
Communicating Process Architectures 2008
P.H. Welch et al. (Eds.)
IOS Press, 2008
c© 2008 The authors and IOS Press. All rights reserved.

381

Solving the Santa Claus Problem:
a Comparison of Various Concurrent

Programming Techniques
Jason HURT and Jan B. PEDERSEN

School of Computer Science, University of Nevada

jleehurt@gmail.com, matt@cs.unlv.edu

Abstract. The Santa Claus problem provides an excellent exercise in concurrent pro-
gramming and can be used to show the simplicity or complexity of solving problems
using a particular set of concurrency mechanisms and offers a comparison of these
mechanisms. Shared-memory constructs, message passing constructs, and process ori-
ented constructs will be used in various programming languages to solve the Santa
Claus Problem. Various concurrency mechanisms available will be examined and an-
alyzed as to their respective strengths and weaknesses.

Keywords. concurrency, distributed memory, shared memory, process-oriented programming.

Introduction

Concurrent or parallel computing has always been an area of interest in the computer sci-
ence community. Historically computer clusters and multiprocessor computers that provide
hardware environments for parallel applications were expensive and used only in highly spe-
cialized development environments such as weather prediction, environmental modeling, and
nuclear simulation. With the popularity of the Internet, distributed applications have become
more widely used. PlanetLab [1] and BOINC [2] which powers SETI [3] are two examples
of this. There are an increasing number of developer APIs that have a distributed architecture
and applications that are implemented as a set of disparate, functional components connected
via web services [4,5]. In addition, due to the physical limitations of silicon, chip makers such
as Intel and AMD have begun moving towards multi-processor/multi-core architectures as
opposed to increasing the clock speed of a single CPU, and consequently parallel computing
is moving further into mainstream application development [6]. In the past, the increase in
clock speed for single CPU systems meant that programmers got “free” speedup in their ap-
plications with every new generation of CPU. Now, programmers have to find ways to utilize
multiple-CPU architectures in order to improve application performance. Simply moving an
old sequential program to a multi-core architecture will not utilize the full potential of the
processor. A number of ways to write parallel programs will be examined here, as well as the
advantages and disadvantages of each method.

First, we will look at the popular shared memory model (threads). Next, a message pass-
ing architecture known as MPI will be explored, and lastly, a process oriented approach us-
ing the JCSP library for Java is examined. The metrics for comparing these models will be
the readability, writability, and reliability of programs written using each model. In order to
compare the metric properties of the models, a simple description of a problem is explored
that lends itself naturally to a concurrent solution, the Santa Claus Problem, introduced by



382 J. Hurt and J.B. Pedersen / Solving the Santa Claus Problem

John Trono in 1994 [7]. In addition to the Polyphonic C# [8] and Ada [9] versions, solutions
to the problem have been written in Java using Java threads, Groovy using Java threads, C#
using the .NET threading mechanism, C using pthreads [10], C using MPI, and Java using
JCSP.

1. Problem Definition

The Santa Claus problem is stated in [7] as follows: “Santa Claus sleeps at the North Pole
until awakened by either all of the nine reindeer, or by a group of three out of ten elves. He
then performs one of two indivisible actions. If awakened by the group of reindeer, Santa
harnesses them to a sleigh, delivers toys, and finally unharnesses the reindeer who then go
on vacation. If awakened by a group of elves, Santa shows them into his office, consults with
them on toy R&D, and finally shows them out so they can return to work constructing toys.
A waiting group of reindeer must be served by Santa before a waiting group of elves. Since
Santa’s time is extremely valuable, marshaling the reindeer or elves into a group must not be
done by Santa.”

1.1. Correctness

As noted by Ben-ari [9], John Trono’s solution using semaphores is incorrect because it
incorrectly “assumes that a process released from waiting on a semaphore will necessarily be
scheduled for execution.” In a concurrent context, correctness refers to a system that is free
from the possibility of deadlocks, livelocks, and race conditions. The system in question may
have bugs, but they will not be due to the concurrency of the system. Note that the original
problem description is up for interpretation, so in order to test the correctness of our solutions
we will add a set of messages that can be reported by Santa, the Elves, and the Reindeer.
Each message is an indication of the state of a particular entity: Santa, an Elf, or a Reindeer.
In this way a visual representation of the states of the entities at runtime is available for
debugging and testing purposes. We will impose a partial ordering on the union of three sets
of messages: Santa, Elf, and Reindeer messages. The union set of these messages, which we
will call S, is the set of all messages that the program can possibly report. In the real world,
complex systems may be controlled as opposed to printing messages to a console. Keep in
mind that the ordering of these messages may be important in order to not cause chaos to the
system under control, and therefore the correctness of a solution would be necessary in order
to trust a system is free from bugs due to concurrency. Let SR be the subset of S that includes
the set of messages that the Reindeer can print and that Santa can print while dealing with
the Reindeer. We define here a message ordering on SR, and by the transitivity property we
get a complete ordering on SR:

1. Reindeer < id >: on holiday . . . wish you were here, :)
2. Reindeer < id >: back from holiday . . . ready for work, :(
3. Santa: Ho-ho-ho . . . the reindeer are back!
4. Santa: harnessing reindeer < id > . . .
5. Santa: mush mush . . .
6. Reindeer < id >: delivering toys
7. Santa: woah . . . we’re back home!
8. Reindeer: < id >: all toys delivered
9. Santa: un-harnessing reindeer < id > . . .

