support for networked
channels, and the easy distribution of CSPBuilder apjdinatacross computer networks.
The syntax of PyCSP is fairly simple and works well in Pythéfhen executing a CSP
network using PyCSP, all processes are created as kereeld)rthough performance on
shared-memaorgrchitectures is limited by th@lobal Interpreter LocKsee section 3.1.4).

1.3. Scientific Workflow Modelling and CSP

The purpose of a scientific application is usually to cali®uéaresult based on input data. This
data flows through the application and is the basis of subpnas and sub-solutions until
eventually a result, or several results, are found. Withithmind we use the term “workflow”
for the data-flow of a scientific application. We use the tesuiéntific workflow” for the
workflow of eScience applications, where “eScience” is uedescribe computationally
intensive science applications, normally run on sharediarg multi-processor hardware or
in distributed network environments.

A typical eScience application might be anything from coaxptlimate modelling to a
simple n-body simulation. Generally, any application ttie¢s a large number of computa-
tions to produce a result within a particular scientific field

Only a few [10,11] have previously looked at CSP and thouggit this might be a good
description for scientific workflows. In this paper we willggluce an application that uses
some of the ideas from CSP algebra and the projects mentabwet, combined in a frame-

350 R.M. Friborg and B. Vinter / CSPBuilder

work that allows CSP based applications to be designed isuwaktool, and executed in a
variety of ways (depending on the hardware available). \igeilstte that CSP is ideal for rea-
soning about the dataflow of eScience applications, paatiguvhen the target environment
is concurrent execution. The compositional structure ofS# @etwork enables application
developers to reuse networks of components as top-levgbanemnts themselves.

In section 5 we cover some of the other frameworks availébbene of these are very
popular today, and at the PARA '08 event there was an entiyeotlorkshops devoted to
scientific workflow modelling. The scientists there arguledt they are able to understand
flow-based programming environments, and use them to degeientific applications. The
future users of CSPBuilder are the same as for other frank@yand by making CSPBuilder
operate in a similar fashion, we expect that those usersb@ithble to use the CSPBuilder
framework to construct applications.

One of the reasons for working with scientific workflows is twable access to large
computation resources. The model presented in this papaddition to support for remote
channels, will make it possible to divide scientific workflapplications from a small number
of CPU cores, to hundreds of nodes on different LANs — praditteat the application is
designed in a way that supports this; a design method thabmegied by the CSPBuilder
framework.

1.4. Summary of Contributions

A new framework is implemented, tested and benchmarkedisnpiper. This framework

consists of a visual tool to build applications and a toolxteceite the constructed applica-
tions. The framework is implemented in Python and supportse C, C++ and Fortran code
by providing ‘wizards’ to access these languages. The fwarieis called CSPBuilder and

incorporates extensive use of the CSP algebra.

The visual tool provides an “easy to use” graphical userriate, enabling users to
construct applications using the ideas of flow-based prograg [12] to produce a CSP [1]
network. In our experiments we show that the visual tool |gatde of handling large and
complex applications.

Applications that are constructed with CSPBuilder can beceted successfully on a
single computer, combining routines from a number of d#fgrprogramming languages.
With the future introduction of remote channels in PyCSPiit be possible to execute the
applications on any number of hosts.

The framework encourages code reuse by constructing agipls from reusable com-
ponents. This has proven very useful during the experinientahase.

The primary advantages of this framework lie in code reuskcmstructing complex
scientific applications focusing on the workflow. CSP ideadarpin the concurrency mecha-
nisms employed in constructed applications, enabling ti@maatic deconstruction of whole
systems into individual concurrent components.

2. The Visual Tool

This section describes a user-friendly application that wendel a CSP network using a
layout similar to flow-based programming [12]. This layasitéquired to resemble the CSP
network for a scientific workflow model. Figure 1 shows an &ation modelled using our
visual tool.

In CSPBuilder every application starts with a blank canvasere processes and chan-
nels can be inserted. Processes appear as named boxedjeiitexternal connections la-
belled. Channels are shown as lines connecting the pracebsesimplify things, any in-

R.M. Friborg and B. Vinter / CSPBuilder 351

Prefix Delta2 AssertTest Printer
Cin Cout Cin Cout0 in0 outo in0
Prefixltem Coutl

DataValue
data

Successor
Cin Cout

Figure 1. A CSPBuilder application that generates incrementingnahiwumbers.

bound or outbound connection will only accept one channg&lggm or out, depending on
the connection type.

A number of connected processes are known as a process kegas@hown in figure 1.
This network could be used as a component in another applicatescribed in section 2.1.

