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Abstract. In this paper we introduce the core features of CSO (Communicating Scala
Objects) – a notationally convenient embedding of the essence of occam in a mod-
ern, generically typed, object-oriented programming language that is compiled to Java
Virtual Machine (JVM) code. Initially inspired by an early release of JCSP, CSO goes
beyond JCSP expressively in some respects, including the provision of a unitary ex-
tended rendezvous notation and appropriate treatment of subtype variance in channels
and ports. Similarities with recent versions of JCSP include the treatment of channel
ends (we call them ports) as parameterized types. Ports and channels may be trans-
mitted on channels (including inter-JVM channels), provided that an obvious design
rule – the ownership rule – is obeyed. Significant differences with recent versions of
JCSP include a treatment of network termination that is significantly simpler than the
“poisoning” approach (perhaps at the cost of reduced programming convenience), and
the provision of a family of type-parameterized channel implementations with perfor-
mance that obviates the need for the special-purpose scalar-typed channel implemen-
tations provided by JCSP. On standard benchmarks such as Commstime, CSO com-
munication performance is close to or better than that of JCSP and Scala’s Actors
library.
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Introduction

On the face of it the Java virtual machine (JVM) is a very attractive platform for realistic
concurrent and distributed applications and systems. On the other hand, the warnings from at
least parts of the “Java establishment” to neophyte Java programmers who think about using
threads are clear:

If you can get away with it, avoid using threads. Threads can be difficult to use, and they make programs
harder to debug.

It is our basic belief that extreme caution is warranted when designing and building multi-threaded ap-
plications ... use of threads can be very deceptive ... in almost all cases they make debugging, testing,
and maintenance vastly more difficult and sometimes impossible. Neither the training, experience, or ac-
tual practices of most programmers, nor the tools we have to help us, are designed to cope with the non-
determinism ... this is particularly true in Java ... we urge you to think twice about using threads in cases
where they are not absolutely necessary ...[8]

But over the years JavaPP, JCSP, and CTJ [7,3,4,1,2] have demonstrated that the occam
programming model can be used very effectively to provide an intellectually tractable dis-
cipline of concurrent Java programming that is harder to achieve by those who rely on the
lower level, monitor-based, facilities provided by the Java language itself.

So in mid-2006, faced with teaching a new course on concurrent and distributed pro-
gramming, and wanting to make it a practical course that was easily accessible to Java pro-
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grammers, we decided that this was the way to go about it. We taught the first year of this
course using a Java 1.5 library that bore a strong resemblance to the current JCSP library.1

Our students’ enthusiastic reaction to the occam model was as gratifying as their distaste
for the notational weight of its embedding in Java was dismaying. Although we discussed
designs for our concurrent programs using a CSP-like process-algebra notation and a simpli-
fied form of ECSP [5,6], the resulting coding gap appeared to be too much for most of the
students to stomach.

At this point one of our visiting students introduced us to Scala [9], a modern object-
oriented language that generates JVM code, has a more subtle generic type system than Java,
and has other features that make it very easy to construct libraries that appear to be notational
extensions.

After toying for a while with the idea of using Scala’s Actor library [12,13], we de-
cided instead to develop a new Scala library to implement the occam model independently
of existing Java libraries,2 and of Scala’s Actor library.3 Our principal aim was to have a
self-contained library we could use to support subsequent delivery of our course (many of
whose examples are toy programs designed to illustrate patterns of concurrency), but we also
wanted to explore its suitability for structuring larger scale Scala programs.

This paper is an account of the most important features of the core of the Communicat-
ing Scala Objects (CSO) library that emerged. We have assumed some familiarity with the
conceptual and notational basis of occam and JCSP, but only a little familiarity with Scala.

Readers familiar with JCSP and Scala may be able to get a quick initial impression of
the relative notational weights of Scala+CSO and Java+JCSP by inspecting the definitions of
FairPlex multiplexer components defined on pages 45 and 54 respectively.

