Solving the Santa Claus
Problem

Jason L. Hurt & Matt Pedersen, University of Nevada, Las Vega

A Comparison of Various
Concurrent Programming
Techniques

What did we do?

* Implemented ‘The Santa Claus
Problem’ in a number of different
programming paradigms.

Why did we do that?

* Investigate a number of concurrent
programming techniques in order to
better understand issues related to

Readability
Writability
Reliability
Error Handling

How did we do it?

 Write code...

+ Consider

= Readability/Writability
- What adds/detracts to/from the readability/writabili
» How does error handling affect this
= Reliability
+ How do we know it works
» Model checking possibilities

+ Count lines and compare

The Santa Claus Problem

[Originally by John Trono]

e Santa Claus sleeps at the North Pole until
awakened by either all of the nine reindeer, or b
a group of three out of ten elves.

 |f awakened by the group of reindeer, Santa
harnesses them to a sleigh, delivers toys, and
finally unharnesses the reindeer who then go on
vacation.

* |[f awakened by a group of elves, Santa shows
them into his office, consults with them on toy
R&D, and finally shows them out so they can
return to work constructing toys.

Additional Constraints

* A waiting group of reindeer must be servec
by Santa before a waiting group of elves.

» Since Santa’s time is extremely valuable,
marshaling the reindeer or elves into a
group must not be done by Santa.

Correctness of a Solution

Message ordering: ensuring that events happen in ¢
at the right time.

Priority: ensuring that the group of Reindeer have
priority over any EIf groups that may be waiting at the
time.

Self-Organization: Santa cannot marshal a group of
Elves or Reindeer, these groups must organize amor
themselves without help from a Santa thread or proce

Synchronization: synchronization between various
processes

The usual freedom from deadlock, livelock, and
starvation.

Example: EIf Message Orderir

CONOTORWN =

Elf <id>: need to consult santa, :(

Santa: Ho-ho-ho ... some elves are herel
Santa: hello elf <id> ...

Elf <id>: about these toys ... ?7?7?

Santa: consulting with elves

Santa: OK, all done - thanks!

Elf <id>: OK ... we'll build it, bye ... (
Santa: goodbye elf <id> ...

Elf <id>: working, :)

[Note, Reindeer Messages can be interspersed between elf messages]

Example: Reindeer Message Orderii

© 00N Ok wbdh-=

Reindeer <id>: on holiday ... wish you were here, :)
Reindeer <id>: back from holiday ... ready for work, :
Santa: Ho-ho-ho ... the reindeer are back!

Santa: harnessing reindeer <id> ...

Santa: mush mush ...

Reindeer <id>: delivering toys ... la-di-da-di-da-di-da,
Santa: woah ... we're back home!

Reindeer: <id>: all toys delivered ... want a holiday, :(
Santa: un-harnessing reindeer <id> ...

Process Requirements

* The following processes are required:
10 elves
O reindeer
1 Santa

 These processes might be needed for
synchronization and self-organization
reasons.
Processes to implement barriers
Processes to implement waiting rooms etc.

The Paradigms & Models

* Shared Memory (Threads)
= Pthreads in C
= Java and Groovy
= \NET Threading library
= Polyphonic C#

« Message Passing
= MPI

* Process oriented
= JCSP
= Occam (Thanks to Peter Welch/Matt Pedersen)
= Groovy (Thanks to Jon Kerridge)

And now for something ...

 The next (many) slides will consider a

number of issues dealing with
= synchronization, priority, etc

in the different programming models
What is the issue
How does it effect the code

C & pthreads

* Issue: Synchronization

For thread synchronization, we define our own
barrier type using a mutex and a condition variable
from the pthread library.

Santa code that uses the barriers:

/* notify elves of “OK” message */

AwalitBarrier (&elfBarrierTwo);

/* wait for elves to say “ok we’ll builcd
it” */

AwalitBarrier(&elfBarrierThree);

C & pthreads

e |ssue: Priority

Mutexes and Condition Variables used for Reindeer
over Elves priority: M

pthread mutex lock(&santaMutex);
pthread cond signal(&santaCondition);
pthread mutex unlock(&santaMutex);

A shared memory counter must be used to keep track
of missed notifications.

