
Communicating Process Architectures 2008 397
P.H. Welch et al. (Eds.)
IOS Press, 2008
© 2008 The authors and IOS Press. All rights reserved.

Mobile Agents and Processes using
Communicating Process Architectures

Jon KERRIDGE, Jens-Oliver HASCHKE and Kevin CHALMERS

School of Computing, Napier University, Edinburgh UK, EH10 5DT
{j.kerridge, k.chalmers}@napier.ac.uk, jens.haschke@gmx.de

Abstract. The mobile agent concept has been developed over a number of years and
is widely accepted as one way of solving problems that require the achievement of a
goal that cannot be serviced at a specific node in a network. The concept of a mobile
process is less well developed because implicitly it requires a parallel environment
within which to operate. In such a parallel environment a mobile agent can be seen
as a specialization of a mobile process and both concepts can be incorporated into a
single application environment, where both have well defined requirements,
implementation and functionality. These concepts are explored using a simple
application in which a node in a network of processors is required to undertake some
processing of a piece of data for which it does not have the required process. It is
known that the required process is available somewhere in the network. The means
by which the required process is accessed and utilized is described. As a final
demonstration of the capability we show how a mobile meeting organizer could be
built that allows friends in a social network to create meetings using their mobile
devices given that they each have access to the others’ on-line diaries.

Keywords. mobile agents, mobile processes, mobile devices, social networking,
ubiquitous computing, pervasive adaptation.

Introduction

The advent of small form factor computing devices that are inherently mobile and the
widespread use of various wireless networking technologies mean that techniques have to
be developed which permit the easy but correct use of these technologies. The goal of
ubiquitous computing is to provide an environment in which the dynamic aspects of the
environment become irrelevant and as the users of mobile devices move around their
devices seamlessly integrate with both their immediate surroundings and those which are
fixed in some way to predetermined locations [1, 2].

The π-calculus [3] has provided a means of reasoning about such capabilities and some
of its concepts have been implemented in environments such as occam-π. In these
environments the emphasis is to provide a means whereby mobility is achieved by the
movement of communication channel ends from one process to another regardless of the
processing node upon which the process resides. The occam-π environment has mainly
been used in large computing cluster based experiments using the pony environment [4] and
the creation of highly parallel models of complex systems [5]. The nature of the occam-π
environment tends to promote channel mobility due to the static nature of the process
workspace at a node.

The agent based community has developed a number of frameworks and design
patterns that promote the use of agents. An agent, based upon the actor model, is a

398 J. Kerridge et al. / Mobile Processes and Agents: A Parallel Perspective

component that is able to move around a network interacting with each individual node’s
environment to achieve some pre-defined goal. Once the goal has been achieved the agent
is destroyed. The goal of an agent is usually to obtain some service or outcome that either
changes the originating node’s capabilities, the visited nodes’ capabilities or some
combination of these. The agent community tends to use the object oriented paradigm and
thus a number of design patterns have been created that provide a basis for designing such
systems [6] describe a concurrent environment that exploits multi-agent systems and agent
frameworks to build systems that employ a behavioural and goal oriented approach to
system design that are able to evolve as a result of co-operation between components within
the resulting implementation.

The JCSP community [7] has taken a different approach to mobility in which the
mobility of processes and communication channels is seen as being equally important [8].
The primary advantage of using a Java based technology is its widespread use in a large
number of mobile devices and hence it provides some degree of portability. Further, it has
already been shown that transferring processes from one node to another is feasible [8, 9] as
a result of specific changes made to the dynamic Java class loading system. The impact of
ubiquitous computing and mobility is discussed in [9], where the emphasis was using wi-fi
access to enable the mobility of processes. In that case, only the mobility of processes was
considered, whereas, in this paper we demonstrate how the concept of a mobile agent can
be implemented in the JCSP context.

The development of both occam-π and JCSP has been undertaken by the same group
and thus many of the concepts are shared and build upon the same theoretical frameworks
(CSP and the π-calculus). The JCSP developments have always been more widely based in
terms of their use of network capability. In particular, the ability to achieve process
mobility has always been present in the networked version of JCSP, though few people
have exploited the capability.

The approach taken in this paper is to exploit the JCSP approach and to extend the
dynamic process loading capability so that agents can be sent around a network to obtain
processes that can be returned to the agent’s originating node where they are installed and
can execute as if they had been running there from the outset.