In addition to the above, all Reindeer must report 2 before Santa can report 3, Santa must
report 4 to all Reindeer before reporting 5, and all Reindeer must report 6 before Santa can
report 7.



J. Hurt and J.B. Pedersen / Solving the Santa Claus Problem 383

Let SL be the subset of S that includes the set of messages that the Elves can print and
that Santa can print while dealing with the Elves. We define here a message ordering on SL,
and by the transitivity property we get a complete ordering on SL:

1. Elf < id >: need to consult santa, :(
2. Santa: Ho-ho-ho . . . some elves are here!
3. Santa: hello elf < id > . . .
4. Elf < id >: about these toys . . . ???
5. Santa: consulting with elves . . .
6. Santa: OK, all done - thanks!
7. Elf < id >: OK . . . we’ll build it
8. Santa: goodbye elf < id > . . .
9. Elf < id >: working, :)

In addition, three Elves must report 2 before Santa can report 3 and the same three Elves
must report 5 before Santa can report 6.

Note that the intersection of SR and SL is the empty set. In addition to the message
ordering, the Reindeer have priority over the elves, and only three Elves at a time may consult
with Santa. Moreover, freedom from deadlock and livelock are necessary; no process may
halt its execution indefinitely and the states of the entities must proceed as per the problem
description.

2. Shared Memory

Shared memory solutions are often implemented in the form of threads. The thread model
is a shared memory model that provides a way for a program to split itself into two or more
tasks of execution. Since the threads operate on shared data, the programmer must be careful
not to modify a piece of data that another thread may be reading or modifying at the same
time. Constructs such as barriers, locks, semaphores, mutexes, and monitors can be used for
this purpose and for two or more threads to synchronize at a certai n point.

Threads on a single processor system will be swapped in and out very fast by the un-
derlying operating system and scheduled for execution in an interleaved manner, giving the
appearance of parallelism, while those in multi-processor or multi-core systems will actually
run in parallel (i.e., true parallelism). In order to ensure message ordering, threads must have
a way to synchronize (i.e., pause at specific points of execution).

Shared memory models do not offer an easy way to derive a correctness proof for the
solutions; heavy testing is usually done on the system to build confidence, but often possi-
ble paths of execution are missed in testing environments. Formally, to prove correctness,
all possible interleavings must be considered. To make matters worse, the scheduling mech-
anisms of the Java Virtual Machine (JVM) [11], Common Language Runtime (CLR) [12],
Linux, Solaris, and Windows are complex and do not offer much guarantee in terms of when
a thread is interrupted and when it will get its next burst of CPU time. Thread libraries are
available in many popular programming languages. The focus here is on C, Java, and C#.

2.1. Java

In Java the threading mechanism is tightly coupled to the language. Every object has an im-
plicit monitor that can be used both as a locking mechanism and a wait/notify mechanism. In
addition, method signatures may contain the synchronized keyword, which tell the JVM to
use the current object’s implicit monitor for locking to facilitate transactional method calls, or
methods that will ensure the atomicity of their instruction sets with respect to other methods
of the same object that contain the synchronized keyword.



384 J. Hurt and J.B. Pedersen / Solving the Santa Claus Problem

A thread library is available for Java that is based on the threading mechanism of the
Java Virtual Machine. Sun [13] added this library in Java 1.5 to help ease the pains of writ-
ing multi-threaded code. Of particular interest with respect to thread synchronization is the
addition of a CyclicBarrier [14] type whose job it is to provide a re-entrant barrier for multi-
ple threads to synchronize on. Here is code from the Santa thread that shows the use of two
CyclicBarrier objects to synchronize with Elf threads:

// notify elves of "OK" message
try {

m_elfBarrierTwo.await();
}
catch (InterruptedException e) {

e.printStackTrace();
}
catch (BrokenBarrierException e) {

e.printStackTrace();
}

// wait for elves to say "ok we’ll build it"
try {

m_elfBarrierThree.await();
}
catch ... // exception handling logic

And the corresponding Elf code:

// wait for santa to say "ok all done"
try {

m_elfBarrierTwo.await();
}
catch ... // exception handling logic

System.out.println("Elf " + this + ": OK ... we’ll build it\n");

// notify santa of "ok" message
try {

m_elfBarrierThree.await();
}
catch ... // exception handling logic

Note the two checked exceptions that the await() method of a CyclicBarrier can throw,
InterruptedException and BrokenBarrierException. Proper handling of these excep-
tions requires additional effort if the program needs to recover from errors due to single points
of failure in a single thread. Handling exceptions from failed calls to the thread library can
become increasingly difficult as an application grows in size. In our Java solution if either of
the CyclicBarrier exceptions are thrown in a single thread, a stack trace will be printed but the
other threads will not be made aware of this failure, they will continue operating. However, if
the system depended on the thread that failed it will eventually come to a state of deadlock. In
this case, if the Santa thread fails, the program eventually comes to a halt, but if a single Elf
thread fails and it is not in the waiting queue at the time, the program will continue operating
minus the failed Elf. If the desired behavior is to restore threads to an acceptable state then
additional thread logic would have been needed.