The remainder of this section describes the componentraystannecting components
with channels and connection points. Saving and loading &fMfcations to and from files
are then described, followed by details on component cordigun and replication. These
parts are necessary to construct an application, and ai® gfahe framework that make it
possible to build CSP networks that can be run efficiently dms&ributed environment.

2.1. Component System

The design of the component system is based on the folloveiggirements:

* We need to be able to link the Python code of each process iagnte understand
framework, to make it simple to add or remove components.

» The organisation of the process network needs to be scalableh means that the
user should be able to handle large and complex applicatwaitisout losing control
or an overview of the whole system.

» The user should quickly and easily be able to group partseoptbcess network into
components, that appears and function like other processes

» Components should be stored in a library for reuse.

* An application built with CSPBuilder must be targetable tffedent hardware, and
have a performance better than or equal to an equivalentapph written entirely in
Python.

These requirements are examined in more detail in the follpwections.

2.1.1. Scalable Organisation

Consider a network of 2000 processes. To handle this mamggses, and even more chan-
nels, it is necessary to group parts of the network into smathmpositional processes. This
can be done by allowing the user to select a group of connpctegsses and condense them
into a single component. If this new component has uncoedenobound or outbound con-
nections, these are added to its interface, in addition &mcéls that already cross the group
boundary. From an external perspective, this new compdoeks like any other component
in the system.

Collecting together components in groups, and using thee$ertn other components,
leads naturally to a tree structure, whose leaves are coampamplementations. Each level
of the tree is assigned an increasragk number, with leaf processes having a rank of 1. This
is used to prevent cyclic structures.

352 R.M. Friborg and B. Vinter / CSPBuilder

2.1.2. Components

Components are the most important part of CSPBuilder. A @ovapt is a CSPBuilder appli-
cation that has been stored in the component library. THesedscomponents are available
for use in other applications, and come in two different ferm

1. The componentis a process network consisting entirghyafess instances of other
components and includes no actual code implementations.

2. The component includes at least one process that cortireeess implementation.
This process implementation has a link to a Python functi@at tmplements the
process. A simple example of a process in CSPBuilder is “tio€ss”, shown in
listing 1, that simply forwards data received on its inpumhel to its output channel.

1 fromcommon inport =

2

3 def CSP_I dProcessFunc(cin, cout):
4 while 1:

5 t = cin()

6 cout (t)

Listing 1. Example CSP process implementation — the IDProcess

To make it as easy as possible for the user to create compomenspecify that to cre-
ate a component, you just have to copy or move your CSPBulplglication to a “Compo-
nents” directory. When the CSPBuilder application relotslibrary, it discovers this new
component and makes it available for use in new applications

Functions specific to building components are also incafeor. These include naming
unconnected channel-ends and naming the main applic&tban creating components, the
application name is used for the new component. Unconnetiaainel-ends for the compo-
nent’s input and output are named in similar ways.

2.1.3. Component Library

To aid in component management, each component requirekagename. This is to make
it easier to find the desired component, for example, a siesdi’ package containing relevant
statistical components. For CSPBuilder to be an effecte it will need a wide variety of
components, offering a range of different functionalities

2.1.4. A Wizard for Building Components

A developer should be able to reuse code made by others, de ade made earlier in
another application. Reusing older code is made easieragitiponents and the component
library, so to increase the ease of creating new componéwigad’ has been implemented
that guides the developer through the process of creatiogé@anent.

A quick search on the Internet will show that large onlinehares of scientific code
are available for free use. It is desirable to be able to yasié a function written in any
language, and currently it could be argued that it is posgiEt by having the components
implemented in Python. The developer can use SWIG [7] to imgmadle from C or C++, and
most programming languages are able to build librariesdhabe used from C or C++. This
therefore makes it possible to extend Python with code evriih all kinds of languages. A
project named F2PY [8] can import Fortran 77 and Fortran @&doto Python.

The wizard guides the user through the process of creatingpaoents written in
Python, C, C++, Fortran 77 and Fortran 90. These languages et®sen because of the
numerous scientific libraries that use these. As mentioadee most languages can build a
library that is accessible from C or C++.

R.M. Friborg and B. Vinter / CSPBuilder 353

Data\alue
data

Figure 2. One2AnyChannel formed by connecting three processes togé&esionnection point, single out-
putting process, multiple inputters.

Datavalue
data
Data'alue Printer
data inQ

Figure 3. Any20neChannel formed by connecting three processeshgkesionnection point, single inputting

process, multiple outputters.
Data'alue
data

Data‘Value

data

Figure 4. Any2AnyChannel formed by connecting four processes to glsinonnection point, multiple in-
putting and outputting processes.

