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Abstract. This paper establishes the security, stability and functionality of the reset-
table receiver alternating bit protocol. This protocol creates a reliable and blocking
channel between sender and receiver over unreliable non-blocking communication
channels. Furthermore, this protocol permits the sender to be replaced at any time,
but not under all conditions without losing a message. The protocol is an extension to
the alternating bit protocol with the ability for the sender to synchronise the receiver
and restart the transmission. The resulting protocol uses as few messages as possible
to fulfil its duty, which makes its implementation lightweight and suitable for embed-
ded systems. An unexpected outcome of this work is the large number of different
messages needed to reset the receiver reliably.
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Introduction

Over the past years CSP process networks have become more and more dynamic. Such dy-
namic process networks adapt to a changing environment during runtime. The start of this
dynamicalisation of process networks was the introduction of mobile channels and mobile
processes to occam-π [1,2]. Mobile channels reconfigure the network connections. Similarly,
mobile processes reconfigure the functionality of a process network. Both techniques allow
the designer to influence the network functionality during runtime. These mobility techniques
have since been added to the Communicating Sequential Processes for Java (JCSP) library, by
the jcsp.mobile package [3]. This package takes mobility a step further by making processes
and channels mobile over the nodes in a TCP/IP network.

Another technique to adjust process networks to changes in the environment is process
subnetwork termination by localised graceful-termination [4], also known as localised poi-
soning. It is no problem to come up with scenarios where a change in the environment ren-
ders a complete subnetwork obsolete. One example where subnetwork termination is helpful
is a network server. Such as server assigns each connecting client a dedicated process subnet-
work. If a client disconnects from the server, its dedicated process subnetwork becomes ob-
solete. It is highly desirable to terminate these subnetworks, because this releases resources
and prevents errors. Localised poisoning means that the termination message (poison) does
not leave the subnetwork to be terminated. This containment of poison within a subnetwork
makes it possible to terminate clearly defined parts of a process network. The localised poi-
soning technique was first presented for JCSP in the form of JCSP-Poison [5]. Since then it
has been refined and integrated into the JCSP library [6]. The ability to perform a localised
graceful-termination is also available in C++CSP [7]. Another approach to terminating sub-
networks and even replacing them is the exception handling mechanism in Communicating
Threads for Java (CTJ) [8].
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Both techniques, mobility and poisoning rely on an entity controlling or initiating the
process network change. This controlling entity ensures that the environment outside the ter-
minating process subnetwork knows about this termination and can prepare for it. However,
there are situations in which no entity controls the change of the process network. This is, for
instance, the case when a process network is spread over multiple unreliable nodes, which
communicate over unreliable communication channels. In such systems, nodes may suddenly
decide to terminate and then restart later. Furthermore, unreliable communication channels
lose and replicate messages in an unpredictable way. An example for such a system is the
water quality monitoring system of the WARMER (WAter Risk Management in EuRope)
consortium [9,10]. This system consists of multiple in-situ monitoring stations (IMS) and one
data centre. The IMSs periodically transmit their measurement data to the data centre, where
the data gets accumulated and stored. There are multiple unreliable components involved in
this system. The first unreliable component is the communication channel between the IMSs
and the data centre. Apart from dropping completely, this unreliable communication channel
has other undesirable properties such as losing or replicating data-messages which an IMS
entrusts to it. Furthermore, the individual IMS might be unstable, for instance it runs out of
energy, or is severely damaged or sunk due to harsh weather conditions. The data centre has
to be classified as unstable as well, because its hardware may fail.

The unreliable channel does not pose a very big problem, because there are protocols
which can deal with this, such as Bartlett et. al. Alternating Bit Protocol (ABP) [11]. How-
ever, the ABP does not handle unstable senders and receivers. An unstable receiver may
cause a message duplication, while an unstable sender can cause a message loss. A message
duplication is unpleasant, but can be lived with and on the receiver side even dealt with, be-
cause the receiver is aware that it just started. However, a potential message lost is clearly
unacceptable.

The Resettable Receiver Alternating Bit Protocol (RRABP) solves the problems which
unstable senders introduce. This is achieved by extending the ABP with a mechanism with
which the sender can reset the receiver and thus avoid the potential message loss. This was
achieved by introducing three new messages, instead of only a single reset message as we
anticipated. However, model checking revealed undesired resets of the receiver and message
losses when only a single reset message was in use.