Although CyclicBarrier has eliminated the need for shared state when synchronizing,
a wait and notify mechanism is needed when either a group of Elves or a group of Reindeer
is ready to see Santa. Due to the asynchronous nature of the Object.notify() method, in the



J. Hurt and J.B. Pedersen / Solving the Santa Claus Problem 385

Java version Santa must query the Elves and Reindeer in case of missed notifications. This
leads to code that is more coupled among multiple threads than we would prefer:

if (elfQueue.size() % 3 == 0) {
synchronized (m_santaLock) {

m_santaLock.notify();
notifiedCount++;

}
}

In addition, a JVM implementation is permitted to perform spurious wake-ups in order
to remove threads from wait sets and thus enable resumption without explicit instructions
to do so [11]. This requires all calls to Object.wait() to have extra logic to check if the
condition the thread was waiting on is true or it was a spurious wakeup by the JVM. This
hurts the readability of the wait/notify mechanism. It also requires both the notifying thread
and waiting thread to share some state so that the notifier can set a condition before notifying,
and the waiting thread can check the condition in the case of a wakeup.

2.2. Pthreads

Pthreads are a POSIX standard for threads. Pthread libraries are available for a number of
operating systems including Windows, Linux, and Solaris. Pthreads provide developers ac-
cess to mutexes, semaphores, and monitors for thread synchronization. For the Santa Claus
problem a custom partial barrier implementation similar to CyclicBarrier in Java was im-
plemented in order to improve the readability of the solution and because the library does not
have a built-in partial barrier implementation. For the synchronization between Santa and the
Reindeer, the pthread libraries’ join function is sufficient, but the join function cannot be
used for Santa to wait for a group of elves because Santa cannot foresee which three elves
will need to consult with him. A simple implementation of a barrier can be defined with the
following:

void AwaitBarrier(barrier_t *barrier) {
/* ensure that only one thread can execute this method at a time */
pthread_mutex_lock(&barrier->mutex);
/* if this barrier has reached its total count */
if (++barrier->currentCount == barrier->count) {

/* notify all threads waiting on the barrier’s condition */
pthread_cond_broadcast(&barrier->condition);

}
else { /* at least one thread has not entered this barrier */

/* wait on the barrier’s condition */
pthread_cond_wait(&barrier->condition, &barrier->mutex);

}
/* allow other threads to enter the body of AwaitBarrier */
pthread_mutex_unlock(&barrier->mutex);

}

A mutex and a condition variable from the library are used in order to synchronize a
group of threads. Each thread will wait on a condition variable, and the last thread to syn-
chronize will notify each of the threads waiting on the condition variable. A mutex is used to
ensure no two threads will ever be in the body of AwaitBarrier at a time. This will ensure
that exactly N − 1 threads in the group will wait for the condition, and only the N th thread
will notify the group of waiting threads. Here is a portion of the Santa thread code that uses
the barriers to ensure message ordering:



386 J. Hurt and J.B. Pedersen / Solving the Santa Claus Problem

/* notify elves of "OK" message */
AwaitBarrier(&elfBarrierTwo);

/* wait for elves to say "ok we’ll build it" */
AwaitBarrier(&elfBarrierThree);

Here is the corresponding code for the Elf threads:

/* wait for santa to say "ok all done" */
AwaitBarrier(&elfBarrierTwo);

printf("Elf %d: OK ... we’ll build it\n", elfId);

/* notify santa of "ok" message */
AwaitBarrier(&elfBarrierThree);

In addition to thread synchronization to ensure message ordering, the program must also
satisfy the “three elves at a time” constraint. The Elf threads share state in the form of a
counter so that every third Elf in the waiting room will go and wake Santa. When one thread
signals another the signal will be lost if the thread on the receiving end of the signal was not
currently waiting on the condition. This can be handled a number of ways. Here, as in the Java
version, Santa queries the Elves to see if they are ready in case Santa was with the Reindeer
and at the time an Elf notification was sent. A different implementation could remove the
query and instead have a waiting group of Elves send notifications to Santa until he responds
to one. An Elf thread uses the following code to wake Santa:

pthread_mutex_lock(&santaMutex);
pthread_cond_signal(&santaCondition);
pthread_mutex_unlock(&santaMutex);

Missed notifications are recorded via use of a shared memory counter. Both the Santa
and the Elf code must be aware of the fact that Santa needs a way to query for a group of
three elves, which leads to tightly coupled code between the Santa and Elf threads.

2.3. C#

.NET provides a threading library that is tied to the memory model of the Common Lan-
guage Runtime (CLR). The memory model for the CLR [12] provides an additional layer of
abstraction over the underlying operating system’s memory model, including its own thread
scheduling mechanism. Unlike Java, C# objects do not have implicit monitor associations. In
the C# version we use the provided threading library to write a barrier for thread synchro-
nization. A monitor object is used for locking and unlocking of code blocks:

public void Await() {
// ensure only one thread is in this method at a time
Monitor.Enter(_awaitLock);

// if all threads have arrived at the barrier
if (++_lockValue == _count) {

// notify the earlier threads waiting on this barrier
Monitor.PulseAll(awaitLock);

} else { // at least one thread has not entered the barrier
// wait for a notification
Monitor.Wait(awaitLock);

}



J. Hurt and J.B. Pedersen / Solving the Santa Claus Problem 387

// allow another thread to call Await()
Monitor.Exit(awaitLock);

}

Here is a sample usage of the barriers in the Santa code:

// harness reindeer
deerBarrierOne.Await();

// wait for all deer to say "delivering toys"
deerBarrierTwo.Await();

And the corresponding reindeer code:

// wait for santa to harness us
Santa.deerBarrierOne.Await();

m_Form.WriteMessage("Reindeer " + this.ToString()
+ ": delivering toys\n");

// notify santa of "delivering toys"
Santa.deerBarrierTwo.Await();

Note that in both the C and the C# barrier implementation a wait/notify mechanism is
used along with a shared variable to keep track of state. The wait/notify behaves like an
asynchronous messaging system, in that a thread may notify even if there is a thread that is
not waiting yet, so lost notifications are possible. Here we use a monitor to avoid this in our
barrier implementation, in the C version a mutex and a condition variable are used for the
same purpose. The monitor ensures that only the N th thread will call notify after the other
N − 1 threads are waiting for notification.

