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Abstract. Object Oriented languages have increased in popularity over the last two
decades. The OO paradigm claims to model the way objects interact in the real world.
All objects in the OO model are passive and all methods are executed synchronously
in the thread of the caller. Active objects execute their methods in their own threads.
The active object queues method invocations and executes them one at a time. Method
invocations do not overlap, thus the object cannot be put into or seen to be in an incon-
sistent state. We propose an active object system implemented by extending the Java
language with four new keywords: active, async, on and waitfor. We have modified
Sun’s open-source compiler to accept the new keywords and to translate them to regu-
lar Java code during desugaring phase. We achieve this through the use of RMI, which
as a side effect, allows us to utilise a cluster of work stations to perform distributed
computing.
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Introduction

Within the last two decades object oriented programming (OOP) has become increasingly
popular, not least because of the introduction of the Java programming language by Sun in
1995. One of the basic ideas of object oriented programming is encapsulation of method and
data; each object holds its own data as well as methods operating on the data.

However, objects are passive, that is, when a method is invoked on an object, the execut-
ing thread is that of the caller. The method is not executed by the object itself. Since many
different threads of control can hold a reference to the same object, many different threads
can invoke methods at the same time, possibly leaving the state of the object inconsistent.
Using the synchronized keyword only provides a fake sense of security [1] as a method called
from within a synchronized method can call methods in other objects that can cause a call
back into the original object and modify the internal data.

The heart of the problem is simply that an object is a passive structure that is being
violated by various threads. If the object itself were in charge of executing its own methods
in its own thread of control, then such unfortunate action can be avoided. In order to invoke
a method on an active object the object will have to accept the method invocation in the form
of the parameters as well as the name of the method to be executed, and subsequently execute
the code of the requested method in its own thread of control, thus excluding other threads
from manipulating its data and executing its methods.

Active Objects and the Real World

The argument that “objects are considered harmful” has been borrowed from the process
oriented design community [1]. It is also argued that object oriented design is not a good
reflection of how interaction between objects take place in the real world (which we model
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when creating software); the problem again lies with the passiveness of the objects: If you
are standing in front of your friend and want to borrow $20 you ask him, and he digs into
his pocket and hands it to you. You do not ask and then reach into his pocket to retrieve the
money. If that is the case, then why would we model systems this way? In standard OO, if you
hold a reference to friend, and you wish to invoke the borrowMoney() method, then the call
friend.borrowMoney() is executed in your own thread of control, not in a separate thread (or
in friend’s thread), thus breaking all similarity to the way the real world works. Interestingly
enough, in OO, invoking a method is often referred to as “sending a message” (as in message
passing, which in distributed computing means transferring data from one process to another
through communication). This is actually what we want, but certainly not what we do in a
system with passive objects.

An active object receives messages (representing the requested method invocation) from
the caller, performs the computation, and returns the result. An active object is comparable
to the well known technique of Remote Procedure Call (RPC) [2] or in OO terms Remote
Method Invocation (RMI) [3], which both involve transferring method parameters and results
back and forth between the calling process (client) and the remote object (server).

An active object system can be mimicked, and ultimately ours is indeed implemented
using RMI; as a matter of fact, a synchronous active object system can be easily used to
implement a RMI system without stub generation.

The active object model has been the subject of intensive research since late 80s and
now the active objects are used in diverse areas: query processing [4], building concurrent
compiler [5], implementing services in Telecommunication Management Services [6], devel-
oping applications for smartphones [7,8] or developing collaborating games [9].

Asynchronous Active Objects

Our active object system can easily be used to implement any RMI system; no stub generation
is needed as the system uses reflection and a general server manager to accept requests to
create remote objects on remote machines. Though RMI does provide a way to improve
execution time by executing code on machines that are perhaps better suited for a specific
part of the computation task, it is not considered a typical technique for parallel computation;
recall, a remote method invocation is, as a local method invocation, synchronous. This means
that the caller blocks until the remote method invocation returns.

A well known technique for parallelising computations is using message passing; the
program is decomposed into a number of processes whose only way to synchronise is through
communication using message passing. Messages must be explicitly sent and received. This
can be done both synchronously or asynchronously.