The inclusion of other programming languages is expectdtte a positive effect on
application performance in CSPBuilder. Python usesGlabal Interpreter Lock(see sec-
tion 3.1.4) to access Python objects. This means that ordyRython thread is allowed to
access Python objects at any one time, limiting any advardgdginning threads that are not
dependent on each other in parallel. This lock can be freaemhwelRecuting external code im-
ported into Python, making it efficient to have certain pantsten in other languages. Also,
compiled languages are typically faster than interpred@dliages, which further improves
performance.

2.2. Channels and Connection Points

Processes connected by channels form a process networldifférent types of channels
available and how they work in PyCSP were introduced eailibe types of channels are
One20neChannel, One2AnyChannel, Any20neChannel andAay@hannel.

The One20neChannel is simple, because it can be repredanedingle line going
from one process to another. Representing the other typelsapinel is more complex. To
address this issue, we introduce connection points. Treséave any number of inbound
and outbound connections, to processes or other conngmbiots, enabling visualisation
of all channel types and for the ‘bending’ of channels. Exe®wf these can be seen in
figures 1, 2, 3 and 4.

Before any code can be generated, or process networksuctestythe connection graph
for each channel is reduced to contain at most one conngution. Starting with each con-
nection point, or node, that node’s neighbours are examitigtdat neighbour is another
node, as opposed to a process, the connections there ard toay current node. This is

354 R.M. Friborg and B. Vinter / CSPBuilder

done recursively, until only single connection points remand runs irD(n) time, wheren
is the number of connection points.

The visual tool does not currently indicate the type of dati@ied on a channel, but the
channels are typed (in Python). When trying to execute acwoisiected network, the tool
will generate an error.

2.3. Configuring a Component

When working with the visual tool some components will nezebé configured. These com-

ponents should have their individual configuration funadility specialised for their specific

purpose. A method is provided for the user to configure thepmmant and save this set-

ting in the. csp file, for later execution. A typical example of component figuration is

something that allows the user to specify the name of a datallhandle this, a structure is

defined that a component has to implement in order to provaméguration functionality.
We will now focus on the three issues of configuring a comptinen

1. Activate the configuration process.
2. Save the new configuration.
3. Load saved or default configuration on execution.

As mentioned in section 2.1.2, the Python implementatioa cdmponent is a file that
we import, with its own name-space. If this name-space hametibn namedet up(),
we call this function when the user configures the compongtite function does not exist,
the user will not be able to configure the component. To savednfiguration, any structure
returned by thisset up() function is serialized and saved in the componentsp file.
When executed, the component’s top-level function is mrediwith the previously saved
unserialized data structure. An example of a small conflyareomponent is shown in list-
ing 2.

It is left to the individual component programmer to decideatvuser interface will be
used to configure the component. In the example shown indi&j awx W ndows file dialog
is used to acquire input from the user.

The configuration data may be saved on several levels. Whekingovith CSPBuilder a
configuration can be saved on the working level or on any ldewesl, down to the rank where
the process implementation is located. As standard alldsanfermation from setting up
components is saved in the working process and not in thepsoeith the implementation.
This gives the possibility for different setups for everyphbgation, and necessary to create
components that are as general as possible. Saved conbgarate attached to the process
instance.

Configuration data with a higher rank will override any couofation data with a lower
rank. This has the desired effect: that any configured psoitessance of a component will
use the most recent configuration, as long as it is activatétei main application, and not as
part of any other component.

2.4. Process Replication

When building applications for concurrent scientific corpg, a common way to organize
the calculations, if the algorithms allow it, is to dividesthalculation into different jobs and
process these concurrently with workers. An applicatiat ttse 50 workers would quickly
become cumbersome in CSPBuilder because of the 50 proctasdss in the visual tool.
To address this issue, a process multiplier is created. VEhahling the process multiplier
on a process instance, the user must enter the desired nofireefications.

R.M. Friborg and B. Vinter / CSPBuilder 355

1 configurable = True
2 from comon inport x

3 inmport pylab
4

5 defaul t _data = None

6

7 # Configuration (called from builder. py)
8 def setup(data = default_data):

9

i mport wx
10 i nport os
11 wil dcard = "PNG (*.png)|*.png|" \
12 "ALL files (x.%)]x. "
13
14 saveDir = os.getcwd()
15
16 dlg = wx. Fi | eDi al og(
17 None, message="Choose an inmage file, containing the data",
18 def aul t Di r=o0s. get cwd(),
19 defaul tFile="",
20 wi | dcar d=wi | dcard,
21 styl e=wx. OPEN | wx. CHANGE DI R
22)
23
24 i f dl g. Showvbdal () == wx. | D K
25 pat hs = dl g. Get Pat hs()
26 data = paths[O].replace(saveDir + /', ')
27
28 os. chdi r (saveDir)
29 dl g. Dest roy()
30 return data
31

32 # CSP Process (called from execute. py)

33 def ReadFil eFunc(outO , data = default_data):
34 ing = pylab.inread(str(data))

35 out 0(i ng)

Listing 2. An example of a component that has configuration enabled

Any channels connected to a process instance where a rnailiiygls been set, can be
thought of as being multiplied by the corresponding amothé addition of extra channels
and processes is handled in the execution step.

