
Communicating Process Architectures 2008
P.H. Welch et al. (Eds.)
IOS Press, 2008
c© 2008 The authors and IOS Press. All rights reserved.

115

Experiments in Translating
CSP‖B to Handel-C

Steve SCHNEIDER a,1, Helen TREHARNE a, Alistair McEWAN b and Wilson IFILL c

a University of Surrey
b University of Leicester

c AWE Aldermaston

Abstract. This paper considers the issues involved in translating specifications de-
scribed in the CSP‖B formal method into Handel-C. There have previously been ap-
proaches to translating CSP descriptions to Handel-C, and the work presented in this
paper is part of a programme of work to extend it to include the B component of a
CSP‖B description. Handel-C is a suitable target language because of its capability
of programming communication and state, and its compilation route to hardware. The
paper presents two case studies that investigate aspects of the translation: a buffer case
study, and an abstract arbiter case study. These investigations have exposed a number
of issues relating to the translation of the B component, and have identified a range
of options available, informing more recent work on the development of a style for
CSP‖B specifications particularly appropriate to translation to Handel-C.

Keywords. Handel-C, CSP‖B, translation, formal development.

Introduction

This paper investigates the translation of rigorous models written in CSP‖B into the Handel-
C programming language, as a route to hardware implementation. CSP‖B [22] is a formal
method integrating CSP for the description of control flow and the B-Method for the handling
of state. It is supported by industrial-strength tools [9,3,6,12] which enable verification of
CSP and B models, separately and together, through model-checking and proof. It is particu-
larly suited for applications where control and data considerations are both critical for correct
behaviour. Areas where CSP‖B has been applied include a file transfer protocol [7], dynamic
properties of information systems [8], and modelling platelets in blood clot modelling [20]. It
has also been used within the AWE funded project ‘Future Technologies for System Design’
at the University of Surrey, which is concerned with formal approaches to co-design. An el-
ement of that project has been the investigation of a development methodology which takes
CSP‖B formal models to hardware implementation, via a translation to Handel-C. Handel-C
[17,5] is a programming language designed for compilation to hardware, in particular FP-
GAs. The translation from CSP‖B to Handel-C is a key link in the project’s development
methodology, which aims to refine requirements down to implementation, via formally ver-
ified specifications. CSP‖B is used as the modelling language, since it enables formal anal-
ysis with respect to high level properties. Low level programming languages closer to code,
such as Handel-C, are not sufficiently abstract to support such analysis, so our ideal is to
refine the CSP‖B models (once they are verified) to Handel-C code to provide an appropriate
implementation.

1Corresponding Author: Steve Schneider, University of Surrey, Guildford, Surrey, GU2 7XH, UK. E-mail:
S.Schneider@surrey.ac.uk.

116 S. Schneider et al. / Experiments in Translating CSP‖B to Handel-C

There is existing work on translating CSP to Handel-C [21,16] and the translation of the
CSP controllers of our CSP‖B description is broadly in line with those. There is also work
on translating B to Handel-C [11] through use of annotations to indicate the control flow.
However, translations of CSP and B combined models have not previously been considered,
and this is the gap that this paper begins to address. The novelty of the approach we are taking
is the combined translation of control and state, which is not considered in the other authors’
previous work, and the new issues being considered are the translation of the state aspects of
a CSP‖B description within the context of the CSP translation. Data is often a key aspect of a
system description, and our approach introduces the ability to incorporate a significant state
component at the abstract level, and through the translation.

The paper describes two exploratory case studies that have been carried out to investigate
issues that arise in this translation. The translations so far have been carried out by hand. The
first case study is of a buffer, where the control component looks after the input and output
to the buffer, and the state component is used to store the data passing through the buffer.
The second case study is of an abstract arbiter: a component that tracks a set of requests,
and then chooses one element of the set. This case study is inspired by an AMBA bus case
study [2,15] which makes use of an arbiter component to resolve contention for the bus. We
investigate the use of channels and of signals to carry the requests. Some experimentation
was done to see how fast (in terms of clock cycles) the inputting of a signal could be: instead
of reading the signal into the CSP controller and then calling the corresponding B operation
when appropriate, a further translation was considered in which the line could be read and
the operation called within the same clock cycle.

In both case studies we begin with a CSP‖B description, and then consider how it can
be translated to Handel-C. The approach taken is relatively systematic in terms of how a
control loop should be translated, and where the Handel-C implementations of the B machine
should appear. Some parts of the specification have to be translated in a less generic way
because of the specific requirements of Handel-C. Indeed, some of the motivation for these
investigations is to identify where this becomes necessary.

1. Background

1.1. CSP‖B

The formal method CSP‖B is a combination of the process algebra CSP [10,19] and the state-
based B-Method [1], designed to model systems which are rich both in interaction (CSP) and
in data (B-Method).

CSP describes systems in terms of processes, which interact by synchronising on com-
mon events. Processes are defined in terms of the patterns of events that they can perform. A
process language enables processes to be described. It includes channel input c?x → P(x),
channel output c!v → P , interleaved parallel P ||| Q , termination SKIP , sequential com-
position P ; Q , and recursive definitions N =̂ P . The language also supports choice, syn-
chronised parallel, abstraction, mutual recursion, and channel communications that have both
input and output, though these are not used in this paper. Tool support [9,12] enables model-
checking for refinement, deadlock, divergence, and temporal logic properties.

The B-Method describes systems in terms of abstract machines, which encapsulate state
and operations. It is supported by tool support which at the formal modelling level enables
proof of internal consistency and refinement [6,3], and model-checking [12]. The tool support
also provides for fully formal development. An abstract machine will define state variables,
initialisation, invariants on the state, and operations which can be used to read or update
the state (or both). Abstract machines can be proven internally consistent with respect to
their invariants: that every operation, called within its precondition, is guaranteed to preserve

S. Schneider et al. / Experiments in Translating CSP‖B to Handel-C 117

the invariant. Of particular relevance to the work presented here is the use of simultaneous
assignments: the construction x := E ‖ y := F evaluates both E and F in the original
state, and then simultaneously updates both x and y . This is the same treatment of parallel
assignment as provided by Handel-C. Static information (e.g. user defined types, constants,
auxiliary functions) can also be defined within abstract machines. The B-method is a design
methodology and supports data refinement: changing the way data is represented so the model
can be developed in more detail and progress towards implementation. Such changes are
written as refinement machines, which encapsulate the changed data representation and its
relationship to the original abstract machine.