In the next section we describe the structure of an agent in our implementation, which
is followed by a description of corresponding interaction between an agent and a node that
it is visiting. In the third section a description of an initial test environment is described.
We then present a case study concerning a mobile social networking application. Finally,
conclusions are drawn and further work is identified.

1. Agent Formulation

The goal of an agent is to find and retrieve, on behalf of its originating node, a copy of a
process that is currently unavailable at the node. The node has been asked to process some
data for which the required process is not available. The node initializes the agent with the
identity of the required process. The agent then travels around the network containing the
node until it finds a node with the required process. The process is then transferred to the
agent, which then returns to its originating node where the process is added to the
processing capability of the node. This means that the node is now able to process this new
type of data as if it had been able to do so from the outset.

In the experiments reported in this paper an agent has the following requirements:

• At the originating node it needs to be initialized with its goal, which in this case
is the identity of the required process,

 J. Kerridge et al. / Mobile Processes and Agents: A Parallel Perspective 399

• At a visited node it needs to determine whether the required process is
available. If it is available then the process should be copied into the agent,
which then returns to its originating node. If the required process is not
available, the agent should cause itself to move to another node in the network.

• An agent returning to its originating node should transfer the required process
to the node, which will then cause it to be incorporated into its execution
environment.

• Additionally, an agent requires the ability to connect itself to a node’s internal
communication structure so that it can interact with the node. In order to leave
a node, an agent also requires the ability to disconnect itself from the node’s
internal communication structure. This latter requirement arises because the
agent is a serializable object and any local channel communication ends are
not serializable.

In its simplest form an agent only requires one input and one output channel end,

which it then connects with a node in a manner depending on the context. Once the
connection(s) have been made, the agent can interact with the node, which has to provide
the complimentary set of channel ends. The channel structure for each of the
interconnections is shown in Figure 1. Figure 1a shows the connection between the Agent
and its originating node. The Agent simply needs to receive data from its Node which
comprises the addresses of any Nodes the Agent can visit until such time as the Node
determines it needs another process. The Node sends the identity of the required process to
the Agent, at which point the Agent disconnects itself from its originating Node and using
the list of other Nodes travels around the network until it finds the process it requires. The
Agent is thus implementing an Itinerary pattern [12]. It is assumed at this stage that the
required process will be found. When the Agent visits another Node (Figure 1b) it requires
two channel connections; the first is used to send the identity of the required process to the
Node and the other receives the response from the Node, which is either a copy of the
process or an indication that the Node does not have the required process. Finally, the
Agent returns to its originating Node (Figure 1c), where only one channel is required,
which is used to send the required process to the Node. The Node is then able to
incorporate the process into its internal infrastructure and is thus able to process data that
was previously not possible.

Figure 1: agent–node channel connections.

NODE AGENT fromInitialNode

(a) An agent waiting to be initialised

NODE

AGENT fromVisitedNode

 toVisitedNode

(b) An agent visiting another node

NODE AGENT toReturnedNode

(c) An agent returned to its original node

400 J. Kerridge et al. / Mobile Processes and Agents: A Parallel Perspective

Each aspect of agent behaviour is now described in turn. The coding is presented
using the Groovy Parallel formulation [11].

1.1 Agent Properties and Basic Methods

The interface MobileAgent {1}1 defines two methods connect and disconnect and also
implements the interface Serializable. In this formulation each channel that is required
is specifically named {2-5}, rather than reusing channel ends for different purposes in
different situations. The channel variables have the same name as used in Figure 1. An
agent can be in one of three states represented by three boolean variables {6-8} of which
only one can be true at any one time. (A single state variable could have been used but, for
ease of explanation, three are used). The remaining variables {9-13} are either given
values during the initialization phase or assigned values as the agent visits other nodes.

