& UNIVERSITY OF

) SURREY

Experiments in translating CSP| | B into

Handel-C

Steve Schneider, Helen Treharne,

Alistair McEwan, and Wilson Ifill

University of Surrey
University of Leicester
AWE Ltd.

www.surrey.ac.uk

& UNIVERSITY OF

) SURREY

Structure of presentation

Context
CSP||B
Experiments

Further developments

www.surrey.ac.uk

SURREY

£

Context

RV,
=
()
@
>
w
| -
L S
=
"
S
S
=

- ' £ UNIVERSITY OF
Future Technologies for System Design 'b SURREY

 Formal methods for development of hardware/software codesigns.
 Formal modelling and analysis.
* Implementation design and refinement.
« Translation and implementation.

 Three year project at the University of Surrey.

e Supported, and with technical input, from AWE.

e Surrey: Steve Schneider, Helen Treharne, Alistair McEwan, David
Pizarro.

« AWE: Wilson Ifill, Neil Evans.

=~ ° Focus of this project:

CSP||B for modelling, specification, and design.

www.surrey.ac.uk

P

Context '@3 %ﬁﬁsll{é%

« AWE have a long term interest in methods for development and
verification of high assurance hardware and software systems.

 Timescale: 15 years from inception to production.
o Currently in the early years: fundamental research.
* Investigating formal technologies.
* Developing methodology, foundations, and techniques.

« Qur project is focusing on specific technologies to ground the
research: CSP||B and Handel-C.

www.surrey.ac.uk

UNIVERSITY OF

Requirements

%Requirements capture

CSP||B abstract
model

~ Design/refinement/transformation
Analysis, verification

and validation CSP|IB
(ProB, FDR, B Tools) design T i
(See CPAQ7 paper) %rans ation

Test scenarios

www.surrey.ac.uk

£ UNIVERSITY OF
Why CSP| | B and Handel-C ? 'b SURREY

. CSP|B

* Provides a formal underpinning, supports modelling,
specification, development, and verification.

e Incorporates control and state within a single framework.
* Mature industrial strength tool support.
« CSP||B developed in Surrey: local ownership.
 Handel-C
» Established route to hardware — a key aspect of the project.
* Links with CSP, and appropriate target language for B.

* Prior work on translating CSP to Handel-C.

www.surrey.ac.uk

SURREY

£

CSP| |B

v
=
()
@
=
v
| -
L S
=
B
S
S
=

. £ UNIVERSITY OF
Combining CSP and B : events and state 'b SURREY

e Separation of concerns
o State (object based, cf Z) described in B.

« Concurrency, communication, and control encapsulated in
CSP.

 Re-use of existing tools (as well as development of new ones).
* Retains original semantics for CSP and B.

* Rigorous semantic grounding: formal link through Morgan’s
failures semantics for action systems: B machines are given CSP
semantics.

o« Communicating abstract data types model.

www.surrey.ac.uk

¥

. . ~ UNIVERSITY OF
CSP| | B: Controlling B machines ‘b SURREY
« A controlled component consists of a CSP controller process in

parallel with a B machine.

e Semantics given by CSP semantics of both components.

« ACSP event elv?x matches a B operation call x <-- e(v).

CSP controller

A 4
@
P
o
)
S
=
+
=
o)
—
9
]

A

I I I I‘"-------*i--operation calls

B machine

www.surrey.ac.uk

UNIVERSITY OF

CSP controller B machine

MACHI NE Swi t ch
SW_CONTROL = VARI ABLES swi t ch

| N\VARI ANT swtch : {off, on}
press NI TI ALI SATION switch : = off
timeout —> OP

= PRE swtch = off
SW_CONTRO THEN switch : = on

END;

(dark)= PRE swi tch = on

THEN switch = off
END
END

www.surrey.ac.uk

UNIVERSITY OF

CSP controller B machine
MACHI NE Tot al i ser
VARI ABLES total, num
SW_CONTROL = | NI TI ALI SATION total := 0
) num:= 0

read’n _>_> CON OPERATI ONS |

(add(nn)) = PRE nn : NAT
CON = THEN tot := tot + nn
read?’n —>—> CON | | num:= num+ 1
END;
S@uerageim
i < aver age -

report'm — CON
PRE num > O
THEN mm : = tot / num
END

END

www.surrey.ac.uk

P

. UNIVERSITY OF
Consistency @ SURREY
e QOperations must be called within their preconditions. This needs

to be proved for controlled components.

 There are established techniques (based on wp semantics) for
establishing consistency between a controller and a controlled
machine.

 Consistency expressed as divergence-freedom.

* Divergence-freedom means operations called within their
preconditions.