CSP‖B [22] combines CSP processes and B machines by treating B machines as pro-
cesses that interact through the performance of their operations: an operation op passing a
value x will interact with a process which has op as a channel which carries x . The typical
unit is a controlled component consisting of a CSP process in parallel with a B machine. We
think of the CSP process as governing the control flow of the combination, determining the
next possible operations or communication; and the B machine maintains the state, and is
controlled and updated by the CSP process. For example, in Section 2 we will see a CELL
machine (Figure 2) controlled by a process CONTROLLER1 (Figure 3). The combination
is written CONTROLLER1 ‖ CELL. There is also a general approach to establishing con-
sistency between the CSP and the B parts of a description: that operations are called only
within their preconditions.

1.2. Handel-C

Handel-C [5] is a clock-synchronous programming language reminiscent of occam [14,18]: it
offers co-routines, concurrency and communication, and it is intended for programming ap-
plications onto reconfigurable hardware, specifically Field Programmable Gate Arrays (FP-
GAs). Its aim is to provide an interface to hardware that looks and feels like a traditional im-
perative programming language, while allowing the programmer to exploit the natural con-
currency inherent in a hardware environment. It is not a hardware description language; it
is a high level programming language with a clean, intuitive semantics, with a syntax based
on C including extensions for concurrency and communication. The extensions are based on
similar constructs in occam [14] and have a theoretical basis in CSP.

Handel-C differs from occam in two main respects. Firstly, parallel assignments to state
variables are synchronous: all assignments take place on the rising edge of the hardware
clock. Secondly, shared access to variables is permitted between processes.

a := 0;
b := 1;
par {

a := 2;
b := a;

}

Figure 1. A parallel assignment

The code fragment in Figure 1 demonstrates how concurrency interacts with the clock in
Handel-C. The first two lines of this program are executed sequentially, with the semicolon
marking a clock tick: after the second clock tick, a will have the value 0, while b will have
the value 1. The program then enters the parallel block. This block takes one clock cycle to
execute: both assignments happen simultaneously. Once it has completed, b will have been
assigned the initial value of a (the value held in a before the rising clock edge). On the rising

118 S. Schneider et al. / Experiments in Translating CSP‖B to Handel-C

clock edge, both assignments happen: a takes on the value 2, while b takes on the value 0;
the clock then ticks and the statement terminates.

The synchronous nature of assignment gives a very well defined notion of timing in the
language: an assignment takes a clock cycle, and expression evaluation takes no time. This
is achieved in implementation as follows: when a program is loaded onto an FPGA, a cal-
culation is required to set the clock speed of the hardware. The maximum clock speed per-
missible by any one application is the maximum combinatorial cost of the longest expression
evaluation, along with the assignment cost. Therefore, any one application may be clocked at
a different speed from any other on the same FPGA, and the same application may be able to
achieve a different speed on a different FPGA.

Shared access to variables also needs to be handled with care. As may be expected in a
hardware environment, if two (or more) processes attempt to write to a register at the same
time, the result is undefined. There is no resolution offered by Handel-C to this: should a pro-
grammer insist on writing co-processes that both write to a shared variable, it is the program-
mer’s responsibility to deal with any non-determinism arising. In the Handel-C development
environment DK3.1 [13] used for the experiments reported in this paper, the compiler emits
a warning if the same variable appears on the left hand side of an assignment in two or more
parallel blocks.

Handel-C provides channels which allow concurrent processes to interact through syn-
chronous communication. Channels behave as they do in CSP and occam: communication
occurs when both sender and receiver are ready to engage in it, and a value is passed from
sender to receiver. The type of the channel defines the possible values that can pass along it.

Handel-C also provides signals as a mechanism for communication between concurrent
processes. Processes assign values to signals, which can be read by other processes in the
same clock cycle. A signal will hold the value assigned to it just for the period of the clock
cycle, after which the value will no longer be available. In this sense a signal behaves as a
wire. A signal can also have a default value, which it holds when it has not been assigned any
other value.

1.3. Translation to Handel-C

When approaching the translation to Handel-C, we integrate the CSP and the B aspects of
the description by embedding the code corresponding to the B into the translation of the CSP
controller. This can be done in one of three ways:

• include the translation of the operation directly where it appears in the CSP controller.
This will involve substituting the actual for the formal parameters directly in the code
that is being included;

• use Handel-C macros to encapsulate the translation of the operation;
• use Handel-C functions to encapsulate the translation of the operation.

The first choice is direct, and it may result in replicating code where an operation is called
a number of times in the body of a controller. The second choice avoids the replication of
code, but at the cost of generating fresh hardware for each instance of a macro call in the
code. The main difference between these two choices is to do with readability of the code,
and separation of concerns. The third choice provides the best chance of obtaining a separate
translation of an entire B machine which is then accessed from the controller. It allows reuse
of hardware by generating one implementation of each function. However, multiple instances
of a function cannot be called in parallel, in contrast to macros. Hence each of the approaches
brings different benefits and it is clear that there will be trade-offs in deciding which to deploy
in any given situation.

S. Schneider et al. / Experiments in Translating CSP‖B to Handel-C 119

2. Case Study I: Buffers

The first case study is concerned with simple buffers-style behaviour. This is an artificial
example chosen to drive the initial exploration. Thus it includes a B machine to manage some
simple state, and control written in CSP to access and update that state. The purpose of this
example is to see how such a description translates.