Java Threads

 |ssue: Synchronization/Self organizat

Partial (and full) barrier

= There are no barriers in the standard Java
language N
= Solution: CyclicBarrier ‘<’
CyclicBarrier [library in Java 1.5] for thread synchronization
eliminates the need for explicit shared state among synchror

threads
Re-entrant - call to reset will allow the barrier to be used ac

Java Threads

* |ssue: Priority
Priority is achieved via wait/notify.

 The notify method is asynchronous, it will
complete even if a Thread with a correspondi
wait call is not currently ready to receive the
notification:

synchronized (m santaLock) {
m santaLock.notify();

Z

} <

[corresponding code exists on the Santa side]

Java Threads

* |ssue: Spurious Wakeups.

+ Due to spurious wakeups, JVM is permitted to remove thread
from wait sets without explicit instructions,which causes extra
logic around calls to wait: Q

while (!<some condition>) {

try {
obj.wait();

}
catch(InterruptedException ie) { }

}

¢+ Where <some condition> is set by notifying thread.

.NET Thread library

 [ssue: Synchronization

Very similar to mutex and condition variable
programming with pthreads. We build our own
Barrier type that can be used for synchronization
around Monitors. #%

Same problem as Java threads and pthreads, the
notification method, Monitor.pulse, is
asynchronous, so threads must share state for the

Santa thread to check for lost notifications €.

Polyphonic C# (Chords)

* |ssue: Synchronization

Associates a code body with a set of method headers.
The body of a chord can only run once all of the method:
In the set have been called. (o)

int f(int n) & async g(int m) {

}

A wait/notify mechanism that can prioritize notification:
can be implemented with shared memory if chords are
available to the programmer.

C & MPI

* Issue: Synchronization

Groups, or subsets of processes, can be formed at
runtime, so we create a group that consists of Santa a
all of the Reindeer: ié

MPI Group incl(groupWorld, TOTAL REINDEER+1,
santaReindeer, &groupSantaReindeer)

//create communicator based on subgroup
MPI Comm create(MPI COMM WORLD, groupSantaReindee
&commSantaReindeer) ;

C & MPI

* |[ssue: Synchronization (continued)
MPI_Barrier:

// wait for all reindeer to say *“delivering toys”
mpiReturnValue = MPI Barrier (commSantaReindeer);
CHECK _MPI ERROR(globalRank, mpiReturnValue);
printf("Santa: woah . . . we’'re back home!\n");

Indirect synchronization using MPI_Send/MPI_Recv:

mpiReturnValue = MPI Recv(&recv, 1, MPI INT,
MPI ANY SOURCE,
elfTag, MPI COMM WORLD,
&status);

C & MPI

* |ssue: Priority

Santa probes to see if the reindeer are ready
before servicing a group of elves or reindeer
with an asynchronous MPI Iprobe: #%

int checkReindeerFlag = 0;

mpiReturnValue = MPI Iprobe(REINDEER QUEUE PROC,
santaNotifyTag, MPI COMM WORLD
&checkReindeerFlag, &status);

We use separate processes to gather the
deer or the 3 of 10 elves

= REINDEER_QUEUE_PROC, ELF_QUEUE_PROC

JCSP

* Issue: Synchronization

Barriers with Channels (JCSP). Implemented barriers for
synchronizing Santa and a group of 3 Elves or Santa and the
Reindeer using 2 shared channels.

= MyBarrier holds the reading end of the channels and Sync
holds the writing end of the channels, only when all members of
the barrier have sent their first message will a process start to
send its second message to the reading end of the barrier:

// wait for Elves to say *“about these toys”
new Sync(outSantaElvesA, outSantaElvesB).run();
outReport.write("Santa: consulting with Elves . . .\n");

JCSP

* Issue: Synchronization (Continued)

+ Santa and the Reindeer use an array of
One20neChannelInt types for synchronization.
= Santa code:

//unharness a Reindeer
channelsSantaReindeer[id - 1].out().write(0);

= Reindeer code:

//wait to be unharnessed
inFromSanta.read();

