Communicating Process Architectures 2008 55
P.H. Welch et al. (Eds.)

IOS Press, 2008

(© 2008 The authors and IOS Press. All rights reserved.

Combining EDF Scheduling with occam
using the Toc Programming L anguage

Martin KORSGAARD! and Sverre HENDSETH
Department of Engineering Cybernetics, Norwegian Unitgid Science and Technology

Abstract. A special feature of the occam programming language is thatancur-
rency support is at the very base of the language. Howeenhility to specify
scheduling requirements is insufficient for use in some-tieg systems. Toc is an
experimental programming language that builds on occaepikg occam’s concur-
rency mechanisms, while fundamentally changing its conogpme. In Toc, dead-
lines are specified directly in code, replacing occam’sriggiconstructs as the method
for controlling scheduling. Processes are scheduled/aaithat code is not executed
without an associated deadline. The deadlines propagategih channel communi-
cations, which means that a task blocked by a channel that iseady will transfer
its deadline through the channel to the dependent task.dlloiws the deadlines of
dependent tasks to be inferred, and also creates a sclgpdtflaet similar to priority
inheritance. A compiler and run-time system has been imgiged to demonstrate
these principles.

Keywor ds. real-time programming, occam, earliest deadline first, Ef2Reduling.

I ntroduction

A real-time computer system is a system which success depeicbnly on the computa-

tional results, but also on the time the results are deld:efee typical implementation of a

real-time system is also concurrent, meaning that it hdstdeat are run in parallel. While

there are plenty of programming languages designed witbhwroency in mind, for instance

Ada [1], Java [2], occam [3] or Erlang [4], there are far fewased on timing. Synchronous
programming languages such as Esterel [5] and Lustre [Gyatable exceptions. The tim-

ing support in most other programming languages is limitedalays and access to a clock,
and scheduling control is handled by specifying task presi A more integrated approach,
where timing requirements could be specified directly bypgsimple language constructs,
would make it easier to reason intuitively about the temigamaperties of a program.

CSP [7,8] is a process algebra designed to model and reasah@mcurrent programs
and systems. The occam programming language is largelyl lms€SP. The concurrency
handling mechanisms of occam are one of the most fundammantalof the language. Paral-
lel execution is achieved using a simplAR constructor, and is just as easy as creating serial
execution (which requires the mandat@Q constructor). The channel data type provides
native synchronous communication and synchronizatiowdsen the parallel processes, the
only type of inter-process communication allowed. occams lnalt-in language support for
delays and clocks, but lacks a robust way of controlling dalirg, which can cause difficul-
ties when implementing real-time systems [9]. One problethat priorities are static, dis-
abling online control over scheduling. Another problemhigttcertain combinations ¢1AR,

1Corresponding AuthorMartin Korsgaard, Department of Engineering Cybernetiz491 Trondheim,
Norway Tel.: +47 73 59 43 76; Fax: +47 73 59 45 99; E-matiir t i n. kor sgaar d@t k. nt nu. no.

56 M. Korsgaard and S. Hendseth / The Toc Programming Language

PRI PAR, ALT, andPRI ALT can yield intuitively ambiguous programs. In some cases,
the addition of prioritized operators can change the Iddgeaaviour of a program [10]. An
extended version of occam, called occamadds many new features to occam, including
process priority control [11].

Ada [1] is a programming language designed to ensure saf¢éimeaprogramming for
critical systems. It contains both asynchronous and symadus concurrency functions, the
latter which also is influenced by CSP. Ada allows specificatf absolute task priorities.
Specification of deadlines became possible from Ada 2008.Rdvenscar profile, however,
which defines a safer subset of Ada more suitable to critigstiesns, permits neither asyn-
chronous interruption of tasks nor synchronous concuyteftus is done to increase deter-
minism and to decrease the size and complexity of the rua-fiystem [12].

A recurring problem in designing a programming languagéithhuilt on timing is the
lack of execution time information. In general, one cannadw in advance how long it will
take to execute a given piece of code, which severely limggstem’s ability to take pre-
emptive measures to avoid missing deadlines. This alsacesdine types of implementable
timing requirements: An example is executing a task as goasible before a given dead-
line, which is impossible without knowledge of the execntione of the task. Measurements
of execution time are inadequate because execution timeargngreatly with input data.
Certain features of modern computer architectures, suadaelses, pipelining and branch
prediction, increases the average performance of a computeadds complexity that makes
execution times even harder to predict. Nevertheless, esdimates of the worst-case exe-
cution time (WCET) of a program can be found using compugeriools such as aiT [13],
which Airbus has used with success [14]. However, the poiemconvenient and compu-
tationally expensive, and arguably most suitable for adflschedulability analysis of safety
critical systems.

