
Solving the Santa Claus
Problem

A Comparison of Various
Concurrent Programming

Techniques

Jason L. Hurt & Matt Pedersen, University of Nevada, Las Vegas

2

What did we do?

• Implemented ‘The Santa Claus
Problem’ in a number of different
programming paradigms.

3

Why did we do that?

• Investigate a number of concurrent
programming techniques in order to
better understand issues related to
 Readability
 Writability
 Reliability
 Error Handling

4

How did we do it?

• Write code…
 Consider

 Readability/Writability
• What adds/detracts to/from the readability/writability
• How does error handling affect this

 Reliability
• How do we know it works
• Model checking possibilities

 Count lines and compare

5

The Santa Claus Problem
[Originally by John Trono]

• Santa Claus sleeps at the North Pole until
awakened by either all of the nine reindeer, or by
a group of three out of ten elves.

• If awakened by the group of reindeer, Santa
harnesses them to a sleigh, delivers toys, and
finally unharnesses the reindeer who then go on
vacation.

• If awakened by a group of elves, Santa shows
them into his office, consults with them on toy
R&D, and finally shows them out so they can
return to work constructing toys.

6

Additional Constraints

• A waiting group of reindeer must be served
by Santa before a waiting group of elves.

• Since Santa’s time is extremely valuable,
marshaling the reindeer or elves into a
group must not be done by Santa.

7

Correctness of a Solution

• Message ordering: ensuring that events happen in order
at the right time.

• Priority: ensuring that the group of Reindeer have
priority over any Elf groups that may be waiting at the
time.

• Self-Organization: Santa cannot marshal a group of
Elves or Reindeer, these groups must organize among
themselves without help from a Santa thread or process.

• Synchronization: synchronization between various
processes

• The usual freedom from deadlock, livelock, and
starvation.

8

Example: Elf Message Ordering

1. Elf <id>: need to consult santa, :(
2. Santa: Ho-ho-ho ... some elves are here!
3. Santa: hello elf <id> ...
4. Elf <id>: about these toys ... ???
5. Santa: consulting with elves
6. Santa: OK, all done - thanks!
7. Elf <id>: OK ... we’ll build it, bye ... :(
8. Santa: goodbye elf <id> ...
9. Elf <id>: working, :)

[Note, Reindeer Messages can be interspersed between elf messages]

9

Example: Reindeer Message Ordering

1. Reindeer <id>: on holiday ... wish you were here, :)
2. Reindeer <id>: back from holiday ... ready for work, :
3. Santa: Ho-ho-ho ... the reindeer are back!
4. Santa: harnessing reindeer <id> ...
5. Santa: mush mush ...
6. Reindeer <id>: delivering toys ... la-di-da-di-da-di-da, :)
7. Santa: woah ... we're back home!
8. Reindeer: <id>: all toys delivered ... want a holiday, :(
9. Santa: un-harnessing reindeer <id> ...

10

Process Requirements

• The following processes are required:
 10 elves
 9 reindeer
 1 Santa

• These processes might be needed for
synchronization and self-organization
reasons:
 Processes to implement barriers
 Processes to implement waiting rooms etc.

11

The Paradigms & Models

• Shared Memory (Threads)
 Pthreads in C
 Java and Groovy
 .NET Threading library
 Polyphonic C#

• Message Passing
 MPI

• Process oriented
 JCSP
 Occam (Thanks to Peter Welch/Matt Pedersen)
 Groovy (Thanks to Jon Kerridge)

12

And now for something …

• The next (many) slides will consider a
number of issues dealing with

 synchronization, priority, etc
in the different programming models
 What is the issue
 How does it effect the code

13

C & pthreads

• Issue: Synchronization
 For thread synchronization, we define our own

barrier type using a mutex and a condition variable
from the pthread library.

 Santa code that uses the barriers:
 /* notify elves of “OK” message */

 AwaitBarrier(&elfBarrierTwo);
 /* wait for elves to say “ok we’ll build
it” */
 AwaitBarrier(&elfBarrierThree);

14

C & pthreads

• Issue: Priority
 Mutexes and Condition Variables used for Reindeer

over Elves priority:

 pthread_mutex_lock(&santaMutex);
 pthread_cond_signal(&santaCondition);

 pthread_mutex_unlock(&santaMutex);

 A shared memory counter must be used to keep track
of missed notifications.