In the first instance, the B machine controlling the information consists of a memory cell
in which a single value can be set or retrieved. We consider two controllers for this machine.
The first controller simply accepts values from some external source, puts them into the cell,
and then reads the value from the cell and outputs it. This case study exposes the issues
involved in producing Handel-C corresponding to a CSP‖B specification. Issues emerged on
declarations, header files, Handel-C types, and on how to construct an appropriate harness to
best interact with the resulting hardware.

The second controller consists of two concurrent processes: an input process responsible
for setting the state, and an output one responsible for reading the state and passing it exter-
nally. The processes do not synchronise with each other, but both made use of operations of
the memory cell.

In the final case study of this family, the B machine tracks not just a single value, but an
array (of bits or booleans) in which each element of the array can be flipped independently
by the operation called with the corresponding index.

2.1. CSP‖B description of a simple buffer

MACHINE CELL
VARIABLES xx
INVARIANT xx : NAT
INITIALISATION xx := 0
OPERATIONS

set(yy) = PRE yy : NAT
THEN xx := yy
END;

yy <-- get = BEGIN yy := xx END

END

Figure 2. The CELL machine

The first buffer consists of a piece of state in a B machine used to capture the value to
be stored in the buffer given in Figure 2, and a CSP controller operating a store/fetch cycle
given in Figure 3. Capturing a single piece of state using a B machine, and controlling it with
a CSP process, forms a simple example of interaction with state and control in the CSP‖B
specification.

CONTROLLER1 =̂ bufin?Value → set !Value →
get?Stored → bufout !Stored → CONTROLLER1

Figure 3. CSP controller for the CELL machine

Two operations exist in this B machine. The first, set, takes a natural number as a
parameter and sets the value of local state. The second, get, returns the value of the local
state.

120 S. Schneider et al. / Experiments in Translating CSP‖B to Handel-C

The first CSP controller is a recursive process that reads in a value from the environment
on the channel bufin, and then calls the operation in the B machine to set the value. It then
reads the value back from the B machine on the channel get, before outputting the value to
the environment on the channel bufout. The process then recurses.

2.2. Handel-C Translation of a Simple Buffer

The code presented in this section is the Handel-C translation of the CSP‖B specification
CONTROLLER1 ‖ CELL.

The B machine essentially describes the kind of state for which the machine is respon-
sible. Thus its translation to Handel-C will consist of the state declarations (and any other
declarations included in the machine definition), and its initialisation to ensure it begins in the
correct state. In this case study, we will be including the translation of an operation directly
in the place where it is called within the CSP description, so translation of operations will
occur within the CSP translations.

The machine has one state variable: xx. Variables in Handel-C must have a specified bit
width. In this case study, we have decided to use 3-bit values.

#define WORD_TYPE unsigned int
#define WORD_WIDTH 3
WORD_TYPE WORD_WIDTH xx;

The following channel declarations provide input and output channels.

chan WORD_TYPE WORD_WIDTH bufout;
chan WORD_TYPE WORD_WIDTH bufin;

The following macros are used to implement atomic statements in the specification.
Their use in this case study helps clarify which type of CSP specification statements are im-
plemented, and how they are implemented. The general approach would be to use macros
for B operations corresponding to CSP events. Here they are all atomic (input, output, and
assignment), but in principle they could be more complex.

The macro procedure CHANINPUT takes a channel name X and a variable Y, and per-
forms the Handel-C channel input X?Y. The macro does not type the parameters, although
they are checked at compile-time. The macro CHANOUTPUT does the same for a CSP channel
output.

The macro BASSIGN takes a variable Y, and assigns to it the value X; the same type-
checking rules apply. Furthermore, it is assumed that the necessary variable parameters have
been declared in advance.

macro proc CHANINPUT(X,Y) { X?Y; }
macro proc CHANOUTPUT(X,Y) { X!Y; }
macro proc BASSIGN(X,Y){ Y = X; }

In the main source file, the initialisation xx := 0 from the INITIALISATION
clause of the CELL machine (Figure 2) is translated to Handel-C as an assignment. This is
followed by the implementation of the CSP controller.

void main(void)
{

/* B machine initialisations */
BASSIGN(0, xx);
/* CSP MAIN controller */
SimpleBuffer(bufin,bufout);

}

The implementation of the controller declares two local variables Stored and Value
for the two variables used in the description of CONTROLLER1.

S. Schneider et al. / Experiments in Translating CSP‖B to Handel-C 121

In =̂ bufin?Value → set !Value → In

Out =̂ get?Stored → bufout !Stored → Out

CONTROLLER2 =̂ In ||| Out

Figure 4. A second CSP controller for CELL

The CSP loop is translated to Handel-C by translating each of the events in the descrip-
tion of CONTROLLER1 in turn:

• bufin?Value is translated as a channel input.
• set !Value represents a call of the set operation in the CELL machine, and so the

body of that operation in the B description is translated, as an assignment of Value
to xx.

• get?Stored represents a call of the get operation in the CELL machine, and is trans-
lated as an assignment of xx to Stored.

• bufout !Stored is translated as a channel output: bufout is a channel rather than an
operation call.

• The overall recursive definition is translated to a do loop.

The result is as follows:

macro proc SimpleBuffer(bufin, bufout)
{

/* local CSP state */
WORD_TYPE WORD_WIDTH Stored;
WORD_TYPE WORD_WIDTH Value;

do {
CHANINPUT(bufin, Value);
BASSIGN(Value,xx);
BASSIGN(xx, Stored);
CHANOUTPUT(bufout, Stored);
} while(1);

}

2.3. A Two-Part Controller

A more complicated case study is to manipulate the state in the B machine using two inter-
leaved controllers: a process In handling input, and a process Out handling output. These are
given in Figure 4, together with the resulting controller CONTROLLER2 which combines
them with interleaving parallel. This does not provide a buffer in CSP‖B because the two
component controllers can proceed independently, and at different rates. However, our trans-
lation to Handel-C will result in their clock-synchronous execution, providing the behaviour
of a buffer containing an initial value.