Two common real-time scheduling strategies are rate-nommoscheduling (RMS) and
earliest deadline first (EDF) [15]. In RMS, task prioritia® ardered by their inverse peri-
ods. If a task’s relative deadline is allowed to be shortanths period, then priorities are
ordered by inverse relative deadlines instead and theitligors called deadline-monotonic
scheduling [16]. EDF scheduling works by always executimgtask with the earliest abso-
lute deadline.

If there is not enough time to complete all tasks within the@adlines, the system is
said to be overloaded. It is a common misconception that R¢8dre predictable during
overload that EDF, because tasks will miss deadlines inrafgriority. This is not correct
[17]. If a task has its execution time extended under RMS,ilit affect any or all lower
priority tasks in no particular order.

EDF and RMS behave differently under permanent overloadSRMII first execute
tasks with a higher priority than the tasks that lead to therload. This can result in some
tasks never being executed, but ensures at least that ther lugority tasks are undisturbed.
Note that priority is a function of a task’s period and notiitgportance, so this property is
not always useful. Under EDF, a task’s absolute deadlinkealvilays at some point become
the earliest in the system, as tasks will be scheduled evtkaiifdeadline has already passed.
This means that all tasks will be serviced even if the systemverloaded. EDF has the
remarkable property of doing period rescaling, where ifglistem has a utilisation factor
U > 1, a task with period; will execute under an average period(of ¢; [18]. Which of
the overload behaviours is the most suitable will depencherapplication. For a thorough
comparison of the two scheduling algorithms see [17].

In this paper we present Toc, an experimental programmimguiage where the specifi-
cation of task deadlines is at the very core of the languag€ot, a deadline is the only rea-
son for execution, and no code is executed without an agsdaieadline. Processes do not
execute simply because they exist, forcing the programmasrake all assumptions on tim-

M. Korsgaard and S. Hendseth / The Toc Programming Language 57

ing explicit. Scheduling is done earliest deadline firstkimg use of occam’s synchronous
channels as a way of propagating a deadline from one taskptendent tasks. Deadlines of
dependent processes can thus be inferred, so that the tiegugements specified in code
can be the actual requirements stemming from the speatiimabf the system: If a control
system should do something in 10 ms, then that should appaetiyone place in the source
codeasTlI ME 10 MSEC'. The occam priority constructPRlI PAR’ can then be omitted,
and the result is a language that can express many types iafjtiequirements in an ele-
gant manner, and where the timing requirements are clegiilycted in the source code. A
prototype Toc compiler and run-time system has been impitzde

The rest of this paper is organized as follows: Section lriesxthe Toc language and
gives a few examples of how to specify timing requirementsgu$oc. Section 2 discusses
scheduling and how it is implemented. The scheduling of amgte program is explained.
In section 3, some of the implications of writing real-tim@grams in Toc are considered.

1. TheToc Language

Toc is an experimental programming language based on tlaetlde specification of tasks
and deadlines could be fully integrated in to a procedurag@mming language, and fur-
thermore, that all functionality of a program should be giaa explicit deadline in order to
be executed. The idea was first described in [19].

1.1. Language Specification

The language is based on occam 2.1. As with occam, statementslled processes, and
are divided into primitive and constructed processes. iBvienprocesses are assignment,
input and output on channelSKI P andSTOP. The constructive processes alter or combine
primitive processes, and are made ussif) PAR, | F, ALT, CASE or VHI LE, where the
four first may be replicated usiriOR. Definitions of the occam processes can be found in the
occam reference manual [3]. Toc has the additidhdVE constructor, which takes a relative
timet, and a process. It is defined as follows:

The construct “TIME¢ : P” has a minimum allowed execution time and maximum
desired execution time of

The maximum execution time property ©f ME sets a deadline. It is specified only as “de-
sired” to account for the possibility that the actual exemutime exceeds. The minimum
execution time property sets a minimum time before the coosis allowed to terminate. In
practice this is the earliest possible start time of proegésllowing in sequence. This prop-
erty is absolute, even in cases where it will cause anottetlohe to be missed. Furthermore,
if a TI ME construct follows in sequence to another, then the stae tihthe latter will be set
to the exact termination time of the first, removing drift @ady times between consecutive
tasks or task instances. The ME constructor is used to create deadlines, periods and delays
Since allALTs that are executed already have a timing requirement atedaevith them, oc-
cam'’s timer guards in alternations can be replaced by MEQOUT guard, which is triggered
on the expiration of a deadline. Examples are shown in Tabhledlare discussed in the next
section.

