
Experiments in translating CSP||B into
Handel-C

Steve Schneider, Helen Treharne,

Alistair McEwan, and Wilson Ifill

University of Surrey

University of Leicester

AWE Ltd.

Context

CSP||B

Experiments

Further developments

Structure of presentation

Context

• Formal methods for development of hardware/software codesigns.

• Formal modelling and analysis.

• Implementation design and refinement.

• Translation and implementation.

• Three year project at the University of Surrey.

• Supported, and with technical input, from AWE.

• Surrey: Steve Schneider, Helen Treharne, Alistair McEwan, David
Pizarro.

• AWE: Wilson Ifill, Neil Evans.

• Focus of this project:

• CSP||B for modelling, specification, and design.

• Translation to Handel-C.

Future Technologies for System Design

• AWE have a long term interest in methods for development and
verification of high assurance hardware and software systems.

• Timescale: 15 years from inception to production.

• Currently in the early years: fundamental research.

• Investigating formal technologies.

• Developing methodology, foundations, and techniques.

• Our project is focusing on specific technologies to ground the
research: CSP||B and Handel-C.

Context

Development Methodology

CSP||B abstract
model

CSP||B
design

Handel-C

Requirements

Requirements capture

Analysis, verification
and validation
(ProB, FDR, B Tools)
(See CPA07 paper)

Design/refinement/transformation

Translation

Test scenarios

• CSP||B

• Provides a formal underpinning, supports modelling,
specification, development, and verification.

• Incorporates control and state within a single framework.

• Mature industrial strength tool support.

• CSP||B developed in Surrey: local ownership.

• Handel-C

• Established route to hardware – a key aspect of the project.

• Links with CSP, and appropriate target language for B.

• Prior work on translating CSP to Handel-C.

Why CSP||B and Handel-C ?

CSP||B

• Separation of concerns

• State (object based, cf Z) described in B.

• Concurrency, communication, and control encapsulated in
CSP.

• Re-use of existing tools (as well as development of new ones).

• Retains original semantics for CSP and B.

• Rigorous semantic grounding: formal link through Morgan’s
failures semantics for action systems: B machines are given CSP
semantics.

• Communicating abstract data types model.

Combining CSP and B : events and state

• A controlled component consists of a CSP controller process in
parallel with a B machine.

• Semantics given by CSP semantics of both components.

• A CSP event e!v?x matches a B operation call x <-- e(v).

CSP||B: Controlling B machines

B machine

CSP controllerCSP controller

B machine

operation calls

Example

MACHINE Switch
VARIABLES switch
INVARIANT switch : {off, on}
INITIALISATION switch := off
OPERATIONS

light = PRE switch = off
THEN switch := on
END;

dark = PRE switch = on
THEN switch := off
END

END

CSP controller B machine

Example (with I/O)

MACHINE Totaliser
VARIABLES total, num
INITIALISATION total := 0

|| num := 0
OPERATIONS
add(nn) = PRE nn : NAT

THEN tot := tot + nn
|| num := num + 1

END;

mm <-- average =
PRE num > 0
THEN mm := tot / num
END

END

CSP controller B machine

• Operations must be called within their preconditions. This needs
to be proved for controlled components.

• There are established techniques (based on wp semantics) for
establishing consistency between a controller and a controlled
machine.

• Consistency expressed as divergence-freedom.

• Divergence-freedom means operations called within their
preconditions.

• Note: the previous examples are consistent.

Consistency

The ProB tool: CSP||B analysis

Type checking

Animation

Walk through

Model-checking

Invariant violation

Precondition violation

Deadlock

LTL style

Supports CSP_M

Suitable for B, CSP, and
CSP||B

[Originates from Michael
Leuschel; enhanced in
conjunction with AWE
and FutureTech]

Experiments

• Handel-C provides a route to hardware:

• Contains a core subset of C (state).

• Provides support for CSP-like concurrent behaviour
(communication).

• Clocked.

• Previous work on translating CSP to Handel-C (Stepney; Oliveira
and Woodcock; Philips and Stiles; Ifill).