1. Processes

A CSO process is a value with Scala type PROC and is what an experienced object oriented
programmer would call a stereotype for a thread. When a process is started any fresh threads
that are necessary for it to run are acquired from a thread pool.4

1.1. Process Notation

Processes (p : PROC) are values, denoted by one of:

proc { expr } A simple process (expr must be a command, i.e. have
type Unit)

p1 || p2 || ... || pn Parallel composition of n processes (each pi must have
type PROC)

|| collection Parallel composition of a finite collection of PROC values.
When collection comprises p1...pn this is equivalent to
p1 || p2 || ... || pn.

1This was derived from an earlier library, written in Generic Java, whose development had been inspired by
the appearance of the first public edition of JCSP. The principal differences between that library and the JCSP
library were the generically parameterized interfaces, InPort and OutPort akin to modern JCSP channel ends.

2Although Scala interoperates with Java, and we could easily have constructed Scala “wrappers” for the JCSP
library and for our own derivative library, we wanted to have a pure Scala implementation both to use as part
of our instructional material, and to ensure portability to the .NET platform when the Scala .NET compiler
became available.

3The (admirably ingenious) Actor library implementation is complicated; its performance appears to scale
well only for certain styles of use; and it depends for correct functioning on a global timestamp ([13] p183).

4The present JVM implementation uses a thread pool from the Java concurrent utility library, though this
dependency is really not necessary.
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A frequently-occuring pattern of this latter form of composition is one in which the
collection is an iterated form, such as: || (for ( i<−0 until n) yield p(i)). This form denotes a
process equivalent to: p(0) || p(1) || ... || p(n− 1),

1.2. Starting and Running Processes

If p is a process, then evaluation of the expression p() runs the process.5 The following cases
are distinguished:

1. p is proc { expr }
· p() causes { expr } to be evaluated in the current thread.
· The process as a whole terminates when the evaluation of { expr } terminates or

throws an (uncaught) exception.
· The behaviour of the expression p() cannot be distinguished from that of the ex-

pression {expr}.

2. p is p1 || p2 || ... || pn

· p() causes all the processes p1...pn to be run concurrently.
· All but one of the processes is run in a new thread; the remaining process is run in

the current thread.
· The process as a whole terminates only when all the component pi have termi-

nated. But if any of the component pi terminated by throwing an uncaught excep-
tion then – when and only when they have all terminated – one of those excep-
tions is chosen nondeterministically and re-thrown; in this case exceptions that are
subtypes of cso.Stop are only chosen in the absence of other types of exception.6

2. Ports and Channels

2.1. Introduction

Following ECSP [5,6], CSO ports (akin to JCSP channel ends) are generically parameterized,
and we define the abbreviations ?[T] and ![ T] respectively for InPort [T] and OutPort[T].

The most important method of an ![ T] is its write method

! ( value : T )

and the most important methods of an ?[T] are its read method

? ( ) : T

and its extended rendezvous method

? [U] ( body : T => U) : U

The type Chan[T] is the interface implemented by all channels that carry values of type
T: it is declared by:

t r a i t Chan [ T ] extends I nPo r t [ T ] with OutPort [ T ] { . . . }

5A process also has a fork method that runs it in a new thread concurrent with the thread that invoked its fork
method. The new thread is recycled when the process terminates.

6This is because cso.Stop type exceptions signify anticipated failure, whereas other types signify unexpected
failure, and must be propagated, rather than silently ignored. One useful consequence of the special treatment
of cso.Stop exceptions is explained in section 4: Closing Ports and Channels.
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This makes Chan[T] a subtype of both InPort [T] and OutPort[T]. It makes sense to think of
a Chan as embodying both an InPort and an OutPort.

The implicit contract of every conventional Chan implementation is that it delivers the
data written at its output port to its input port in the order in which the data was written. Dif-
ferent implementations have different synchronization behaviours and different restrictions
on the numbers of processes that may access (i.e. use the principal methods of) their ports at
any time.