Central to Toc is the concept of lazy scheduling, where n& ¢eéxecuted unless given
a deadline. With the above terminology in place, a more peedefinition of the laziness of
Toc can be given:

In Toc, no primitive processes are executed unless needauiriplete a process with a
deadline.

58

M. Korsgaard and S. Hendseth / The Toc Programming Language

Table 1. Use of the TIME constructor

Use

Code

Set deadling milliseconds to procedure. The TIME
construct is not allowed to terminate before its deadline.

TIME d MSEC
P()

Delay for 2.5 seconds.

TI ME 2500 MSEC

SKI P
Periodic process running procedupe with deadline VWH LE TRUE
and period equal to 1 second. TIME 1 SEC
P()
Periodic process running procedifewith deadlined VWHI LE TRUE
and period . Assumeg < t. TIME t MSEC
TIME d MSEC
P()
Sporadic process running procedifeval ue) after VWH LE TRUE
receiving input on channeth from another process I NT val ue:
with a deadline. The sporadic task is given deadline and SEQ
minimum periodd. ch ? val ue
TIME d MSEC
P(val ue)
Timeout aftert microseconds waiting for input on TIME t USEC
channekh ALT
ch ? var
SKI P
TI MEQUT
SKI P

The restriction to primitive processes means that the dayers of constructed processes are
exempted from the laziness rule, and are allowed to execiilean inner primitive process.
This restriction is necessary to allow tfié€ ME constructors themselves to be evaluated. A
periodic process can then be created by wrappifig BE construct in a8\HI LE, without
needing to set a deadline for thiéll LE.

That only non-primitive processes can execute without alldeadoes not imply that

code without a deadline only requires insignificant exexutime. For example, an arbitrarily
complex expression may be used as the conditionvWhllaLE construct. It does mean, how-
ever, that no code with side-effects will be executed withedeadline, and consequently,
that all functionality requiring input or output from a pragn will need a deadline.

1.2. Examples

A few examples are given in Table 1. Example one and two in€Takdre trivial examples
of a deadline and a delay, respectively. A simple periodik taith deadline equal to period
can be made by enclosingTd ME block in a loop, as shown in example three. Here, the
maximum time property of th&l ME constructor gives the enclosed process a deadline, and
the minimum time property ensures that the task is repeattidtiae given period. In this
example the period and relative deadline are set to one dewdnch means that unless
misses a deadline, one instancePoivill execute every second. The start time reference of
eachTl ME construct is set to the termination time of the previous.

TI ME-constructors can be nested to specify more complex tasiesfourth example is

a task where the deadline is less than the period. This ejwio nested| ME constructors;
the outermost ensuring the minimum period (heyeand the innermost creating the deadline

M. Korsgaard and S. Hendseth / The Toc Programming Language 59

(d). The innermost maximum desired execution time takes pdesume over the outermost,
because it is shorter; the outermost minimum allowed ei@cttiime takes precedence over
the innermost, because it is longer. In general, a timingirement that takes different
times to specify, will take: differentTI IVE constructors to implement.

CombiningTI ME with other processes, for instance an input ol Bhmakes it possible
to create sporadic tasks. Example five shows a sporadic ¢éigktad by input on a channel.
The task run®(val ue) with deadlined milliseconds after receivingal ue from channel
ch. Example six shows a simple timeout, where TdvVEQUT guard is triggered on the
expiration of the deadline.