The next section gives an introduction to the Alternating Bit Protocol, which is the foun-
dation to the Resettable Receiver Alternating Bit Protocol. Section 2 develops the formal
specification of the protocol, followed by the formal model of the RRABP in Section 3. Sec-
tion 4 establishes security, stability, and functionality of the protocol. The paper closes with
conclusions and further work.

1. Materials and Methods

The RRABP is designed as an extension of the alternating bit protocol. This section explains
how the ABP overcomes unreliable communication channels. After detailing the ABP this
section gives a model for an unreliable communication channel. These details are based upon
Roscoe’s description and model of the alternating bit protocol in [12, page 130ff].

1.1. Alternating Bit Protocol

The alternating bit protocol is designed for point-to-point communication systems like the
one illustrated in Figure 1. This system consists of the sender S, the unreliable bidirectional
communication channel CHAN and the receiver R. To overcome the unreliable communica-
tion channel, S appends a tag-bit to each data-message, input from the channel in. This tag-
bit alternates between 0 and 1 for each data-message. This allows R to identify replications
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Figure 1. Process network structure used to model a point-to-point communication system.

of the data-message caused by the channel. To counter the loss of data-messages introduced
by the unreliable communication channel, the sender S sends multiple copies of each data-
message until it receives an acknowledgement from R, with the correct tag-bit. R has to cope
with CHAN losing acknowledgments and therefore sends acknowledgements for the last re-
ceived data-message until it receives a new data-message. The resulting protocol uses as few
different messages as possible to fulfil its duty, which makes its implementation lightweight
and suitable for embedded systems. An unexpected outcome of this work is the large num-
ber of messages necessary to reliably reset the receiver. This has far reaching consequences,
because we can show that a certain complexity is necessary to meet the specification. All
models or implementations which are less complex do not meet the specification.

1.2. Modelling an Unreliable Channel

The unreliable bidirectional communication channel CHAN (Equation 1) consists of two un-
reliable communication channels C(i, o, n) (Equation 2). These processes input messages
from the channel i and may output them on the channel o. The parameter n defines the maxi-
mum length of a burst error, i.e. how many consecutive messages get dropped (lost) at most
and the maximum number of additional copies of the original message. In this paper the max-
imum burst error length is set to four. This means that the protocol must be able to deal with
at most four lost messages in a row, or four duplications of a message.

CHAN =C(a, b, 4) ||| C(c, d, 4) (1)

with
C(i, o, n) =C′(i, o, n, n)

C′(i, o, n, r) = i?x → C′′(i, o, x, n, r)

C′′(i, o, x, n, r) =


if r = 0 then

o!x → C′(i, o, n, n)
else

C′′′(i, o, x, n, r)


C′′′(i, o, x, n, r) = o!x → C′(i, o, n, n)

u o!x → C′′(i, o, x, n, r − 1)

u C′(i, o, n, r − 1)

(2)

1.2.1. Properties of CHAN

We expect the unreliable communication channel CHAN (Equation 1) to be non-deterministic,
but deadlock and livelock free. The FDR [13] output shown in Figure 2 shows that our expec-
tations are correct. The non-determinism of the process is caused by the fact that the process
chooses internally whether it drops or replicates a message, unless it has reached the maxi-
mum number of message drops or replications, upon which it must send the current message
and then reset its drop / replication counter.
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Figure 2. FDR output after checking determinism, deadlock and livelock properties of CHAN.

2. The Resettable Receiver Alternating Bit Protocol Specification

The Resettable Receiver Alternating Bit Protocol (RRABP) uses the idea of a tag-bit, intro-
duced by the alternating bit protocol, to overcome the undesirable properties of the unreliable
communication channel. Furthermore, it is a sender driven protocol which means that the re-
ceiver generates acknowledgements only as a response to a message received from the sender.
This prevents surplus messages in case this acknowledgement has been received already, but
the sender has no new data-messages to send.

The RRABP ensures that the first message sent by an unreliable sender, i.e. a sender
which suddenly fails and is subsequently replaced, is not lost. In a system which uses the ABP
protocol the first sent data-message gets lost when the receiver classifies it as a duplication
of a previous data-message. This happens when the replaced sender uses the same value for
the tag-bit which was used by the last transmitted data-message. Clearly, this is undesirable,
therefore a protocol extension is necessary which allows the sender to inform the receiver
about its replacement. The RRABP achieves this functionality by resetting the receiver. The
sender performs this receiver reset during its initialisation. Resetting the receiver forces it
into a predefined state, i.e. the tag-bit is set to its default value.