2.4. Groovy

Groovy [15] is touted as “an agile dynamic language for the Java Platform”. Groovy compiles
to Java byte code and adds a number of features not present in Java, most notably dynamic
typing and closures. Closures are anonymous chunks of code that may take arguments, return
a value, and reference and use variables declared in its surrounding scope. Although Groovy
does not expand upon Java’s threading mechanism, the Groovy version is more readable than
the Java version due to the use of closures to remove the replication of exception handling
code. Thread related calls are wrapped in closures, allowing them to be passed to methods or
other closures which use a different closure for the exception handling logic. Here, a method
named performOperation is used which takes a closure as an argument that is the operation
to be executed and uses a member variable closure which handles the exception handling
logic. In this case we are using a closure named simpleExceptionHandler which simply
prints the reason for the exception to the console. More complicated exception handlers can
be defined in a similiar manner. Here is the Groovy version of the above Java Elf code:

// wait for santa to say "ok all done"
barrierAwait(m_elfBarrierTwo)

println("Elf " + id + ": OK ... we’ll build it\n")

// notify santa of "ok" message
barrierAwait(m_elfBarrierThree)



388 J. Hurt and J.B. Pedersen / Solving the Santa Claus Problem

2.5. Differences

Due to possible spurious wake-ups by a JVM, whenever a call to Object.wait() is made in
the Java and Groovy versions, condition checking code, typically in the form of a while loop,
must be added in order to differentiate between a call to Object.notify() and an unexpected
spurious wakeup. Spurious wake-ups are cited in the Java Language Specification [11], this
may be due to a bug in the JVM or a flaw in operating systems such as older versions of
Linux that used LinuxThreads [16]. In the description of the Native POSIX Thread Library
for Linux [17] spurious wake-ups and “the misuse of signals to implement synchronization
primitives” add to the problems of the Linux Threads library, concluding that “delivering
signals is a very heavy-handed approach to ensure synchronization.”

With regards to error handling, the Java and Groovy versions must do something with
the checked exceptions that a CyclicBarrier can throw. These problems make the Java code
less readable and even more so if the program must attempt to recover from these types of
errors. Often the simplest, and therefore easiest to read, solution is to restart all threads in
the program. Thanks to closures in Groovy some of the readability can be recovered. In the
C and C# versions, the respective library call errors are ignored, as these languages do not
require the handling of error conditions at compile time.

In Java, threads are more tightly coupled to the language than C#. Aside from this,
Java’s spurious wake-ups, C#’s lack of a built-in partial barrier, and the lack of checked
exceptions in C#, the Java and C# differences are syntactic. One example is Java’s use of the
synchronized keyword which is comparable to C#’s explicit Monitor type. An advantage
of the pthread library is the ability to distinguish between the condition and mutex primitives.
This decouples the locking mechanism from the notification mechanism.

2.6. Ada

A solution to the problem was proposed in Ada [9] that used two constructs that were added
to Ada 95 [18]. One was a construct that enables a group of processes to be collected and
then released together, similar to the barriers that were presented above. The second is a
rendezvous that enables a process to wait simultaneously for more than one possible event.
This can be done in Java with Object.wait(), C# with Monitor.Wait(), and C with a mutex
and condition variable.

2.7. Polyphonic C#

A solution which claims to be easier to reason about than the Ada solution has also been
written using Polyphonic C# [8]. Here a concept known as a chord is used, which associates
a code body with a set of method headers, and the body of a chord can only run once all of the
methods in the set have been called. This solution shows how a wait/notify mechanism that
can prioritize notifications can be implemented with shared memory if chords are available
to the programmer.

2.8. Haskell STM

A solution to the problem has been written in Haskell using Software Transactional Memory,
or STM [19]. STM provides atomic transactions to protect against race hazards and choice
operators for prioritizing actions. The concept of a gate is used for marshalling the Rein-
deer and Elves. The choice operator allows for a simple way to give the Reindeer priority
over a group of Elves. This solution shows how these constructs can help to de-couple and
modularize multi-threaded code.