The idea behind our asynchronous active objects is based on a merger between RMI
and asynchronous message passing. An active object is placed on a remote machine when
it is created. Any method invocation is done (automatically) though RMI (using a general
client/server system and reflection), but such calls can be declared to be asynchronous. This
means that the caller does not block and wait until the result of the method invocation is
returned, but can continue executing immediately thereafter. When the return value is needed,
a new waitfor statement is executed. If the value arrives before this statement is executed,
the effect of the waitfor statement is a binding of the returned value to the variable without
blocking. If the return value is not yet present, the statement will block the execution until
the value is available. Another way to implement asynchronous active objects is with the use
of a future object, that acts as a placeholder for the returned result [10,11].

Moreover, we modified the object creation expression syntax to allow the programmer
to specify the computer on which the active object will reside. This is similar to spawning a
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process with MPI spawn. Thus we have obtained a system that can be used for developing
parallel and distributed applications using asynchronous active objects.

As a desirable side effect, the model allows us to write parallel code that uses asyn-
chronous active objects. In section 6.1 we describe three different distributed computations
that we implemented using asynchronous active objects.

1. Related Work

The first time the concept of active objects (actors) was presented was Hewitt’s actor model
in 1977 [12]. In his model, the actor was the central entity that executed its actions: commu-
nicates with other actors, creates actors and changes its behaviour. The location of the actors
can be distributed and they can execute actions in parallel. Later a mathematical definition for
the behaviour of an actor system was presented [13]. This actor (active object) model is suited
perfectly for creating parallel and distributed applications. Unfortunately the actor model was
not as popular as procedural, functional or OO programming. The parallelism model offered
by the procedural or OO model is not as powerful as the actor model, so a number of ways to
integrate active objects into the OO paradigm have been proposed.

Java RMI proposed a solution for accessing remote (distributed) objects in the same
manner as accessing local objects. The location of the object would be transparent to the
programmer, using the same ‘.’ operator to invoke methods on local or remote objects. While
making the process of developing distributed applications easier, the RMI (and RPC) model
is a synchronous client/server model. The client has to wait for the response from the server
before it can resume its execution. Better performance can be obtained if the client can use
this “waiting time” to do other operations that do not involve using the return value from the
server. If we consider a real world example, when someone wants to prepare breakfast for
her family and realizes that she does not have milk for the cereal, she can ask somebody (an
active object) to get some cereal (the result of the method call) from the store. During the time
she gets the cereal (is waiting for the result), she does not just wait and do nothing (this is
what happens with synchronous communication). It is much more efficient to do some other
activities related to preparing breakfast that has nothing to do with the cereal: get the milk
from the refrigerator, get the cereal bowls from the cabinet, set the spoons on the table and
maybe pour orange juice in some glasses. Once she gets the cereal, breakfast can be served.

Active objects have been the subject of intensive research since mid to late 80s. Is-
sues like garbage collection of active objects [14,15,16,17,18], exception handling [19,11],
type theory of active objects [20,21,22], transition from active objects to autonomous
agents [23,24] and many more have been addressed. As a result of this research, a number of
different ways to integrate concurrency into object-oriented languages, using active objects,
exist. These approaches are categorised in [25]: the library approach (create new libraries
for concurrent and distributed programming), the integrative approach (extend the language,
rather than the library), and the reflective approach (that is a “bridge” between the two previ-
ous approaches).

We have opted for the integrative approach, that consists of merging concepts of object
and process/activity, thus creating the new concept of active object.

An Active Object pattern can be used to implement active objects. This pattern decouples
method execution from method invocation to enhance concurrency. A number of components
like Proxy, Scheduler, Servant, Activation Queue, Method Request and Future have to be
implemented for this pattern to work [10]. The programmer does not only have to concentrate
on implementing the actual active object, but also understand how these components interact
and then implement them. Java Dynamic Proxies offers another solution to implementing the
active objects [26].
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Claude Petitpierre integrated active objects in the Java language by adding new key-
words [27]. His approach uses the MPI model of sending and receiving messages: one object
calls a method on a second object (ready to send the message) and the second object has to ac-
cept that method (ready to receive the message). The keywords added are: active, accept, se-
lect and waituntil. His approach models only synchronous active objects. The C++ language
has also been extended, with active and passive keywords, to integrate active objects. One
example by Chen et al. is [28]. The implementation of active objects has a transaction service
to maintain the atomicity of a client’s invoking sequence. If a client declares a transaction for
an active object, all the calls to that active object will be blocked until the transaction is over.