The protocol must ensure that no messages are duplicated or lost, when the unreliable
sender fails and subsequently is replaced. However, there are two conditions in which it is
out of the hands of the protocol and data-messages may be lost nevertheless:

1. The sender dies before it could send the data-message to the receiver. Hence, the
message is definitely lost.

2. The sender dies after sending the data-message but before receiving an acknowledg-
ment for the message. This does not necessarily mean that the message was not re-
ceived by the receiver, but the message may have been lost by the communication
channel! It is hard if not impossible to handle this, because the new instance of the
sender does not know about the last message which its predecessor tried to send.

Both instances could be handled by introducing a reliable process in front of the sender
which waits for an acknowledgment by the sender before supplying a new message to the
sender process. However, in the scenario where a complete IMS loses power, this process
would terminate as well, making this process unreliable as well.

This section concentrates on showing that the RRABP works in two scenarios:

1. Normal operation: sender and receiver are stable. The corresponding specification is
the process COPY .

2. Unstable sender together with a stable receiver, with the corresponding specification
SD SPEC, where SD stands for ‘Sender Dies’.

2.1. Normal Operation

The specification model for normal operation behaves like the so called COPY process (Equa-
tion 3). This means every message on the channel in gets output on channel out.

COPY = in?x → out!x → COPY (3)
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Figure 3. FDR output after checking determinism, deadlock and livelock properties of COPY .

2.1.1. Properties of COPY

We expect the specification model for normal operation (COPY) to be deterministic, deadlock
and livelock free. The FDR output of Figure 3 shows that our expectations are correct.

2.2. Unreliable Sender

The RRABP ensures that the receiver keeps the first data-message sent by a replaced sender.
Furthermore, once the restart has been completed the system should not lose or duplicate any
data-messages.

SD SPEC (SD stands for Sender Dies), Equation 4, specifies how the communication
system should behave when a sender suddenly dies. The process is a parallel composition
of the sender specification (process SD S SPEC, Equation 6) and the receiver specification
(process SD R SPEC, Equation 9). The sender dies event represents a failure of the sender,
which results in a replacement of the sender. The specification exposes this event to the envi-
ronment for refinement checks with the implementation model presented in Section 3.3. Fig-
ure 4 illustrates the relationship between SD S SPEC and SD R SPEC processes. The two
processes exchange messages over the channel tc. They synchronise on the ready event: this
event represents a successful synchronisation between sender and receiver processes. Fur-
thermore, they synchronise on the event sender dies, for reasons explained in the discussion
of the receiver side specification in Section 2.2.2.

SD SPEC = SD S SPEC ‖
αSD SYNC

SD R SPEC \ {| ready, tc |} (4)

with
αSD SYNC = {| ready, tc, sender dies |} (5)

2.2.1. Sender Side Specification

Process SD S SPEC (Equation 6) represents, together with SD S SPEC′ (Equation 7) and
SD S SPEC′′(m) (Equation 8), the replaceable sender. Initially, SD S SPEC waits for the
occurrence of a ready event, or a sender dies event. The ready event signals that the receiver
accepts data-messages now. After synchronising on the ready event, the process transits to
the state SD S SPEC′ (Equation 7).

SD S SPEC = ready → SD S SPEC′

2 sender dies → SD S SPEC
(6)

SD S SPEC′ accepts the events: sender dies and in.m. When it encounters sender dies it
transits to state SD S SPEC, to model the restart of the sender. In case of in?m the process
reads in the message from the channel and then transits to the state SD S SPEC′′(m).

SD S SPEC SD R SPEC

ready

tc

sender diesin out

Figure 4. The SD SPEC process detailled
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SD S SPEC′ = in?m → SD S SPEC′′(m)

2 sender dies → SD S SPEC
(7)

SD S SPEC′′(m) offers to output the message m on channel tc, after which it transits to
SD S SPEC. When it encounters sender dies it transits to SD S SPEC, losing its message.
This models the replacement of the sender.

SD S SPEC′′(m) = tc!m → SD S SPEC

2 sender dies → SD S SPEC
(8)

The sender side specification is now complete.

2.2.2. Receiver side specification

SD R SPEC (Equation 9) is the entry point of the receiver specification. Unless the event
sender dies occurs, this process signals that it is ready and then transits to state SD R SPEC′

(Equation 9).

