
An Implementation of
Active Objects in Java

By
George Oprean
Matt Pedersen

9/9/08 University of Nevada, Las Vegas 2

Outline

 Introduction
 Active Objects
 Related Work
 Asynchronous Active Objects in Java
 Implementation
 Results
 Conclusions
 Future Work

9/9/08 University of Nevada, Las Vegas 3

Introduction
 Object Oriented paradigm

 widely used in the last two decades
 models how objects interact in the real world

 objects are passive
 friend.borrowMoney(20);
 would reach into friends pocket and get the money

 methods are executed synchronously
 wait until friend gives me the $20

 more than one thread can have a reference to an
object, thus the object can be put in an inconsistent
state

9/9/08 University of Nevada, Las Vegas 4

Each single thread of
control snakes around
objects in the system,
bringing them to life
transiently as their
methods are executed.

Threads cut across object
boundaries leaving
spaghetti-like trails, paying
no regard to the
underlying structure.

Objects Considered Harmful

9/9/08 University of Nevada, Las Vegas 5

Active Objects

 executes method invocations in its own thread
 receives the message, perform the computation

and return the result to the caller
 queues the requests and decide what method to

execute next (order of arrival, priority)
 only one method executes at one time → object

can not be put in an inconsistent state

9/9/08 University of Nevada, Las Vegas 6

 Active Object (2)

 methods can be invoked synchronously or
asynchronously

 asynchronous communication → the uses the
‘waiting time’ for other computations
 waiting time = the time it takes the caller to get the

result back
 preparing breakfast example:

 no cereals? Ask the active object to get the cereals
 meantime, get the milk, set the spoons and pour

orange juice
 got back the cereals? Breakfast is served.

 waitfor statement used for getting the result of
asynchronous calls

9/9/08 University of Nevada, Las Vegas 7

Related Work

 employing patterns
 Active Object or Dynamic Proxy Pattern
 active object and pattern components have to be

implemented

 extending the language with new keywords
 Java – active, accept, select and waitunti l

 only synchronous active objects

 C++ - active, passive
 both synchronous and asynchronous

 using external libraries (like MPI for C)
 ProActive library for Java

9/9/08 University of Nevada, Las Vegas 8

Asynchronous Active Objects in
Java

 implemented our system in Java
 the language is OO
 it has RMI built in
 it supports reflection
 Java compiler available as open-source
 it is platform independent
 autoboxing done implicitly (from JDK 1.5)

9/9/08 University of Nevada, Las Vegas 9

Asynchonous Active Objects in
Java (2)

 an asynchronous Java active object
characteristics:
 must be active (use own thread to execute

the methods)
 can be placed on any reachable machine

on the network (ssh, JRE)
 allow both synchronous and asynchronous

method invocation
 provide a way to obtain the result of

asynchronous call

9/9/08 University of Nevada, Las Vegas 10

New Keywords

 a new active modifier
 marks a class as being active

 an extended object creation
 actObj = new ActiveClass() on “machine_1”;

 an extended method invocation expression
 actObj.foo() async;

 a new blocking waitfor statement
 waitfor actObj var;

9/9/08 University of Nevada, Las Vegas 11

Restrictions on Using the New
Keywords

 asynchronous invocation applies only to the
last method, if method calls are chained
 actObj.foo().bar() async;

 asynchronous invocations can only appear on
the right side of an expression
 illegal: obj.method(actObj.foo() async)

 waiting for the results of asynchronous
invocation on the same object is the same as
the order of invocation

9/9/08 University of Nevada, Las Vegas 12

Implementation
Design Overview

 communication by exchanging messages
 both synchronous and asynchronous

Machine 0

The code only run on this machine
and creates active objects on any
Machine 1 to n

Machine 1

Machine n

Create object

Invoke method

Send the result

Create object

Invoke method

Send the result

9/9/08 University of Nevada, Las Vegas 13

Implementation
Creating an Active Object

 a = new ActiveClass(args) on “server”;

 synchronous communication

{
…….
a = new ActiveClass(arg) on “server”
…….
}

client
ActiveClass

arg

server
ActiveClass
instanceId

CreateMessage

InstanceInfo

client server

Create an instance of ActiveClass

9/9/08 University of Nevada, Las Vegas 14

Implementation
Invoking Active Object’s Methods
 actObj.foo(a,b,c) async;

 without async → synchronous communication

{
…….
actObj.foo(a,b,c) async;
…….
}

InstanceInfo
foo

a,b,c

InvokeMessage

client server

Execute the invocation

return immediately

send the result

9/9/08 University of Nevada, Las Vegas 15

Implementation
Getting the Result of Async Calls
 waitfor actObj var;
 programmer: “I’m waiting for the result of

an asynchronous invocation and I want to
store the value in var.”

 waitfor is a blocking statement
 results of async invocations not waited

for? Will be discarded when the method
finishes

 wait for the result of async calls in the
same method as the invocation

9/9/08 University of Nevada, Las Vegas 16

Implementation
Message Ordering

 active objects can be passed around
 only a reference is passed and not the actual object
 partial ordering: invocations from the same machine on

the same object will be executed in order

…….
actObj.foo() async

…….

client1 client2

The ‘actObj’ resides
on the server and
accepts requests
from any machine
that has a reference
to it.