2. Scheduling

Because Toc specifies timing requirements as deadlines, id3-the natural choice of
scheduling algorithm. A preemptive scheduler was foun@sgary to facilitate the response-
time of short deadline tasks. A task that has the shortegtiveldeadline in the system when
it starts will never be preempted, somewhat limiting the bamof preemptions. This is a
property of EDF. When the current task does not have theesadieadline in the system, it
will be preempted when the earliest deadline task beconaglyre

There are two major benefits of using EDF. The first is simpét this optimal; EDF
leads to a higher utilization than any priority-based scitiad algorithm. The second reason
is the behaviour in an overload situation: With fixed-ptipscheduling, a task with a long
relative deadline risks never being run during overload:@se Toc has no way of specifying
importance assuming that shorter tasks are more important cannotstibgd. EDF gives
reduced service to all tasks during overload.

2.1. Discovery

A TI ME constructor that can be reached without first executing anyive processes must
be evaluated immediately, because it may represent thestatkadline in the system. The
process of evaluating non-primitive processes to looRfdvE constructs is callediscovery
Discovery only needs to be run on processes where there isneelthat &1 ME construct
can be reached without executing any primitive procesdas.limits the need for discovery
to the following situations:

At the start of a program, on proceduvii n.

After aTl ME construct is completed, on processes in sequence.
After a channel communication, on processes in sequencilfaehds.
On all branches of RAR.

Discovery stops when a primitive process is encountered.

All TI ME construct found during the same discovery will have the seeady-time,
which is the time of the event that caused the discovery.dfeent is the end of an earlier
TI ME block with timet, which deadline was not missed, then the ready timH &fE blocks
found during the subsequent discovery will be precigddyer than the ready time of the first
block. Thus, a periodic process such as example #3 in tabl# have a period of exactly 1
second.

If a deadline is missed, the termination time of fhHelVE block and the ready time of
consequent! ME blocks are moved accordingly. This also means that there a&tempt to
make up for a missed deadline by executing the next instareéask faster. This behaviour
is a good choice in some real-time systems such as computepktsystems or media play-
ers, but wrong where synchronization to an absolute cloakténded. In this case the task
can re-synchronize itself for instance by skipping a saraptkissuing a delay.

60 M. Korsgaard and S. Hendseth / The Toc Programming Language
2.2. Deadline Propagation

The propagation of deadlines through channels is used te aaly scheduling and EDF
work with dependent processes. If a task with a deadlineiresjgommunication with an-
other task, the first task will forward execution to the settmallow the communication to
complete, in effect transferring its deadline to the secastt. The implementation of this
feature relies on a property inherited from the occam lagguaamely the usage rules. In
occam, a variable that is written to by a process cannot besaed by any other processes
in parallel. Likewise, a channel that is used for input orpotitoy a process cannot be used
for the same by any other processes in parallel. An occam ib@mmpust enforce these rules
at compile-time. The process of enforcing the usage rutsgives the channel-ownerships,
defined below:

The input (/output)-owner of a channel is the process whasewion will lead to the
next input (/output) on that channel.

The initial input- and output-owner of a channel is the finstqess following the declaration
of the channel. The channel ownerships are updated at mendi everyPAR and end of
PAR, using information gathered by the compiler during the esagdes check. With channel
ownership defined, the scheduling mechanism for propagatideadline over a channel
becomes simple:

If the current task needs to complete an input/output on aredlahat is not ready, then
forward execution to the output-/input-owner of that chelnn

Per definition, the owner is the process whose executioregitl up to the next communica-
tion on that channel, so this forwarding is the fastest wagoohpleting the communication.
The forwarded process is executed up to the point of comratiait, where execution then
continues from the driving side of the channel.

Usage and channel ownership is fairly simple to evaluateséatars. With arrays, the
indexing expressions may have to be evaluated at compike-if correct use cannot be en-
sured without taking the indices into account. In that casiexes will be limited to expres-
sions of constants, literals and replicators (variablémdd by aFOR). The compiler will, if
necessary, simulate all necessary replicators to find tireadndices of an array used by a
process.

2.3. Alternation

The alternation procesaLT executes one of its actions that has a ready guard. A guard
consists of a Boolean expression and/or a channel inputaedgs ready if its Boolean
expression iIFRUE and its channel is ready. Alternation behaves differemtlifoc than in
occam. In occam, the alternation process will wait if no gsaaire ready, but in Toc there
is always a deadline driving the execution, so if there arenpats in any guards that are
ready, then théALT must drive the execution of one of them until it, or anoth@cdmes
ready. Selecting the best alternative to drive forwardtisegisimple or hard, depending on
the deadline that drives th_T itself.