J. Hurt and J.B. Pedersen / Solving the Santa Claus Problem 389

2.9. Summary

The readability, writability, and reliability of shared memory solutions is crippled by the
amount of time it can take in order to search a large codebase for all threads that may possibly
cause race conditions, deadlock, livelock and starvation. Preventing race conditions means
ensuring the atomicity of a set of one or more instructions and usually involves the use of
mutexes, semaphores, and monitors. In each of the shared memory solutions, locks are used
to ensure data integrity between each thread. These locks ensure the atomicity of one or more
instructions in a thread. This can slow down performance when many threads are waiting on
the same lock, in addition to adding complexity to the code. When a Reindeer or Elf is added
or removed from a queue, it must happen as an atomic transaction, and in cases where the
logic that follows depends on the size of a queue, this logic must be included in the atomic
transaction. Preventing deadlock and livelock involves examining all possible instruction in-
terleavings that a program can generate, a daunting task. In addition, the more state that
threads share the harder refactoring becomes. Constraints such as “three elves at a time” or
“Reindeer have priority over Elves” require the use of wait/notify and shared counter vari-
ables. For example, a shared counter variable is used between the Reindeer threads because
Santa must have the ability to query the Reindeer to see if they are ready to deliver toys after
consulting with a group of elves. A wait/notify mechanism is also used by the Reindeer and
Elves to knock on Santas door. Thus refactoring the Elf or Reindeer threads requires knowl-
edge of the Santa thread. Worse, refactoring the Santa thread requires knowledge of the Elf
and Reindeer threads. In small programs such as the Santa Claus solution this is manageable,
but mutli-threaded code can become entangled in a larger application. The modification of
this code is time consuming and error prone, and there is no quick and simple way to check
if a code change has introduced concurrency bugs into the code.

Verifying the correctness of a multi-threaded application is also complicated. Attempts
at examining all possible instruction interleavings have been made [20] and shown to be
feasible under certain conditions. “Given N threads, each with a local store of size L, and the
threads communicate via a shared global store of size G, if each thread is finite-state (without
a stack), the naive model checking algorithm requires O(G∗Ln) space, but if each thread has
a stack, the general model checking problem is undecidable.” Successful thread verification
has been shown feasible when threads are largely independent and loosely coupled [21],
requiring only O(n ∗G ∗ (G + L)) space.

In addition to the complexity of using shared state and the various problems with wait-
/notify, the thread scheduling mechanisms introduce non-determinism into various measures
of thread execution. These include when and for how long a thread will get CPU time, and
when and for how long it will get interrupted and wait for CPU time.

3. Distributed Memory

MPI [22] is one of the more popular libraries designed for taking advantage of a distributed
memory architecture, such as a cluster, or a shared memory multiprocessor architecture with
a large amount of processors, such as those found in supercomputers. Here, an application’s
N separate tasks are separated into N processes and appropriate code for each process is
written. In the case of MPI, the runtime will ensure the application behaves like a distributed
memory model regardless of the underlying hardware. In MPI, groups of processes can be
formed at runtime, and a MPI Barrier method can be used to synchronize a particular
group of processes. Synchronous receives can be used in place of wait/notify thus removing
the need to handle the more complicated asynchronous logic. These techniques are used in the
MPI solution to the Santa Claus problem in order for the Santa, Elf, and Reindeer processes
to synchronize with each other, pausing at various points of execution. Notice how the same



390 J. Hurt and J.B. Pedersen / Solving the Santa Claus Problem

barrier is used for two different synchronization points without an explicit method call to
reset the barrier. The barrier will implicitly reset itself after the required number of processes
has reached the barrier. Here is part of Santa process code that uses a MPI Barrier() to
synchronize with the Reindeer:

// wait for all reindeer to say "delivering toys" message
mpiReturnValue = MPI_Barrier(commSantaReindeer);
CHECK_MPI_ERROR(globalRank, mpiReturnValue);
printf("Santa: woah ... we’re back home!\n");

Here is part of the Reindeer process code that uses a MPI Barrier() to synchronize
with Santa:

// wait for santa to harness us
mpiReturnValue = MPI_Barrier(commSantaReindeer);
CHECK_MPI_ERROR(globalRank, mpiReturnValue);
printf("Reindeer %d: delivering toys\n", id);

Due to the lack of shared memory, solutions to problems in MPI typically have more
processes running than a C, C# or Java program would have threads. In the MPI solution
to the Santa Claus Problem, there is a separate process for a Reindeer queue for when the
Reindeer come back from vacation, and a separate process for an Elf queue for when the
Elves get confused and join the waiting room. Instead of using shared memory synchronized
data, each process gets data, performs operations on that data, and passes data on to one or
more other processes. The same piece of data is never operated on by more than one process
at a time, thus eliminating the need for data protection.

3.1. Erlang

There are other solutions to the problem written in Erlang [23,24]. Erlang is a functional lan-
guage with built-in message passing semantics. Although Erlang processes can share mem-
ory via use of the ets [25] module, the solutions here use message passing semantics. Simil-
iar to the MPI version, these solutions show the lack of shared state can simplify concurrent
programming.

3.2. Summary

The lack of shared state improves the readability of MPI beyond that of shared memory
models because it will not allow two or more processes to modify the same piece of data
at a time, allowing programmers to focus on one process. Understanding the implications
of the use of asynchronous sends and/or receives, however, can be even more challenging
than the wait/notify problem for shared memory. With a wait/notify, only the notifying thread
behaves asynchronously, while a waiting thread will block until it receives a notify. With
the use of MPI IRecv(), a receive will not block, but can be probed later in the code us-
ing MPI Probe(). In our solution we chose to use only synchronous messages due to the
constraints of the problem.

Writing distributed memory code is also made simpler because of the lack of shared
state. As long as the corresponding receives and sends in a process are handled properly, MPI
code is easier to refactor than thread code. An example in the Santa Claus problem is the way
that the three elves at a time constraint is handled. A separate Elf queue process handles this
constraint, decoupling the Santa and Elf code further than the shared memory solutions.