SD R SPEC = ready → SD R SPEC′

2 sender dies → SD R SPEC
(9)

SD R SPEC′ offers to read a data-message from channel tc. After this it transits to
SD R SPEC′′(m) (Equation 11). If instead sender dies occurs the process transits to
SD R SPEC. This models the case that the receiver expects to be reset by the sender.

SD R SPEC′ = tc?m → SD R SPEC′′(m)

2 sender dies → SD R SPEC
(10)

SD R SPEC′′(m) (Equation 11), outputs the data-message m to the receiver backend, by out-
putting it on channel out. Upon successfully outputting the data-message the process tran-
sits to SD R SPEC, this completes an uninterrupted message transfer. If instead sender dies
occurs the receiver still outputs the previously received data-message. This is modelled by
SD R SPEC′′(m) recursing upon engaging in sender dies.

SD R SPEC′′(m) = out!m → SD R SPEC

2 sender dies → SD R SPEC′′(m)
(11)

This completes the specification of how the RRABP system should behave to the outside
world, when an unstable sender is in use.

2.2.3. Properties of SD SPEC

The process SD SPEC (Equation 4) is expected to be non-deterministic, deadlock, and live-
lock free. The specification SD SPEC is non-deterministic because the events ready and
tc are hidden, i.e. internal. Thus the outside cannot determine whether or not the input by
SD S SPEC has been transferred to SD R SPEC, before the sender has been replaced. To
check whether or not this is the case we employed FDR2, Figure 5 shows that FDR supports
our expectations. This completes the specification of the protocol.

Figure 5. FDR output after checking determinism, deadlock and livelock properties of SD SPEC.
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3. Formal Protocol Model

The RRABP deals with the situation that the sender, and only the sender, can be replaced at
any moment. Replacing sender S in the system of Figure 1 (page 205), with a new instance of
the sender S, means that receiver R and the unreliable bidirectional communication channel
CHAN stay operational. Both R and CHAN have memory, this means that they can carry on
with their normal operation using the messages currently available to them. The synchroni-
sation routine, for the initial synchronisation, must reliably reset R independent of the state R
or CHAN are in. Furthermore, it needs to deal with the properties of CHAN, which can lose
or replicate data- and synchronisation-messages.

To overcome the degrading communication channel effects, the protocol applies the idea
of the Alternating Bit Protocol. S repeatedly sends out copies of a message until it receives
an acknowledgement from R. Because messages as well as acknowledgements can be lost
by CHAN, R has to acknowledge every message it receives. To filter out replications during
the synchronisation process, the protocol uses different messages instead of the tag-bit. The
main problem, when designing the synchronisation part of the RRABP, was to find the correct
number of synchronisation-messages.

3.1. Determining the Necessary Number of Synchronisation Messages

Initially, we thought one message would be sufficient. This however, is only the case if CHAN
is replaced together with the sender, i.e. if CHAN gets replaced together with the sender S1.
The problem that occurs with only a single reset-message is that the reset-acknowledgement
may still be waiting for delivery in C(c, d, 4), while the receiver has already processed its first
data-message and is about to acknowledge it. If S now gets replaced, the new sender instance
assumes, after receiving a reset-acknowledgment from the previous receiver synchronisation,
that R is ready for a data-message. Thus the sender will not generate a reset-message, but
instead send a data-message with the tag-bit set to 0. The receiver however classifies this
data-message as a replication of a previous data-message and therefore discards it. Forcing
the sender to always generate at least one reset-message, is not a solution, because this mes-
sage may be lost by the channel. Finally, this implementation also violates the specification
SD SPEC in another respect. The new instance of S can input new data before R has output
the data sent by the previous instance of S2.

It is possible to construct a similar example when using two synchronisation-messages,
which does not behave correctly when S gets replaced twice within a very short interval3. So
we increased the number of synchronisation-messages to three for the RRABP, and we have
used FDR to demonstrate that this solved the above problem. The remainder of this section
explains how the protocol works. The three synchronisation messages used in the RRABP
are: stop, reset, and start. The next section details their meaning and encoding together with
the remainder of the protocol vocabulary.

3.2. Protocol Vocabulary

The RRABP uses the following messages:

1. stop.msg: Informs the receiver that the sender has just been started and is now syn-
chronising with the receiver.