On execution, a multiplier will cause the specified process instance to be created in
exact copies. If the process instance is an instance of &gsotetwork this network will be
multiplied in z exact copies, creating times the number of processes and channels in the
process network. When a process is multiplied, all conoastare multiplied as well and
will be turned into One2AnyChannels, Any20neChannels oy2dmyChannels.

3. Concurrent Execution

In this section we describe how a data structure, constiuntehe visual tool and saved to
. csp files, is executed successfully. This is done by convertiegiata structure into a struc-
ture resembling a CSP process network. The PyCSP librargdad to construct processes
and their connections, and finally to execute those prosesse

All functionality presented by the visual tool in section 2ishbe handled in the execu-
tion step. Here we will focus on the requirements relevargmdxecuting on a single system.
The non-trivial functionalities required include: chahpeisoning; multiplication of com-
ponents and their connections; importing external code raleasing th&lobal Interpreter
Lock

356 R.M. Friborg and B. Vinter / CSPBuilder
3.1. Building and Executing a Process Network

The overall goal is to build a network that will have a perfamoe similar to a network im-
plemented entirely in Python using PyCSP. This means thpaeding and network building
needs to be done before execution and cannot be done on defeantprove performance,
the tree data-structure describing processes is firstrfedteas shown in figure 5.

P
P8 P9 /1’9 8
P4
—P5
\ PI / p6
P3 P4 \ / \
P1 P2 P5 P6 P7
Tree data—structure > Flat data—structure

Figure 5. Data structures. In the left figure the tree data-strucsiilustrated, which represents the structure of
the CSP network when thecsp files are parsed. The black dots are a process structure afidgh represent
any number of connection structures. This data-structic®nverted into the flat data-structure illustrated in
the right figure. This is a one-way conversion and can not bersed.

An important feature in the construction of CSPBuilder hasrbto resemble the CSP
algebra in the visual tool. During execution it is equallypiontant to execute the CSPBuilder
application exactly as it was built, and to ensure that ehanyg is executed correctly. Here
we focus on guards, channel poisoning, importing externdecand releasing th&lobal
Interpreter Lock which comprise the difficult parts of executing a CSPBuilgieplication.

3.1.1. Multiplying Processes

Multiplying a process only makes sense in cases where a daitigruis embarrassingly
parallel, meaning that the problem state can be sent to @ps@nd the process can compute
a result using this state data, with no dependencies, anktisepartial result to a process that
collects all partial results into a final result. This desgasually called a producer-worker or
a producer-worker-collector setup and works best with enalsaingly parallel problems. A
dynamic orchestration of processes is used where the arnbwatkers can be varied easily
and you can have many more jobs than workers, making it etasigilize all processes. If a
computation can not be done in a dynamic orchestration detign it does not make sense
to use this multiplier flag. Instead a static design can b# tith specialized components
for doing a parallel computation with 4, 8, ... processes.

Another design where multiplying processes will be apjlieds in process networks
handling streams. Imagine 4 processes connected in seamg different actions on a
stream. If one of these steps is more time-consuming thaofahy others, it will slow down
the entire process. Multiplying this process is simple dha@rdware is available for the extra
process, it improves the overall performance of the prooessork.

3.1.2. Channel Poisoning

In CSP, without channel poisoning, a process can only textmionce it has fulfilled its
task. This creates a problem when a process does not know itvhaa fulfilled its task.

When constructing a network of communicating processed wiothe processes will be
the kind that will never know when they have fulfilled theiska They will read from their

R.M. Friborg and B. Vinter / CSPBuilder 357

input channels, compute and send the resulting data todbgut channels. These processes
combined will compute advanced problems and loop forevee @ight add a limit saying
that a process will do 500 loops and it can consider its taléikéd. In some applications this
is possible, but most applications can not define the neemtgusIprior to execution. Also
one might construct an extra set of channels that will conmoate a signal to the processes
letting them know that their task is fulfilled, and initiatslaut-down. Channel poisoning is a
clever method to do just that, but uses communication theretla that already exist. PyCSP
has support for channel poisoning, which is based on chaaigbning in JCSP [13,14].