01 class Agent implements MobileAgent {

02 def ChannelInput fromInitialNode
03 def ChannelInput fromVisitedNode
04 def ChannelOutput toVisitedNode
05 def ChannelOutput toReturnedNode

06 def initial = true
07 def visiting = false
08 def returned = false

09 def availableNodes = []
10 def requiredProcess = null
11 def returnLocation
12 def processDefinition = null
13 def homeNode

14 def connect (List c) {
15 if (initial) {
16 fromInitialNode = c[0]
17 returnLocation = c[1]
18 homeNode = c[2]
19 }
20 if (visiting) {
21 fromVisitedNode = c[0]
22 toVisitedNode = c[1]
23 }
24 if (returned) {
25 toReturnedNode = c[0]
26 }
27 }

28 def disconnect() {
29 fromInitialNode = null
30 fromVisitedNode = null
31 toVisitedNode = null
32 toReturnedNode = null
33 }

The connect method {14-27} is passed a List of values, the number and contents of

which vary depending on the state of the agent. The connect method is always called by
the node at which the agent is located because the values passed to the agent are local to the
node. In the initial state {15-19}, the list contains a local channel input end, the net channel
input location to which the agent will return when the goal has been achieved and the name
of the originating node. In the case where the agent is visiting another node {20-23} the list

1 The notation {n} refers to a line number in a code listing

 J. Kerridge et al. / Mobile Processes and Agents: A Parallel Perspective 401

comprises a local channel input end and a local channel output end which is uses to create
channels to communicate with the local node. Finally, in the case where the agent has
returned to its originating node {24-26} the list simply comprises a local channel output
end which the agent uses to transfer the code of the process that has been obtained. The
disconnect method {28-33} simply sets all the channel end variables to null, which is a
value that can be serialized.

The coding associated with each state of the agent is such that it is guaranteed to
terminate and the agent will only ever be in one of its possible states.

1.2 Agent Initialisation

An agent is, by definition, in the initial state when it is first constructed by an originating
node. In the initial state, an agent can receive two types of input on its fromInitialNode
channel {37}. In the case of a List {38-40}, the communication comprises one or more
net channel input ends from nodes that have been connected to the network. Nodes can be
created dynamically in the system being described. In this case the net channel locations
are appended (<<) to the List of availableNodes {39}. The List availableNodes
therefore holds the itinerary around which the Agent will travel until it finds the required
process.

34 if (initial) {
35 def awaitingTypeName = true
36 while (awaitingTypeName) {
37 def d = fromInitialNode.read()
38 if (d instanceof List) {
39 for (i in 0 ..< d.size) { availableNodes << d[i] }
40 }
41 if (d instanceof String) {
42 requiredProcess = d
43 awaitingTypeName = false
44 initial = false
45 visiting = true
46 disconnect()
47 def nextNodeLocation = availableNodes.pop()
48 def nextNodeChannel = NetChannelEnd.createOne2Net(nextNodeLocation)
49 nextNodeChannel.write(this)
50 }
51 }
52 }

If the input is a String {41-50} then the agent has received the name of the process it is

to locate from a node elsewhere in the network. It is presumed that the required process is
always available. The name of the process is assigned to requiredProcess {42} and the
loop control variable is set false {43}. The state of the agent is changed from initial to
visiting {44-45}. The agent then disconnects itself from its originating node {46}. The
first net channel location is then popped from the list of availableNodes and assigned to
nextNodeLocation {47}. This is then used to create a net channel output end as
nextNodeChannel {48}. The agent then writes itself to this net channel, thereby
transferring itself to the first node in the list of available nodes. This simple formulation
essentially provides the itinerary agent design pattern.

1.3 Agent Visiting Another Node

The agent writes the value of requiredProcess on its toVisitedNode local channel {54}
and then reads a response from the visited node on its fromVisitedNode channel {55}.

402 J. Kerridge et al. / Mobile Processes and Agents: A Parallel Perspective

If the returned value is not null then the required process has been located {56} and the
agent writes the identity of the agent’s originating node to the visited node {57}. The state
of the agent is changed from visiting to returned {58-59}. The agent then creates a net
channel output end {60-61} using the value in returnLocation, disconnects itself from
the visited node {60} and writes itself to its originating node {63}. If the returned value is
the null value then the agent simply disconnects itself and writes itself to the next node in
the list of availableNodes {66-70}.

