Mobile Agents and Processes
Using Communicating Process
Architectures

Their Role in Pervasive Adaptation

Jon KERRIDGE,
Jens-Oliver HASCHKE
and
Kevin CHALMERS

NAPIER UNIVERSITY
EDINBURGH

Overview k
e Mobility

« Pervasive Adaptation — an overview
* Process Discovery

NAPIER UNIVERSITY
EDINBURGH

CSP based Parallelism - Processes k

e A system comprises a network of processes
 The processes work together to solve a problem
 Processes undertake a sequence of operations
o All data is local to a process

e Processes can communicate data

 Processes communicate by means of channels

e A process cannot access properties of another
process by means of a method call

NAPIER UNIVERSITY
EDINBURGH

Mobility - Process k

* Process mobility means

— The code and initial state of a process can be moved from
one processor to another, where it can be connected into
that processor’s infrastructure and executed

— Classes referred to within the process can also be
obtained from the processor from where the process
definition was obtained

— Once a Process has been transferred and instantiated it
cannot be moved to another node and can only terminate
If the Process itself terminates

NAPIER UNIVERSITY
EDINBURGH

Mobility - Agent A
A Mobile Agent is a specialisation of a mobile
process
— It can be transferred to another processor
— It connects itself to processes already executing

— It undertakes some action in conjunction with the host
process, which modifies the state of the Agent

— It can then disconnect itself from the host process

— It can then cause itself to move to another processor,
which could be the processor from which it started

— An agent is a self contained capabillity that achieves some
goal, which when complete, causes the Agent to terminate

NAPIER UNIVERSITY
EDINBURGH

Pervasive Adapatation k

e According to the EU PerAda Action is manifest by:
— Networked Societies of Artefacts
— Evolvable Pervasive Systems
— Adaptive Software Systems
— Adaptive Security and Dependability

e Which require
— Dynamicity of Trust
— Tiny and Massively Networked devices

NAPIER UNIVERSITY
EDINBURGH

Process Discovery k

 An exemplar system comprises:
— A number of TCP/IP networked processors (nodes)

— A Data Generator node

» Keeps a record of connected nodes
» Creates data of defined types, which is

« Sent randomly to any Processing node that has registered with the
network

— A Processing node,

* Processes data sent to it by the Data Generator
 Processed data is then sent to a Gatherer node

— The Gatherer node
* Prints out the processed data objects

NAPIER UNIVERSITY
EDINBURGH

The Challenge k

 The processes required to process a data object are
guaranteed to be available on the network

e BUT

* Not every Processing node is initialised with an
Instance of all the required processes

e AND

* Processing Nodes can be added dynamically to the
network

NAPIER UNIVERSITY
EDINBURGH

SO k

« When a Processing node receives a data object for
which it does not have the required process

— It sends a Discovery Agent around the network to find an
Instance of the required process at another node

— The Discovery Agent returns to the originating node with a
copy of the required process

— The process is transferred to the node where it is
Instantiated and connected into the Processing node
Infrastructure

— The Processing node can now process that type of data

NAPIER UNIVERSITY
EDINBURGH

Process Network

Data Generator

DataGenToNode

A

Nodes To Data Generator

Agent Visit Channel

b —

Node Node

—> —>

Agent Return Channel

)

Gatherer

Channel an anonymous net channel

Nodes to Gatherer

NAPIER UNIVERSITY
EDINBURGH

Node Processing - Initialising k
 |nstalls any data processes with which it was
Initialised
e Connects to Data Generator and Gather Nodes
— By means of named net channels

* Registers itself with the Data Generator sending
— Agent Visit Channel location
— DataGenToNode channel location

 |nitialises an instance of a Discovery Agent with this
node’s Agent Return Channel

 Now In a position to accept inputs from the Data
Generator process

NAPIER UNIVERSITY
EDINBURGH

Node Processing — Running:1 k

e |nput from Data Generator

— Notification of a new Node
» Update the agent with the location of the new node’s visit channel
« Remember this in a list of connected nodes

— Data Object

 |f process available then process the object and send result to Gatherer

 |f process not available; update Discovery Agent and send it on a trip to
find the required process

NAPIER UNIVERSITY
EDINBURGH

Node Processing — Running:2 k

e Discovery Agent arrives at Agent Visit Channel
— Connect Discovery Agent to this Node
— Discovery Agent sends name of required process to Node
— Node returns process, if available, or null

— If process sent then Discovery Agent returns to home
node

— Otherwise Discovery Agent continues visiting nodes

e Discovery Agent arrives at Return Channel
— Connect Discovery Agent to this (Home) Node
— Discovery Agent transfer process to home node

— Home node installs process and is now ready to process
data of that type.