1The corresponding CSPM script is available at:
http://www.abdn.ac.uk/piprg/Papers/CPA2008/RRABP/rrabp_sm_SC_R.csp

2The corresponding CSPM script is available at:
http://www.abdn.ac.uk/piprg/Papers/CPA2008/RRABP/rrabp_sm_S_RC.csp

3The corresponding CSPM script is available at:
http://www.abdn.ac.uk/piprg/Papers/CPA2008/RRABP/rrabp_dm_S_RC.csp

http://www.abdn.ac.uk/piprg/Papers/CPA2008/RRABP/rrabp_sm_SC_R.csp
http://www.abdn.ac.uk/piprg/Papers/CPA2008/RRABP/rrabp_sm_S_RC.csp
http://www.abdn.ac.uk/piprg/Papers/CPA2008/RRABP/rrabp_dm_S_RC.csp
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2. stop.ack: Acknowledgement from the receiver that it received the stop message.
3. reset.msg: Informs the receiver that it should reset itself. This is the second message

of the synchronisation sequence.
4. reset.ack: Reset acknowledgement from the receiver.
5. start.msg: Informs the receiver that the sender wants to start data communications.

This is the third and last message of the synchronisation sequence.
6. start.ack: Acknowledgement from the receiver that it is ready to start data communi-

cation.
7. data.msg.s.d: This message transports the data d from the sender to the receiver, and

s represents the tag-bit.
8. data.ack.s: This message acknowledges the correct handling of a data message with

the tag-bit s.

3.2.1. Encoding the Vocabulary

In the description of the protocol we use the following data-types to construct the messages
exchanged between sender and receiver:

• OP represents the different operations:

datatype OP = stop | reset | start | data (12)

• MT represents the different message types:

datatype MT = msg | ack (13)

• The set TAG represents the tag-bit:

TAG = {0, 1} (14)

• The set DATA represents the data that can be transferred by the system:

DATA = {0, 1} (15)

The type for all messages is the tuple: OP.MT.TAG.DATA. Furthermore, the encoded
data-messages are defined as:

• data.msg.s.d: This message transports the data d from the sender to the receiver, with
s representing the tag-bit.

• data.ack.s.d: This message acknowledges the correct handling of a data message with
the tag-bit s. The data part d of the message must be ignored4!

For the synchronisation-messages: stop.msg.s.d, stop.ack.s.d, reset.msg.s.d, reset.ack.s.d,
start.msg.s.d, and start.ack.s.d, the tag-bit s and the data part d are irrelevant.

3.3. Formal Model of Message Exchanges

This section details the communication between sender S and receiver R. It explains both the
internals of sender and receiver.

4The inclusion of the data part is necessary because FDR insists on channel structure having the same number
of components.



B.H.C. Sputh et al. / RRABP 211

3.3.1. Sender

The entry point of the sender is SENDER(cin, cout) (Equation 16), the where cin is the chan-
nel from which the process reads the acknowledgements, and cout is the channel to which
the process sends synchronisation- and data-messages. The SENDER(...) process transfers
stop-messages to the receiver. This is achieved by outputting the stop-message (stop.msg.0.0)
on channel cout before recursing, until receiving a stop-acknowledgement (stop.ack.x.y) in
reply. Upon which the process transits to S RESET(cin, cout) (Equation 17). Any other
synchronisation- (reset.ack, start.ack) or data-acknowledgement (data.ack) pending on chan-
nel cin are swallowed by SENDER(. . .), to avoid deadlocks.

SENDER(cin, cout) =

cout!stop.msg.0.0 → SENDER(cin, cout)

2 cin?stop.ack.x.y → S RESET(cin, cout)

2 cin?reset.ack.x.y → SENDER(cin, cout)

2 cin?start.ack.x.y → SENDER(cin, cout)

2 cin?data.ack.x.y → SENDER(cin, cout)

(16)

The S RESET(cin, cout) process is similar to the SENDER(. . .) process, except that it sends
reset-messages to the receiver and expects a reset-acknowledgement before transiting to the
state S START(cin, cout) (Equation 17). The process swallows any stop-acknowledgements,
which are duplicates of a previously received stop-acknowledgement. However, at no time
should the process receive a data-acknowledgement or a start-acknowledgement. Occur-
rences of these signal that the previously received stop-acknowledgement was not triggered
by the sent stop-message. Therefore, the sender must try to reset the receiver once more. To
do so the process transits to the state SENDER(. . .).