Creating an external library that can be integrated with the Java language (similar to the
MPI library [29] for C and Fortran, and MPJ (A message passing library) for Java [30]) is an-
other possibility of having active objects in the OO model. The French National Institute for
Research in Computer Science and Control has created such a library called ProActive [11].
Regular passive objects can be turned into active objects, asynchronous method invocation is
supported and a future object is used as a placeholder for the actual result. Restrictions are
imposed when using this library: final methods cannot be used in active objects, final classes
cannot be used to instantiate active objects, and the programmer cannot override functions
like hashCode() or equals(). Moreover, the use of the toString() method with future object
can lead to deadlock.

Another Java library that can be used for developing concurrent systems is Communi-
cating Sequential Processes for Java (JCSP) [31,32,33]. It uses Hoare’s algebra of Commu-
nicating Sequential Processes (CSP), a mathematical model for concurrency that can guaran-
tee (and prove) that the multithreaded application developed with it does not have deadlock,
livelocks, race hazards, or resource starvation. JCSP views the world as layered networks
of communicating processes. The processes interact via channels (or other CSP synchroni-
sation objects like barriers or shared-memory CREW locks) and not via method invocation
(our active objects communicate with each other by sending messages through RMI). Sim-
ilar to our active object system, JSCP offers the programmer an alternative to developing
concurrent application without the use of synchronized, wait, notify or notifyAll primitives
(the JCSP actually uses internally these primitives and so does our active object system). The
JCSP.net [34] (an extension of JCSP for networking) allows processes to be distributed on
the network. Objects sent across JCSP.net channels are serialised. These channels can be set
to allow automatically download the class if it does not exist on the receiving side (we have
used RMI for our system for this purpose).

Java is not the only object-oriented language that has libraries that can be utilised when
developing applications that involve active objects. DisC++ [35] and ACT++2.0 [36], are two
libraries for concurrent programming in C++.

A number of other, less mainstream, but nevertheless exciting, languages that support
active objects exist: Cω, a research language based on the join calculus [37], which is an
extension of C# for asynchronous wide-area concurrency [38]. Active objects in Cω are sup-
ported through the techniques of using chords (A chord is a method with multiple headers, all
providing parameters for the body, and all but one being called asynchronously); ACTALK is
a framework integrated with Smalltalk programming environment [39]; Hybrid is an object-
oriented language where objects are active entities [40]; Correlate is a concurrent object-
oriented language that supports active objects as a unit of concurrency [41]; TCOZ is an
extension of Object-Z with timed CSP and timing constructs [42].
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2. Implementation Choices

A number of important choices must be made when embarking on language development.
Some of the most important ones are as follows:

• Should we chose to develop an brand new language or provide an extension to an
existing language? Thousands of very exciting languages exist, all developed with
one thing in mind: solving particular problems that the developer feels are not han-
dled well by existing languages. However, convincing people to adopt new languages
seems to be a daunting task. We decided to extend Java, a language that has been
accepted in almost all areas of computing.

• How should the new functionality be provided? Since we are using Java, two distinct
choices are available. First: extend than language with new keywords, and amend the
compiler or provide a pre-processor. (This was the original approach taken by the de-
velopers of C++). Second: provide a library of (precompiled) classes that implements
the functionality (JCSP uses this approach). We chose the first approach; providing
new keywords and amending the compiler; A down side of this approach is of course
the difficulty in maintaining the compiler when a new version of the language comes
out, but we believe that the learning curve of learning to write concurrent programs
with new keywords/syntax compared to the library approach, is less steep, and the
code looks cleaner. Also, we believe that this enables novice programmers to more
easily pick up the concept of active objects.

• Should the implementation allow for remote active objects or only local ones? If we
only allow local active objects, data sharing can be realized through the use of the
standard Java primitives like the protected keyword and the use of locks and mon-
itors. This is not possible if we wish to allow for remote active objects.

• To support remote active objects, we need to decide how networked data transfer
should be handled. Again, two different approaches exist; first: implement data ex-
change through TCP/UDP sockets; second: use a library like mpiJava [43], which
implements a messaging system though TCP, or three: use the Java provided RMI
functionality. Implementing messaging directly using TCP is the most speed efficient
method, but we decided to use RMI for a number of reasons: It is already provided
in Java, but more importantly, the RMI system provided by Java automatically allows
for classes not already on the remote system to be downloaded through a web service.