15

Java Threads

• Issue: Synchronization/Self organization
 Partial (and full) barrier

 There are no barriers in the standard Java
language

 Solution: CyclicBarrier
• CyclicBarrier [library in Java 1.5] for thread synchronization

eliminates the need for explicit shared state among synchronizing
threads

• Re-entrant - call to reset will allow the barrier to be used again

16

Java Threads

• Issue: Priority
 Priority is achieved via wait/notify.

• The notify method is asynchronous, it will
complete even if a Thread with a corresponding
wait call is not currently ready to receive the
notification:

 synchronized (m_santaLock) {
 m_santaLock.notify();
 notifiedCount++;
 }

[corresponding code exists on the Santa side]

17

Java Threads

• Issue: Spurious Wakeups.
 Due to spurious wakeups, JVM is permitted to remove threads

from wait sets without explicit instructions,which causes extra
logic around calls to wait:

 while (!<some condition>) {
 try {

obj.wait();
 }
 catch(InterruptedException ie) { }

 }

 Where <some condition> is set by notifying thread.

18

.NET Thread library

• Issue: Synchronization
 Very similar to mutex and condition variable

programming with pthreads. We build our own
Barrier type that can be used for synchronization
around Monitors.

 Same problem as Java threads and pthreads, the
notification method, Monitor.pulse, is
asynchronous, so threads must share state for the
Santa thread to check for lost notifications

19

Polyphonic C# (Chords)

• Issue: Synchronization
 Associates a code body with a set of method headers.

The body of a chord can only run once all of the methods
in the set have been called.
int f(int n) & async g(int m) {
 …
}

 A wait/notify mechanism that can prioritize notifications
can be implemented with shared memory if chords are
available to the programmer.

20

C & MPI

• Issue: Synchronization
 Groups, or subsets of processes, can be formed at

runtime, so we create a group that consists of Santa and
all of the Reindeer:

 MPI_Group_incl(groupWorld, TOTAL_REINDEER+1,
 santaReindeer, &groupSantaReindeer);

 //create communicator based on subgroup
 MPI_Comm_create(MPI_COMM_WORLD, groupSantaReindeer,
 &commSantaReindeer);

21

C & MPI

• Issue: Synchronization (continued)
 MPI_Barrier:

 // wait for all reindeer to say “delivering toys”
 mpiReturnValue = MPI_Barrier(commSantaReindeer);
 CHECK_MPI_ERROR(globalRank, mpiReturnValue);
 printf("Santa: woah . . . we’re back home!\n");

 Indirect synchronization using MPI_Send/MPI_Recv:

 mpiReturnValue = MPI_Recv(&recv, 1, MPI_INT,
 MPI_ANY_SOURCE,
 elfTag, MPI_COMM_WORLD,

 &status);

22

C & MPI

• Issue: Priority
 Santa probes to see if the reindeer are ready

before servicing a group of elves or reindeer
with an asynchronous MPI_Iprobe:

 int checkReindeerFlag = 0;
 mpiReturnValue = MPI_Iprobe(REINDEER_QUEUE_PROC,

 santaNotifyTag, MPI_COMM_WORLD,
 &checkReindeerFlag, &status);

 We use separate processes to gather the 9
deer or the 3 of 10 elves
 REINDEER_QUEUE_PROC, ELF_QUEUE_PROC

23

JCSP

• Issue: Synchronization
 Barriers with Channels (JCSP). Implemented barriers for

synchronizing Santa and a group of 3 Elves or Santa and the
Reindeer using 2 shared channels.
 MyBarrier holds the reading end of the channels and Sync

holds the writing end of the channels, only when all members of
the barrier have sent their first message will a process start to
send its second message to the reading end of the barrier:

 // wait for Elves to say “about these toys”
 new Sync(outSantaElvesA, outSantaElvesB).run();
 outReport.write("Santa: consulting with Elves . . .\n");

24

JCSP

• Issue: Synchronization (Continued)
 Santa and the Reindeer use an array of
One2OneChannelInt types for synchronization.
 Santa code:

 //unharness a Reindeer
 channelsSantaReindeer[id - 1].out().write(0);

 Reindeer code:

 //wait to be unharnessed
 inFromSanta.read();