Given that there is no communication and synchronisation between the input and output
processes, the implementation of CONTROLLER2 ‖ CELL is straightforward. Each is
implemented using the same approach as previously, and then the results are run in parallel.
We obtain the following:

macro proc InterleaveBuffer(bufin, bufout) {
/* local CSP state */
WORD_TYPE WORD_WIDTH Stored;
WORD_TYPE WORD_WIDTH Value;

122 S. Schneider et al. / Experiments in Translating CSP‖B to Handel-C

par {
do {CHANINPUT(bufin,Value);

BASSIGN(Value, xx);
} while(1);

do {BASSIGN(xx, Stored);
CHANOUTPUT(bufout, Stored);

} while(1);
}}

void main(void)
{

BASSIGN(0, xx);
InterleaveBuffer(bufin,bufout);

}

The CSP description does not in fact necessarily behave as a buffer, because In and
Out are independent and could proceed at different rates. However, their synchronous im-
plementation in Handel-C means that they execute at the same rate, matching outputs to in-
puts, and yielding a buffer. This is a refinement of the behaviour encapsulated in the CSP‖B
description.

2.4. A Boolean Function

This next case study increases the complexity of the B machine. Instead of a natural number,
we store a function from natural numbers (indexes) to booleans. This case study introduces
more complexity into the implementation as the local state is not just a simple variable. The
machine is given in Figure 5. Here the controller accepts bit-wise updates to the array on the
input cycles, but outputs the entire array on each output cycle. The associated controller is
given in Figure 6.

MACHINE BOOLARRAY
VARIABLES xx
INVARIANT xx : NAT --> 0..1
INITIALISATION xx := NAT * { 0 }
OPERATIONS

set(yy) = PRE yy : NAT
THEN xx(yy) := 1 - xx(yy)
END;

yy <-- get = BEGIN
yy := xx

END
END

Figure 5. The BOOLARRAY machine

In =̂ bufin?Value → set !Value → In

Out =̂ get?Stored → bufout !Stored → Out

CONTROLLER3 =̂ In ||| Out

Figure 6. A controller for the BOOLARRAY machine

In the following implementation of CONTROLLER3 ‖ BOOLARRAY , we must re-
strict to a finite domain for the function: in fact three bit integers, the set 0..7.

S. Schneider et al. / Experiments in Translating CSP‖B to Handel-C 123

#define WORD_TYPE unsigned int
#define WORD_WIDTH 3
#define ARRAY_WIDTH 8
unsigned int 1 xx[ARRAY_WIDTH];

Input to this buffer is an index, and the bit stored at this index is flipped. The buffer
output is the sequence of values stored in the array. As this is sent over a channel it must be a
single word of 8 bits. The following code achieves this—but it is not the simple assignment
that may have been naı̈vely expected. An array of 8 bits is of a different type to an 8-bit word
so xx cannot be assigned to Stored directly.

macro proc BoolArray(bufin, bufout) {
/* local CSP state */
unsigned int WORD_WIDTH Value;
unsigned int ARRAY_WIDTH Stored;

par {
do {

CHANINPUT(bufin,Value);
BASSIGN(!xx[Value], xx[Value]);

} while(1);

do {
BASSIGN(xx[7]@xx[6]@xx[5]

@xx[4]@xx[3]@xx[2]
@xx[1]@xx[0], Stored);

CHANOUTPUT(bufout, Stored);
} while(1);

}
}

2.5. Issues

In this section, we highlight the issues uncovered in implementing this specification.

1. Variable size in bits.
In the B machine, the local state was expressed as a natural number. In a Handel-C
program, each variable must be declared in terms of a finite size in bits. This is an
issue with any state-based development—and the solution normally is to retrench [4]
to the initial abstract specification and rewrite it with acceptable bounds. Retrench-
ment provides a controlled and traceable way of allowing changes to the specification
in the light of implementation considerations. This is the solution that was adopted in
this case.
An orthogonal issue concerns the use of signed bits: a number can be represented in
signed or unsigned format; and the behaviour of program code is highly dependent
on this choice. Therefore, we expect that a useful further investigation would be to
refine data types in the B machine into bitwise implementations, thereby ensuring
that all operations consider signed bit issues.

2. Preconditions are a specification statement, not an implementation one.
Preconditions are specification statements, not implementation ones. In analyzing a
CSP‖B specification, one normally proves that the CSP controller never calls a B
operation in a state that would violate a precondition. Therefore the precondition need
not be implemented: the fact that the precondition is always respected is discharged
during analysis and there is no requirement to translate any operation preconditions
into Handel-C. Preconditions are therefore dropped during translation.

124 S. Schneider et al. / Experiments in Translating CSP‖B to Handel-C

3. Main processes.
CSP processes are frequently defined—and may easily be analyzed—without declar-
ing a starting point. For instance, the behaviour of the recursive processes Ex =̂ a →
b → Ex2 and Ex2 =̂ c → d → Ex have quite clear behaviour; but it is not explicit
where execution begins. Programs however have a very clearly defined starting point
for execution—in Handel-C this is given by a main function. When writing a CSP‖B
specification for implementation, one must consider where execution will begin and
how this can translate into a main function. One useful solution to this is the one
adopted by the ProB tool [12]—to require that one of the processes is named Main.

4. Variable scope and introduction from channel inputs.
Programming languages usually have to be explicit about when they introduce storage
and declare variables. However, CSP is not so explicit. Another issue thrown up by
this case study concerned the introduction and management of storage introduced by
CSP channel inputs.
The input communication a?x → P introduces the variable x , and then writes to it
from the channel a. This is similar to a var x declaration just before the a?x input.
The process P =̂ a?x → P therefore introduces a copy of x each time it recurses, but
the scope of the local variable declaration includes all recursive calls. Thus in CSP
this amounts to a nesting of local variable declarations. However, the tail recursive
nature of the process definition makes it sufficient in an implementation to declare x
only once (as would be natural in Handel-C or occam), and to re-use it on each cycle,
since each nested declaration supersedes the previous one. Alternatively it could be
declared afresh on each cycle. In any case translation to Handel-C would preclude
dynamic generation of new local variables, since there would need to be a bound on
the hardware state, so a constraint such as the need for recursions to be tail recursive
would need to be present to enable translation.