This implementation of asynchronous active objects in Java is a prototype that in time
might reveal points in its implementation that need to be optimised, especially if serious
parallel computing is to be done using an asynchronous active object system. However, we
believe that the choices we have made serve as a good basis for an asynchronous active object
system integrated in into Java.

3. Asynchronous Active Objects in Java

We have implemented our asynchronous active object system in Java, by extending the lan-
guage to integrate both synchronous and asynchronous active objects; we chose Java for a
number of reasons:

• The language is already object oriented.
• It supports reflection.
• It has RMI ’built in’.
• The Java compiler 1.6 is available as open-source.
• Auto-boxing is done automatically (since Java 1.5).
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• It is platform independent.

We define an asynchronous active Java object as an object that has the following char-
acteristics:

• It must be active, that is, it executes the methods in its own thread.
• It must be possible to place an active object on any machine reachable on the network

that supports Secure Shell scripting (ssh) [44] and the Java Runtime Environment
(JRE) [45].

• Method invocation can be synchronous or asynchronous.
• A way to obtain the result of an asynchronous invocation must exist.

3.1. New Java Keywords

We decided to add new keywords to Java 1.6, and then utilise the Java compiler to parse and
compile them. This addition consists of 4 new keywords/constructs:

• A new active modifier, which can only be placed on a class declaration.
• An extended object creation expression:

new <active class>(...) on “machine name”;

which creates an active object instance of <active class> on machine “machine
name”. The last part (on “machine name” is optional, and if left out the object will
be created on the local machine.

• An extended method invocation expression:

<active object>.<method>(...) async;

The async keyword makes the method invocation asynchronous, that is, the control
returns immediately.

• A new blocking waitfor statement:

waitfor <active object> <variable>;

This causes the execution of the thread to be temporarily suspended until the asyn-
chronous method invocation has returned a value into the variable.

3.2. Restrictions on Using the New Keywords

The design of our active object system restricts the usage of the new keywords or constructs:

• The new creation expression can only be used to create active objects. Passive objects
use the regular syntax.

• The async keyword can only be used after method invocations. If multiple method
calls are chained in the same expression, async only applies to the last method invo-
cation:

activeObj.foo().bar() async

the bar method will be called asynchronously.
• Logically, asynchronous method invocation may only used as an expression statement

(where its return value, if not void, is not immediately needed). So, it cannot be used
on the right RHS of an assignment or as an argument in another method invocation.

• Passing null as an argument of a method of an active object is not allowed. Reflection
is used to determine which method needs to be invoked. Because of method overload-
ing, the name of the method is not enough and the parameter types are used to select
the method that needs to be invoked. null has no type, so the decision can not be made.
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• Waiting for the results of an asynchronous invocation on the same active instance has
to be done in the same order as the invocation. If foo and bar, in this order, are invoked
on the same active object, then first the result of foo has to be waited for and then the
result of bar.

4. Implementation

In the OO model, an object sends a message to another object (invoking a method is some-
times erroneously described as sending a message) synchronously. We have extended this
model of interaction by allowing objects to “communicate” both synchronously and asyn-
chronously. The active object executes the method invocations in its own thread and has a
queue of pending messages that must be processed. An active object can be created on any
reachable machine from the network that supports Secure Shell (ssh). The communication
with active objects is done by exchanging real messages and is realized through RMI.

Let us assume that the machine creating the active object is called client and the machine
where the active object resides is called server. The client can send the server two types of
messages:

• create message asking the server to create a new active object.
• invoke message asking the server to execute a method on one of the active objects

that it hosts.

4.1. Creating an Active Object

The syntax for creating an active object on server is:

activeObj = new ActiveClass(args) on “server”

where again, the on “machine” part is optional, and if omitted, the object will reside
one the local machine. The creation of an active object happens synchronously and the server
replies with another message sending the client a handle to the active object, as shown in
Figure 1.

server
ActiveClass
instanceId

client
ActiveClass

arg

client

Create Message

{
   .....

   .....
}

   a = new ActiveClass(arg) on "server";

Instance Info

server

Creates a new instance
of ActiveClass

Figure 1. Active object creation.
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The create message contains: the name of the machine that initiated the call (used inter-
nally by the server to keep track of invocations from each client since active object references
can be passed from machine to machine), the type of the class, and the arguments of the
constructor. The server sends the client a ’remote reference’ represented by an InstanceInfo
object that contains the following information: the name of the machine where the object
resides, the type of the object and a unique identifier to distinguish this instance from other
instances on the same server. The client then uses this remote reference every time it wants
to send a message to the active object.

