
Mobile Agents and Processes
Using Communicating Process

Architectures

Their Role in Pervasive Adaptation

Jon KERRIDGE,
Jens-Oliver HASCHKE

and

Kevin CHALMERS

Overview
• Mobility

• Pervasive Adaptation – an overview
• Process Discovery

CSP based Parallelism - Processes
• A system comprises a network of processes

• The processes work together to solve a problem
• Processes undertake a sequence of operations
• All data is local to a process

• Processes can communicate data
• Processes communicate by means of channels

• A process cannot access properties of another
process by means of a method call

Mobility - Process
• Process mobility means

– The code and initial state of a process can be moved from
one processor to another, where it can be connected into
that processor’s infrastructure and executed

– Classes referred to within the process can also be
obtained from the processor from where the process
definition was obtained

– Once a Process has been transferred and instantiated it
cannot be moved to another node and can only terminate
if the Process itself terminates

Mobility - Agent
• A Mobile Agent is a specialisation of a mobile

process
– It can be transferred to another processor
– It connects itself to processes already executing
– It undertakes some action in conjunction with the host

process, which modifies the state of the Agent
– It can then disconnect itself from the host process
– It can then cause itself to move to another processor,

which could be the processor from which it started
– An agent is a self contained capability that achieves some

goal, which when complete, causes the Agent to terminate

Pervasive Adapatation
• According to the EU PerAda Action is manifest by:

– Networked Societies of Artefacts
– Evolvable Pervasive Systems
– Adaptive Software Systems
– Adaptive Security and Dependability

• Which require
– Dynamicity of Trust
– Tiny and Massively Networked devices

Process Discovery
• An exemplar system comprises:

– A number of TCP/IP networked processors (nodes)
– A Data Generator node

• Keeps a record of connected nodes
• Creates data of defined types, which is

• Sent randomly to any Processing node that has registered with the
network

– A Processing node,
• Processes data sent to it by the Data Generator

• Processed data is then sent to a Gatherer node

– The Gatherer node
• Prints out the processed data objects

The Challenge
• The processes required to process a data object are

guaranteed to be available on the network

• BUT
• Not every Processing node is initialised with an

instance of all the required processes

• AND
• Processing Nodes can be added dynamically to the

network

So
• When a Processing node receives a data object for

which it does not have the required process
– It sends a Discovery Agent around the network to find an

instance of the required process at another node
– The Discovery Agent returns to the originating node with a

copy of the required process
– The process is transferred to the node where it is

instantiated and connected into the Processing node
infrastructure

– The Processing node can now process that type of data

Process Network

Data Generator

Nodes To Data Generator

Gatherer
Nodes to Gatherer

Node

Agent Visit Channel

Agent Return Channel

Node

DataGenToNode

Channel an anonymous net channel

Node Processing - Initialising
• Installs any data processes with which it was

initialised
• Connects to Data Generator and Gather Nodes

– By means of named net channels

• Registers itself with the Data Generator sending
– Agent Visit Channel location
– DataGenToNode channel location

• Initialises an instance of a Discovery Agent with this
node’s Agent Return Channel

• Now in a position to accept inputs from the Data
Generator process

Node Processing – Running:1
• Input from Data Generator

– Notification of a new Node
• Update the agent with the location of the new node’s visit channel

• Remember this in a list of connected nodes

– Data Object
• If process available then process the object and send result to Gatherer

• If process not available; update Discovery Agent and send it on a trip to
find the required process

Node Processing – Running:2
• Discovery Agent arrives at Agent Visit Channel

– Connect Discovery Agent to this Node
– Discovery Agent sends name of required process to Node
– Node returns process, if available, or null
– If process sent then Discovery Agent returns to home

node
– Otherwise Discovery Agent continues visiting nodes

• Discovery Agent arrives at Return Channel
– Connect Discovery Agent to this (Home) Node
– Discovery Agent transfer process to home node
– Home node installs process and is now ready to process

data of that type.