JCSP

* |ssue: Priority

For priority, the JCSP version uses an
alternation which waits for guarded events

which can be prioritized: &°
final Guard[] altChans = { inFromReindeer, inKnock };
final Alternative alt = new Alternative(altChans);

switch (alt.priSelect()) {
//...santa logic here

}

So Far ... So Good

 We have seen examples of how to
deal with

Synchronization

= Full Barrier

= Partial Barrier

Priority

Language Specific Curiosities
= Lost notifications

= Spurious wakeups

Readability /Writability Facta

* Readability and Writablility are impacted by

Code to deal with undesirable concurrency behavior
= Spurious wakeups, lost notifications
Code Coupling
= Shared state
= Message tagging
Error handling
= More to come about that

Code to implement prioritized notifications
= PriALT
= MPI_Iprobe

Error Handling (Java)

* Checked exceptions in Java often require code that i
quite verbose, even for simple logging of the

exception. So a call to CyclicBarrier.await ()
looks like this:

//notify elves of “OK” message

try {
m elfBarrierTwo.await();

}

catch (InterruptedException e) {
e.printStackTrace(); (9

} g

catch (BrokenBarrierException e) {
e.printStackTrace();

}

Error Handling (Groovy)

* Use closures for exception handling logic
and thread related operations and a separate
method takes the thread library call logic and
wraps it in the exception handling logic:

//notify santa of "ok" message
performOperation(barrierAwait(m elfBarrierThree))

Error Handling (C#/pthread

* Both the .NET threading library and the
pthread library support errors, the
languages do not force handling of the
errors so the code is less verbose.

* In C# all exceptions are unchecked and
the pthread library call return error codes
which we (can) silently ignore.

P—

Error Handling (MPI)

 The MPI library does not force error handling, but due
to the distributed nature of MPI it is good practice to
check for errors to MPI library calls. We define a
macro CHECK MPI ERROR that will handle the errors

#define CHECK MPI ERROR(rank, errorId) { \
if(errorId != MPI SUCCESS) { \
printf("Global Rank #%d exiting, mpi error code: %d\n",
rank, errorld);
MPI Finalize(); \
return -1; \
FoA
} I
=)
[Note, Errors always imply termination, which can put the machine in an undesirabl
state]

Error Handling (JCSP)

* The parts of the JCSP library that we
used did not declare any checked
exceptions, so there is no error handling
code here.

* Occam/JCSP error handling on
concurrency errors: poison

Error Handling (General)

» Seems that most error handling is
language specific (try/catch etc)

» Concurrency errors often just
terminates the program
Poison in process oriented language

Ctrl+c & “clean the virtual parallel
machine” with MPI

Crash the program in Java/C etc.

Readability/Writability Resul

e Shared state increases coupling and makes
re-factoring more challenging ¢
* JVM spurious wakeups are nasty

e Java Thread.notify, pthread condition
variable, and .NET Monitor.pulse may
cause lost notifications, which forces shared
state to be used among threads

* MPI synchronous receives are nicer for
synchronizing than notify since the sent
message does not get lost.

Readability/Writability Resul

« JCSP channels increase modularization and
message integrity over MPl, must have
explicit reading or writing end of a channel.

* Error handling is non-trivial in all cases.:

Reliability

» Hard to reason about concurrent
code. &

« We could model check the code ¢

+ CSP & FDR
+ SPIN

‘lll

Model Checking

* JCSP/occam maps to CSP which can be
model checked.

Might turn into machine assisted
verification.

 MPI-Spin can be used to check various
aspects of MPI.

Has less of a correspondence to MPI than CSF
has to occam and JCSP

Line Count Comparison

aM M POl
L C Java Groovy MPI JCSF
Total G2 420 564 315 352 315
Synchronization'Communication 48 J A Al a4 7
Prevent Race Condition 14 5 t & MA S NA
ExceptionError Handling 5 0 177 15 41 0
Custom Barrier Implementation 42 35 NfA A M A A5
LI 145 NA N/A A MA NA

S5M = Shared Memory, DM = Distributed Memory, PO = Process Oriented

So what did we learn?

* Code that requires heavy
synchronization can be done better ir
MPI and even better in occam or JCSP
than with threads.

 Prioritization is made easier with the
prioritized alternation construct.

* Error handling is non-trivial in all
cases.

More Santa

* Jon Kerridge’s Groovy Fringe
presentation

» Peter Welch’s occam-n mobile
processes Fringe presentation

for all the code

Future Work

» Different problems

 More models/languages, Shared
Transactional Memory

» Feasibility/ease of model checking fol
the various models

Questions
e —