S RESET(cin, cout) =

cout!reset.msg.0.0 → S RESET(cin, cout)

2 cin?reset.ack.x.y → S START(cin, cout)

2 cin?stop.ack.x.y → S RESET(cin, cout)

2 cin?start.ack.x.y → SENDER(cin, cout)

2 cin?data.ack.x.y → SENDER(cin, cout)

(17)

The last process, concerned with resetting the receiver is S START(cin, cout) (Equation 18).
This process starts the receiver to make it ready to receive data-messages. This is done by
outputting the start-message (start.msg.0.0) on the channel cout and then recursing, until a
start-acknowledgement (start.ack.x.y) arrives on channel cin. Upon reception of the start ac-
knowledgement the process transits to S RUN(cin, cout, 0), the 0 represents the initial value
of the tag-flag. Furthermore, the process filters any reset-acknowledgements. Reception of a
data-acknowledgment means that the receiver is completely out of sync, hence it is necessary
to restart the reset sequence again. So the process transits to SENDER(. . .). Receiving of a
stop-acknowledgement results in a transit to S RESET(. . .), because this represents the state
the receiver is currently in.
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S START(cin, cout) =

cout!start.msg.0.0 → S START(cin, cout)

2 cin?start.ack.x.y → S RUN(cin, cout, 0)

2 cin?reset.ack.x.y → S START(cin, cout)

2 cin?stop.ack.x.y → S RESET(cin, cout)

2 cin?data.ack.x.y → SENDER(cin, cout)

(18)

The main task of the process S RUN(...) (Equation 19) is to wait for a message (m) to
be transmitted from its backend over the channel in. Once it has received m the process
transits to S RUN ′(. . .) (Equation 20). The process swallows any reset-, start-, and data-
acknowledgments, to prevent deadlocks.

S RUN(cin, cout, s) =

in?m → S RUN ′(cin, cout, s, m)

2 cin?reset.ack.x.y → S RUN(cin, cout, s)

2 cin?start.ack.x.y → S RUN(cin, cout, s)

2 cin?data.ack.x.y → S RUN(cin, cout, s)

(19)

S RUN ′(cin, cout, s, m) (Equation 20) appends the tag-bit to the message m and sends this
data-message to the receiver before recursing. The process waits for the corresponding data-
acknowledgement upon which it toggles the tag-bit and transits to S RUN(. . .). The process
filters data-acknowledgements for a previous data-message as well as any reset- and start-
acknowledgements.

S RUN ′(cin, cout, s, m) =

cout!data.msg.s.m → S RUN ′(cin, cout, s, m)

2 cin?data.ack.s.y → S RUN(cin, cout, 1− s)

2 cin?data.ack.(1− s).y → S RUN ′(cin, cout, s, m)

2 cin?reset.ack.x.y → S RUN ′(cin, cout, s, m)

2 cin?start.ack.x.y → S RUN ′(cin, cout, s, m)

(20)

This completes the sender model, now follows the description of the receiver model.

3.3.2. Receiver

The receiver consists of five different processes: R RUN(. . .), R RUN ′(. . .), R STOP(. . .),
R START(. . .), and RECEIVER(. . .). During normal operation the receiver toggles between
R RUN(. . .) and R RUN ′(. . .). The process RECEIVER(. . .) represents the entry point of the
receiver, it determines the current value of the tag-bit. The remaining two processes synchro-
nise the value of the tag-bit when the sender gets replaced.

Initially, the receiver side data handling functionality is in the state RECEIVER(. . .)
(Equation 21). In this state it waits for a data-message to arrive: cin?data.msg.x.m, where
the variable x holds the value of the tag-bit, and the variable m the received message.
After receiving a data-message the process outputs the message (m) to the backend and
sends a data-acknowledgment to the sender. After this the receiver transits to the state
R RUN(cin, cout, s, m) (Equation 22), setting the parameter s to the value of (1 − x) (tog-
gling the tag-bit). This initial acceptance of any data-message allows an unstable receiver



B.H.C. Sputh et al. / RRABP 213

to synchronise with the sender upon a restart. However, there is the danger of duplicating
the last data-message received before the replacement of the receiver. Due to accepting any
arriving data-message as valid, there is no need to synchronise the tag-bit. Therefore, the
RECEIVER(. . .) acknowledges any arriving stop-, reset-, or start-message and then recurses.