53 if (visiting) {
54 toVisitedNode.write(requiredProcess)
55 processDefinition = fromVisitedNode.read()
56 if (processDefinition != null) {
57 toVisitedNode.write(homeNode)
58 visiting = false
59 returned = true
60 disconnect()
61 def nextNodeLocation = returnLocation
62 def nextNodeChannel = NetChannelEnd.createOne2Net(nextNodeLocation)
63 nextNodeChannel.write(this)
64 }
65 else {
66 disconnect()
67 def nextNodeLocation = availableNodes.pop()
68 def nextNodeChannel = NetChannelEnd.createOne2Net(nextNodeLocation)
69 nextNodeChannel.write(this)
70 }
71 }

1.4 Returned Agent

An agent that has returned to its originating node simply writes a List comprising the
process definition and the name of the process for which the agent was searching to the
local channel toReturnedNode {73}. A node can create more than one agent, each of
which is searching for a different process. Each of these agents can be active in the network
at the same time. Once an agent has written the required process to the local node it
terminates

72 if (returned) {
73 toReturnedNode.write([processDefinition, requiredProcess])
74 }

2. Node Processing Functionality

A node operates in an environment whereby it has to register with a specific authority node
thereby indicating that it is willing to accept agents. Additionally it is initialized with zero
or more of the required processes that agents will be sent to retrieve. Nodes can be created
dynamically. A node registers itself with the authority by sending it the net channel input
location of a channel upon which the node is willing to receive agents. The authority then
sends this new node location to all previously registered nodes. Additionally, a node
registers a net channel input location on which it receives data in the form of data objects.
These data objects require a specific process to undertake manipulation of the data. It is
this process that may have to be located and returned to a node by an agent if the required
process is not already available at the node.

Once a node is registered with the authority it alternates over a small set of net input
channels. It can receive:

 J. Kerridge et al. / Mobile Processes and Agents: A Parallel Perspective 403

• an input from the authority indicating that a new node has been created
comprising the new node’s agent visit net channel input location.

• a data object which needs to be processed. It may be able to process this data
immediately because the required process is already available. If the process is
not available, it initiates an agent with the name of the required process and
sends the agent to find it.

• a visiting agent from which it reads the name of the required process. It can
either write to the agent if the node has an instance of that process or null
otherwise.

• a returned agent from which it reads the process that has been located, which it
then installs in its own processing environment.

Each of these alternatives has a slightly different formulation specific to each case.

We describe only the case of a returned agent. The agent is read from the net channel input
agentReturnChannel {75} as the variable returnAgent. The address of the
agentReturnChannel was passed to the agent when it was created as one of the parameters
of the connect method {17}.

75 def returnAgent = agentReturnChannel.read()
76 returnAgent.connect([NodeFromReturningAgentOutEnd])
77 def returnPM = new ProcessManager (returnAgent)
78 returnPM.start()
79 def returnList = NodeFromReturningAgent.in().read()
80 returnPM.join()
81 def returnedType = returnList[1]
82 currentSearches.remove([returnedType])
83 typeOrder << returnList[1]
84 connectChannels[cp] = Channel.createOne2One()
85 processList << returnList[0]
86 def pList = [connectChannels[cp].in(), nodeId, toGathererName]
87 processList[cp].connect(pList)
88 def pm = new ProcessManager(processList[cp])
89 pm.start()
90 cp = cp + 1

The returnAgent is then connected {76} to a local node and passed the output end of

a local channel in NodeFromReturningAgentOutEnd. A new ProcessManager is then
created {77} for returnAgent which is then started {78} to enable the agent to run in
parallel with the node process. The node then reads a returnList from the agent {79}
using the in() end of the channel that connects the agent to the node. The data in the List
is that written by the agent {73} and comprises the process definition and the name of the
process. The node process then waits for the agent to terminate {80}. The name of the
returned process is assigned to returnedType {81}. This name is then removed from the
list of current searches {82}. Recall that a node can initiate a search for a number of
processes at the same time. The list currentSearches is used to ensure that an agent is not
initiated for a search that has been previously started. The name of the returned process is
then appended to this list of processes available to this node {83} as the cp’th element.
Each of these returned processes has a single input channel by which data that is input on
the node’s data input channel, connected to the Data Generator process, can be written to
the process. This channel has to be dynamically created {84}. The returned process,
returnList[0] is then appended to the list of available processes as the cp’th element of
processList {85}.