5. Type conversion.
The boolean buffer highlighted an issue of type conversion that became apparent be-
cause of the necessity of compile-time constants in bit indexing. We would normally
expect that type converters would be introduced at a formal level when data-refining
abstract data type; but the appearance of this issue in this case study means that we
should be aware of it in further investigations.

3. Case Study II: Simple Arbiter

The AMBA AHB 2.0 specification [2] for the AMBA bus makes use of an arbiter component
to choose between competing requests for a bus. This case study is an idealisation of the ar-
biter function, tracking a set of requests, and then choosing between them. Our focus is on is-
sues such as the storing of local state, interaction of local state with timing, and the distinction
between signals and channels, and the impact this has on specifications and implementations.

The case study uses a machine which maintains a set of values (4 bit numbers in fact).
This is an abstract data structure used in the specification of the AMBA arbiter within the
‘Future Technologies for System Design’ project, and so it was a natural candidate for explo-
ration. The machine allows two operations: add which adds a value to the set; and choose
which selects an arbitrary element from the set (the statement yy :: ss is a nondetermin-
istic assignment of any element of the set ss to the variable yy), and also resets the set to
{0}. A default element is always in the set. A more abstract specification could be less de-
termined when no element has been added to the set, for example deadlocking, or providing

S. Schneider et al. / Experiments in Translating CSP‖B to Handel-C 125

any arbitrary value. However, the AMBA case study specifies the use of a default element,
and so we follow this approach.

The translation of the machine will be done it two steps: it first needs to be refined within
the B-Method in order to bring it to a point closer to implementation and thus appropriate for
translation. The resulting refinement machine is then used in the translation to Handel-C.

The controller for this machine reads bits on a number of lines concurrently, and for any
line, if its value is 1 then it should be added to the set. When these have all occurred, then the
choice is read and passed as output.

This case study demonstrates the clear difference between treating the input line as a
signal, and treating it as a channel. Both translations are provided. The difference in timing
behaviour and hence the resulting behaviour between reading signals and reading channels is
exposed by the test cases.

Some experimentation was also done to see how fast (in terms of clock cycles) the in-
putting of a signal could be: instead of reading the signal into the CSP controller and then
calling the corresponding B operation when appropriate, a further translation was considered
in which the line could be read and the operation called on the same clock cycle.

3.1. CSP‖B Description of a Simple Arbiter

The abstract state contains a set, ss, containing natural numbers in the range 0..15. Ele-
ments may be added into the set using add. An element may be chosen from the set non-
deterministically using the operation choose, at which time the set is also reset to its default
value {0}. The machine is given in Figure 7. Note that the B semantics of parallel assignment
means that yy is chosen from the original value of the set ss while ss is simultaneously
updated.

MACHINE SetChoice
CONSTANTS NAT4
PROPERTIES NAT4 = 0..15
VARIABLES ss
INVARIANT ss <: NAT4 & 0 : ss
INITIALISATION ss := {0}
OPERATIONS
yy <-- choose = BEGIN yy :: ss

|| ss := { 0 }
END;

add(xx) = PRE xx : NAT4
THEN ss := ss \/ { xx }
END

END;

Figure 7. The SetChoice machine

This machine is not ready for implementation in Handel-C because of the presence of
non-determinism, and also of the presence of a set-valued variable. The non-determinism in
the choose operation needs to be resolved: we decide as a refinement step to choose the
maximum value in the set. Furthermore, we need to refine abstract sets into something more
concrete, as well as the operations performed on the set. We achieve this as a data refinement
mapping the set of values to an array of bits, indexed by the values. The resulting refinement is
encapsulated within B as a REFINEMENT machine, and given in Figure 8. Note the linking
invariant stating (in ascii) that ss = arr−1(| {1} |). This states that the set ss is the same as
the inverse image of the array (considered as a function) arr on the set {1}: in other words,
the set of all locations in arr that contain the value 1.

126 S. Schneider et al. / Experiments in Translating CSP‖B to Handel-C

REFINEMENT SetChoiceR
REFINES SetChoice
VARIABLES arr
INVARIANT arr : 0..15 --> 0..1

& ss = arr˜ [{ 1 }] & 0 |-> 1 : arr
INITIALISATION arr := (1..15 * { 0 })

\/ { 0 |-> 1 }
OPERATIONS
yy <-- choose =

BEGIN yy := max(arr˜[{ 1 }])
|| arr := { 0 |-> 1 }

\/ (1..15 * { 0 })
END;

add(xx) = BEGIN arr(xx) := 1 END

END;

Figure 8. The refinement machine SetChoiceR

In this refinement machine, the set is represented by an array of bits: if a given element is
a member of the set, the value of the bit at that index is 1, otherwise is it 0. The first element
of the array is always set to 1, implementing the default value. We choose some refinement
of the abstract specification of choose, and (arbitrarily) select the highest-valued member:
the function max selects the element with the highest index. This function will be defined
in the implementation. Finally, the add operation sets the bit of the given parameter to true.
The resulting machine is now appropriate for translation to Handel-C.

Read(x) = line.x?b → if (b = 1)
then add !x → SKIP
else SKIP

CONTROLLER = (||| x : 0..15 • Read(x));

choose?y → out !y → CONTROLLER

Figure 9. The CSP controller for SetChoice

The controller is given in Figure 9. The process Read listens on the channel line.x ,
where x is an index. If the boolean value communicated on that line is true, the result is
stored. The process CONTROLLER replicates Read for each of the lines—there are 16,
as the specification is concerned with 4 bit numbers. After reading each line, a candidate is
chosen by the B operation choose, and output to the environment.