The CSO core comes with several predefined channel implementations, the most notable
of which for our present purposes are:

• The synchronous channels. These all synchronize termination of the execution of a !
at their output port with the termination of the execution of a corresponding ? at their
input port.

∗ OneOne[T] – No more than one process at a time may access its output port or its
input port.7 This is the classic occam-style point to point channel.

∗ ManyOne[T] – No more than one process at a time may access its input port; pro-
cesses attempting to access its output port get access in nondeterministic order.8

∗ OneMany[T] – No more than one process at a time may access its output port; pro-
cesses attempting to access its input port get access in nondeterministic order.

∗ ManyMany[T] – Any number of processes may attempt to access either port. Writing
processes get access in nondeterministic order, as do reading processes.

• Buf[T](n) – a many-to-many buffer of capacity n.9

Access restrictions are enforced by a combination of:

• Type constraints that permit sharing requirements to be enforced statically.

∗ All output port implementations that support shared access have types that are sub-
types of SharedOutPort.

∗ All input port implementations that support shared access have types that are sub-
types of SharedInPort.

∗ All channel implementations that support shared access to both their ports have
types that are subtypes of SharedChannel.

∗ Abstractions that need to place sharing requirements on port or channel parameters
do so by declaring them with the appropriate type.10

• Run-time checks that offer partial protection against deadlocks or data loss of the
kind that can could otherwise happen if unshareable ports were inadvertently shared.

∗ If a read is attempted from a channel with an unshared input port before an earlier
read has terminated, then an illegal state exception is thrown.

∗ If a write is attempted to a channel with an unshared output port before an earlier
write has terminated, then an illegal state exception is thrown.

These run-time checks are limited in their effectiveness because it is still possible for
a single writer process to work fast enough to satisfy illegitimately sharing reader
processes without being detected by the former check, and for the dual situation to
remain undetected by the latter check.

7The name is a contraction of “From One writer process to One reader process.”
8The name is a contraction of “From Many possible writer processes to One reader process.” The other

forms of synchronous channel are named using the same contraction convention.
9We expect that history will soon give way to logic: at that point each form of synchronous channel will be

supplemented by an aptly-named form of buffered channel.
10See, for example, the component mux2 defined in program 3.
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def producer ( i : int , ! [ T ] ) : PROC = . . .
def consumer ( i : int , ? [T ] ) : PROC = . . .

def mux [ T ] ( i ns : Seq [ ? [ T ] ] , out : ! [ ( int , T ) ] ) : PROC = . . .
def dmux [ T ] ( i n : ? [ ( int , T ) ] , outs : Seq [ ! [ T ] ] ) : PROC = . . .

val l e f t , r i g h t = OneOne [ T ] ( n ) / / 2 ar rays o f n unshared channels
val mid = OneOne [ ( int , T ) ] / / an unshared channel

( | | ( for ( i <−0 u n t i l n ) yie ld producer ( i , l e f t ( i ) ) )
| | mux( l e f t , mid )
| | dmux( mid , r i g h t )
| | | | ( for ( i <−0 u n t i l n ) yie ld consumer ( i , r i g h t ( i ) ) )
) ( )

Program 1. A network of producers connected to consumers by a multiplexed channel

def producer ( i : int , ! [ T ] ) : PROC = . . .
def consumer ( i : int , ? [T ] ) : PROC = . . .

val con = OneOne [ T ] ( n ) / / an ar ray o f n unshared channels

( | | ( for ( i <−0 u n t i l n ) yie ld producer ( i , con ( i ) ) )
| | | | ( for ( i <−0 u n t i l n ) yie ld consumer ( i , con ( i ) ) )
) ( )

Program 2. A network in which producers are connected directly to consumers

2.2. Examples

In program 1 we show how to connect a sequence of n producers to a sequence of n con-
sumers using a single multiplexed channel that carries values accompanied by the index of
their producer to a demultiplexer that dispatches these values to the corresponding consumer.
Readers familiar with JCSP may find it useful to compare this with the network illustrated in
section 1.5 of [4].