For distributed systems, reliability can be hard to measure. The time to send data between
nodes on the network can vary greatly, making it difficult to determine whether or not a node



J. Hurt and J.B. Pedersen / Solving the Santa Claus Problem 391

has gone down or is just taking a long time to respond. Peer to peer systems are more reliable
because of the lack of specialized nodes, but for many applications the idea of every node
executing the same code does not fit the problem. In this case, there are requirements that
dictate one Santa process, nine Reindeer processes, and ten Elf processes. On Shared Memory
Multiprocessor (SMP) machines, reliability is greatly enhanced by eliminating the network.
One difficulty that exists in both SMP and distributed environments is the inability to verify
asynchronous message behavior. Another problem with asynchronous messaging is that the
channel buffers can become full and then start behaving like synchronous channels, causing
errors that can only be seen in unfortunate runtime scenarios. Tools such as SPIN [26] are
available for model checking the correctness of MPI programs. Traditionally, SPIN has been
used for checking only deterministic MPI primitives, but recently work has been done to use
the tool for checking non-deterministic primitives [27].

4. Process Oriented

Yet another way to write parallel applications is by using a process oriented architecture,
based on the ideas of CSP [28]. Communicating Sequential Processes, or CSP, is a process
algebra used to describe interactions in concurrent systems [29]. Relationships between pro-
cesses and the way they communicate with their environment can be described using CSPs
process algebraic operators. Parallelism, synchronization, deterministic and nondeterministic
choices, timeouts, interrupts, and other operators are used to express complex process de-
scriptions in CSP. Languages such as occam [30] are based on CSP and there are libraries
that provide support for the CSP model for many other languages. Here we focus on one
such library for Java, JCSP [31]. The JCSP library is open source and is implemented using
Java threads, so it is portable across JVM implementations. Similar to MPI, the system is
viewed as a set of independent processes that communicate via channels. There is no concept
of shared memory, even if the underlying library is implemented in this way. Channels can
be shared by many processes. In the JCSP version, synchronous messages and the library’s
built-in barrier type are used to ensure message ordering. In addition, we implemented a bar-
rier that will synchronize Santa and a group of three elves using two many-to-one channels to
enforce the “three Elves at a time” constraint. The MyBarrier class is implemented using
two shared channels, and will read, in succession, two sets of messages for each process on
the writing end of the barrier:

class MyBarrier implements CSProcess {
private int count;
private ChannelInput inA, inB;

public MyBarrier(int n, ChannelInput inA, ChannelInput inB) {
this.count = n;
this.inA = inA;
this.inB = inB;

}

public void run() {
while (true) {

for (int i = 0; i < count; i++) {
inA.read();

}
for (int i = 0; i < count; i++) {

inB.read();
}

}



392 J. Hurt and J.B. Pedersen / Solving the Santa Claus Problem

}
}

The corresponding Sync class represents only the writing end of the barrier. Note that
only when all members of the barrier have sent their first message will a process start to send
its second message to the reading end of the barrier:

class Sync implements CSProcess {
private SharedChannelOutput outA, outB;

public Sync(SharedChannelOutput outA, SharedChannelOutput outB) {
this.outA = outA;
this.outB = outB;

}

public void run() {
outA.write(Boolean.TRUE);
outB.write(Boolean.TRUE);

}
}

Here is part of the Santa code that uses the barrier:

// wait for Elves to say "about these toys"
new Sync(outSantaElvesA, outSantaElvesB).run();
outReport.write("Santa: consulting with Elves ...\n");

And the corresponding Elf code:

outReport.write("\t\t\tElf: " + id + ": about these toys ... ???\n");
// notify Santa of "about these toys"
new Sync(outSantaElvesA, outSantaElvesB).run();

One part of occam that is missing from JCSP is extended rendezvous, an addition to
standard occam available in KRoC [32]. Although long standing, these extensions are to
some extent experimental. This is a way to force a process A to wait for another process B
to do some work before returning from a blocking send or receive. This allows two processes
to synchronize without having to explicitly send/receive another message, which is what is
done in the JCSP version in replace of an extended rendezvous. The Reindeer waits to be
unharnessed with a blocking receive:

// Reindeer waits to be unharnessed
inFromSanta.read();

For each Reindeer, Santa outputs the unharness message and does a blocking send to the
Reindeer to unharness the Reindeer:

outReport.write("Santa: un-harnessing reindeer " + id + " ...\n");
// unharness this Reindeer
channelsSantaReindeer[id - 1].out().write(0);

In order to ensure priority of the Reindeer over the Elves a construct known as an alter-
nation is used. An alternation enables a process to wait passively for and choose between a
number of guarded events, and in this case the guarded events are a notification to Santa from
a Reindeer or an Elf. Priority can be given to a guarded event an alternation will choose, and
in this case priority is given to the Reindeer notification. In this way, if both the Reindeer and
a group of Elves are ready at the same time, Santa will handle the Reindeer first.



J. Hurt and J.B. Pedersen / Solving the Santa Claus Problem 393

Table 1. Program line counts.

SM DM PO
C# C Java Groovy MPI JCSP

Total 642 420 564 315 352 315
Synchronization/Communication 48 49 46 46 34 27

Prevent Race Condition 14 8 8 8 N/A N/A
Exception/Error Handling 35 0 177 18 41 0

Custom Barrier Implementation 42 35 N/A N/A N/A 55
GUI 145 N/A N/A N/A N/A N/A

SM = Shared Memory, DM = Distributed Memory, PO = Process Oriented

4.1. Summary

Assuming familiarity with the JCSP library, the readability of the JCSP version is better
than the shared memory Java solution due to the lack of shared state. Similar to MPI, the
code for a process can be looked at without worrying about other processes which might
possibly access the same instance data. One advantage that JCSP has over MPI is the ability
to specify one-to-one and many-to-one channels on which to send and receive messages. This
ensures that a data read will only happen when the sending process has the writing end of
a channel, and that a data write will only happen when the receiving process has a reading
end of the channel. With MPI, the transportation mechanism for sending and receiving data
is abstracted away from the programmer, allowing any process that wishes to communicate
with the system to do so. Thus, there is no easy way to ensure message integrity in MPI.