* Note: the previous examples are consistent.

www.surrey.ac.uk

£ UNIVERSITY OF

The ProB tool: CSP||B analysis V9 SURREY

Type checking

£ ProB 1.2.7: [AHBArbiterStateV6.mch] : (c) MichaelLeuschel

Flle Animate Verify Analyse Preferences Debug Files About

==X

H H MACHINE AHBArbiterStateVé d
Animation
WVARTABLES masterassignedbus, locked, splitmasters, localhmastlock, nextallowedhresp, nextallowsd
hready, nextallowedhtrans —J
Walk through
SETS TRANSFER = {BUSY, IDLE, NONSEQ, SEQ};
. BEURET = {EINGLE, INCR, WRAP4, INCR4, WRAPS, INCRB, WRAPLS, INCRL1A):
Model_checklng RESPONEE = {OEAY, ERROR, RETRY, SPLIT!
CONETANTS MASTER, SLAVE
Ir]\/Eirlfir]t \/I()lfitIC)r] /* MASTER and SLAVE are hard-coded to snable ProB analysis */
L. . . PROPERTIES MASTER = 0..2Z & SLAVE = 0..Z2
Precondition violation .
INVARLANT masterassignedbus : MASTER &
1arlkrad - BomT £
Deadlock 2 -
eadlioC [OK] [merd| State Propetties o] EnabledOperations History

LTL style
Supports CSP_M

Suitable for B, CSP, and
CSP||B

[Originates from Michael
Leuschel; enhanced in
conjunction with AWE
and FutureTech]

i

—_—
4
iy Start

invariant_ ok
MASTER={0,1,2}
SLAVE={0,1,2}
masterassignedbus=0
locked=FALSE
localhmastlock=FALRE
=plitmasters={}
nextallowedhresp={0KAY}
nextallowedhready={TRUE}
nextallowedhtrans={IDLE}

& ArbiterState ¥

@/‘ »

[-]] |

—Azetmazter ({3}, ({1, {),BUSY, SINGLE, *|
setmaster ({3},{1},{},BUSY, SINGLE,
setmaster({3},{},{},BUSY, 3INGLE,
setmaster ({3}, {},{},BUSY, SINGLE,
setmaster ({3}, {},{},BUSY, INCR, OF__|
zetmaster ({3}, {},{), BUSY, INCR, EF
setmaster ({3}, },{}, BUSY, INCR, RE
setmaster ({3},{1},{},BUSY, INCR, St
setmaster ({3}, (), ()}, BU3Y, WRAP4, C
setmaster ({3}, (), ()}, BUIY, WRAFP4, E
setmaster ({3},{},{},BU3Y, WRAP4,F
setmaster ({3}, {1, },BUSY, WRAP4, ¢
setmaster ({3}, 0}, 1},BUSY, INCR4,C
setmaster ({3}, {1}, {},BUSY, INCR4,E
setmaster ({3}, (), {)},BUSY, INCR4,F

setmaater({},{},{},IDLE,WRAPlE,C_J
initialise_ machine (0, FALSE, FALSE
setup_constants ({0, 1,2}, {0,1,2})

QRIRN

ﬂ; Microsoft Qutlook We, .. I Z ProBWin

EN Deskrop @)% LOICHk Gt

www.surrey.ac.uk

SURREY

£

Fxperiments

v
=
()
o
=
v
| -
L S
=
B
S
S
=

& UNIVERSITY OF
Translatton to Handel-C 'b SURREY

 Handel-C provides a route to hardware:
« Contains a core subset of C (state).

* Provides support for CSP-like concurrent behaviour
(communication).

 Clocked.

* Previous work on translating CSP to Handel-C (Stepney; Oliveira
and Woodcock; Philips and Stiles; Ifill).

o All state’is in the CSP.
e Qur aim is to implement the controlled B machines.

 Maintain the state.

NN * Events associated with B machines correspond to operation
calls.

www.surrey.ac.uk

Vi’

. UNIVERSITY OF
Approach '@3 SURREY

* Invent simple (artificial) CSP||B examples which contain a feature
we wish to explore. Identify issues that emerge as we do the
translation.

* Investigate how such examples are rendered in Handel-C.

« Example 1: a first CSP||B component: translating the CSP and
the B together.

 Example 2: parallelism in the CSP controller.