Channel poisoning is implemented in PyCSP by raising anpiarein process execu-
tion, when a channel connected to this process is poisorfegleXception is caught by the
PyCSP library and poisons all other channels connectedg@thcess. After poisoning all
channels connected to the process, the process termimatewill eventually terminate all
processes and cause the entire application to exit as desire

If a process is currently waiting on a non-poisoned chartheh nothing will happen in
the process until it reads or writes from one of its poisortehaels. This might happen if a
process is waiting for an action and it is another procedshis poisoned the network and
desires that the application terminates. The applicatidirstall until the action happens and
the process writes or reads to the poisoned network.

For this reason when constructing CSPBuilder applicatibissimportant to consider
how an application is poisoned if the user wants the apjdicdad terminate at some point.

3.1.3. Importing External Code

The wizard for CSPBuilder described in section 2.1.4 presidn easy method for building
a component that calls into C, C++ or Fortran code. In thisiset¢he framework for using
external code in CSPBuilder is described.

Using the import statement in Python it is possible to impoodules. A module can be
a Python script, package or it can be a binary shared libaary) this case where we want to
use code from other programming languages.

For importing Fortran code the F2PY [8] project is used, Wwhgccapable of compiling
Fortran 77/90/95 code to a binary shared library, makingdeasible for Python. To import
C or C++ code the SWIG [7] project is used to compile to bindrgred libraries, similar
to F2PY. Both projects are wrappers that make it relativalyyeto handle data conversion
between Python and other languages.

All external code will reside in th&xt er nal folder in the CSPBuilder directory. A
module name specifies a sub-directorybxt er nal , where all source and interface files
are located. When compiled, the generated module will becsag a .'so’ file with the
module name as its file name in tk&t er nal directory. AMakefileis created for every
component and for the entiiet er nal directory, so that all modules can be compiled by
executingmake in theExt er nal directory. This is necessary when applications are moved
to different machines, where the architecture and shabpeari dependencies may vary.

3.1.4. Releasing the GIL

PyCSP [9] uses the Pythdreading.Threadclass to handle the execution of processes in
a CSP network. This class uses kernel threads to implemeltitthmeading which should
enable PyCSP to run concurrently on SMP systems. Unforlynabncurrent execution of
threads is prohibited by the GIL. The GIL (Global Interprdteck) is a lock that protects ac-
cess to Python objects. It is described in the documentafiBython threads [15]. Accessing
Python objects is not thread-safe and as such cannot be dooercently.

To be able to utilize the processors in an SMP system we wébese the GIL while
doing computations outside the domain of Python. In sec8idn3 it was explained how
external code can be imported into Python. When calling laddran code using F2PY the

358 R.M. Friborg and B. Vinter / CSPBuilder

GIL is released automatically and acquired again whenmetgrto Python. With C and C++
the situation is different, because here it is possible tese Python objects by using the
APl declared irpyt hon. h. Itis the responsibility of the component developer to rooess
Python objects while the GIL is released. Releasing andiangus done with the following
macros defined ipyt hon. h:

/'l Release G L
Py BEG N_ALLOW THREADS

/1l Acquire AL
Py_END_ALLOW THREADS

The effects of releasing the GIL can be seen in section 4. Iendygeriments are carried
out on an SMP system. We have now covered relevant issues butliding and execution of
a process network and can construct a CSP network fromdhke files created in the visual
tool.

3.2. Performance Evaluation

A classic performance test for CSP implementations indulde Commstime [16] test, which

is commonly used for benchmarking CSP frameworks. This edespthe time spent on a
single channel communication. In this test we will compée performance of the Comm-
stime test written in “Python with PyCSP”, with the CSPBeilctreated “Commstime” ap-
plication shown in figure 6. The CSPBuilder Commstime creat€SP network in PyCSP
and should perform the same, with perhaps only a slight @&stlof having to create the ex-
tra DataValueprocess. In table 1 the result of the tests are shown. Whepaang, there is

a slight difference where theataValueprocess is concerned, but this process is necessary to
initialise the network and cannot be removed from the appba. In “Python with PyCSP”

this data-value is a simple integer.

Successor
Cin Cout

Prefix

Delta2

Cin Cout Cin Cout0D
Prefixltem Coutl

DataValue
data

E Commstime_Consumer
Cin

Figure 6. Commstime. A CSPBuilder application that resembles the i@stime performance test.