NAPIER UNIVERSITY
EDINBURGH

Discovery Agent Processing k

e Three states

— Initialising
« Discovery Agent is pre-loaded with all the Agent Visit Channel locations
» Discovery Agent is told the name of the required process
« Discovery Agent then visits nodes to find required process

— Visiting
» Discovery Agent connects to the visited node
« Discovery Agent sends name of required process to node
* Node sends Discovery Agent either the process or null
« Discovery Agent continues journey if returned null or home if process

loaded

— Returning

» Discovery Agent returns to home node and connects to it

* Transfers process to home node
« Home node can then install the process

NAPIER UNIVERSITY
EDINBURGH

Agent Coding — Properties and Variables k

class AdaptiveAgent implements MobileAgent, Serializable {

def Channellnput fromlinitialINode
def Channellnput fromVisitedNode
def ChannelOutput toVisitedNode
def ChannelOutput toReturnedNode

def initial = true
def visiting = false
def returned = false

def availableNodes =[]
def requiredProcess = null
def returnLocation

def processDefinition = null
def homeNode

NAPIER UNIVERSITY
EDINBURGH

Agent Processing — Connect and Disconnect k

def connect (List c) {

if (initial) {
fromlInitiaINode = c|[O0]
returnLocation = c[1]
homeNode = c[2]

}

if (visiting) {
fromVisitedNode = c[0]
toVisitedNode = c[1]

}

if (returned) {
toReturnedNode = c[0]

}
}

def disconnect() {
fromlnitialINode = null
fromVisitedNode = null
toVisitedNode = null
toReturnedNode = null

}

NAPIER UNIVERSITY
EDINBURGH

Agent Processing - Initialise k
if (initial) {
def awaitingTypeName = true
while (awaitingTypeName) {
def d = fromlInitialNode.read ()
if (dinstanceof List) { _
for (iin 0 ..< d.size) { availableNodes << d[i]} ~ Update the list of
1 registered nodes
If (dinstanceof String) {
requiredProcess =d

awaitingTypeName = false Initialise Discovery Agent
initial = false

visiting = true Send Agent on a trip
disconnect() round nodes

def nextNodeLocation = availableNodes.pop ()
def nextNodeChannel = NetChannelEnd.createOne2Net(nextNodelLocation)
nextNodeChannel.write (this)

NAPIER UNIVERSITY

EDINBURGH

Agent Processing - Visiting k

If (visiting) {) f -
toVisitedNode.write (requiredProcess) ﬁen nameNo Orlequre
processDefinition = fromVisitedNode.read () rocess to Noae

if (processDefinition != null) {
toVisitedNode.write (homeNode)
visiting = false
returned = true
def nextNodeLocation = returnLocation
def nextNodeChannel = NetChannelEnd.createOne2Net(nextNodelLocation)
disconnect()
nextNodeChannel.write (this)

}

else {
disconnect()
def nextNodeLocation = availableNodes.pop ()

def nextNodeChannel = NetChannelEnd.createOne2Net(nextNodeLocation)
nextNodeChannel.write (this)

If available place copy of
process in Agent and return
to home node

Otherwise, disconnect from
node and go to next node
on the list of available nodes

}
}

NAPIER UNIVERSITY
EDINBURGH

Agent Processing - Returning k

if (returned) {
toReturnedNode.write ([processDefinition, requiredProcess])

}

NAPIER UNIVERSITY
EDINBURGH

Node Process Internal Architecture k
 Node Process provides internal channels which it

uses to connect to visiting agents

— The channels are specific to the type of visiting agent
Data Input Channel I

Node L

Visit C i 7] Internal
Visi onnec | Process

Return Connectio

Agent Return Channel

NAPIER UNIVERSITY
EDINBURGH

Node Processing — Visiting Agent k

def visitingAgent = agentVisitChannel.read()
visitingAgent.connect([NodeToVisitingAgentinEnd, NodeFromVisitingAgentOutEnd]
def visitPM = new ProcessManager(visitingAgent) Connect agent to node
visitPM.start() and start it. Read name of
def typeRequired = NodeFromVisitingAgent.in().read() required process
if (vanillaOrder.contains(typeRequired)) { _ _
defi=0 See if required process
def notFound = true Is available
while (notFound) {
if (vanillaOrder[i] == typeRequired) {
notFound = false
lelse{i=i+1}
} If so write it to the agent
NodeToVisitingAgent.out().write(vanillaList[i]) and read in the name
def agentHome = NodeFromVisitingAgent.in().read() of the node requesting it
} else { // do not have process for this data type

NodeToVisitingAgent.out().write(null) } Otherwise return a null
visitPM.join()

N—

Wait for agent to terminate

NAPIER UNIVERSITY
EDINBURGH

Mobile Social Network k

 People dynamically join a wireless network using a
mobile device

e A service Is provided that allows ‘friends’ to
exchange diary information for the immediate future
so they can meet face-to-face.

 An agentis sent from a new arrival to network, with
their list of friends and their free times

« Agent finds out which friends are also registered

e Agent finds times when friends are free at same time
— It then arranges a meeting

NAPIER UNIVERSITY
EDINBURGH

continued k

o Agent can determine the diary system used by each
friend

e Ensures it has correct diary interrogation system
bound in

 The Agent can adapt its behaviour as people

change their mobile devices and their software
Infrastrcuture.

NAPIER UNIVERSITY
EDINBURGH

Conclusions k

e Parallelism enables construction of Agent systems
at the Application Layer

 Implemented the Itinerary Agent pattern
e Can move processes from one node to another
 Nodes can adapt their processing as the needs arise

NAPIER UNIVERSITY
EDINBURGH

Relationship to Pervasive Adapatation k
« Networked Societies of Artefacts
+ Evolvable Pervasive Systems
- Adaptive Software Systems

\dantive Secur o il

NAPIER UNIVERSITY
EDINBURGH