As observed in that paper this isn’t the most efficient way of connecting the producers to
the consumers within a single JVM; and in program 2 we show a network in which producers
and consumers are connected directly.

The signatures of the components producer, consumer, mux, and dmux in programs 1
and 2 specify the types of port (channel end) they require; but the subtype relation between
channels and ports means that when connecting these components we can simply provide
the connecting channels as parameters, and that the components take the required views of
them. This means we needn’t name the ports explicitly, and significantly reduces the degree
of formal clutter in the network description.11

In program 3 we show how to implement two (unfair) multiplexers and a demultiplexer
of the kind that might have been used in program 1.

A multiplexer process generated by mux1 is the concurrent composition of a collection of
“labelling” processes, each of which outputs labelled copies of its input, via a ManyOne[(int,T)]

11The reduction of formal clutter comes at the cost of forcing readers to refer back to the component signa-
tures to ascertain which ports they actually use. The JCSP designers made the tradeoff in the other direction.
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def mux1 [ T ] ( i ns : Seq [ ? [ T ] ] , out : ! [ ( int , T ) ] ) : PROC =
{ val mid = ManyOne [ ( int , T ) ]

( proc { while ( true ) { out ! ( mid ?) } }
| | ( for ( i <−0 u n t i l i ns . leng th ) yie ld proc { mid ! ( i , i ns ( i ) ? ) } )
)

}

def mux2 [ T ] ( i ns : Seq [ ? [ T ] ] , out : SharedOutPort [ ( int , T ) ] ) : PROC =
| | ( for ( i <−0 u n t i l i ns . leng th ) yie ld proc { out ! ( i , i ns ( i ) ? ) } )

def dmux [ T ] ( i n : ? [ ( int , T ) ] , outs : Seq [ ! [ T ] ] ) : PROC =
proc {

while ( true ) { val ( n , v ) = i n ? ; outs ( n ) ! v }
}

Program 3. Two multiplexers and a demultiplexer

channel, to a forwarding process that writes them to the out port. The forwarding process
is necessary because the type-signature of mux1 does not constrain the kind of port that is
passed to it as a parameter, so in programming it we must assume that it is not shareable.

On the other hand, mux2 requires that its out parameter is shareable, so it composes a
collection of labelling processes that write directly to out.

The function dmux generates demultiplexer processes that forward labelled inputs to the
appropriate output ports.

3. Extended Rendezvous

3.1. Introduction

As we explained earlier, the synchronous channel implementations ensure that termination
of a write (!) at their output port is synchronized with the termination of the corresponding
read (?) at their input port. Although a standard read terminates once the data is transferred
between the writer and the reader process, an extended rendezvous read permits a compu-
tation on the transferred data to take place in the reader process, and it is only when this
computation terminates that the read is considered to have terminated and the writing process
is permitted to proceed.

The usual form of an extended rendezvous read from in : ?[T] is12

i n ? { bv => body }

It is evaluated by transferring a value, v, from the process at the output end of the channel
(if necessary waiting for one to become ready), then applying the (anonymous) function
{ bv => body } to v. The read is considered to have terminated when this application has been
completely evaluated. At this point the writing process is permitted to proceed and the result
of the application is returned from the read.

3.2. Example: Monitoring Interprocess Traffic

An easily understood rationale for extended rendezvous is given in [4]. We are asked to con-
sider how to monitor the interprocess traffic between a producer process connected to a con-

12The most general form of extended rendezvous read is in?f where f denotes a function of type T=>U. The
type of in?f is then U.



B. Sufrin / Communicating Scala Objects 41

sumer process via a simple channel without interfering with producer-consumer synchroniza-
tion. We want to construct a process that is equivalent to

{ val mid = Chan [ T ]
producer ( mid ) | | consumer ( mid )

}

but which also copies traffic on mid to a monitor process of some kind.
A first approximation to such a process is

{ val l e f t , mon, r i g h t = Chan [ T ]
( producer ( l e f t )
| | proc { repeat { val v = l e f t ? ; mon! v ; r i g h t ! v }
| | consumer ( r i g h t )
| | moni tor (mon)
)

}

But this interferes with producer-consumer synchronization, because once left ? has been ex-
ecuted, producer is free to proceed. More specifically, it is free to proceed before consumer
reads from right . If the context in which this network of process runs is tolerant of an addi-
tional degree of buffering this is not problematic; but if it is not, then we need to be able to
synchronize the read from right with the write to left .