Table 1. CSPBuilder Commstime. A comparison of the channel comnatioic time when using CSPBuilder
vs. only Python and PyCSP. The Commstime tests were exeontadPentium 4 2Ghz CPU.

Test Avg. time per. chan s)
Python and PyCSP 91.43
CSPBuilder 96.30

R.M. Friborg and B. Vinter / CSPBuilder 359

The results of CSPBuilder are as expected. The performaregtibon and PyCSP are
not competitive to many other CSP implementations, esfigci@ampilable languages. How-
ever, Python has many other advantages that in our caseightthe poor performance:

» Easy to use and very flexible.

» Can interact with most languages.

* Many scientists already know Python.

 Faster development cycle.

* Encourages programmers to write readable code.

» Compute intensive parts can be written in compilable laggaa

4. Experiments

In this section we test the performance of CSPBuilder usisgrple Prime Factorisation
experiment. The tests will be performed with a varied amadintorkers in the application.
Workers are the processes that, because of the design abitesp network, are meant to be
identical, run concurrently and compute sub-problems afger problem.

The experiments show that CSPBuilder is capable of exegapplications on an 8 core
SMP system. On the 8 core SMP system the GIL is released tolbdaabhtilize all cores
successfully.

4.1. Prime Factorisation

As a test case for executing applications in CSPBuilBeime Factorisationwas chosen.
It is simple and the computation problem can easily be chéngeun for varying times.
In the book by Donald Knuth [17], 5 different algorithms fosidg prime factorisation are
explained. The simple one is the least effective and is basedbingtrial division?. Trial
divisionis used in thelirect search factorisatiohalgorithm. The simple prime factorisation
algorithm was chosen for the following reasons:

 Parts of the algorithm can to be written in both C and Pythdre $implicity of the
algorithm is an advantage here.

* The nature of the algorithm makes it possible to usenthétiplier functionality in
CSPBuilder. The algorithm is easy to divide into jobs thatlsa computed by workers.

» With a simple algorithm it will be easier to identify the asfethat do not perform
well.

* The algorithm has limited communication, but still enoughtést various cases,
e.g. distributed vs. one machine.

A serialized Python implementation of tléect search factorisatioalgorithm can be
found at PLEAC (the Programming Language Examples Alike Cookbook). Thigémen-
tation is extended and adapted to a parallel version thatmpéement in the CSPBuilder
framework.

4.1.1. Implementation Details

The prime factorisationproblem is built as a component reading a number as input and
outputting a result. Sincdirect search factorisatioms an embarrassingly parallel problem,
the processing can be divided into jobs and handed over tod s@rkers as illustrated in
figure 7.

2Trial division: ht t p: / / mat hwor | d. wol f ram cont Tri al Di vi si on. ht m
3Direct search factorisatioht t p: / / mat hwor | d. wol f r am coni Di r ect Sear chFact ori zat i on. ht ni
4PLEAC:ht t p: // pl eac. sour cef or ge. net / pl eac_pyt hon/ nunbers. ht ni

360 R.M. Friborg and B. Vinter / CSPBuilder

PrimeFacController

numberin numberin resultOut
worlkerin workerQut

resultOut
PrimeFacWorlker
ctriln ctriCut

Figure 7. PrimeFac Component, consisting of a controller and a warketiplied 6 times.

On initialisation, the worker process sends an empty reésutie controller, to indicate
that it is ready for more work. The controller loops until @times have been found, sending
jobs to and collecting results from workers. If a non-emg@suit is received, the controller
waits for all workers to finish and, if any other workers alsalla non-empty result, the best
result is picked and the computation resumes.

If n is the number we are factorizing into primes, then all pritnage been found when
d >= y/n, where[2...d] are the divisors tested. All the prime factorisations:ofan be
foundin(2.../n].

Numbers that are particularly interesting to factorize iptimes are those larger than
the representation available generally in compilers (843bit and 64-bit). To work with
unsigned integers larger thaf446744073709551615, which is the limit for64bit registers,
some special operations are needed. Numbers larger theamebd software routines for
doing basic operations such as addition, subtraction,ipha#tion and division.

Python has internal support for large numbers which makesask of implementing
prime factorisation in Python much simpler. Creating thee@sion is a bit more tricky. An
external component is created using the wizard describsddtion 2.1.4. To test the imple-
mentation, a version working with numbers less thahits is created. All basic mathemati-
cal operations are then replaced with function calls toitiraty “LibTomMath™, which han-
dles large numbers. For transferring large numbers betiwgérmon and C a decimal string
format is used.

Finally we add a release for the GIL as described in sectit3which enables us to
maximize concurrent execution in the application.