The simple case is if the execution of tAeT is driven by a deadline from one of the
guard channels, and there is no boolean guard that blockh#rnel. The alternative that is
the source of the deadline is then chosen. This represesdsgons where thALT is a server
accessed by user processes, and only the users have deadline

The choice is less obvious if th< is driven by its own deadline, or if the driving
channel is not an alternative or is disabled by a booleandgudere, the program needs
to select an alternative that allows it to proceed, ideallysome way that would aid the
earliest deadline task. Unfortunately, predicting theesisway to e.g. a complex boolean

M. Korsgaard and S. Hendseth / The Toc Programming Language 61

guard may be arbitrarily difficult, thereby making it impdss to find the optimal algorithm
for choosingALT branches.

Because a perfect algorithm is not possible, it is importhat the algorithm used is
intuitively simple to understand for the programmer, arat tihe behaviour is predictable.
The current implementation uses the following pragmatmsien algorithm:

1. If there are ready inputs as alternatives, choose the athetlre earliest deadline.
Any input that is ready has a deadline associated with it would not have become
ready.

2. If there is a ready guard without a channel input (just al8aw expression that
evaluates td RUE), then choose it.

3. If there exists a channel input alternative that is noallisd by a boolean guard,
forward execution to the output-owner of the channel, butalselect the alternative.
This is because execution could require input on anothemeitive of the samALT,
which would cause a deadlock if the first alternative wasaalyeselected. At some
point, execution will be forwarded back to tA&. T, now with an input ready. That
input is then selected.

4. If no alternatives are unguarded, act &T@P. A STOP in Toc effectively hangs the
system, because it never terminates but retains the eatéadline.

2.4. Deadline Inversion

In general, when synchronizing tasks, a task may be in a btbstate where it is not allowed
to continue execution until another task has completed seonle. The ndve way to schedule
such a system is to ignore any blocked tasks and scheduledhefithe tasks normally. This
leads to a timing problem known as unbounded priority ineers

Say the highest priority task is blocked waiting for the Istvpriority task. This is a
simple priority inversion, and cannot be avoided as longigis &nd low-priority tasks share
resources. The unbounded priority inversion follows whesndcheduler selects the second
highest priority task to run, leaving the lowest prioritgkavaiting. Now the highest priority
task will remain blocked. In effect, all tasks now take prce over the one with the highest
priority.

A reformulation of the problem is that the scheduler doesauntizely help to execute
its most urgent task. One way to alleviate the problem is ® p#ority inheritance [20].
Using priority inheritance, if a high priority task is bloe#t waiting for a lower priority task;
the lower priority task will inherit the priority of the bl&ed task, thus limiting the priority
inversion to one level. In a sense, the lower priority taskpletes its execution on behalf of
the higher priority task. Priority inheritance has a numifeveaknesses; in particular it does
not work well with nested critical regions [21]. Other scheexist, for instance the priority
ceiling protocol [22] and the stack resource policy [23].

The Toc notion of priority inversion — or deadline inversien is different than the
one used in classical scheduling. Classical priority ishaTis defined for lockable resources
with well-defined owners, where the locking process is abwvdne process that will open it
later. This property does not apply to systems synchrortigechannels. Also, in Toc, tasks
are meant to drive the execution of their dependencies.ihtipte, when communication is
done on channels there is a simple deadline inversion eirag/the earliest deadline task
needs to communicate and the other side is not ready. Howtkigeis an inversion by design,
and not an unfortunate event.

A situation more similar to a classical priority inversi@when two tasks communicate
with a third server, which could represent a lockable reseuf the earliest deadline task is
not ready, then the second task may set the server in a state vilis unable to respond to
the earliest deadline task when it becomes ready. A thitd teish a deadline between that

62 M. Korsgaard and S. Hendseth / The Toc Programming Language

10ms 20ms 30ms

10ms deadline : 20ms deadline 30+p ms deadline

is eaﬂlest : is eamest : is earliest :
Process A E]- H 4

Server

L
A

ip) :
: ?\Process A missed deadline!
: Next instance moved.

Process B

30ms deadline is earliest
that is ready. It is then preempted.

Legend: D = Task is ready —» = Channel communication u = updatelil
q = Deadline of task —--> = Deadline propagation r = read[i]
3 = Task finished I = Executes w = writel[i]

..