Returned processes implement an interface that is very similar to the MobileAgent
interface in that it has a connect method but no disconnect method. In this case a process

404 J. Kerridge et al. / Mobile Processes and Agents: A Parallel Perspective

requires a list, pList, of values comprising its local input channel end, the identity of the
node on which it is executing and the name of net channel of a net any to one channel upon
which the process can write the resulting effect of the process {86}. The cp’th element of
processList is then connected to the node {87}. A new ProcessManager for this
element can now be constructed {88} and started {89}. Finally the value of cp is
incremented {90} ready to accept the next process that may be returned.

A client-server style design has been adopted for all interactions within the system,
yielding deadlock and livelock freedom. This applies to both the interactions between the
primary nodes of the system and also between nodes and agents.

3. Initial Evaluation

Figure 1 shows the basic architecture in which the Authority node and the node which
creates instances of data objects are combined into a single node. Each arrow represents a
networked channel. The arrows with the heavier lines are named network channels,
managed by the JCSP Channel Name Server (CNS). Each of these channels is implemented
as an any-to-one channel so that any number of Nodes can write to the Authority or
Gatherer nodes. The Gatherer is simply a node that records the effect of the processing on
any of the data objects. Each Node creates three net channel inputs, shown by the dashed
lines.

Figure 2: network architecture of the basic mobile process and agent system.

The Agent Visit Channel and Data Gen To Node net channel locations are sent to the

Authority as part of the node creation mechanism. The Authority then sends the location of
the Agent Visit Channel to each registered Node. The Data Gen To Node channel is used
to send either Agent Visit Channel locations to a Node or to send data objects to a Node.
The type of the data object and the Node it is sent to are determined randomly. The Agent
Return Channel location is used to initialize any agent the node might create so that the
agent knows the address to which it should write itself when it returns with a process. It is
presumed that any returned process can be integrated into a Node simply by creating an
internal channel which is incorporated into a data distribution function within the Node.
Data objects are read from the Data Generator and their type is determined so that the data
can be sent to a data object process using the internal channel. Output from the data object

Authority and
Data Generator

Nodes To Data Generator

Gatherer
Nodes to Gatherer

Agent Visit Channel

Agent Return Channel

Node

Data Gen To Node

Node

 J. Kerridge et al. / Mobile Processes and Agents: A Parallel Perspective 405

process is always written to the named net channel Nodes to Gatherer by means of an any-
to-one net channel.

3.1 Basic Version

The network shown in Figure 2 was implemented with a proviso that all the required data
processes were available at one or other of the initial Nodes. The system was tested with
three different types of data object. The basic version read a data object and if able,
processed it, because the required data object process was already present in the Node. If
the data object process was not available then an agent was initialised and launched into the
network and the data object was not processed. While the Node was waiting for the Agent
to return with the required data object process, other data objects of the same type were also
not processed. This enabled easier interpretation of the output from the Gatherer process
because gaps in the list of processed data objects were immediately visible as each data
object has a unique identifier regardless of its type.

3.2 First Revision

In this version the Authority node and Data Generator were divided into two separate
processes. Each had their own named net channel. Appropriate modifications were made to
the Node process but the Agent needed no modification. The aim in doing this was to
separate processing functionality within the Node process so that updates to the List of
Nodes an Agent could visit were received on a different input channel from that upon
which data objects were received.

3.3 Second Revision

The restriction on all data object processing processes being present in the network was
removed. This meant that an agent could return to its originating node with its
processDefinition property {12, 66} null. In this case the originating Node recorded
this fact and did not send a further agent for this type of data until a predetermined time
period had elapsed. Yet again no modification of the Agent coding was required. This
revision had the effect of creating an Agent that could not achieve its goal and which did
not cause the system to fail. This mimics a typical situation in a real network where an
Agent may fail.

3.4 Final Revision

In the final revision to the basic system, a system of two authorities was created. One
authority kept a record of which node had which data object processes. This therefore
represented an Authority that was more trusted in that it held private information about a
node. A node could choose the authority with which it registered. The agent did require
modification because in this case the Agent was sent to the Trusted Authority first to see if
the required process was known to it. If it was then the agent was sent directly to the
required node where it could obtain the required process and return to its originating node.
If the Trusted Authority had no knowledge of required process then the agent behaved like
the original Agent in that it obtained a list of node visiting addresses from the Other
Authority and then went on a trip around the nodes until, it found the process if it was
available. The Nodes could choose whether they placed information in the Trusted or Other
Authority. The aim of this revision was to explore whether a system could be built that
used more than one authority as often happens in networked environments. Various

406 J. Kerridge et al. / Mobile Processes and Agents: A Parallel Perspective

versions could have been built that captured behaviours depending on whether the process
was obtained from a Node that used the Trusted Authority or not and whether the
originating Node used the Trusted Authority. Some processes might never appear in the
Trusted Authority in some applications. We chose not to explore all the possible
combinations but simply wanted to demonstrate that the use of multiple authorities was
possible.