4.1.2. Performance Evaluation

For our experiments the Merseffmaumber22??? — 1 is used. This number was picked by
trial and error, with the purpose to find a number where them@riactorisations could be
computed within 30 minutes for the least effective run. Alits have solved the problem:

n=2"%_1
= 6739986666787659948666753771754907668409286105635143120275902562303
=37 % 7% 223 % 1777 % 3331 * 17539 % 321679 % 25781083
% 26295457 * 319020217 x 616318177 * 107775231312019

In the performance test we compare the two implementatareswith the worker writ-
ten in Python and one with the worker as an external componstien in C which also
releases the GIL. In the C implementation we use the largebeuribrary LibTomMath
This large number implementation is actually slower thanlénge number implementation

SLibTomMath:htt p: // mat h. | i bt oncr ypt . cond
6Mersenne numbeht t p: / / mat hwor | d. wol f r am conl Mer senneNunber . ht m

R.M. Friborg and B. Vinter / CSPBuilder 361

in Python, shown in the tests where the “Python only” versiatperforms the “Python and
C” version for the case with only one worker. We base this tsion on the fact that the
sequential test for “Python and C” finishes in 1547 minutds|erhe “Python only” version
finishes in 1005 minutes. Both implementations spend ah@&xecution time in the worker
loop with very little communication between processes.

To compare the effects of adding more workers we examine teigh 1, 2, 4, 6 and 8
workers, shown in figure 8. The “Python and C” version perfomell, and by looking at the
speedup in figure 9, we see that performance scales almeatliinThis means that adding
double the amount of workers on a system with double the dgpdaubles the performance
and halves the run-time. The speedup shown in figure 9 is nit¢ gnear. The drop in
performance is caused by having to flush the workers eveny éimesult is found. Time is
then spent sending new jobs to workers. This overhead isesaaith the number of workers,
but is largely acceptable given the advantages and ben&fits approach. All benchmarks
were run on an 8 core SMP system.

The increase in run-time, when adding workers to the “Pytiradg” version in figure 8,
is caused by the unnecessary context-switching and coneatiion, since the added workers
will only steal CPU time from the first worker. The reason ttre run-time only increases
by a little even though many workers are added, is that therotlorkers are starved and
therefore will never ask for a job to compute.

1600

= 1 \/vorker (serial), Py1Hon and C —&—
. 1-8 workers (parallel), Python and C ---x---
1-8 workers (parallel), Python ——

1400 B

1200

1000

800 -

Runtime s

600
400 | D

200

Workers

Figure 8. Prime factorisation of the Mersenne numbét? — 1.

The sequential benchmark is based on single worker executhas is arranged by set-
ting the job size td 0'¢ iterations, which causes only one job to be sent to the singl&er
waiting. This benchmark provides a baseline referencesiguential execution speed in CSP-
Builder, and is used as the basis when calculating the speeidthe parallel benchmark
shown in figure 9.

These results show us that when constructing a scientifikfiear in CSPBuilder, it
is possible to get a reasonable performance and avoid theldglprogramming the com-
putationally intensive components in compilable langsa@&SPBuilder is usable for both
coarse-grained and fine-grained construction of wholeesyst With a coarse-grained pro-
cess network, we require the computation intensive compusrie execute concurrently in-
ternally, if a reasonable performance is desired. With adir@éned process network, internal
concurrency in the components is not necessary.prime factorisationmplementation is
somewhere in between a coarse-grained and fine-grainedmetw

362 R.M. Friborg and B. Vinter / CSPBuilder

12

1-8 workers (parallel), Pytr‘wn andC ——
linear speedup -------

10

Speedup
o

Workers

Figure 9. Speedup of prime factorisation of the Mersenne nurab&r — 1.

5. Related Work

Several different frameworks exist that can handle sdientiorkflows in different ways. To
mention some of the more common, there Eine Kepler Project[18], Knimé, LabVIEW?,
FlowDesignet® andTaverna!. The graphical tool of CSPBuilder is a quite similar to these
frameworks, though currently less functionality is aviaiéain CSPBuilder. CSPBuilder dif-
fers by having a basic graphical tool, that assists in canstrg a CSP network and manages
a component library. The power of the CSPBuilder framew@k In the communication
model based on CSP.

On the CSP side, Hilderink [19] has created a graphical niaddanguage, GML, in
which CSP networks can be defined.