• All `state’ is in the CSP.

• Our aim is to implement the controlled B machines.

• Maintain the state.

• Events associated with B machines correspond to operation
calls.

Translation to Handel-C

• Invent simple (artificial) CSP||B examples which contain a feature
we wish to explore. Identify issues that emerge as we do the
translation.

• Investigate how such examples are rendered in Handel-C.

• Example 1: a first CSP||B component: translating the CSP and
the B together.

• Example 2: parallelism in the CSP controller.

• Example 3: data refinement and nondeterminism resolution.

Approach

Simple example I

MACHINE CELL
VARIABLES xx
INVARIANT xx : NAT
INITIALISATION xx := 00
OPERATIONS

set(yy) = PRE yy : NAT
THEN xx := yy
END;

yy <-- get = yy := xx
END

#define WORD_TYPE unsigned int

#define WORD_WIDTH 3

WORD_TYPE WORD_WIDTH xx

chan WORD_TYPE WORD_WIDTH bufout;

chan WORD_TYPE WORD_WIDTH bufin;

void main(void){

xx = 0; // initialisation

SimpleBuffer(bufin,bufout);

}

Translation of Example 1:

Introduce xx

Declare the channels

The generic

control flow

Translating CON1

macro proc Buffer(bufin, bufout){

WORD_TYPE WORD_WIDTH Stored;

WORD_TYPE WORD_WIDTH Value;

do{

bufin?Value; // CSP channel input

xx = Value; // body of operation set(Value)

Stored = xx; // body of operation Stored <-- get

bufout!Stored; // CSP channel output

} while(1);

set(yy) = PRE yy : NAT
THEN xx := yy
END;

yy <-- get = yy := xx

Translation

of CON1

Simple example II: parallelism in the
controller

MACHINE CELL
VARIABLES xx
INVARIANT xx : NAT
INITIALISATION xx := 00
OPERATIONS
set(yy) = PRE yy : NAT

THEN xx := yy
END;

yy <-- get = yy := xx
END

Translation of CON2

macro proc InterleaveBuffer(bufin, bufout){

WORD_TYPE WORD_WIDTH Stored;

WORD_TYPE WORD_WIDTH Value;

par{

do {bufin?Value;

xx = Value;} while(1);

do{Stored = xx;

bufout!Stored;} while(1);

}}

CON2

IN

OUT

• Need to make the implemented state concrete (i.e.
retrenchment).

• Need to declare and scope all local variables explicitly.

• Preconditions are dropped at implementation.

• Once consistency is shown at the abstract level, the
preconditions have been discharged and are no longer
required – they do not appear in implementations.

• Parallel processes proceed in lockstep. In CON2, this yields
buffer-like behaviour (though initially non-empty). The Handel-C
timing model provides one way of implementing interleaving.

• Natural translation of channel communication and assignment.

Issues

Simple Arbiter Example

MACHINE SetChoice
VARIABLES ss
INVARIANT ss <: 0..15
INITIALISATION ss := {0}
OPERATIONS
yy <-- choose =

BEGIN yy :: ss
|| ss := {0}

END;

add(xx) = PRE xx : 0..15
THEN ss := ss \/ {xx}
END

END

line out
SetChoice

CON3

Abstract data structure
Nondeterminism

Refining SetChoice

MACHINE SetChoiceR
VARIABLES arr
INVARIANT arr : 0..15 --> 0..1

& ss = arr~[{1}] & 0|->1 : arr
INITIALISATION arr := (1..15 * {0}) \/ {0 |-> 1}
OPERATIONS
yy <-- choose =

BEGIN yy := max(arr~[{1}])
|| arr := (1..15 * {0}) \/ {0 |-> 1}

END;

add(xx) = arr(xx) := 1
END

• Data refinement: set ss implemented by array arr.

• Resolving underspecification: choice resolved (arbitrarily) by taking
the maximum. More complex choice mechanisms possible.

• These refinements are proven correct in B.