3.2. Handel-C Translation of a Simple Arbiter using Channels

In this section we present Handel-C implementations of the simple arbiter. Several imple-
mentations are presented. The first, is a straightforward channel implementation. The second
uses signals instead of channels in a naı̈ve way, simply using them in place of the channels
in the previous description—but we see that this approach does not work. The third also uses
signals, but is an adaptation that performs everything in a single cycle. We discuss what an
abstract specification and controller of this version may look like, and use this to demonstrate
that a different specification is written for signals than for channels.

S. Schneider et al. / Experiments in Translating CSP‖B to Handel-C 127

The state in the B machine is declared as a 16-element array, where each element is a
single bit:

unsigned int 1 arr[16];

In this implementation, the B machine initialisation and operation choose are declared
as Handel-C functions. The operation add is declared as a macro procedure, which this will
in-line the hardware everywhere it is called in source code:

void Init();
macro proc add(unsigned int 4 xx);
void choose(unsigned int* yy);

The initialisation takes no parameters, and returns no values. The add function takes a
4-bit integer corresponding to the array element to be set to 1. Each interleaved Read calls
add, and so there will be a copy for each interleaved call. This would be necessary even if
add were declared as a function: the possibility of up to 16 simultaneous calls of add would
require 16 copies of add to be created. This arises because we wish to call a number of them
concurrently within a single cycle.

The choose operation in the B machine takes no parameters, but returns a result. In
this implementation we use reference parameters to the function call to return results, instead
of a return value of the function implementation. This is because it is possible in a B machine
to specify an operation with more than one return type, and the simplest way to implement
this in a translation is with reference parameters.

Initialisation sets the value of every element in the array as described in the B machine.
All elements are set in parallel so initialisation takes only one clock cycle:

void Init() {
par {

arr[0] = 1;
par (i=1; i<16; i++) { arr[i]=0; }

}
}

The add macro is defined as follows:

macro proc add(unsigned int 4 xx)
{ arr[xx]=1; }

The specification did not state how max would be implemented. Normally a develop-
ment would include this information. In this case, we have (arbitrarily) implemented max
using a number of nested conditional statements that assigns the value stored by the reference
parameter:

macro proc max(yy) {
if (arr[15]==1) { *yy=15; } else {

...

if (arr[1]==1) { *yy=1; } else {

*yy = 0;
} ... }

}

The implementation of choose resets the array, in parallel with returning the result of
calling max (on the original value of the array). Note here that the reset operation uses the
Init function which achieves the resetting of the array, conserving hardware.

128 S. Schneider et al. / Experiments in Translating CSP‖B to Handel-C

void choose(unsigned int* yy) {
par { max(yy);

Init();
}

}
}

We now consider the implementation of the controller process. We declare an array of 16
channels corresponding to the input lines into the simple arbiter, and a single output channel:

chan unsigned int 1 line[16];
chan unsigned int 4 out;

The main process initializes the state in the B machine, and then runs a process mon-
itoring the clock for debugging purposes in parallel with a process SIM DRIVER (defined
below) that drives the Handel-C simulator and the main CSP controller for the case study.

The implementation of the controller replicates one copy of the Read process for every
input line, then calls the B operation choose, outputs the result and iterates:

void main() {
unsigned int 4 y;
Init();
par {

SIM_DRIVER();
do {

par (i=0; i<16; i++) { Read(i); }
choose(&y);
out!y;

} while(1);
/* CHANNELS */

}
}

The Read process performs an input on its indexed channel, and branches on a condi-
tional. In this case, the SKIP in the specification has been implemented using a delay to
ensure that both branches of the choice take the same time:

macro proc Read(x) {
unsigned int 1 b;
line[x]?b; if (b) { add(x); }

else { delay; }
}

The process that drives the simulator reads in an input word and writes indexed bits to
individual lines on alternate cycles. In parallel with this, it listens on the output line from the
arbiter, and writes this to simulator output, again on alternate cycles:

macro proc SIM_DRIVER() {
unsigned int 16 in;
unsigned int 4 result;
par {

do { input?in;
par (i=0; i<16; i++) { line[i]!in[i]; }

} while(1);
do { out?result; output!result; } while(1);

}
}

S. Schneider et al. / Experiments in Translating CSP‖B to Handel-C 129

3.3. Handel-C (Incorrect) Translation of a Simple Arbiter using Signals

In this section, we describe an attempted implementation of the CSP controller as above;
but this implementation uses Handel-C signals in place of channels. This gives different be-
haviour, and it illustrates that channels cannot simply be replaced by signals.

The only noticeable change to the main function is that the output signal line is assigned
to, rather than treated like a channel communication. Init, add, max, and choose are
unchanged:

void main() {
unsigned int 4 y;
Init();
par {

SIM_DRIVER();
do {

par (i=0; i<16; i++) { Read(i); }
choose(&y);
out = y;

} while(1);
}

}

The Read process is changed in that it reads from a signal rather than a channel. This has
a significant impact on the behaviours of the program. Reading from the signal is guaranteed
to take a single cycle, and to take on only the value written to the signal on that cycle, whereas
the channel communication is guaranteed to block until the channel is written to—and the
value written is persistent until it is read:

macro proc Read(x) {
unsigned int 1 b;
b = line[x]; if(b) {add(x); }

else { delay; }
}

Very contrasting behaviour is observed running this version compared to the previous.
Specifically, the channel version produces the expected output, and the signals version does
not. This is because there is no persistence in a signal: it only holds a value for single cycle,
so unless we can be certain that it will be read on the exact cycle it is written to, the com-
munication cannot be reasoned about. In the above code, the signal is never read from on the
cycle it is written to.

In the next section, we show an implementation, using signals, that produces the out-
put we would expect. We demonstrate where this is a very different implementation to the
above, leading us to conclude that translating to signals requires a different approach to using
channels.