RECEIVER(cin, cout) =

cin?data.msg.x.m → cout!data.ack.x.0 → R RUN(cin, cout, 1− x)

2 cin?stop.msg.x.y → cout!stop.ack.0.0 → R RESET(cin, cout)

2 cin?reset.msg.x.y → cout!reset.ack.0.0 → RECEIVER(cin, cout)

2 cin?start.msg.x.y → cout!start.ack.0.0 → RECEIVER(cin, cout)

(21)

R RUN(cin, cout, s) (Equation 22) is similar to the previously discussed process RECEIVER(. . .),
except that it has the ability to filter out replications of data-messages. The parameter s
represents value of the tag-bit for new data-messages. Upon inputting a new data-message
(cin?data.msg.s.m) the process outputs the received message (m) to the backend. Once
this has happened, a data acknowledgement gets sent to the sender and the process tog-
gles the tag-bit while recursing. After inputting a replication of a previous data-message
(cin?data.msg.(1 − s).m), the process acknowledges it and recurses. Upon receiving a
stop message the process outputs a stop-acknowledgement on channel cout then it tran-
sits to R RESET(. . .) (Equation 23). The process acknowledges any arriving reset- or start-
messages and then recurses.

R RUN(cin, cout, s) =

cin?data.msg.s.m → cout!data.ack.s.0 → R RUN(cin, cout, 1− s)

2 cin?data.msg.(1− s).m → cout!data.ack.(1− s).0 → R RUN(cin, cout, s, m)

2 cin?stop.msg.x.y → cout!stop.ack.0.0 → R RESET(cin, cout)

2 cin?reset.msg.x.y → cout!reset.ack.0.0 → R RUN(cin, cout, s)

2 cin?start.msg.x.y → cout!start.ack.0.0 → R RUN(cin, cout, s)

(22)

R RESET(cin, cout) (Equation 23) represents the first tag-bit synchronisation state of the re-
ceiver. The receiver enters this state when it receives a stop-message during normal operation
conditions. In this state the receiver waits for a reset-message to arrive, which the receiver
acknowledges and changes to R START(cin, cout) (Equation 24). R RESET(. . .) acknowl-
edges any incoming stop- and start-messages and then recurses.

R RESET(cin, cout) =

cin?reset.msg.x.y → cout!reset.ack.x.y → R START(cin, cout)

2 cin?stop.msg.x.y → cout!stop.ack.0.0 → R RESET(cin, cout)

2 cin?start.msg.x.y → cout!start.ack.0.0 → R RESET(cin, cout)

(23)

The receiver process R START(cin, cout) (Equation 24) is the second state of tag-bit synchro-
nisation. In this state the receiver expects to receive a start-message, which it acknowledges.
The tag-bit synchronisation sequence is now complete and the tag-bit is now set to 0. Now
the receiver transits to R RUN ′(cin, cout, 0), with the tag-bit set to 0. In state R START(. . .)
the receiver acknowledges any incoming stop- and reset-messages before recursing.
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R START(cin, cout) =

cin?start.msg.x.y → cout!start.ack.0.0 → R RUN ′(cin, cout, 0)

2 cin?reset.msg.x.y → cout!reset.ack.0.0 → R START(cin, cout)

2 cin?start.msg.x.y → cout!start.ack.0.0 → R START(cin, cout)

(24)

This completes the RRABP message exchange model. The next section details the formal
model verification.

4. Formal Model Verification

The formal description of the RRABP does not automatically guarantee that the protocol
possesses all desired properties. However, using a formal specification makes it possible to
establish the protocol properties. This section shows the compliance of the protocol with the
specifications for both: normal operation COPY (Section 2.1), and systems with unstable
senders SD SPEC (Section 2.2). For model checking the the model checker FDR2 [13] was
used.

SENDER(d, a)
in

a
C(a, b, 4)

d
C(c, d, 4)

RECEIVER(b, c)

b

c
out

CHAN

Figure 6. Process Network Layout for RRABP NO.

4.1. Normal Operation

The process RRABP NO (Equation 25) represents a communication system which consists of
reliable sender and reliable receiver. They use the RRABP to communicate over an unreliable
communication channel. The process, illustrated in Figure 6, is the parallel composition of
SENDER(. . .) and RECEIVER(. . .) with CHAN (Equation 1), where CHAN represents the
unreliable bidirectional communication channel.

RRABP NO = (SENDER(a, d) ‖
{|a,d|}

CHAN) ‖
{|b,c|}

RECEIVER(a, d) \ {| a, b, c, d |} (25)

To prove that RRABP NO is equivalent to COPY (Equation 3) we perform a failure diver-
gence cross refinement check. Figure 7 shows that RRABP NO has the same traces, failures,
and divergences as COPY .