The problem is solved by replacing the body of the copying process

{ val v = l e f t ? ; mon! v ; r i g h t ! v }

with a body in which the outputs to mon and right are part of an extended rendezvous with
the producing process, namely:

{ l e f t ? { v => {mon! v ; r i g h t ! v} } }

The extended rendezvous is executed by reading a value from left , then applying the
function { v => {mon!v; right!v} } to it. Termination of the write to left is synchronized with
termination of the evaluation of the function body, so the producer writing to left cannot
proceed until the consumer has read from right .

The extended rendezvous doesn’t terminate until {mon!v; right !v} has terminated, but de-
lays the output to right until the output to mon has terminated. The following reformulation
relaxes the latter constraint, thereby removing a potential source of deadlock:

{ l e f t ? { v => { ( proc{mon! v} | | proc{ r i g h t ! v } ) ( ) } } }

It is a simple matter to abstract this into a reusable component:

def tap [ T ] ( i n : ? [T ] , out : ! [ T ] , mon: ! [ T ] ) =
proc
{ repeat { i n ? { v => { ( proc{mon! v} | | proc{out ! v } ) ( ) } } } }

3.3. Example: Simplifying the Implementation of Synchronous inter-JVM Channels

Extended rendezvous is also used to good effect in the implementation of synchronized inter-
JVM or cross-network connections, where it keeps the overt intricacy of the code manage-
able. Here we illustrate the essence of the implementation technique, which employs the two
“network adapter” processes.
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def copyToNet [ T ] ( i n : ? [T ] , net : ! [ T ] , ack : ? [ Un i t ] ) =
proc { repeat { i n ? { v => { net ! v ; ack? } } } }

and

def copyFromNet [ T ] ( net : ? [T ] , ack : ! [ Un i t ] , out : ! [ T ] ) =
proc { repeat { out ! ( net ? ) ; ack ! ( ) } }

The effect of using the extended rendezvous in copyToNet is to synchronize the termi-
nation of a write to in with the reception of the acknowledgement from the network that the
value written has been transmitted to out.

At the producer end of the connection, we set up a bidirectional network connection that
transmits data and receives acknowledgements. Then we connect the producer to the network
via the adapter:

def producer ( out : ! [ T ] ) = . . .
val ( toNet , fromNet ) : ( ! [ T ] , ? [ Un i t ] ) = . . .
val l e f t = OneOne [ T ]
( producer ( l e f t ) | | copyToNet ( l e f t , toNet , fromNet ) ) ( )

At the consumer end the dual setup is employed

def consumer ( i n : ? [T ] ) = . . .
val ( toNet , fromNet ) : ( ! [ Un i t ] , ? [T ] ) = . . .
val r i g h t = OneOne [ T ]
( copyFromNet ( fromNet , toNet , r i g h t ) | | consumer ( r i g h t ) ) ( )

In reality the CSO networking components deliver their functionality at a higher level
of abstraction than this, namely bidirectional client/server connections, and the synchronous
implementations piggy-back acknowledgements to client requests on top of server responses.

4. Closing Ports and Channels

4.1. Introduction

A port may be closed at any time, including after it has been closed. The trait InPort has
method

c lose in : Un i t

whose invocation embodies a promise on the part of its invoking thread never again to read
from that port.

Similarly, the trait OutPort has method

c loseout : Un i t

whose invocation embodies a promise on the part of its invoking thread never again to write
to that port.

It can sometimes be appropriate to forbid a channel to be used for further communica-
tion, and the Chan trait has an additional method for that purpose, namely:

c lose : Un i t

The important design questions that must be considered are:
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1. What happens to a process that attempts, or is attempting, to communicate through a
port whose peer port is closed, or which closes during the attempt?