 Example 3: data refinement and nondeterminism resolution.

www.surrey.ac.uk

UNIVERSITY OF

9 SURREY
CONI1 = MACHI NE CELL
bufin?Value — VARl ABLES XX
g | NVARI ANT xx : NAT
oct. vaiue — | NI TI ALI SATI ON xx : = 00
get?’Stored — OPERATI ONS
bufout!Stored — CONI1 set(yy) = PRE yy : _ NAT
THEN xx = yy
END;

yy <-- get = yy := XX
END

www.surrey.ac.uk

£ UNIVERSITY OF
Translation of Example 1: 'b SURREY

#defi ne WORD TYPE unsi gned i nt
Introduce xx #defi ne WORD W DTH 3
WORD TYPE WORD W DTH xXx

chan WORD TYPE WORD W DTH buf out ;
chan WORD TYPE WORD W DTH buf i n;

Declare the channels

voi d mai n(voi d){

The generic xx = 0: // initialisation

control flow Si npl eBuf f er (bufi n, buf out);

}

www.surrey.ac.uk

Translaing CON1 @ %ﬁﬁsl{é OYF

CON1 =
bufin?Value — set(yy) = PRE yy : NAT
THEN xx :=vyy

set!'Value — END:;
get’Stored —

<- - et = .= XX
bufout!Stored — CON1 Y J a4

macro proc Buffer(bufin, bufout)/{

Translation
WORD TYPE WORD W DTH St or ed:;
of CON1 WORD TYPE WORD W DTH Val ue:
do{
bufi n?Val ue; /1 CSP channel i nput

XX = Val ue; /'l body of operation set(Value)
Stored = xx; [// body of operation Stored <-- get

bufout! Stored; // CSP channel out put
whil e(1); www.surrey.ac.uk

£ UNIVERSITY OF
Simple example II: parallelism 1n the @ SURREY

controller

IN = bufin?Value — MACHI NE CELL
VARI ABLES xx
cet!'\/aliie — TN
Sebs vaits | N\VARI ANT xx : NAT
OUT = get’Stored — | NI TI ALI SATION xx : = 00
OPERATI ONS
bufout!Stored — OUT set(yy) = PRE yy : NAT
THEN xx := yy

yy <-- get = yy := XX
END

www.surrey.ac.uk

& UNIVERSITY OF

Translation of CON2) SURREY
CON? macro proc InterleaveBuffer(bufin, bufout){
WORD TYPE WORD W DTH St or ed;
WORD _TYPE WORD W DTH Val ue;
par {
N do {bufin?Val ue;
xX = Value;} while(1);
do{Stored = xx;
OuUT bufout! Stored;} while(l);

}}

www.surrey.ac.uk

Issues

35 QRREY

Need to make the implemented state concrete (i.e.
retrenchment).

Need to declare and scope all local variables explicitly.
Preconditions are dropped at implementation.

 Once consistency is shown at the abstract level, the
preconditions have been discharged and are no longer
required — they do not appear in implementations.

Parallel processes proceed in lockstep. In CON2, this yields
buffer-like behaviour (though initially non-empty). The Handel-C
timing model provides one way of implementing interleaving.

Natural translation of channel communication and assignment.

www.surrey.ac.uk

UNIVERSITY OF

¥ SURREY

CON3
line Set Choi cg
CON3 =
(Il =~ Read(x):
VEx:0.. 1o \"* /)
choose?y

out
Abstract data structure

Nondeterminism

MACHI NE Set Choi ce
VARI ABLES ss
| NVARI ANT ss <: 0..15
| NI TI ALI SATI ON ss : = {0}
OPERATI ONS
yy <-- choose =
BEG N yy :: ss
|| ss := {0}
END;

add(xx) = PRE xx : 0..15
THEN ss := ss \/ {xx}
END
END

www.surrey.ac.uk

UNIVERSITY OF

5 SURREY

Refining SetChoice

« Data refinement: set ss implemented by array arr.

» Resolving underspecification: choice resolved (arbitrarily) by taking
the maximum. More complex choice mechanisms possible.

 These refinements are proven correct in B.

MACHI NE Set Choi ceR
VARI ABLES arr
| NVARI ANT arr : 0..15 -->0..1
& ss = arr~[{1}] & 0]->1 : arr
| NI TI ALI SATION arr := (1..15 * {0}) \/ {0 |-> 1}
OPERATI ONS
yy <-- choose =
BEGA N yy := max(arr~[{1}])
|| arr .= (1..15 * {0}) \/ {0 |-> 1}
END;

add(xx) = arr(xx) :=1 www.surrey.ac.uk

'\ Q=N

&’ UNIVERSITY OF

Translation of SetChoiceR) SURREY

unsigned int 1 arr[16]

void Init() {

par {
arr[0] = 1;
par (i=1; i1<16; i++) {arr[i] = 0; }

)

macro proc add(unsigned int 4 xx){arr[xx] =1; }

voi d choose(unsigned int* yy) {

par { max(yy);
Init();

www.surrey.ac.uk

<" UNIVERSITY OF
Translation ot CONJ 'ﬁ SURREY

void main() {

unsi gned int 4 vy;