4.2. Invoking Methods on an Active Object

Unlike passive objects, the methods of active objects can be invoked asynchronously:

activeObj.foo(a,b,c) async

The client sends an invoke message asking the server to execute the foo method on the
activeObj and return the result asynchronously. The client uses the ’remote reference’ sent
by the server, as shown in Figure 2.

InstanceInfo
foo

Args: a, b, c

{
   .....

   .....
}

   activeObject.foo(a, b, c) async;

client server

Invoke Message

returns immediately

returns result

Execute invocation

Figure 2. Active object invocation.

The call returns immediately since the async keyword is used and the client continues
executing the rest of the code. We have implemented the asynchronous invocation by creating
a thread that performs the actual call. This thread uses RMI to invoke the method on the
active object. This RMI call is synchronous, but the main thread continues with the rest of
the client code, thus simulating asynchronous behaviour. When the server finishes executing
the method, the thread that carried out the execution signals the main thread that the result
is available. If a method is invoked synchronously on an active object, then the main thread
blocks and waits for the result, unless the method returns void. In this case the invocation is
sent to the server and the main thread continues its execution.

4.3. Waiting for the Result of Asynchronous Invocation

When asynchronous interaction between the client and the server is used, the client has to
get the result of the method invocation at some point. The waitfor statement is used for that:

waitfor activeObj var ;

From the programmer’s point of view, the waitfor statement can be interpreted as: “I’m
waiting for the result of an asynchronous invocation on the active object, activeObj, and
save the return value in the variable var”. The waitfor statement has to be used only for
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asynchronous methods that return a value. If two methods that return a value, foo and bar in
this order, are invoked on the same active object, then the return values have to be waited in
the order of invocation, first the result of foo and then the result of bar. The compiler will not
complain if the the order of waiting for the result is reversed, but a ClassCastException will
be thrown at runtime if the types of the two return values are not compatible.

The programmer may forget (or choose not to) to wait for the result of an asynchronous
call. In this case, when a method finishes executing its body, all the results of the asyn-
chronous invocations that were not waited for are discarded/ignored. This implies that all the
results of asynchronous calls have to be waited for in the same method in which they were
made.

4.4. Message Ordering

An active object accepts requests from any machine that has a reference to it. Active objects
can be passed around, so not only the machine that created the object can have a reference
to it. The active object will execute the requests in the order of arrival, on a first come, first
served basis. No ordering can be imposed on invocations from different machines on the
same active objects, in accordance with Lamport’s happen-before relation [46]. Though, if
two invocations, foo and bar in this order, are invoked on the same active object, then the foo
will be executed before bar.

4.5. ClientManager and ServerManager

The core components of our active object system comprises two classes: ClientManager and
ServerManager. The communication between the machine that creates the active object and
the machine that hosts the active object is realized through these classes. The creation of an
active object or a method invocation of an active object is translated at compile time to an
invocation to one of the following ClientManager methods:

• invokeConstructor(...) creates an active object and returns a ’remote reference’ of type
InstanceInfo. This remote reference is used by the client every time it wants to invoke
a method on the active object.

• invokeMethod(...) invokes a method on an active object.

The ClientManager keeps track of all the active object invocations that are initiated from the
machine on which it runs. As some of these invocations are executed asynchronously, the
return values of these calls are also managed by the ClientManager. Besides the two core
functions, the ClientManager also has additional helper methods:

• getMethodId(...) returns a unique identifier that is associated with every method that
has an active invocation in its body. It is inserted by the compiler at the beginning of
each method body that has at least one active object invocation.

• removeUnwaitedCalls(...) removes all the un-waited calls within a method body. It is
inserted at the end of all methods that have at least one active object invocation.

The ServerManager plays a similar role on the server side (a server is any machine
that hosts an active object). It accepts create and invoke messages and sends these requests
to the corresponding active object. There is only one ServerManager on each machine that
participates in the execution and it has to be started before the program is executed. Starting
the managers is done by executing an ssh script.
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4.6. Compiler Modifications

The programmer does not know about the ClientManager and ServerManager classes, but
instead he writes Java code using the added keywords. At compile time, during desugaring,
the new syntax is replaced by calls to ClientManager methods.