2. What does it mean to close a shared port?

Our design can be summarised concisely; but we must first explain what it means for a chan-
nel to be closed:

Definition: A channel is closed if it has been closed at a non-shared OutPort by invoking
its closeout method, or if it has been closed at a non-shared InPort by invoking its closein
method, or if it has been closed by invoking its close method.13

This means that closing a shared port has no effect. The rationale for this is that shared ports
are used as “meeting points” for senders and receivers, and that the fact that one sender or
receiver has undertaken never to communicate should not result in the right to do so being
denied to others.14

The effects of closing ports and/or channels now can be summarised as follows:

• Writer behaviour

1. An attempt to write to a closed channel raises the exception Closed in the writing
thread.

2. Closing a channel whose OutPort is waiting in a write raises the exception Closed
in the writing thread.

• Reader behaviour

1. An attempt to read from a closed channel raises the exception Closed in the reading
thread.

2. Closing a channel whose InPort is waiting in a read raises the exception Closed in
the reading thread.

4.2. Termination of Networks and Components

The Closed exception is one of a family of runtime exceptions, the Stop exceptions, that play
a special role in ensuring the clean termination of networks of communicating processes.

The form

repeat (exprguard) { exprbody }

behaves in exactly the same way as

while (exprguard) { exprbody }

except that the raising of a Stop exception during the execution of the exprbody causes it to
terminate normally. The form repeat { exprbody } is equivalent to repeat (true) { exprbody }

The behaviour of repeat simplifies the description of cleanly-terminating iterative com-
ponents that are destined to be part of a network. For example, consider the humble copy
component of program 4, which has an iterative copying phase followed by a close-down
phase. It is evident that the copying phase terminates if the channel connected to the input
port is closed before that connected to the output port. Likewise, if the channel connected
to the output port is closed before (or within) a write operation that is attempting to copy a
recently-read datum. In either case the component moves into its close-down phase, and this

13In the case of buffered (non-synchronized) channels, the effect of invoking close is immediate at the InPort,
but is delayed at the OutPort until any buffered data has been consumed.

14This is a deliberate choice, designed to keep shared channel semantics simple. More complex channel-like
abstractions – such as one in which a non-shared end is informed when all subscribers to the shared end have
disappeared – can always be layered on top of it.
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def copy [ T ] ( i n : ? [T ] , out : ! [ T ] ) =
proc {

repeat { out ! ( i n ?) } / / copying
( proc { out . c loseout } | | proc { i n . c l ose in } ) ( ) / / c lose−down

}

Program 4. A terminating copy component

results in one of the channels being closed again while the other is closed anew. In nearly all
situations this behaviour is satisfactory, but it is worth noticing that it can result in a datum
being silently lost (in the implicit buffer between the in? and the out!) when a network is
closed from “downstream”.15

In section 1.2 we explained that on termination of the components of a concurrent pro-
cess: (a) if any of the component processes themselves terminated by throwing an exception
then one of those exceptions is chosen nondeterministically and re-thrown; and (b) in making
the choice of exception to throw, preference is given to Stop exceptions.

One consequence of (b) is that it is relatively simple to arrange to reach the closedown
phase of an iterated component that does concurrent reads and/or writes. For example, the
tee component below broadcasts data from its input port to all its output ports concurrently:
if the input port closes, or if any output port is closed before or during a broadcast, then the
component stops broadcasting and closes all its ports.

def tee [ T ] ( i n : ? [T ] , outs : Seq [ ! [ T ] ] ) =
proc
{ var data = / / unspec i f i ed i n i t i a l value

val broadcast = | | for ( out<−outs ) yie ld proc { out ! data }
repeat { i n ? { d => { data=d ; broadcast ( ) }}}
( | | ( for ( out<−outs ) yie ld proc { out . c loseout } ) | | i n . c l ose in ) ( )

}

This is because closing in results in a Closed exception being thrown at the next in?; and
because closing an output port causes the corresponding out!data to terminate by throwing a
Closed, which is propagated in turn by the || when it terminates.16

Careful programming of the closedown phases of communicating components is needed
in order to assure the clean termination of networks of interconnected processes, and this is
facilitated by the Stop-rethrowing behaviour of ||, and the behaviour of repeat when its body
Stops.