3.4. An Improved Signal Implementation

In this section, we present an implementation using signals that produces the expected output.
The interesting aspect of this implementation is in the way it does things differently to the
channel implementation. The different structure is required to ensure that the value of the
input signals are read to, and output signals written to, on every cycle, to ensure that the value
is always meaningful to the environment.

The main loop of the program writes to the signal out on every cycle. To guarantee
this, the choose method must take only a single cycle to execute. This was not possible
in previous implementations as the signal was assigned, and then local state was assigned,
requiring two clock cycles:

130 S. Schneider et al. / Experiments in Translating CSP‖B to Handel-C

void main() {
unsigned int 4 y;
Init();
par {

SIM_DRIVER();
do {

par {
fastchoose(&y);
out = y;

}
} while(1);

}
}

The choose method—here named fastchoose to distinguish it from the previous
choose—must occupy only one clock cycle if the timing statement mentioned above is to
hold. To achieve this, we observe that the arbiter can make a decision about the input signals
without storing them in local state (the B machine). Losing this assignment saves a clock
cycle. The only clock cycle consumed is the one that assigns the result of the operation to the
reference parameter representing the return value of the call:

void fastchoose(unsigned int* yy) {
if (line[15]==1) { *yy=15; } else {

...

if (line[1]==1) { *yy=1; } else {

*yy = 0;
} ... }

}

The read process changes also, such that it only consumes a single clock cycle. Instead
of storing the value of the signal in local state, the conditional branches on the signal value.
A statement like this could not be written in such a way as to consume a single clock cycle if
a channel communication were used: a pipelining implementation with a cycle latency would
be needed:

macro proc Read(x) {
if (line[x]) { add(x); }
else { delay; } }

The process driving the simulation is also different, and highlights the point above about
needing a single cycle latency for a channel communication. The process reads in a value
from the simulator, and on the next cycle writes it to the application signals. Signals are
written to, and read from, on every cycle:

macro proc SIM_DRIVER() {
unsigned int 16 in;
par {

do {input?in; } while(1);
do {par (i=0; i<16; i++)

{ line[i] = in[i]; }} while(1);
do {output!out; } while(1);

}
}

S. Schneider et al. / Experiments in Translating CSP‖B to Handel-C 131

3.5. Issues

1. Macro procedures and function calls: in-lining code.
An issue that requires consideration is that of implementing B operations and CSP
processes as either function calls or macro procedures. Use of macro procedures is
generally more robust as a single piece of hardware is created for each call; whereas
use of function calls is more efficient as hardware is reused. Care needs to be taken
where parallel access to function calls may happen.

2. Return values from B operations.
A B operation may have several return values. In this case study we have demon-
strated that return values can be implemented using reference parameters in Handel-
C; therefore functions returning multiple values do not present a problem for us.

3. Implementation of B methods in single cycle.
The model of time assumes that a B operation takes a single cycle to execute. How-
ever, it is possible that a specification of a B operation may involve sequential compo-
sition; depending on the number of compositions, this can translate into a Handel-C
operation that takes some other amount of time. Consideration of the timing seman-
tics of the Handel-C operation is important; our solution to this problem is reflected
in the language that we believe suitable for translation.

4. Resolving underspecification.
In the case study above, the implementation of choose using max was one of many
possibilities. This could be seen as a problem of underspecification—it was clear
what it was supposed to do, but we had not stated how it should be achieved. Un-
derspecification issues need to be considered before the translation process can begin
because the target language does not contain underspecification constructs.

5. Implementing SKIP .
Implementing SKIP is an interesting issue. In this case study, we decided to insert
a delay statement (e.g. in the translation of Read) to solve combinatorial logic issues
where the CSP process terminated, to ensure that the branches either side of a choice
took the same time. With more diverse choices, a delay to match the longest branch
would be required. However, this may not always be appropriate or necessary.
Currently, the issue of how to handle SKIP is an open question. Clearly the language
suitable for translation needs to include SKIP ; but it cannot always translate to a
delay statement. For instance, in CSP, SKIP ; SKIP = SKIP ; however, in Handel-C
delay; delay; 6= delay. The problem here is not just the loss of equivalences;
the translation of SKIP will depend on its context.

6. Timing of signal versus channel.
The case study also illustrated the difference between signals and channels. Simply
changing channel definitions to signal definitions (and resulting code fragments) pro-
duced an implementation that unsurprisingly did not work. A signal implementation
that did work was very different in nature to the channel implementation.

4. Discussion

This paper has considered two case studies in translating CSP‖B to Handel-C. The intention
was to understand how to treat the state component in the translation process, and to con-
sider a progression of state specifications: single items, arrays, and abstract sets. The CSP
controllers we have considered have been in a particular form: recursive sequential processes

132 S. Schneider et al. / Experiments in Translating CSP‖B to Handel-C

without choice, and parallel combinations of these. Further CSP operations, including choice,
synchronising parallel, and hiding, were not considered in these case studies and remain as
subjects for further work.

A number of standard refinement issues arose in the buffer case study, including the need
for retrenchment in the implementation of natural numbers, and the dropping of preconditions
when implementing operations. More specifically to our translation, the use of local variables
in CSP recursive calls has also arisen in the context of CSP to Handel-C translations [21,16],
and the approach taken by them is also appropriate in our case in the presence of the B.
In the third buffer we have also seen the need for type conversion in refinement in order to
achieve a suitable implementation, where we wanted to allow multiple updates to the array
within a single clock cycle. In all these case studies we observed how the B component of
the specification is translated: to a declaration and initialisation of all the machine state, and
with the bodies of the operations translated directly at the point of operation calls.