The modified compiler performs two important tasks: first it checks if the syntax is cor-
rect and that the new keywords are used properly and secondly, during the desugaring phase,
it replaces the new syntax with regular Java code.

The active keyword is removed from the class declaration. During the attribution phase
additional information is saved in the node that represents a class to identify an active class.

The generation of the methodId, the translation of the new creation expression, asyn-
chronous invocation and waitfor statement to regular Java code will be shown in the Man-
delbrot example (section 6.1).

5. Example

To demonstrate the use of the asynchronous active object system we have implemented a
simple publisher/subscriber system; to be exact, we have implemented the example given in
the Cω tutorial [47]. The Cω implementation implements 3 classes: ActiveClass, Subscriber,
and Distributor; in addition it implements an interface called eventSink. Since we have the
notion of active objects built into the language and the compiler, we do not need to define a
class for an active object, and thus need only classes for the Subscriber and the Distributor,
as well as the driver with the main method (Figure 3).

The main method creates a distributor and 3 subscribers, and adds the subscribers to
the distributor, who in time invokes the post method of these; subsequently the subscribers
print out the message received.

In this example we do not make use of the ability to create remote active objects; if the
optional on “machine” part of the new object creation is left out, then the new object will be
created on the local host. See section 4.1.

The output obtained (one of the many possible) when executing the code is:

a got the message: First message
b got the message: Second message
b got the message: Third message
c got the message: Third message
a got the message: Second message
a got the message: Third message

Note, there exist no total ordering for all the messages, but a total ordering within the each
subscriber does exist. This is a sided effect of the message ordering constraints that we im-
plemented (See section 4.4), something which the Cω implementation does not guarantee.

In the next section we describe another desirable side effect of our asynchronous active
object system; namely the ability to implement parallel computation using active objects.

6. Active Objects for Distributed Computing

By utilising asynchronous method invocation, our system allows parallel computation in a
very simple manner. Moreover, the active objects do not have to be located on the same
machine, but can be distributed over the network. The distributed support offered by Java
is RMI. By calling methods on active objects synchronously we obtain the same effect as
RMI without searching the registry for the remote object. By calling methods asynchronously
(add the async keyword at the end of the invocation) and by allowing the caller to continue



G. Oprean and J.B. Pedersen / Asynchronous Active Objects in Java 247

public active class Distributer {
private ArrayList<Subscriber> subscribers = new ArrayList<Subscriber>();

public void subscribe(Subscriber s){
subscribers.add(s);

}
public void post(String message){

for (Subscriber s:subscribers){
s.post(message) async;

} 10
}

}

public active class Subscriber {
private String name;

public Subscriber(String name) {
this.name = name;

}
public void post(String message){ 20

System.out.println(name+" got the message:"+message);
}

}

public class Demo {
public static void main(String args[ ]){

Distributer d = new Distributer();
Subscriber a = new Subscriber("a");
d.subscribe(a) async;
d.post("First message"); 30
Subscriber b = new Subscriber("b");
d.subscribe(b) async;
d.post ("Second message");
Subscriber c = new Subscriber("c");
d.subscribe(c) async;
d.post("Third message");

}
}

Figure 3. The active Distributor and Subscriber and passive driver class.

his execution without waiting for the result at the invocation time, we obtained a parallel
computing model.

6.1. Mandelbrot Example

One often used pattern in distributed systems is the master/slave architecture. The master
divides the work into tasks and sends the tasks to the slaves. The slaves execute the task and
send the result back to the master. We will show how this master/slave model can be designed
with our system by implementing the Mandelbrot Set computation. The active code for this
implementation can be seen in Figure 4 (see lines 1, 11, 12, and 16 for the use of these new
keywords). Executing our compiler with the code from Figure 4 will generate the Java code
shown in Figure 5.