3.5 Results and Evaluation

The above systems were all found to work as anticipated. The main result demonstrated
was that it is feasible to create a system in which Nodes in a network do not have all the
processes they require in order to function correctly. Nodes have the ability to obtain
processes for data that they have never processed before, provided they can find a source of
the required process. Systems could be built with more than one authority so that Agents
could travel to several authorities in order to determine the Nodes they should visit in order
to obtain a required process.

The Agent Visit Channel and the Agent Return Channel are essentially IP addresses if
the underlying network is based upon TCP/IP technology. Thus the system could be
implemented on top of any TCP/IP based network. World Wide Web requests for access to
a server are received on a specific port of the IP address upon which the server resides. This
allows the external access to pass through any firewall that might be present. If this Agent
system were to be implemented in the same environment then the Agent Visit Channel and
the Agent Return Channel would have to be placed at known port locations on a Node that
was connected directly to the internet. This would then require a Node process that could
interact with these channels in the manner described to permit access by the Agents.
Obviously such access would need to be carefully controlled and monitored to ensure that
unwanted access to a node does not occur. Inherently there is some security because the
Node is only expecting communications conforming to a specific protocol in terms of the
data it can read and write to an Agent.

4. Case Study: A Mobile Social Networking Application

The model was then expanded to deal with its application to a social networking service in
which people can specify their friends to organize ad-hoc meetings. The person’s list of
friends is recorded in their mobile device. The aim of the service is to determine whether
any of their friends are currently registered with any of the network(s) where the mobile
device’s owner is currently located. If this is the case then the diaries of the person and their
friends are compared to see if they both have free time at the same time and if so to inform
both of them that this is an opportunity for them to meet face-to-face. In this case a network
refers typically to a wi-fi network which people can join and leave dynamically. In this
experiment we were not concerned with managing the underlying network connection
required in Mobile-IP but simply the ability of a person to join a network and send an agent
into the system to see if any of their friends was already registered with the network and if
so determine whether there was a possibility of a face-to-face meeting in the immediate
future because they both had free times in their diaries for forthcoming period.

When a person enters a new wireless environment (Node G in Figure 3) their mobile
device creates a new agent that has list of their friends together with a list of their free times
for that day, or whatever period they have chosen. The agent is also initialized with the type
of diary system the person’s mobile device uses so that other friends will be able to
determine the diary system used by this person’s mobile device. The Agent is transferred

 J. Kerridge et al. / Mobile Processes and Agents: A Parallel Perspective 407

to the network’s Authority node, where it first registers this person as being present in the
network. It then determines whether or not any of the person’s friends are already
registered. If this is the case the Authority creates an Agent initialized with the diary
information of the person in a form suitable for the type of the friend’s diary system. The
Agent then transfers to the friends mobile device, for example Nodes A and E, invokes the
diary access process of the friends’ mobile device and determines whether or not there are
times when the two people can meet. The Agent then returns to the originating person’s
node with any possible meetings. The Agent is thus able to visit all the friends’ nodes to
determine whether or not a meeting is possible and to suggest possible meeting times
without the need for multiple interactions between each of the nodes.

Figure 3: a mobile social networking application.

This approach means that the Authority does need to know the format required by

different diary systems. Users of the service do not need to have copies of all the possible
diary access mechanisms and in particular the various releases of software that might be in
use at any one time within such a diverse mobile environment. Each user registers
dynamically with the Authority, identifying the particular version of the diary mechanism
they are using. If they happen to be the first person registering with the Authority that is

408 J. Kerridge et al. / Mobile Processes and Agents: A Parallel Perspective

using a new software release then the Authority could be enabled to send an Agent to the
manufacturer of the diary system to obtain the required format information.