Discovery Agent Processing
• Three states

– Initialising
• Discovery Agent is pre-loaded with all the Agent Visit Channel locations
• Discovery Agent is told the name of the required process
• Discovery Agent then visits nodes to find required process

– Visiting
• Discovery Agent connects to the visited node
• Discovery Agent sends name of required process to node
• Node sends Discovery Agent either the process or null
• Discovery Agent continues journey if returned null or home if process

loaded

– Returning
• Discovery Agent returns to home node and connects to it
• Transfers process to home node
• Home node can then install the process

Agent Coding – Properties and Variables

class AdaptiveAgent implements MobileAgent, Serializable {

def ChannelInput fromInitialNode
def ChannelInput fromVisitedNode
def ChannelOutput toVisitedNode
def ChannelOutput toReturnedNode

def initial = true
def visiting = false
def returned = false

def availableNodes = []
def requiredProcess = null
def returnLocation
def processDefinition = null
def homeNode

Agent Processing – Connect and Disconnect
def connect (List c) {

if (initial) {
fromInitialNode = c[0]
returnLocation = c[1]
homeNode = c[2]

}
if (visiting) {

fromVisitedNode = c[0]
toVisitedNode = c[1]

}
if (returned) {

toReturnedNode = c[0]
}

}
def disconnect() {

fromInitialNode = null
fromVisitedNode = null
toVisitedNode = null
toReturnedNode = null

}

Agent Processing - Initialise
if (initial) {

def awaitingTypeName = true
while (awaitingTypeName) {

def d = fromInitialNode.read ()
if (d instanceof List) {

for (i in 0 ..< d.size) { availableNodes << d[i] }
}

if (d instanceof String) {
requiredProcess = d
awaitingTypeName = false
initial = false
visiting = true
disconnect()
def nextNodeLocation = availableNodes.pop ()
def nextNodeChannel = NetChannelEnd.createOne2Net(nextNodeLocation)
nextNodeChannel.write (this)

}
}

}

Update the list of
registered nodes

Initialise Discovery Agent

Send Agent on a trip
round nodes

Agent Processing - Visiting
if (visiting) {

toVisitedNode.write (requiredProcess)
processDefinition = fromVisitedNode.read ()
if (processDefinition != null) {
toVisitedNode.write (homeNode)
visiting = false
returned = true
def nextNodeLocation = returnLocation
def nextNodeChannel = NetChannelEnd.createOne2Net(nextNodeLocation)
disconnect()
nextNodeChannel.write (this)
}

else {
disconnect()
def nextNodeLocation = availableNodes.pop ()
def nextNodeChannel = NetChannelEnd.createOne2Net(nextNodeLocation)
nextNodeChannel.write (this)

}
}

Send name of required
Process to Node

If available place copy of
process in Agent and return
to home node

Otherwise, disconnect from
node and go to next node
on the list of available nodes

Agent Processing - Returning

if (returned) {
toReturnedNode.write ([processDefinition, requiredProcess])

}

Node Process Internal Architecture
• Node Process provides internal channels which it

uses to connect to visiting agents
– The channels are specific to the type of visiting agent

Node

Internal
Process

Agent Visit Channel

Agent Return Channel

Data Input Channel

Agent

Visit Connections

Return Connection

Node Processing – Visiting Agent
def visitingAgent = agentVisitChannel.read()
visitingAgent.connect([NodeToVisitingAgentInEnd, NodeFromVisitingAgentOutEnd])
def visitPM = new ProcessManager(visitingAgent)
visitPM.start()
def typeRequired = NodeFromVisitingAgent.in().read()
if (vanillaOrder.contains(typeRequired)) {

def i = 0
def notFound = true
while (notFound) {

if (vanillaOrder[i] == typeRequired) {
notFound = false

} else {i = i + 1 }
}
NodeToVisitingAgent.out().write(vanillaList[i])
def agentHome = NodeFromVisitingAgent.in().read()

} else { // do not have process for this data type
NodeToVisitingAgent.out().write(null) }

visitPM.join()

Connect agent to node
and start it. Read name of
required process

See if required process
is available

If so write it to the agent
and read in the name
of the node requesting it

Otherwise return a null

Wait for agent to terminate

Mobile Social Network
• People dynamically join a wireless network using a

mobile device

• A service is provided that allows ‘friends’ to
exchange diary information for the immediate future
so they can meet face-to-face.

• An agent is sent from a new arrival to network, with
their list of friends and their free times

• Agent finds out which friends are also registered

• Agent finds times when friends are free at same time
– It then arranges a meeting

continued
• Agent can determine the diary system used by each

friend

• Ensures it has correct diary interrogation system
bound in

• The Agent can adapt its behaviour as people
change their mobile devices and their software
infrastrcuture.

Conclusions
• Parallelism enables construction of Agent systems

at the Application Layer

• Implemented the Itinerary Agent pattern
• Can move processes from one node to another

• Nodes can adapt their processing as the needs arise

Relationship to Pervasive Adapatation

