
JCSPre: The Robot Edition To 
Control LEGO NXT Robots

Jon KERRIDGE, 
Alex PANAYOTOPOULOS 

and 

Patrick LISMORE



Motivation
• Can JCSP be implemented on a LEGO NXT?

• Why not just use the Transterpreter approach?
• Wanted to use Java

– Relates better to previous experience
– More people use Java than occam
– Influence people in the wider community
– Might convince people that the Java thread model can be 

avoided
– Demonstrate reuse in a fun environment 
– Promote plug and play capability
– Eclipse IDE can be used directly



Questions Posed
• Does it fit on a LEGO NXT robot

• Which subset of JCSP is required
• Which Java environments are available
• How many processes can be accommodated

• Can we utilise existing JCSP design patterns
• Can we exploit further capabilities of the LEGO 

NXT robot, such as Bluetooth



Java Environment
• Obvious one is LeJOS

– Already contains LEGO NXT abstractions
– Appears to be small
– Already contains a threading model used by JCSP
– Takes account of the processors used in LEGO NXT
– Still being developed

• Other JVMs
– IBM J9 and NSIcom CrE-ME

• Designed for embedded CDC market
• Designed for Windows CE 
• Not available for LEGO NXT processor combination.
• Fully functional



Choosing JCSP Package Subset
• org.jcsp.lang

– Provides the fundamental CSP capabilities

• org.jcsp.util
– Provides channel buffering capability

• org.jcsp.awt
– Provides a ‘parallel’ AWT capability
– Not required on LEGO NXT

• org.jcsp.net
– Provides the network capability
– Not required (yet) on LEGO NXT



LeJOS JVM Capabilities
• LeJOS JVM is not a full Java implementation

– Limited garbage collection
– Variables of type long cannot be manipulated
– The class Class is not implemented
– The LeJOS API is missing many classes considered 

fundamental to the core Java API.
– The LeJOS classes are closer to the CLDC Java 

specification



Included JCSP Fundamentals
• Required system structuring features

– CSProcess, 
– Alternative (requires Barrier and Guard), 
– Parallel (requires ParThread), 
– CSTimer,
– Skip

• Communication (Object and int versions of each)
– One2One Channel  and One2One ChannelImpl
– ChannelInput and ChannelOutput
– AltingChannelInput 
– The Any, Call and Connection versions not included



LeJOS Abstractions
• Sensors (two types)

– A-D sensors (based on previous RCX robot)
– I2C sensors ( newer , more esoteric sensors)

• Motors
– Movement (angular and power)
– Tachometer input interface

• Communications and Other devices
– Bluetooth
– GPS
– Keyboards
– Interaction with ‘host’ PC (for debugging)



Sensor Process Architecture
• Each sensor type is implemented with a channel 

interface, hiding the underlying LeJOS abstraction

• The associated event listener is contained within 
the sensor process

Output Channel

Configuration Channel

Sensor



Motor Process Architecture 
• Input Channel to set motor speed

• Configuration Channel to set operating parameters
– Halting behaviour – Stop or Float
– Speed input – rotational or power based

• Termination of all processes is achieved by sending 
a known value, Integer.MAXINT, to the 
configuration channel or input channel if available.



Architectural Framework

LeJOS Java  kernel

LeJOS LEGO NXT abstraction for buttons, LCD
display, motor, light ,sound, touch, ultrasound 

and  Gyro and Acceleration I2C sensors
JCSPr
e

Channel Interfaced  Active Components

Application Specific Control and User Interface Processes

LeJOS Firmware



Active Sensors
• Implement the Interfaces

– CSProcess
• Requires a run() method to be executed as part of a Parallel

– SensorPortListener
• Requires a stateChanged() method that is called whenever an    

A to D type sensor value changes
• I2C sensors do not use this interface and the active sensor 

process has to periodically read the device ports to determine its 
current value

• A delta value configured into a sensor to ensure 
that only changes of sensor value greater than 
delta are written to the sensor’s output channel.



The JCSPre packages
• lang

– Provides the basic JCSP capability

• io
– Provides the sensor and motor abstractions
– Provides the Bluetooth receive and transmit processes

• plugnplay
– Provides multiplexers, and other processes used to test the system’s 

operation and which can be used in designs

• filters
– Provides threshold filters that can be used in designs

• rconsole
– Provides processes that communicate message strings to a PC over

usb or bluetooth communication links.



Threshold Filters
• Binary and ternary filters are provided.

– The input value is output on one of the output channels 
depending on its relationship to threshold values

– Threshold values communicated on the configure 
channel, or in the process constructor

Binary

configure

above

below
Ternary

configure

above

below

between



Feasibility Testing (LeJOS)
• Underlying LeJOS thread model could spawn 160 

child processes from a single parent

• A simple variant placed a single integer in each 
spawned child thread.
– The number of child processes reduced to 90.

• The number of threads is dependent on the size of 
each thread.



Feasibility Testing (JCSPre)
• Parallel

– An integer Producer process, followed by N Add 
processes that input a number, add a constant to it and 
then output the new value.  The final value is output to 
the LEGO NXT LCD screen by a final process.

– N = 78 was the maximum number of ‘Add’ processes.