6. Conclusions and Future Work

In this paper we have presented a graphical framework fogdieg and building concurrent
applications based on CSP. Ideally suited to current anddunulti-processor and multi-
core machines, CSPBuilder provides a simple and intuitieams for designing concurrent
applications. The graphical tool compiles directly to Rytlusing PyCSP, and supports trans-
parent integration of C, C++ and Fortran functions. Expenis have shown that near linear
speedup can be obtained on embarrassingly parallel apphsawhich demonstrates that
the CSPBuilder tool dos not impose any significant overheads

This paper has hinted at the distribution of CSPBuilder iappbns on networks of
workstations and other distributed memory architectubthough PyCSP does support net-
worked channels, some modifications to the basic channeliod@yCSP have been made as
part of the work presented here. Similar changes will nedetmade to the network channel
code in PyCSP before CSPBuilder is able to target thesetactinies.

It might also be interesting and useful to add more desueptisual representations of
channels, inspired by Hilderink, such as identifying geard@¢hoice on channel inputs to a
process.

"The Kepler Projectht t p: / / www. kepl er - pr oj ect . or g/
8Knime:ht t p: / / www. kni ne. or g/

SLabVIEW: ht t p: / / www. ni . cont | abvi ew
1F|owDesignerht t p: / / f | owdesi gner . sour cef or ge. net/
HTavernaht t p: // t aver na. sour cef or ge. net /

R.M. Friborg and B. Vinter / CSPBuilder 363

Although CSPBuilder is at a relatively early stage of depetent, we hope that it will
grow and flourish, eventually becoming a useful tool to aidr#ists in constructing scientific
workflows, as well as for the programming of CSP based coentiapplications generally.

References

[1] C. A. R. Hoare.Communicating Sequential ProcessBsentice Hall International, june 21, 2004 edition,
2004.

[2] The CSPBuilder Framework. http://www.migrid.orghdyCSPBuilder/.

[3] Description of Moores Law. http://www.intel.com/teablogy/mooreslaw/. Viewed Online January 2008.

[4] S. Borkar, P. Dubey, K. Kahn, D. Kuck, H. Mulder, S. Pawkkiy and J. Rattner. Platform 2015: Intel
Processor and Platform Evolution for the Next Decdd&l White Paper2005.

[5] Annoncement: 80 core CPU. http://www.intel.com/pressn/archive/releases/20070204comp.htm.
Viewed online september 2007.

[6] C. A. R. Hoare. Communicating sequential proces§€ssmnmun. ACM21(8):666-677, 1978.

[7] Simplified Wrapper and Interface Generator (SWIG). fittpvw.swig.org. Viewed online january 2007.

[8] F2PY - Fortran to Python interface generator. http:/iwscipy.org/F2py. Viewed online January 2008.

[9] Otto J. Anshus, John Markus Bjgrndalen, and Brian ViregCSP - Communicating Sequential Processes
for Python. In Alistair A. McEwan, Wilson Ifill, and Peter H. &¢h, editorsCommunicating Process
Architectures 200,/pages 229-248, jul 2007.

[10] Peter Y. H. Wong and Jeremy Gibbons. A Process-Algebipiproach to Workflow Specification and
Refinement. IProceedings of 6th International Symposium on Softwarefeasition March 2007.

[11] Peter Y. H. Wong. Towards A Unified Model for Workflow Pexses. Irist Service-Oriented Software
Research Network (SOSoRNet) Worksidanchester, United Kingdom, June 2006.

[12] Flow-Based Programming. http://en.wikipedia.ortfiFlow-basedprogramming. Viewed online
september 2007.

[13] Communicating Sequential Processes for Java. httpwul.cs.kent.ac.uk/projects/ofa/jcsp/. Viewed online
january 2008.

[14] Berhnard H.C Sputh and Alastair R. Allan. JCSP-Poissafe Termination of CSP Process Networks.
Communicating Process Architectures 20p&ges 71-107, 2005.

[15] Thread State and the Global Interpreter Lock. http&dpython.org/api/threads.html. Viewed online
january 2008.

[16] Neil C. Brown and Peter H. Welch. An Introduction to ther¢ C++CSP Library. In Jan F. Broenink and
Gerald H. Hilderink, editorsCommunicating Process Architectures 20p&8ges 139-156, sep 2003.

[17] Donald E. Knuth.The Art of Computer Programming - Volume 2 - Seminumeriogbhms Addison-
Wesley, third edition, 1998.

[18] Bertram Ludascher, llkay Altintas, Chad Berkley, Dan Higgins, Efragder, Matthew Jones, Edward A.
Lee, Jing Tao, and Yang Zhao. Scientific workflow managemeahtiae Kepler system: Research Articles.
Concurr. Comput. : Pract. Experl8(10):1039-1065, 2006.

[19] G.H. Hilderink. Graphical Modelling Language for Sjfging Concurrency Based on CSEE Proceed-
ings - Software150(2):108-120, 2003.