The first and the last statements of the main method of the MandelbrotClient class were
added by our compiler. The methodId (line 9) is used by the ClientManager to handle method
invocations and the last statement (line 26) discards all the results of any asynchronous invo-
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public active class Mandelbrot {
public MandelBrotSet compute(. . .) {

... compute the mandelbrot set for the area given by the parameters
}

}

public class MandelbrotClient {
public static void main(String[] args) {

Mandelbrot[ ] mandelbrot = new Mandelbrot[noProc];
for(int i=0; i<noProc; i++) { 10

mandelbrot[i] = new Mandelbrot() on computerNames[i];
mandelbrot[i].compute(. . .) async;

}
MandebrotSet mandelSet;
for(int i=0; i<noProc; i++) {

waitfor mandelbrot[i] mandelSet;
... process the return value

}
}

} 20

Figure 4. Mandelbrot fractal computation using asynchronous active objects.

public class Mandelbrot {
public MandelBrotSet compute(. . .) {

... compute the mandebrot set for the area given by the parameters
}

}

public class MandelbrotClient {
public static void main(String args) {

Long methodId = ClientManager.getMethodId();
InstanceInfo[ ] mandelbrot = new InstanceInfo[noProc]; 10

for(int i=0; i<noProc; i++) {
mandelbrot[i] = ClientManager.invokeConstructor(

"Mandelbrot", new Object[ ]{}, computerNames[i]);
ClientManager.invokeMethod(

methodId, mandelbrot[i], "compute", new Object[ ]{. . . .}, true, false);
}

MandebrotSet mandelSet;
for(int i=0; i<noProc; i++) { 20

ReturnObject returnObject0 = ClientManager
.waitForThread(methodId, mandelbrot[i], false);

mandelSet = (MandelbrotSet)returnObject0.getReturnValue();
... process the return value

}
ClientManager.removeUnwaitedCalls(methodId);

}
}

Figure 5. Mandelbrot code generated by our compiler.

cations from this method body that were not waited for. The construction of an active object
(line 11 in Figure 4) is translated to a call to invokeConstructor (line 13-14 in Figure 5) and
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the active object method invocation (line 13 in Figure 4) is translated to a invokeMethod call
(lines 15-16 in Figure 5). Finally the waitfor (line 16 in Figure 4) statement is translated into
two statements: first a call to waitForThread to wait for the result to be available and secondly
code for getting the actual result.

6.2. Matrix Multiplication Example

We have also implemented Fox’s Pipe-and-Roll matrix multiplication algorithm [48] with
active objects. The algorithm divides the matrices, A and B, into sub matrices in a grid manner
and then the following steps are repeated: broadcast A (the first matrix) to the right, do local
multiplication of incoming A and local B (second matrix), and shift B up with wraparound.
An active object (slave) receives an A sub matrix and a B sub matrix and performs the three
steps from the algorithm. A master object controls the number of iteration for the algorithm
and on each iteration it sends the slaves the task they have to perform. The results obtained
after running our example is presented in section 7.2.

6.3. Pipeline Computation Example

Another example that we have implemented with our active object system is a pipelined
computation. Our example contains 5 processes (or 5 steps) that take 2, 6, 6, 8, and 2 seconds
respectively to execute (to produce a result at the end of the pipe). The throughput is no better
than one result ever 8 seconds, and the latency is no better than 24 seconds. This pipeline is
illustrated in Figure 6.

Figure 6. Original Pipeline.

As stated, we cannot get a better throughput than one result every 8 seconds. This can be
optimised to get a better throughput by adding dispersers and collectors, and by replicating
the processes that take more time to execute. One possible arrangement of these processes is
shown in Figure 7.

Figure 7. Optimised Pipeline with Dispersers and Collectors.

The dispersers, the collectors and the replicated processes are all active objects. The
disperser creates the necessary number of processes and the collector. Once a process finishes
its work, it forwards the result to the collector, which in turn forwards it to the next process
or disperser. The results of the pipeline computation are presented in section 7.3.

With this new setup, we should be able to improve the throughput to one result every (no
better than) 2 seconds. Naturally there might be a little overhead from passing data through
dispersers and collectors.
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7. Results

Although the main focus of this paper is the implementation of an active object system in
Java, we do wish to present the initial results of the experiments of parallel programming
with active objects.

7.1. Mandelbrot Set

We have tested the Mandelbrot Set computation with active objects against the sequential
Mandelbrot. We started with a complex plane of 5,000 x 5,000 points and increased each
dimension of the complex plane by 5,000 points each time, up to 20,000 x 20,000 points.
Additionally, the parallel versions were tested on 4, 8, 16, 32 and 64 slaves (plus a master)
for each complex plane size. The speedups obtained are presented in Figure 8.

Figure 8. Speedup for the Mandelbrot Computation.

