
Santa’s
Groovy Parallel

Helper
Jon Kerridge

Motivation
• Matt Pedersen’s and Jason Hurt’s submitted paper

to CPA2008

Critique
• Their JCSP solution did not use two available

synchronisation techniques
– Bucket

• A component into which one or more processes can fallInto thereby
pre-empting themselves, becoming idle, until another process flush es
all the processes thereby enabling their re-scheduling

– Alting Barrier
• A Barrier enables processes to synchronise such that the set of

processes synchronising on the Barrier wait until they have all reached
that point in their execution.

• An Alting Barrier is one that can be used as part of a non-deterministic
choice (Alternative)

• Provides the CSP multi-way synchronisation primitive

• Further simplification by using Groovy Parallel Helper
Classes

Bucket - methods
• fallInto()

– The calling process is pre-empted
– Process becomes idle consuming no processor

resource and is associated with the Bucket
– Any number of processes can fall into a bucket

• flush()
– Must be called by a process that is never pre-empted in

a Bucket
– All the processes associated with the Bucket are

rescheduled for execution
• They may not execute immediately

Alting Barrier
• A possibly dynamic number of processes agree to

synchronise on the Alting Barrier
• They do this either

– absolutely by calling the AltingBarrier’s sync() method
– Process cannot withdraw from the synchronisation

• Or
– They access the Alting Barrier by means of a guard in an

Alternative (ALT)

• Only if the previously agreed number of processes have
synchronised or are waiting on an ALT is the Alting Barrier
selected as part of a non-deterministic choice

Reindeer Synchronisation
• Alting Barrier comprising

– Santa Claus
– Nine Reindeer

• Whenever Santa Claus and the nine reindeer have
synchronised on the Alting Barrier
– Given priority to deliver toys
– Solely determined when all the reindeer synchronise

because Santa checks for this possibility on each
iteration

– Minimal overhead is incurred by Santa

• Implemented as the stable Alting Barrier

Vestibule
• Contains four groups, each implemented by a

Bucket which can each hold up to three elves

• An Elf can tell the Vestibule they need to consult
Santa

• The Vestibule then tells the Elf which group
(Bucket) to join

• The Elf then fallsInto() the indicated Bucket

• The Elf then waits, idle in the Bucket until it is
flush ed by the Vestibule.

Elf Synchronisation
• Whenever Santa finishes an elvin consultation he

informs the Vestibule
– The vestibule can then flush() the next group of elves, if

any, so they can consult with Santa

• If Santa is idle and a third elf joins a group the
Vestibule will flush() the group enabling them to
consult with Santa Claus
– Santa Claus does not have to check to see if there is a

waiting group of elves

Architecture - Synchronisation

Santa

Vestibule

R R R R

R R R RR

stable
(Alting Barrier)

E

E

E

E

E

E

E

E

E

E

Consult
Any2One consultationOver

One2One

needToConsult
Any2One

joinGroup
One2Any

(Alting
Channel
Input)

Reindeer
def AltingBarrier stable

while (true) {
println "Reindeer ${number}: on holiday ... wish you were here, :)"
timer.sleep (holidayTime + rng.nextInt(holidayTime))
println "Reindeer ${number}: back from holiday ... ready for work, :("
stable.sync()
harness.write(number)
harnessed.read()
println "Reindeer ${number}: delivering toys . la-di-da-di-da-di-da, :)"
returned.read()
println "Reindeer ${number}: all toys delivered ... want a holiday, :("
unharness.read()

}

Elf
while (true){

println "Elf ${number}: working, :)"
timer.sleep (workingTime + rng.nextInt(workingTime))
needToConsult.write(1)
def group = joinGroup.read()
groups[group].fallInto()

// idle in Bucket awaiting flush()

consult.write(number)
println "Elf ${number}: need to consult Santa, :("
consulting.read()
println "Elf ${number}: about these toys ... ???"
negotiating.write(1)
consulted.read()
println "Elf ${number}: OK ... we will build it, bye, :("

}

Consult Channel - Elves to Santa
• Any to One

– Each elf can write to Santa

• However
– At any one time only three elves are flushed
– Hence Santa can expect exactly three communications
– It does not matter which elf communicates first
– Provided the other two elf communications are read

• Similarly for the Vestibule channel communications
– needToConsult (Any2One)
– joinGroup (One2Any)

Vestibule – Set Up
def flush = new Skip()
def vAlt = new ALT ([needToConsult, consultationOver, flush])
def int index = -1
def int filling = 0
def int removing = 0
def counter = [0, 0, 0, 0]
def NEED = 0
def OVER = 1
def FLUSH = 2
def preCon = new boolean[3]
preCon[NEED] = true
preCon[OVER] = true
preCon[FLUSH] = false
openForBusiness.read()

Vestibule – Main Loopwhile (true){
index = vAlt.select(preCon)
switch (index) {
case NEED:

needToConsult.read()
joinGroup.write(filling)
counter [filling] = counter [filling] + 1
if (counter [filling] == 3) filling = (filling + 1) % 4
break

case OVER:
consultationOver.read()
removing = (removing + 1) % 4
break

case FLUSH:
groups [removing].flush()
counter [removing] = 0
break

}
preCon [FLUSH] = (counter [removing] == 3)

}

Vestibule

Elf

Santa

…

Santa – Set Up

def AltingBarrier stable
def ChannelInput consult

def REINDEER = 0
def ELVES = 1
def rng = new Random()
def timer = new CSTimer()

def santaAlt = new ALT([stable, consult])
openForBusiness.write(1)

Santa – Reindeer Choicewhile (true) {
index = santaAlt.priSelect()
switch (index) {
case REINDEER :

def id = []
println "Santa: ho-ho-ho ... the reindeer are back"
for (i in 0 .. 8){

id[i] = harness.read()
println "Santa: harnessing reindeer ${id[i]} ..."

}
println "Santa: mush mush ..."
for (i in 0 .. 8) harnessed.write(1)
timer.sleep (deliveryTime + rng.nextInt(deliveryTi me))
println "Santa: woah ... we are back home"
for (i in 0 .. 8) returned.write(1)
for (i in 0 .. 8) {

println "Santa: unharnessing reindeer ${id[i]}"
unharnessList[id[i]].write(1)

}
break

Santa – Elf Choice
case ELVES:

def id = []
id[0] = consult.read()
for (i in 1 .. 2) id[i] = consult.read() // expecting precisely 2 more reads
println "Santa: ho-ho-ho ... some elves are here!"
for (i in 0 .. 2){

consulting[id[i]].write(1)
println "Santa: hello elf ${id[i]} ..."

}
for (i in 0 .. 2) negotiating.read()
println "Santa: consulting with elves ..."
timer.sleep (consultationTime + rng.nextInt(consul tationTime))
println "Santa: OK, all done - thanks!"
for (i in 0 .. 2){

consulted[id[i]].write(1)
println "Santa: goodbye elf ${id[i]} ..."

}
consultationOver.write(1)
break

Result
• Shared Memory (Thread based models)

– C# - 642 lines
– C - 420 lines
– Java - 564 lines
– Groovy - 322 lines

• Distributed Memory
– MPI - 352 lines

• Process Oriented
– JCSP - 315 lines

• Groovy Parallel – 215 lines
– 32% reduction over JCSP !!!

Conclusion for Management at the North Pole

Santa
Should Use

Groovy
Parallel !!