A process oriented application can be refactored easily. The way a process interfaces
with the rest of the system is readily available by looking at the input and output channels
associated with a process. This allows the programmer to focus on a processes input and
output channels, that is, the data a process sends and receives, and not on any of the data
it reads or modifies. Again, JCSP’s use of channels improves refactorability over the MPI
version. A channel’s reading and writing ends must be explicitly referenced in order for
communication to happen over the channel. This makes it clearer to the programmer which
processes are communicating.

In addition, the mapping between JCSP and CSP allows JCSP code to be formally rea-
soned about using the process algebra. A tool called FDR [33] exists which is a model checker
for CSP. The CSP that corresponds to a piece of occam or JCSP code can be run through the
tool to check for possible concurrency errors, such as existence of deadlock, livelock, star-
vation, and fairness. Therefore, JCSP and programs written using different implementations
of the CSP model can be formally verified for correct multi-parallel behavior before or after
development, and the mapping is almost a one-to-one mapping in both directions, reducing
the risk of introducing errors in the model checking/verification code.

5. Results

5.1. Line Count Comparisons

Comparing the line count for each solution can give an indication of the readability and
writability of each solution. To be fair, the line counts for the Ada, Polyphonic C#, Haskell
STM, and Erlang solutions are omitted because they did not include the message ordering
constraints that we imposed on the problem. Table 1 gives an overview of the line count for
each version:



394 J. Hurt and J.B. Pedersen / Solving the Santa Claus Problem

5.1.1. Synchronization and Communication

The shared memory solutions all have roughly the same number of lines of synchronization
and communication code. The line counts are higher than the distributed memory and process
oriented counterparts due to the fact that wait/notify must be wrapped in a lock and unlock
statement and extra logic is required in case of lost notifications. The line count here for all of
the solutions would be much higher without the use of barriers, and would require duplicated
synchronization logic each time a group of threads or processes needed to synchronize with
each other.

5.1.2. Preventing Race Conditions

Each of the shared memory solutions includes locking and unlocking code to prevent race
conditions whenever inserting and removing a Reindeer or Elf into a queue. Locks must also
be in place anytime there is logic that depends on the size of the Elf and Reindeer queue,
in this case when the last Reindeer or every third Elf must notify Santa. For the distributed
memory and process oriented solutions there is no shared memory so there is no code needed
to prevent a race condition.

5.1.3. Exception and Error Handling

In each solution the error handling code will simply print an error message to the console.
For a real world problem, the error handling code would include logic that attempts to re-
cover from errors. Gracefully recovering from errors in a concurrent system often requires
additional communication and synchronization so that a particular thread or process can de-
termine the state of the system as a whole and then bring itself to an appropriate state. Due to
checked exceptions and the two exceptions that a CyclicBarrier.await can throw the Java
error handling line count is much higher than the other solutions. For the Groovy solution,
closures have been used to wrap CyclicBarrier.await and Object.wait, consolidating the
error handling into the closure and reducing the error handling line count. For the C# version
the unchecked exceptions in the .NET threading library were ignored. The C version ignores
the errors that the pthread library calls can generate. The MPI version includes a macro for
error handling which is used to check for errors every time a call to a method in the library
takes place. The parts of JCSP that are used in this solution do not throw checked exceptions
so there is no exception handling code in the JCSP version.

5.1.4. Custom Barrier Implementation

For C, C# custom barriers were implemented in order to reduce the amount of code required
for thread synchronization and also prevent errors. If a barrier implementation is broken in
can be fixed once without having to change any of the Santa, Elf, or Reindeer code. Custom
barriers were implemented in the JCSP solution both to simplify process synchronization
and to place the logic for the “three elves at a time” constraint into a special barrier type,
eliminating the need for a separate Elf queue process like the one used in the MPI solution.
The Java thread library and MPI version have built-in barrier implementations that are robust
enough to solve the Santa Claus Problem and so no custom barriers were implemented in the
Java, Groovy, and MPI solutions.

5.1.5. GUI

The additional line count for the C# version can be attributed to two things. The first is the
additional lines added for a Windows Forms GUI. The second is that Visual Studio formats
code with beginning braces on their own line, while in the other solutions they are not.



J. Hurt and J.B. Pedersen / Solving the Santa Claus Problem 395

6. Conclusions

We have implemented solutions to the Santa Claus Problem using various concurrent pro-
gramming models as a basis for comparing the three models, shared memory, distributed
memory, and process oriented.

For the shared memory solutions two difficulties were identified. The first issue was the
overly complicated use of mutexes, condition variables, and monitors to ensure mutual ex-
clusion between various sets of instructions when using multiple threads. The second was the
difficulty of using the wait/notify mechanism due to the asynchronous nature of the notify and
the possibility of lost notifications by the receiver. Comparisons between the shared memory
models themselves were discussed to show that the minor implementation differences do not
alleviate the issues with the model.