Figure 1. Timeline of scheduling example. Approximate time scale.

of the first and second task will then indirectly block a tasthva shorter deadline, possibly
leading to unbounded priority inversion.

In Toc, the deadline propagation rule automatically resebhese situations. The earliest
deadline process will never be blocked, rather it will tfen#s execution and deadline to the
blocking processes, so that they execute as if with an eadiadline. This effect is similar
to priority inheritance: With priority inheritance, thedaking process inherits the priority of
the blocked process; with deadline propagation, the bibpkecess will transfer its deadline
to the blocking process.

2.5. Scheduling Example

An example of the scheduling of a system with a server and seosus shown in Figures 1
and 2. A server allows a variable to be updated concurrehtlg. periodic user tasks access
the server. If the server is not ready when the earliest deatiisk needs it, then it will finish
its current transaction driven by the earliest deadline, sdame way it would have executed
with a higher priority if priority inheritance was used. Aidgirexplanation is given below:

1. The program starts and executes up to the first primitivegsses in all three paral-
lels. Two parallel deadlines are discovered. The user peoagth the short deadline
will be referred to as process A, the other as process B.

2. Process A starts because it has the earliest deadlineentually needs to output on
channelupdat e[0] . The input-owner of the channel-array is tBer ver process,
so execution is forwarded to the server process throughidegaopagation.

3. The server executes up to the communication and zeroti®genthe channel.

4. Process A now needs to input franead[0] . First it executes up to the communi-
cation and then execution is forwarded to the server. Thees@xecutes up to the
communication angal ue is sent over the channel.

M. Korsgaard and S. Hendseth / The Toc Programming Language 63

PROC Server (CHAN[2] | NT update?, read!, wite?)
VWH LE TRUE
I NT dummy, val ue:
ALT i = 0 FOR 2
update[i] ? dummy
SEQ

read[i] ! val ue
wite[i] ? value

PRCC User (VAL | NT period, CHAN I NT update!, read?, witel)

VWH LE TRUE
TI ME period MSEC
I NT x:
SEQ
update ! O
read ? Xx
WORK 6 MSEC -- Pseudo-statenent for requiring 6 ms of CPU time.
wite ! x+id
WORK 500 USEC -- Do sonme clean-up to finish the task
PRCC Mai n()
CHAN 2] I NT update, read, wite:
PAR
User (10, update[O0], read[0], wite[0]) -- Process A
User (30, update[l], read[1], wite[l]) -- Process B

Server (update, read, wite)

Figure 2. Code for scheduling example

5. Process A works. Some time later it writes the new valudéoserver through the
wr i t e channel, and finishes its task.

6. Process B begins in the same way. Howevet,=atlOms it is preempted by process
A, whose task is now ready and has the earliest deadline.

7. Now process B has blocked the server. This is a prioritgnsion in the classi-
cal sense. Process A proceeds as last time, forwarding texeda the input-owner
of updat e[0] , which is still the server. To proceed, the server must dugpu
write[1], which is not ready, and forwards execution to the input-emaf that
channel (process B).

8. Process B executes up to the outputven t e[1], driven by the server's need
to input onw i t e[1], which again is driven by process As need to output on
updat e[0] . This frees the server and allows process A to continue.

9. Notice that the second instance of process As task mitssdsadline. It has its new
period offset accordingly. Also notice that only then isqass B allowed to finish.

3. Implications

In occam, aPRI PARor PRI ALT can be used to affect the scheduling of parallel pro-
cesses. This can potentially affect the logical behavidua program when modelling the
program with CSP, as certain program traces are no longesitpesA Tl ME constructor
will also restrict possible traces of a Toc program by alwaneferring execution of the ear-
liest deadline task to others. The effectTdfME constructors on the logical behaviour of a
Toc program is much greater than the effect of prioritizedstaicts in occam programs. For
example removing alll ME constructors will make any Toc program equaSibOP.