Translation of SetChoiceR

unsigned int 1 arr[16]

void Init() {

par{

arr[0] = 1;

par (i=1; i<16; i++) {arr[i] = 0; }

}}

macro proc add(unsigned int 4 xx){arr[xx] = 1; }

void choose(unsigned int* yy) {

par { max(yy);

Init();

}}

Translation of CON3

void main() {

unsigned int 4 y;

Init();

par {

do {

par (i=0; i<16; i++) {Read(i);}

choose(&y);

out!y;

} while(1);

macro proc Read(x) {

unsigned int 1 b;

line[x]?b; if (b) {add(x); }

else {delay; }

• Need to refine closer to implementation before translating.

• Implementatable data structures.

• Remove nondeterministic choice.

• Function declaration creates the hardware once (efficient but
cannot support concurrent calls) e.g. Init().

• Macro declaration creates hardware once for each call in the
code (robust but possibly wasteful) e.g. read, add.

• Handel-C supports reference parameters. Thus B operations
returning multiple values can be translated.

• Timing in different branches of an operation.

• Signals vs channels, as implementations for CSP channels.

Issues

Subsequent developments

• Development of a larger case study within the Future
Technologies project.

• Development of a `translation-ready CSP||B’ subset, closer
to Handel-C.

• Formal relationship between high level CSP||B models and
TR-CSP||B descriptions, within the same semantic
framework.

• Development of a modelling style suited to this approach.

• Clocked style for CSP||B models, with core functionality of
the machine bound up within a single operation.

• Aim to keep the complexity within the B description, to retain
ability to do analysis and verification. Keep the CSP control
as simple as possible.

Subsequent Developments

Development path: CSP

CSP||B

Translation
ready
CSP||B

CYCLE(i) = (body!COM_LOAD?v?w?x?y?z ->
if (i+1 < capacity) then CYCLE(i+1) else CYCLE(capacity))

[] body!COM_RESET?v?w?x?y?z -> CYCLE(0)
[] body!COM_READ?v?w?x?y?z -> READ(0,i)
[] body!COM_NOCOMMAND?v?w?x?y?z -> CYCLE(i)
[] (body!COM_ISFULL?v?w?x?y?z ->

if (x == ACK_FULL)
then RUN(i)
else CYCLE(i))

CYCLE = load?xx -> CYCLE
[] reset -> CYCLE
[] read -> READ
[] delay -> CYCLE
[] isfull?x?y ->

if (x == ack_full)
then RUN
else CYCLE

Development path: B

CSP||B

Translation
ready
CSP||B

ack, outputdata, drive <-- body(command, data, sync) = …

CASE…
… COM_LOAD THEN

local_drivecommand := DRV_UNENABLED
|| local_outputdata := DAT_NODATA
|| local_ack := ACK_LOADACK
|| IF (local_fillcounter = SWITCH_CODE_LENGTH)

THEN skip
ELSE local_store(local_fillcounter) := data

|| local_fillcounter := local_fillcounter + 1
END

load(ee) =
PRE ee : {0, 1}
THEN IF size(store) < capacity

THEN store := store <- ee
ELSE skip
END

|| state := live
END;

Development path: Code

switch(command){
…
case COM_LOAD:
par{

local_drivecommand = DRV_UNENABLED;
local_outputdata = DAT_NODATA;
local_ack = ACK_LOADACK;
if(local_fillcounter == SWITCH_CODE_LENGTH)
delay;

else{
local_store[local_fillcounter] = data;
local_fillcounter++;

}
}
break;

Achievements

• Hardware components behaved as intended first time, due to
understanding gained from modelling.

• Hardware implementation worked first time with new scenarios.

• Demonstrated an ability to capture abstract behaviour in CSP||B
and translate to Handel-C.

• Analysis of abstract platform-independent models.

• Translation to code in a traceable way.

• Translation ready style of CSP||B for translation to Handel-C.

Further considerations

• Handel-C and translation-ready CSP||B affect each other –
influence in both directions.

• Need to investigate interactions between hardware components.

• TR-CSP||B to Handel-C translation currently done by hand.

• Need a more complete treatment of the translation before we
could automate it.

• Interface and timing refinement needs formal justification.