We have shown how a distributed memory model such as MPI can simplify process
ordering with the use of synchronous messages and how a a distributed memory model also
gives built-in data integrity and allows for much simpler implementations of various program
constraints. Furthermore, we have introduced JCSP and shown how the use of libraries and
languages based on CSP further simplify the development of a concurrent application in a
distributed memory model. The additional benefit of a one-to-one mapping with CSP, an
algebra designed to describe process interaction, allows for the ability to formally verify
various correctness measures of the application. A final benefit of JCSP over MPI is the use
of channels which allows for increased trust between communicating processes.

The code for all of the solutions we implemented is available at:

http://www.santaclausproblem.net

7. Future Work

The Santa Claus Problem requires heavy synchronization, but future work should include the
comparison of all three models for a wider range of problem types. A more rigorous compar-
ison should be done between the three models, including the performance of the models in
various settings. In addition to comparing the models themselves, it may be useful to com-
pare the model checking tools available for each model, such as MPI-Spin and FDR. Ease of
use and what can and cannot be proved are two interesting criteria for comparison here.

Acknowledgements

We acknowledge the comments of one of the referees who suggested that a solution that
exploits Groovy Parallel [34] and which also employs the JCSP synchronisation primitives;
Alting Barrier [35] and Bucket might be even shorter. In fact such a solution is about 75 lines
shorter than the JCSP solution described previously.

References

[1] PlanetLab home page. http://www.planet-lab.org.
[2] BOINC home page. http://boinc.berkeley.edu.
[3] SETI Institute home page. http://www.seti.org.
[4] Google APIs. http://code.google.com/more.
[5] Yahoo! Developer Network. http://developer.yahoo.com.
[6] C. Ajluni. Multicore Trends Continue to Drive the Embedded Market in 2007. Chip Design, Jan/Feb

2008.



396 J. Hurt and J.B. Pedersen / Solving the Santa Claus Problem

[7] J. A. Trono. A new exercise in concurrency. SIGCSE Bull., 26(3):8–10, 1994.
[8] N. Benton. Jingle Bells: Solving the Santa Claus Problem in Polyphonic C#. Technical report, Microsoft

Research, Cambdridge UK, 2003.
[9] M. Ben-Ari. How to solve the Santa Claus problem. Concurrency: Practice and Experience, 10(6):485–

496, 1998.
[10] B. Nichols, D. Buttlar, and J. P. Farrell. Pthreads Programming, First Edition. O’Reilly Media, 1996.
[11] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language Specification, Third Edition. Addison-

Wesley Professional, 2005.
[12] R. F. Stark and E. Borger. An ASM specification of C# threads and the .NET memory model. In ASM

2004, pages 38–60, 2004.
[13] Sun Microsystems home page. http://www.planet-lab.org.
[14] CyclicBarrier API.

http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/CyclicBarrier.html.
[15] D. Koenig, A. Glover, P. King, G. Laforge, and J.Skeet. Groovy in Action. Manning Publications Co.,

2007.
[16] LinuxThreads library. http://pauillac.inria.fr/∼xleroy/linuxthreads/.
[17] U. Drepper and I. Molnar. The Native POSIX Thread Library for Linux. 2005.
[18] ANSI/ISO/IEC. Ada 95 Language Reference Manual, 1995.
[19] S. P. Jones. Beautiful concurrency. O’Reilly, 2007.
[20] C. Flanagana and S. N. Freund and S. Qadeerc and S. A. Seshia. Modular verification of multithreaded

programs. In Theoretical Computer Science, 2005.
[21] C. Flanagana and S. Qadeerc. Thread-modular model checking. In Model Checking Software, 2003.
[22] J. Dongarra. MPI: A message passing interface standard. The International Journal of Supercomputers

and High Performance Computing, 8:165–184, 1994.
[23] The Santa Claus Problem (Erlang). http://www.crsr.net/Notes/SantaClausProblem.html.
[24] Solving the Santa Claus Problem in Erlang.

http://www.cs.otago.ac.nz/staffpriv/ok/santa/index.htm.
[25] ets. http://www.erlang.org/doc/man/ets.html.
[26] G. J. Holzmann. The SPIN Model Checker: Primer and Reference Manual. Addison-Wesley Professional,

2003.
[27] S. R. Siegel. Model Checking Nonblocking MPI Programs. Verification, Model Checking, and Abstract

Interpretation, 4349:44–58, 2007.
[28] P. H. Welch. Process Oriented Design for Java: Concurrency for All. In ICCS ’02: Proceedings of the In-

ternational Conference on Computational Science-Part II, page 687, London, UK, 2002. Springer-Verlag.
[29] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall International, 1985.
[30] occam 2.1 reference manual.

http://www.wotug.org/occam/documentation/oc21refman.pdf, 1995.
[31] P. H. Welch. Communicating Sequential Processes for Java.

http://www.cs.kent.ac.uk/projects/ofa/jcsp.
[32] P. H. Welch and F. R. M. Barnes. occam-π: blending the best of CSP and the π-calculus.

http://www.cs.kent.ac.uk/projects/ofa/kroc/.
[33] Formal Systems (Europe) Ltd. Failures-Divergence Refinement: FDR2 manual, 1998.
[34] J. M. Kerridge, K. Barclay, and J. Savage. Groovy Parallel! A Return to the Spirit of occam? In Commu-

nicating Process Architectures, pages 13–28, 2005.
[35] P. H. Welch, N. C. C. Brown, J. Moores, K. Chalmers, and B. Sputh. Integrating and Extending JCSP. In

Communicating Process Architectures, pages 349–370, 2007.