• Alternative
– N processes each output to a multiplex process that 

inputs from each input channel once in each cycle.
– N = 76 was found to be the upper limit



Feasibility Testing Implications
• System does seem capable of supporting sufficient 

processes provided
– A lot of very small processes are not used
– Especially when ‘hidden’ inside other processes

• Delta and DynamicDelta from ‘standard’ JCSP would be 
inappropriate 

• use  the ProcessRead and ProcessWrite capabilities of JCSP



Bluetooth Communication (NXT)
• LEGO NXT robots are provided with Bluetooth 

capability

• Processes in the JCSPre.io package provide 
Bluetooth  Transmit and Receive capability that 
permit communication between
– LEGO NXT and a PC
– LEGO NXTs

• The communication is implemented using the 
Bluetooth Serial Port Protocol (btspp)



Bluetooth Communication (PC)
• A Bluetooth Connection process has been provided 

to interact with a JCSP system running on the PC

• Uses the ActiveSerialPort concept (CPA- 2004)
• Uses a javax.comm implementation appropriate to 

the platform
– Implemented on PC using Windows XP
– Implemented on PDA using Windows Mobile



Designing Robot Controllers with 
JCSPre

• The majority of the required processes already exist
– Contained within the JCSPre packages

• lang, io, plugnplay, and rconsole

– ‘Simply’ a matter of connecting them together with 
channels

• Implementer designed control process

• Systems can be developed totally within an Eclipse 
environment
– The code can also be uploaded into the LEGO NXT from 

within the Eclipse environment.



User Interface Steerable Robot
• PC or PDA based user interface sends motor 

movement data to robot using Bluetooth.
– Data comprises pairs of  speeds for left and right motors
– Only the Distribute Data process was written specially

BTReceive

Left Active Motor

Right Active Motor

Distribute Data



Steerable Robot
• Robot has two light sensors pointing at ground

• Robot is steered by sensing either a white or black 
line across its path.

• The sensors align themselves with the line
– If it is white line it just continues
– If it is a black line the robot reverses

• Placement of the lines in the path of the robot mean 
that it can be made to follow a pre-determined 
route.

• The initialisation of the Robot is carried out using an 
interface on PC connected by Bluetooth



Steerable Robot Design

BTReceive

Controller

ActiveLightSensor ActivLightSensor

TriThreshold TriThreshold

White    Grey   Black White    Grey   Black

Sensor Output Sensor Output

ActiveMotor ActiveMotor

configure
configure



Subsumption Architectures
• Brooks Subsumption architecture describes a robot 

control environment whereby the behaviour of a 
robot can be broken up into layers of increasing 
complexity.

• Lower levels can have their outputs subsumed by 
higher levels

• This has been achieved in a subsumption package
– This does NOT use the subsumption package available 

in LeJOS, which is a very partial implementation
– Contains a subsumption pattern that can be modified to 

specific requirements



Light Seeking Robot
• Light SeekingRobot

– Comprises two cross-coupled Light to Motor (L2M) 
controllers; due to Braitenburg

Active
Light
Sensor

Black
Hole
Switch

AddN Scale
Active
Motor

Light Seeking Controller

Active
Light
Sensor

Black
Hole
Switch

AddN Scale
Active
Motor

L2M

L2M



Adding Obstacle Avoidance
• The Active Motor behaviour has to be subsumed by 

a higher level behaviour: Obstacle Avoidance

Active
Light
Sensor

Black
Hole
Switch

AddN Scale
Subsumption
Active
Motor

Light Seeking Controller

Active
Light
Sensor

Black
Hole
Switch

AddN Scale
Subsumption
Active
Motor

L2SM

L2SM



Obstacle Avoiding Architecture
• Ultrasonic Sensor added to detect obstacles and 

impose an avoidance behaviour: unequal reversing
Ultrasonc
Sensor

Obstacle 
Avoider

Active 
Light 
Sensor

Subsumption 
Active 
Motor

Active 
Light 
Sensor

Subsumption 
Active 
Motor

L2SM

L2SM

Light Seeking Controller



Subsumption Design Pattern
• The Subsumption Process architecture is provided 

as a design pattern that has to be specialised to 
each specific application

• Comprising
– Input Sites with an input and several suppressor channels 
– Output Sites with an output and several inhibitor channels
– An optional Reset Process with reset channels
– An Inner Process that implements the control aspect



Input and Output Sites
• The number of Input and Output Sites depends 

upon the application.

• Each site holds a single data value
• The Inner Process can access the site data value 

by means of read and write methods.

• The Reset Process is able to return the data values 
in the Input and Output sites to a predefined value, 
by using the site data value access methods.



Subsumption Pattern Architecture

Input
Site

Output
Site

Reset
Process

Inner
Process

input

Input
Site

input

output

Output
Site

output

suppressors inhibitorsresets

read method call write method call



Conclusions
• An implementation of JCSP on a LEGO NXT has 

been achieved

• Sufficient processes can be utilised to enable the 
construction of relatively complex control systems

• It could (will) provide a vibrant way of teaching 
Communicating Process Architecture concepts to 
students

• It is fully integrated into the Eclipse IDE

• The use of Java makes it more accessible to 
more people



Future Work
• Produce a publicly available library

• Develop the teaching notes
• Implement a networking capability based upon 

Bluetooth so that several robots can communicate 
through a Bluetooth Server with each other
– Using Kevin Chalmer’s lightweight network protocol

• Implement a graphical design tool for the Eclipse 
environment that allows graphical system design

• Determine the limit to control system complexity 
under more complex operating conditions