25

JCSP

• Issue: Priority
 For priority, the JCSP version uses an

alternation which waits for guarded events
which can be prioritized:

 final Guard[] altChans = { inFromReindeer, inKnock };
 final Alternative alt = new Alternative(altChans);

 switch (alt.priSelect()) {
 //...santa logic here

 }

26

So Far … So Good

• We have seen examples of how to
deal with
 Synchronization

 Full Barrier
 Partial Barrier

 Priority
 Language Specific Curiosities

 Lost notifications
 Spurious wakeups

27

Readability/Writability Factors

• Readability and Writability are impacted by
 Code to deal with undesirable concurrency behavior

 Spurious wakeups, lost notifications
 Code Coupling

 Shared state
 Message tagging

 Error handling
 More to come about that ….

 Code to implement prioritized notifications
 PriALT
 MPI_Iprobe

28

Error Handling (Java)

• Checked exceptions in Java often require code that is
quite verbose, even for simple logging of the
exception. So a call to CyclicBarrier.await()
looks like this:

 //notify elves of “OK” message
 try {

 m_elfBarrierTwo.await();
 }
 catch (InterruptedException e) {
 e.printStackTrace();
 }
 catch (BrokenBarrierException e) {
 e.printStackTrace();

 }

29

Error Handling (Groovy)

• Use closures for exception handling logic
and thread related operations and a separate
method takes the thread library call logic and
wraps it in the exception handling logic:

 //notify santa of "ok" message
 performOperation(barrierAwait(m_elfBarrierThree))

30

Error Handling (C#/pthreads)

• Both the .NET threading library and the
pthread library support errors, the
languages do not force handling of the
errors so the code is less verbose.

• In C# all exceptions are unchecked and
the pthread library call return error codes
which we (can) silently ignore.

31

Error Handling (MPI)

• The MPI library does not force error handling, but due
to the distributed nature of MPI it is good practice to
check for errors to MPI library calls. We define a
macro CHECK_MPI_ERROR that will handle the errors:

 #define CHECK_MPI_ERROR(rank, errorId) { \
 if(errorId != MPI_SUCCESS) { \

 printf("Global Rank #%d exiting, mpi error code: %d\n",
 rank, errorId); \
 MPI_Finalize(); \
 return -1; \
 } \

 }

[Note, Errors always imply termination, which can put the machine in an undesirable
state]

32

Error Handling (JCSP)

• The parts of the JCSP library that we
used did not declare any checked
exceptions, so there is no error handling
code here.

• Occam/JCSP error handling on
concurrency errors: poison

33

Error Handling (General)

• Seems that most error handling is
language specific (try/catch etc)

• Concurrency errors often just
terminates the program
 Poison in process oriented language
 Ctrl+c & “clean the virtual parallel

machine” with MPI
 Crash the program in Java/C etc.

34

Readability/Writability Results

• Shared state increases coupling and makes
re-factoring more challenging

• JVM spurious wakeups are nasty
• Java Thread.notify, pthread condition

variable, and .NET Monitor.pulse may
cause lost notifications, which forces shared
state to be used among threads

• MPI synchronous receives are nicer for
synchronizing than notify since the sent
message does not get lost.

35

Readability/Writability Results

• JCSP channels increase modularization and
message integrity over MPI, must have
explicit reading or writing end of a channel.

• Error handling is non-trivial in all cases.

36

Reliability

• Hard to reason about concurrent
code.

• We could model check the code
 CSP & FDR
 SPIN
 …

37

Model Checking

• JCSP/occam maps to CSP which can be
model checked.
 Might turn into machine assisted

verification.
• MPI-Spin can be used to check various

aspects of MPI.
 Has less of a correspondence to MPI than CSP

has to occam and JCSP

38

Line Count Comparison

39

So what did we learn?

• Code that requires heavy
synchronization can be done better in
MPI and even better in occam or JCSP
than with threads.

• Prioritization is made easier with the
prioritized alternation construct.

• Error handling is non-trivial in all
cases.

40

More Santa

• Jon Kerridge’s Groovy Fringe
presentation

• Peter Welch’s occam-π mobile
processes Fringe presentation

• www.santaclausproblem.net
for all the code

41

Future Work

• Different problems
• More models/languages, Shared

Transactional Memory
• Feasibility/ease of model checking for

the various models

42

Questions