Addinga process may also make a program beha®T&¥. Take the example given in
Figure 3. This may be an attempt to initialize a variable be&tarting a periodic process, but
the primitive assignment makes the entire program beha%&@B. There is no deadline for

64 M. Korsgaard and S. Hendseth / The Toc Programming Language

PROC Mai n()
I NT a:
SEQ
a .= 42
VH LE TRUE
TI ME 100 MSEC
P(a)

Figure 3. Dead code example. Lack of timing requirements on the assghmakes the program equal to
STOP.

task body Periodic Task is VWHI LE TRUE
Peri od : Time_Span := MIliseconds(30); TI ME 30 MSEC
Rel Deadline : Tinme_Span := MIIiseconds(20); TI ME 20 MSEC
Next . Ada. Real _Ti ne. Ti ne; Action()

begin
Next := Ada. Real _Ti ne. d ock;
Set Deadl i ne(Next +Rel _Deadl i ne);

| oop
del ay until Get_Deadl i ne;
Acti on;
Next := Next + Interval;

Set _Deadl i ne(Next +Rel _Deadl i ne) ;
del ay until Next;
end | oop;
end Peri odi c_Task;

Figure4. Comparison of a periodic process in Ada and Toc. Left: AdghRiToc. Ada example is a modified
example from [25]

executing the assignment and therefore it will never happkaTl ME constructor that fol-
lows will never be discovered and the periodic process wailgtart. In Toc, the programmer
must consider the deadlines of all functionality in the sgstno matter how trivial. Because
assignments, like the one in Figure 3, are typically quisg, faot adding a timing requirement
signals that the programmer does not care exactly how long the assignment will take.
In Toc, not caring is not an option, and deadlines are alwagsired. The compiler will in
many cases issue a warning to avoid such mistakes.

It has been argued that it is more awkward to assign arbitteagllines to tasks than to
assign arbitrary priorities [24]. This is debatable, buhday anyway be easier to findnan
arbitrary deadline than a priority: Many seemingly backgrd tasks can be given sensible
deadlines: A key press does not need to give visual feedtastkrfthan it is possible for
the human eye to perceive it. A control monitor in a proceastplill need some minimum
update frequency in order to convey valid information todperators. Setting a deadline for
the latter task, however arbitrary, is a step up from giviraglow priority under fixed-priority
scheduling, where a scheduling overload could effectidédgable the task.

4. Conclusionsand Future Work

This paper presented the language Toc, which allows thafgaéion of deadlines in the

source code of a program. This is done usingTh&E constructor, which provides elegant
language support for specifying deadlines and tasks. Agertask with a deadline can be
implemented with just a few lines of code, compared to thieetamore complex construct
required in for example Ada, as shown in Figure 4. The contlainaof EDF and deadline

propagation yields a simple and versatile schedulingesgyat.azy scheduling forces the pro-
grammer to consider all timing requirements in the systeshonly those that are considered

M. Korsgaard and S. Hendseth / The Toc Programming Language 65

real-time in the classical sense. This may potentiallyedase awareness of timing require-
ments for parts of real-time systems for which such requamwere previously ignored,
such as sporadic or background tasks and error handling.

The prototype compiler was developed in Haskell, using #reqr generatdoynf c [26].
The compiler generates C code, which can then be compilddasitordinary C compiler.
The current run-time system is written in C, and includes stau scheduler using POSIX
threads. The scheduler is linked into the program, and thdtieg executable can be run as
an application under another operating system. Both thepdermand run-time system are
prototypes under development, and have so far only beentasest small programs, though
quite successfully so.

The next task would be to test Toc on a real-time system of smmgplexity, to see if the
Tl ME constructor presented here is practical and suitable fraask. Of particular interest
is seeing how many timing requirements that are actualles&ary in the specification of
such a system, when no execution is allowed without one.

References

[1] J. D. Ichbiah, B. Krieg-Brueckner, B. A. Wichmann, J. G.Barnes, O. Roubine, and J.-C. Heliard,
“Rationale for the design of the Ada programming langua§éGPLAN Not.vol. 14, no. 6b, pp. 1-261,
1979.

[2] J. Gosling, B. Joy, G. Steele, and G. Brachhe Java Language Specificatj@900.

[3] SGS-THOMPSON Microelectronics Limitedccan®) 2.1 Reference Manual995.

[4] J. Armstrong and R. Virding, “ERLANG — an experimentdkgghony programming languagé&titching
Symposium, 1990. XIlI Internationalol. 3, 1990.

[5] G. Berry and G. Gonthier, “The ESTEREL synchronous pangming language: design, semantics, im-
plementation,’Sci. Comput. Programvol. 19, no. 2, pp. 87-152, 1992.