Init();
par {
do {
par (i=0; i1<16; i++) {Read(i);}
) (&) CON3 =
choose(&y) ; :
. ([x0.15 Read(x):
outly; choose?’y —
} while(l); outly — CON3
Read(x) =
macro proc Read(x) { line.x?h —
. unsigned int 1 b; if (b=1)
‘“_ linelx12b: if (b dd : then add!x — SKIP
] [x]2bi 11 (b)) {add(x):) else SKIP

el se {delay; }
www.surrey.ac.uk

£ UNIVERSITY OF
Issues @ SURREY

* Need to refine closer to implementation before translating.
* Implementatable data structures.
 Remove nondeterministic choice.

* Function declaration creates the hardware once (efficient but
cannot support concurrent calls) e.g. Init().

« Macro declaration creates hardware once for each call in the
code (robust but possibly wasteful) e.g. read, add.

 Handel-C supports reference parameters. Thus B operations
returning multiple values can be translated.

 Timing in different branches of an operation.

Signals vs channels, as implementations for CSP channels.

www.surrey.ac.uk

SURREY

£

Subsequent developments

v
=
()
o
=
v
| -
L S
=
B
S
S
=

4

. UNIVERSITY OF
Subsequent Developments @ SURREY

 Development of a larger case study within the Future
Technologies project.

 Development of a ‘translation-ready CSP||B’ subset, closer
to Handel-C.

 Formal relationship between high level CSP||B models and
TR-CSP||B descriptions, within the same semantic
framework.

 Development of a modelling style suited to this approach.

» Clocked style for CSP||B models, with core functionality of
the machine bound up within a single operation.

 Aim to keep the complexity within the B description, to retain
ability to do analysis and verification. Keep the CSP control
as simple as possible.

www.surrey.ac.uk

UNIVERSITY OF

CYCLE = load?xx -> CYCLE
[] reset -> CYCLE
CSP||B] read -> READ
[] delay -> CYCLE
[] isfull?x?y ->
if (x == ack_full)
then RUN
else CYCLE

4

Translation CYCLE(i) = (body!COM_LOAD?v?wW?x?y?z ->
if (i+1 < capacity) then CYCLE(i+1) else CYCLE(capacity))
[] body!COM_RESET?v?w?x?y?z -> CYCLE(O)
[] body!COM_READ?v?w?x?y?z -> READ(0,i)
[] body!COM_NOCOMMAND?v?w?x?y?z -> CYCLE(i)
[] (body!COM_ISFULL?v?W?x?y?z ->
if (x == ACK_FULL)
then RUN(i)
else CYCLE(i)) www.surrey.ac.uk

CSP||B

4

Translation

UNIVERSITY OF

load(ee) =
PRE ee : {0, 1}
THEN IF size(store) < capacity
THEN store := store <- ee

ELSE skip
END
|| state := live

END;

ack, outputdata, drive <-- body(command, data, sync) = ...

CASE...
... COM_LOAD THEN
local_drivecommand = DRV_UNENABLED
|| local_outputdata := DAT_NODATA
|| local_ack = ACK_LOADACK
|| IF (local_fillcounter = SWITCH_CODE_LENGTH)
THEN skip

ELSE local_store(local_fillcounter) := data
|| local_fillcounter :=local fillcounter + 1

END www.surrey.ac.uk

£ UNIVERSITY OF
Development path: Code @ SURREY

switch(command){

case COM_LOAD:

par{
local_drivecommand = DRV_UNENABLED;
local_outputdata = DAT_NODATA;
local _ack = ACK_LOADACK,;
if(local_fillcounter == SWITCH_CODE_LENGTH)
delay;
else{

local_store[local_fillcounter] = data;
local_fillcounter++;

}
}

break;

www.surrey.ac.uk

’ g

~ UNIVERSITY OF
Achievements ‘b SURREY

« Hardware components behaved as intended first time, due to
understanding gained from modelling.

» Hardware implementation worked first time with new scenarios.

 Demonstrated an ability to capture abstract behaviour in CSP||B
and translate to Handel-C.

» Analysis of abstract platform-independent models.
* Translation to code in a traceable way.

» Translation ready style of CSP||B for translation to Handel-C.

www.surrey.ac.uk

. . & UNIVERSITY OF
Further considerations @ SURREY

 Handel-C and translation-ready CSP||B affect each other —
Influence in both directions.

* Need to investigate interactions between hardware components.
 TR-CSP||B to Handel-C translation currently done by hand.

* Need a more complete treatment of the translation before we
could automate it.

* Interface and timing refinement needs formal justification.

www.surrey.ac.uk