In the arbiter case study, we have explored the use of channels and of signals to pass
information, and have observed the different considerations arising in these two approaches,
in particular with regard to timing considerations. In the case of signals, the translation of
the controller process had to be hand-crafted to keep all the necessary activity within a single
cycle and avoid loss of signals. The case study brought out the question of implementation
of operations to macro procedures or to function calls. Implementing operations as macro
procedures creates a separate piece of hardware for each call, and so these can be run in
parallel; use of function calls only creates one piece of hardware for each operation, allowing
reuse for different calls, and hence is more space efficient. However, concurrent calls to the
same operation are not possible, so the use of function calls might not always be appropriate,
and depends on the context. The case study also demonstrated how outputs to operations
can be implemented by using reference parameters, enabling the implementation of multiple
outputs allowed for B operations.

These case studies have exposed a considerable amount of detail that needs to be clar-
ified for a translation to Handel-C. The type information in the abstract model needs to be
extracted from the various places where it resides: in the B machines’ invariants (state), pre-
conditions (operation input), or simply implicit (operation outputs); and in CSP channel dec-
larations (inputs and output). This information needs to be distilled so it can appear (suitably
refined) in the Handel-C translation. Other necessary clarifications include the concrete im-
plementation of the abstract types used in the specification; whether CSP communications
are to be implemented as signals or channels; whether operations are translated in-line, as
macros, or as functions; treatment of SKIP (i.e. should all paths through an operation take
the same time); and local variable declaration and scope. This level of detail would need to
be provided manually, or extracted in some way from the abstract model, in order to make
any automated or machine-assisted translation possible.

This paper has been concerned with initial explorations into the translation, so has not
been concerned with questions of formal correctness. Ultimately correctness of the trans-
lation would require a relationship to be established between the semantics of CSP‖B and
that of Handel-C, and the considerations of the details listed above come into play. The de-
velopment methodology currently being developed is considering the use of an intermediate
CSP‖B description using a restricted subset of CSP‖B which is more readily translatable to
Handel-C, and whose semantics is more closely aligned with Handel-C. The benefit of this
approach is that the abstract CSP‖B and the restricted CSP‖B are within the same semantic
framework, enabling a formal relation to be established between them. It also means that only
the restricted subset of CSP‖B needs a translation to Handel-C. To establish correctness of
the translation we would aim to establish a simulation relationship between restricted CSP‖B
and its Handel-C translation.

S. Schneider et al. / Experiments in Translating CSP‖B to Handel-C 133

The consideration of which aspects of CSP‖B translate most readily into Handel-C has
also resulted in the more recent development of a clocked style for CSP‖B specifications
particularly appropriate to translation. The core functionality of the machine is bound up in a
single operation. Inputs to the machine are either treated separately through input operations
to set the state, or else incorporated as inputs to the core operation. Outputs are provided
through separate output operations, to make them available to other components indepen-
dently of the core operation. Our approach now is to develop the machine and identify the
appropriate operations in tandem with the development of the control loop, which will typ-
ically cycle on input, core operation, and output. This approach to component specification
and translation was investigated through the development of a larger case study within the
Future Technologies project, and is the subject of ongoing research.

Acknowledgements

This work was funded under the AWE ‘Future Technologies for Systems Design’ project at
the University of Surrey, and was carried out when Alistair McEwan was at the University
of Surrey. We are grateful to David Pizarro for advice on Handel-C, and to the anonymous
referees for their careful reading and insightful comments.

References

[1] J-R. Abrial. The B-Book: Assigning Programs to Meaning. Cambridge University Press, 1996.
[2] ARM. AMBA specification v2.0. Technical Report 0011A, ARM, 1999.
[3] B-Core. B-Toolkit.
[4] R. Banach, M. Poppleton, C. Jeske, and S. Stepney. Engineering and theoretical underpinnings of re-

trenchment. Science of Computer Programming, 67:301–329, 2007.
[5] Celoxica Ltd. Handel-C language reference manual. 2004.
[6] Clearsy. Atelier-B.
[7] Neil Evans and Helen Treharne. Investigating a file transfer protocol using CSP and B. Software and

System Modeling, 4(3):258–276, 2005.
[8] Neil Evans, Helen Treharne, Régine Laleau, and Marc Frappier. Applying CSP‖B to information systems.

Software and System Modeling, 7(1):85–102, 2008.
[9] Formal Systems (Europe) Ltd. Failures-Divergences Refinement: FDR2 Manual, 1997.

[10] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
[11] W. Ifill and S. Schneider. A step towards refining and translating B control annotations to Handel-C. In

Communicating Process Architectures, pages 399–424. IOS Press, 2007.
[12] M. Leuschel and M. Butler. ProB: A Model Checker for B. In FM 2003: The 12th International FME

Symposium, pages 855–874, 2003.
[13] Celoxica Ltd. Design suite dk 3.1. 2005.
[14] INMOS Ltd. occam Programming manual. Prentice-Hall, 1984.
[15] A. A. McEwan and S. Schneider. Modelling and analysis of the AMBA bus using CSP and B. In Commu-

nicating Process Architectures, pages 379–398. IOS Press, 2007.
[16] M. Oliveira and J. Woodcock. Automatic generation of verified concurrent hardware. In International

Conference on Formal Engineering Methods, ICFEM 2007, LNCS 4789, pages 286–306. Springer, 2007.
[17] I. Page. Constructing hardware-software systems from a single description. Journal of VLSI Signal Pro-

cessing, (12(1)):87–107, 1996.
[18] A.W. Roscoe and C.A.R. Hoare. Laws of occam programming. Theoretical Computer Science, 60:177–

229, 1988.
[19] S. Schneider. Concurrent and Real-time Systems: The CSP Approach. John Wiley and Sons, 1999.
[20] S. Schneider, A. Cavalcanti, H. Treharne, and J. Woodcock. A layered behavioural model of platelets. In

ICECCS, pages 98–106, 2006.
[21] S. Stepney. CSP/FDR2 to Handel-C translation. Technical Report YCS-2002-357, University of York,

June 2003.
[22] H. Treharne and S. Schneider. Communicating B machines. In ZB2002: 2nd International Conference of

B and Z users, LNCS 2272, pages 416–435. Springer, 2002.