[6] P. Caspi, D. Pilaud, N. Halbwachs, and J. Plaice, “LUSTRHleclarative language for programming
synchronous systemsZonference Record of the 14th Annual ACM Symp. on PrincgdlEsogramming
Languages1987.

[7] C. A. R. Hoare, “Communicating sequential process€sfnmunications of the ACMol. 21, pp. 666—
677, 1978.

[8] S. SchneiderConcurrent and Real Time Systems: The CSP Approdew York, NY, USA: John Wiley
& Sons, Inc., 1999.

[9] D. Q. Z. C. Cecati and E. Chiricozzi, “Some practical isswf the transputer based real-time systems,”
Industrial Electronics, Control, Instrumentation, andtAmation, 1992. Power Electronics and Motion
Control., Proceedings of the 1992 International Confereng pp. 1403-1407 vol.3, 9-13 Nov 1992.

[10] C. J. Fidge, “A formal definition of priority in CSPACM Trans. Program. Lang. Systol. 15, no. 4,
pp. 681-705, 1993.

[11] P. Welch and F. Barnes, “Communicating mobile processgroducing occam-pi,” ire5 Years of CSP
(A. Abdallah, C. Jones, and J. Sanders, eds.), vol. 352%difure Notes in Computer Sciengp. 175—
210, Springer Verlag, Apr. 2005.

[12] A.Burns, B. Dobbing, and T. Vardanega, “Guide for the o§the Ada Ravenscar Profile in high integrity
systems,ACM SIGAda Ada Lettersol. 24, no. 2, pp. 1-74, 2004.

[13] R. Heckmann and C. Ferdinand, “Worst case executioa finediction by static program analysiBaral-
lel and Distributed Processing Symposium, 2004. Procegdib8th Internationalpp. 125-, 26-30 April
2004.

[14] J. Souyris, E. L. Pavec, G. Himbert, \egu, G. Borios, and R. Heckmann, “Computing the worst-case
execution time of an avionics program by abstract integbiat,” in Proceedings of the 5th Intl Workshop
on Worst-Case Execution Time (WCET) analysis 21-24, 2005.

[15] C. L. Liu and J. W. Layland, “Scheduling algorithms foultiprogramming in a hard-real-time environ-
ment,” Journal of the ACMvol. 20, no. 1, pp. 46-61, 1973.

[16] J. Leung and J. Whitehead, “On the complexity of fixetbty scheduling of periodic, real-time tasks,”
Performance Evaluatigrvol. 2, no. 4, pp. 237-250, 1982.

[17] G. C. Buttazzo, “Rate monotonic vs. EDF: Judgment dBgal-Time Systvol. 29, no. 1, pp. 5-26, 2005.

[18] A. Cervin, J. Eker, B. Bernhardsson, and K.Afzén, “Feedback-feedforward scheduling of control
tasks,"Real-Time Systemso. 23, pp. 25-53, 2002.

66 M. Korsgaard and S. Hendseth / The Toc Programming Language

[19] M. Korsgaard, “Introducing time driven programmingng CSP/occam and WCET estimates,” Master’s
thesis, Norwegian University of Science and Technolog,720

[20] D. Cornhilll, L. Sha, and J. P. Lehoczky, “Limitation§Ada for real-time schedulingAda Lett, vol. VII,
no. 6, pp. 33-39, 1987.

[21] V. Yodaiken, “Against priority inheritance,” tech.pe FSMLabs, 2002.

[22] L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority interce protocols: an approach to real-time syn-
chronization,"IEEE Transactions on Computerl. 39, no. 9, pp. 1175-1185, Sep 1990.

[23] T. Baker, “A stack-based resource allocation policy fiealtime processesReal-Time Systems Sympo-
sium, 1990. Proceedings., 11tp. 191-200, Dec 1990.

[24] A. Burns and A. WellingsReal-Time Systems and Programming Languadessex, England: Pearson
Education Limited, third ed., 2001.

[25] A. Burns and A. J. Wellings, “Programming executiomdi servers in Ada 2005Real-Time Systems
Symposium, 2006. RTSS '06. 27th IEEE Internatiop@l 47-56, Dec 2006.

[26] M. Pellauer, M. Forsberg, and A. Ranta, “BNF converMultilingual front-end generation from labelled
BNF grammars,” tech. rep., 2004.