Figure 7. FDR screen-shot as proof that RRABP NO is equivalent to COPY

This firmly establishes that the RRABP made the unreliable channel CHAN, reliable, as long
as both sender and receiver stay operational.
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SENDER(d, a)

S SD

sender dies

in
a

C(a, b, 4)

d
C(c, d, 4)

RECEIVER(b, c)

b

c
out

CHAN
RC SD

Figure 8. Process Network Layout for RRABP SD.

4.2. Unreliable Sender

The process RRABP SD (Equation 26) represents a communication system with an unreli-
able sender communicating with a receiver over an unreliable bidirectional communication
channel. The sender and receiver of this system communicate using the RRABP. This system
must comply with the specification given by SD SPEC (Equation 4). Figure 8 illustrates the
process network which represents the RRABP SD process.

RRABP SD = S SD ‖
{|a,d|}

RC SD \ {| a, b, c, d |} (26)

SD RRABP is a parallel composition of two processes:

• S SD (Equation 27) represents the sender of the communication system. The func-
tionality covers unannounced sender replacement at any time. To model sender de-
struction it can be interrupted at any time by the event sender dies. When this happens
SENDER(. . .) passes control back to S SD, which recursively creates a new instance
of the sender.

S SD = SENDER(d, a) 4 sender dies → SD S (27)

• RC SD (Equation 28) represents the receiver and the communication channels of the
system.

RC SD = RECEIVER(b, c) ‖
{|b,c|}

CHAN \ {| b, c |} (28)

To check that the RRABP can deal with an unexpected sender restart, it is necessary to es-
tablish that RRABP SD and SD SPEC (Equation 4 on page 207) are equivalent. We estab-
lish this equivalence by performing a failure divergence cross refinement check of SD SPEC
and RRABP SD. This refinement checks that both processes exhibit the same traces and fail
(deadlock) or diverge (livelock) identically. Figure 9 shows that RRABP SD has the same
failures and divergences as SD SPEC. This establishes security, stability, and functionality
of the protocol even when a sender gets replaced during runtime. The complete model of
the RRABP is available as CSPM script for download at: http://www.abdn.ac.uk/piprg/
Papers/CPA2008/RRABP/rrabp_tm_S_RC.csp.

Figure 9. Proof of RRABP SD is equivalent to SD SPEC

http://www.abdn.ac.uk/piprg/Papers/CPA2008/RRABP/rrabp_tm_S_RC.csp
http://www.abdn.ac.uk/piprg/Papers/CPA2008/RRABP/rrabp_tm_S_RC.csp
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5. Conclusion and Further Work

In this paper we establish that the RRABP enables reliable communication over an unreliable
channel, which connects an unstable sender with a stable receiver. We underpin this claim
by explaining how to model a point-to-point communication system using CSP, including a
model of unreliable communication channels. This was followed by a description of the Al-
ternating Bit Protocol, which forms the basis for the Resettable Receiver Alternating Bit Pro-
tocol (RRABP). After this, we developed the formal specification of the service the RRABP
provides. This represents the specification of the RRABP. The RRABP was then outlined,
first verbally and then formally. Finally, this formal model of the RRABP was proven to be
equivalent to the previous given specifications.

During the development of the formal protocol description we discovered that a single
reset message is not sufficient, if the communication channels stay operational while the
sender is exchanged. In fact it was necessary to use a total of three different messages to
trigger a reset of the receiver, fewer messages resulted in lost messages.

The RRABP is applicable in any environment where one wants to establish a reliable link
with blocking capability over an unreliable (message replication and message loss) commu-
nication channel, which does not block. Furthermore, the protocol is applicable in environ-
ments with unstable senders. Initially, we targeted the RRABP at the water monitoring sys-
tem of the WARMER consortium. In this system, unstable in-situ monitoring stations want
to transfer data reliably to the data centre. Other environments which require the RRABP
features include software defined radio systems which change their signal processing pro-
cess networks over time, and sensor networks. Besides these systems, we are presently con-
sidering using the RRABP to establish a channel between a libCSP2 [14] process network
executed by a PC and a libCSP2 process network executing on a soft processor within an
FPGA on a PCI card. This requires extension of the RRABP to support bidirectional commu-
nication. Another interesting investigation is to determine the effect buffered communication
channels have upon the RRABP. A last item, which is worth investigating, is to determine
how the protocol copes with unstable senders and receivers.
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