7.2. Matrix Multiplication Results

We have tested the Matrix Multiplication for matrix sizes of 512 by 512, 1,024 by 1,024,
2,048 by 2,048 and 4,086 by 4,086 on 4, 16 and 64 processors (slaves). The benefits of
distributing the workload on multiple computers and doing the computation in parallel starts
paying off for the matrix size 2,048 by 2,048 and 16 processors. There is some overhead of
starting each slave (active object) and sending the parameters across the network (in each
step, each active object “pipes” its A sub matrix and “rolls” is B matrix). The speedups
obtained are presented in Figure 9.

7.3. Pipeline Computation Results

The regular pipeline example presented in section 6.3 creates a result each 24 seconds. By
interspersing dispersers and collectors, and at the same time replicate the processes in the
stages that take longer, the optimised version improves the throughput to one result every
2.008 seconds on average (2 is the minimum we could ever hope to achieve).
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Figure 9. Speedup for the Matrix Multiplication algorithm.

8. Conclusion

In the standard Object Oriented (OO) model everything is considered an object. Objects
communicate with each other by sending messages. Some argue that this model is a good
reflection of the real world and of how objects interact. However, all the objects are passive
and all the method invocations are executed in the caller’s thread. A passive object reuses the
thread of the object that created it.

The active object model represents a better reflection of how objects in the real world
interact. Each object executes the method invocations in its own thread and only sends the
result to the caller. Moreover, the communication can be done both synchronously and asyn-
chronously (in the OO model the communication is always synchronous).

We have modified the Java language to integrate active objects by adding four new key-
words: active, async, on and waitfor. Because methods can be invoked asynchronously us-
ing the async keyword, active objects can be used for developing parallel applications (the
caller does not wait for the result at the moment of the invocation but continues its execution
in parallel with the active object invocation). Active objects do not have to reside on the same
machine, but they can be distributed over the network. The location of an active object is
specified when the object is created and it can not be changed afterward, even though ac-
tive object references can be passed around. Our system allows the existence of both passive
and active objects, just like the real world. We used the active object model to implement
a number of applications: Mandelbrot set computation, pipe-and-roll matrix multiplication,
and pipeline computation. Even though linear speedup was not achieved, the results are en-
couraging and demonstrate the feasibility of using active objects in Java for certain types of
distributed computation.

In general we we have shown one way of implementing asynchronous active objects in
Java, using RMI and compiler modifications, which provides an easily approachable intro-
duction to active objects for Java programmers.

Finally, since current versions of the Java Virtual Machine (JVM) are implemented to
take advantage of multi-core processors, our active object system provides a straight forward
way to write code for such architectures. As long as the work load associated with executing
a method (invoked asynchronously) is significant, the advantage of utilising multiple cores
will outweigh the overhead.
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9. Future Work

Our system demonstrates one way to implement active objects in Java by extending the lan-
guage. The system that we have created enforces some restrictions of how the new keywords
should be used, but can be further extended and improved to eliminate some of these restric-
tions. Some improvements are:

• starting/stopping the ServerManager from code instead of ssh script
• warning the user if not all asynchronous calls with return value have a matching wait-

for statement
• creating an exception handling mechanism (ClientManager catches all the exceptions

sent by the active objects and does not forward them to the caller)
• keeping the active objects once they are created and allowing them to be accessed by

other applications (creating a remote directory)
• Rather than creating a new thread for each asynchronous method invocation and then

discarding it after the RMI call returns, a pool of threads can be kept, these can be
reused.

• As illustrated in the Mandelbrot example, the waitfors are handled in the same order
as the invocations, this could be a potential slowdown. A possible solution to this
could be a method for doing a number of waitfors in parallel.

• If an active object resides on the local machine, the use of RMI will be a signifi-
cant overhead, and totally unnecessary; an obvious optimisation would be to simply
exchange messages within the shared memory space using locks and monitors.

One interesting, and important issue of using active objects is that of deadlocks. It is not
hard to write a program that causes a deadlock; recursive calls to active objects, mutually re-
cursive calls between active objects are simple examples that will certainly cause a deadlock.
Like many other programming models, there are certain difficulties that cannot automatically
be avoided. However, it it possible to observe and report such deadlocked situations; by log-
ging all calls and keeping an up-to-date call graph in a central manager process, deadlocks
can be reported to the programmer at run-time. This is an extension that we would like to add
to the active object system in the future.
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