The system does not have to be symmetric in that a person can be a friend of someone
else but the other person does not also need to have identified the other as a friend. The
order in which people register does therefore have a bearing on the meetings that might be
arranged. A version of the system was implemented that enabled an agent to visit a number
of friends who were all registered with the authority such that a multi-person meeting could
be arranged if several people were all free at the same time.

The goal of the case study was to investigate the feasibility of the approach rather than
produce a fully working system. Thus aspects such as fault tolerance and optimizations that
could be used, such as refining the Agent itinerary to improve system performance, were
not considered.

5. Comparison with other Agent Frameworks

One of the most commonly used agent framework in the Java community is JADE [13].
This framework uses the technology of multi-agent applications based on peer-to-peer
connection forwarding messages between hosts. This framework can be created on different
hosts and each framework requires just one JVM (Java Virtual Machine) for execution.
JADE machines can adapt themselves in respect to different protocols which will be used
for the data transfer between different hosts. An agent which expects to communicate with
another agent need not know about the exact name of the other agent or the agent that
receives the message must not be available or executed at the same time the sending agent
is available, for example the sending agent can send a message to a destination (all agents
interested in baseball) and each executing agent which is interested can receive this
message. JADE has also a security mechanism whereby JADE can verify and authenticate
the sender of a message and can decline some operations as related to the rights of the
sender for example an agent can receive a message from a sending host but cannot send a
message to the same host.

Comparing JADE with the system described in this paper, there are some similarities.
Both systems can transfer an agent from one host to another host and execute them at the
stage the agent was stopped. But a difference of both is that the system described in this
project has the opportunity that an agent can write itself from one host to another, which
JADE is unable to do. This is a big advantage because an agent can take a process from a
host and transfer it to another host to execute it locally. However it is not possible to
communicate with another agent as in JADE which allows communication between two
agents. Another advantage of JADE is that it is already possible to run this framework on
different devices like mobile devices or personal computers and also on wired or wireless
networks. Thereby JADE provides the usage of different environments like J2EE, J2SE or
J2ME. In contrast to that the system described in this paper has not yet been tested in the
manner of its execution on different devices using different environments.

6. Conclusions and Future Work

This paper has shown that it is possible to create a parallel environment that exhibits
aspects of agent based technology, thereby enabling a node to adapt to the processing
requirements imposed upon in it as a response to external requirements. For example, say a
rendering node was sent a new type of data file of which it had no previous knowledge; it
could send an agent to find the required process. Thus the capability of the rendering node

 J. Kerridge et al. / Mobile Processes and Agents: A Parallel Perspective 409

has been increased by enabling it to adapt to its changing environment. This is one aspect
of pervasive adaptation [10], a new action recently proposed by the Framework 7
Programme.

The main disadvantage of using Java is that objects that are communicated over a
network have to be serialized using the underlying Java mechanisms. This means that it is
more difficult to incorporate non-Java platforms. To this end a platform independent
protocol needs to be developed that enables processes to communicate with each other
regardless of the underlying software systems [14]. This would allow the communication of
any data structure regardless of its underlying data types. In particular a process can be
communicated as a byte array but of course cannot be platform independent because the
byte array is interpreted by its virtual machine.

The current JCSP networked implementation does not always recognize when a node
has failed or disconnected from the network, in a manner that is easily accessible to a
system developer building process networks. The platform independent protocol referred to
previously could be extended, quite simply, so that it could enable communication of node
failures in a consistent manner. This would mean that as mobile devices move in and out of
a particular network it would be possible to deal with some of the failure conditions at the
applications level. For example the ability to determine that a node is no longer present in a
network could be used by a returning agent to ensure that it did not try to reconnect with a
node that was no longer accessible. However, if the underlying network was able to manage
the movement of a mobile device from one network to another then this functionality could
be incorporated into the application [15].

Currently, we are exploring how this technology could be used to implement a
distributed version of a Learning Environment. In such an environment we would exploit
the fact that much of the material that is held in a Learning Environment, such as webCT
[16] is also available on the individual lecturer’s office computer. Thus when a student logs
into the Institute’s network and places say a USB memory stick into a PC then an agent
could be transferred from the stick which holds the modules for which this student is
enrolled. This registration status could be checked with an authority, which also knows the
IP location of the computers used by the lecturers that maintain material for the student’s
modules. The agent could then travel round the network finding out whether any new
material had been available for the modules and this could then be transferred automatically
to the agent and returned to the USB memory stick. Furthermore if the student had any
special needs, which could also be recorded by the agent, then any files that require
modification before they can be used by the student could be sent for transformation at a
special node in the Institute’s network.