…….
actObj.foo() async

…….

servercall foo method call foo method

9/9/08 University of Nevada, Las Vegas 17

Implementation
ClientManager and ServerManager

 the core components of our system

client

ClientManager

Remote Object
Stub

server

ServerManager

Remote Object
Skeleton

Resolve the invocation

Network

actObj.foo() async;

9/9/08 University of Nevada, Las Vegas 18

Implementation
ClientManager

 only one per machine
 manages the active invocations from the machine it

is running on
 manages the results of async invocations
 core functionality

 invokeConstructor – creates an active object
 invokeMethod – invokes a method on an active object

 additional functionality
 getMethodId – each method has a unique identifier
 removeUnwaitedCalls – removes unwaited results of

asynchronous invocations

9/9/08 University of Nevada, Las Vegas 19

Implementation
ServerManager

 similar role as ClientManager, but on the machine that
hosts the active objects

 only one per machine
 needs to be started before the program is run (through ssh

script)
 accepts create and invoke messages

Instance_1
foo

a,b,c
Machine_1

InvokeMessage

ServerManager

Instance_1

……..
……..

Instance_n

Active Object

1. message received

2. lookup object

3. Forward the request

9/9/08 University of Nevada, Las Vegas 20

Implementation
Compiler Modifications

 modified Sun’s open-source JDK 1.6
compiler

 new keywords are translated into regular
Java code during desugaring phase

 active keyword is removed from the class
definition

9/9/08 University of Nevada, Las Vegas 21

Implementation
Compiler Modifications (2)

 new creation expression
 ActiveClass actObj = new ActiveClass() on “server”;
will be translated to
 InstanceInfo actObj =

 ClientManager.invokeConstructor(“ActiveClass”,
 new Object[]{}, “server”);

9/9/08 University of Nevada, Las Vegas 22

Implementation
Compiler Modifications(3)

 adding the methodId declaration
 Long methodId = ClientManager.getMethodId();

modifying the async invocations:
 actObj.foo(a) async;

will be translated to:
 ClientManager.invokeMethod(methodId,”foo”,
 new Object[]{a}, true);

9/9/08 University of Nevada, Las Vegas 23

Implementation
Compiler Modifications (4)

 modify the waitfor statement
 waitfor actObj var;
will be translated to
 ReturnObject r0 =

 ClientManager.waitForThread(methodId, actObj);
 var = (Integer) r0.getReturnValue();

 remove the unwaited async calls
 ClientManager.removeUnwaitedCalls(methodId)

9/9/08 University of Nevada, Las Vegas 24

Example: Subscriber / Distributor

public active class Distributor {
 private ArrayList<Subscriber> subscriber();
 public void Subscribe(Subscriber s) {
 subscriber.add(s);
 }
 public void post(String message) {
 for (Subscriber s:subscribers)
 s.post(message) async;
 }
}

public active class Subscriber {
 private String name;
 public Subscriber(String name) {
 this.name = name;
 }
 public void post(String message) {
 System.out.println(name + “ got the message: “ + message);
 }
}

public class Demo {
 public static void main(String argv[]) {
 Distributor d = new Distributor();
 Subscriber a = new Subscriber(“a”);
 d.subscribe(a) async;
 d.post(“First message”):
 Subscriber b = new Subscriber(“b”);
 d.subscribe(b) async;
 d.post(“Second message”);
 Subscriber c = new Subscriber(“c”);
 d.subscribe(c) async;
 d.post(“Third message”);
 }
}

a got the message: First message
b got the message: Second message
b got the message: Third message
c got the message: Third message
a got the message: Second message
a got the message: Third message

9/9/08 University of Nevada, Las Vegas 25

Active Objects for Distributed
Computing

 active objects used for developing parallel
and distributed applications

 async invocations → parallel computation
 create objects on any machine on the

network → distributed computing
 implemented Mandelbrot set computation,

Matrix multiplication and Pipeline
computation

9/9/08 University of Nevada, Las Vegas 26

Results
Mandelbrot Set Computation

 speedup= sequential time / parallel time

9/9/08 University of Nevada, Las Vegas 27

Conclusions

 Object Oriented programming increased
popularity compared to logical or procedural
programming

 objects are passive
 active objects better reflection of the world (both

passive and active objects)
 extended the Java language: active , async , on

and waitfor
 develop parallel and distributed applications
 results demonstrate the feasibility of our proof of

concept

9/9/08 University of Nevada, Las Vegas 28

Future work

 our system can be extended
 starting/stopping the ServerManager from

code
 warning the user if asynchronous calls with

a return value do not have a matching
waitfor

 including an exception mechanism
 receiving out of order invocations
 keep active objects after the application

finished the execution

9/9/08 University of Nevada, Las Vegas 29

 Thank You!