Acknowledgments

Jens Haschke acknowledges the support of the Student Awards Agency Scotland which
supported him, in part, during the course of his Bachelor’s programme of study that
contained a project element upon which parts of this paper are based.

References

[1] R. Milner, "Ubiquitous Computing: Shall we Understand It?," The Computer Journal, 49(4), pp. 383-
389, 2006.

[2] M. Weiser, "The Computer for the 21st Century," Scientific American, September, 1991.
[3] R. Milner, J. Parrow, and D. Walker, "A Calculus of Mobile Processes, I," Information and

Computation, 100(1), pp. 1-40, 1992.

410 J. Kerridge et al. / Mobile Processes and Agents: A Parallel Perspective

[4] M. Schweigler and A. T. Sampson, "pony - The occam-π Network Environment," in P. H. Welch, J.
Kerridge, and F. R. M. Barnes (Eds.), Communicating Process Architectures 2006, pp. 77-108, IOS
Press, Amsterdam, 2006.

[5] C. G. Ritson and P. H. Welch, "A Process-Oriented Architecture for Complex System Modelling," in A.
McEwan, S. Schneider, W. Ifill, and P. H. Welch (Eds.), Communicating Process Architectures 2007,
pp. 249-266, IOS Press, Amsterdam, 2007.

[6] E. Gonzalez, C. Bustacara, and J. Avila, "Agents for Concurrent Programming," in J. F. Broenink and
G. H. Hilderink (Eds.), Communicating Process Architectures 2003, pp. 157-166, IOS Press,
Amsterdam, 2003.

[7] P. H. Welch, "Process Oriented Design for Java: Concurrency for All," in H. R. Arabnia (Ed.),
International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA
'2000)Volume 1, pp. 51-57, CSREA Press, 2000.

[8] K. Chalmers, J. Kerridge, and I. Romdhani, "Mobility in JCSP: New Mobile Channel and Mobile
Process Models," in A. McEwan, S. Schneider, W. Ifill, and P. H. Welch (Eds.), Communicating
Process Architectures 2007, pp. 163-182, IOS Press, Amsterdam, 2007.

[9] J. Kerridge and K. Chalmers, "Ubiquitous Access to Site Specific Services," in P. H. Welch, J.
Kerridge, and F. R. M. Barnes (Eds.), Communicating Process Architectures 2006, pp. 41-58, IOS
Press, Amsterdam, 2006.

[10] European Union Framework Programme 7, "Pervasive Adaptation: Background Document," 2008.
Available from: ftp://ftp.cordis.europa.eu/pub/ist/docs/fet/ie-jan07-
peradapt-01.pdf

[11] J Kerridge, K Barclay and J Savage, "Groovy Parallel! A Return to the Spirit of occam?", in JJ Broenink
et al (Eds.), Communicating Process Architectures 2005, pp. 13-28, IOS Press, Amsterdam, 2005.

[12] DB Lange and M Oshima, "Programming and Deploying Java Mobile Agents with Aglets", Addison-
Wesley, ISBN 0-201-32582-9, 1998.

[13] Bellifemine, F., Caire, G., Poggi, A., and Rimassa, G. "JADE - Java Agent DEvelopment Framework",
retrieved March 2008, from http://jade.tilab.com/papers/2003/WhitePaperJADEEXP.pdf, 2003

[14] K Chalmers, J Kerridge and I Romdhani, "Critique of JCSP Networking", in P.H. Welch et al. (eds),
Communicating Process Architectures 2008, ibid, IOS Press, Amsterdam, 2008.

[15] K Chalmers, J Kerridge and I Romdhani, "Mobility in JCSP: New Mobile Channel and Mobile Process
Models", in AA McEwan et al (eds), Communicating Process Architectures 2007, pp. 163-182, IOS
Press, Amsterdam, 2007.

[16] Wikipedia, " WebCT", http://en.wikipedia.org/wiki/WebCT, retrieved 18-6-2008.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