15i.e. from the out direction. On the face of it it looks like this could be avoided by reprogramming the
component with a stronger guard to the iteration, viz as: repeat (out.open) { out !( in?) } but this is not so,
because the out.open test and the out! action are not joined atomically, so the channel associated with the
output port could be closed between being polled in the guard and being written to in the body of the loop.

16Although it is incidental to the theme of this example, it is worth noticing that we construct the concurrent
process broadcast before starting the iteration. While this is not strictly necessary, it provides an improve-
ment in efficiency over: repeat { in ? { d => {|| (for (out<−outs) yield proc { out!d })() }}}. This is
because the expression: ||( for (out<−outs) ... ) that constructs the concurrent broadcast process is evaluated
only once, rather than being evaluated once per broadcast.
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5. Input Alternation

5.1. Introduction

Input alternations are first class values of type Alt . The simplest form of an alt is constructed
from a sequence of guarded events:17

alt ( port1 (guard1) ==> { cmd1 }
| ...
| portn (guardn) ==> { cmdn }
)

An event of the form port (guard) ==> { cmd }
• is said to be enabled, if port is open and guard evaluates to true
• is said to be ready if port is ready to read
• is fired by executing its cmd (which must read port)

If a is an alt , then a() starts its execution, which in principle18 proceeds in phases as
follows:

1. All the event guards are evaluated, and then
2. The current thread waits until (at least one) enabled event is ready, and then
3. One of the ready events is chosen and fired.

If no events are enabled after phase 1, or if all the channels associated with the ports close
while waiting in phase 2, then the Abort exception (which is also a form of Stop exception) is
raised.

If a is an alt , then a repeat executes these phases repeatedly, but the choices made in
phase 3 are made in such a way that if the same group of guards turn out to be ready during
successive executions, they will be fired in turn.

For example, the method tagger below constructs a tagging multiplexer that ensures that
neither of its input channels gets too far ahead of the other. The tagger terminates cleanly
when its output port is closed, or if both its input channels have been closed.

def tagger [ T ] ( l : ? [T ] , r : ? [T ] , out : ! [ ( int , T ) ] ) =
proc
{ var d i f f = 0

a l t ( l ( ! r . open | | d i f f < 5 ) ==> { out ! ( 0 , l ? ) ; d i f f +=1 }
| r ( ! l . open | | d i f f > −5) ==> { out ! ( 1 , r ? ) ; d i f f −=1 }
) repeat ;

( proc { l . c l ose in } | | proc { r . c l ose in } | | proc {out . c loseout } ) ( )
}

A prialt is constructed in the same way as an alt , and is executed in nearly the same way,
but the choice of which among several ready guards to fire always favours the earliest in the
sequence.

5.2. Collections of Guards

Alternations can be composed of collections of guards, as illustrated by the fair multiplexer
defined below.19

17Guard expressions must be free of side-effects, and a (guard) that is literally (true) may be omitted.
18We say “in principle” because we wish to retain the freedom to use a much more efficient implementation

than is described here.
19It is perhaps worthwhile comparing this construction with that of the analogous JCSP component shown in

program 11 (page 54).
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def f a i r P l e x [ T ] ( i ns : Seq [ ? [ T ] ] , out : ! [ T ] ) =
proc { a l t ( for ( i n <− i ns ) yie ld i n ==> { out ! ( i n ?) } ) repeat }

They can also be composed by combining collections and single guards. For example,
the following is an extract from a multiplexer than can be dynamically set to favour a specific
range of its input ports. It gives priority to its range-setting channels.

def primux [ T ] ( MIN : ? [ i n t ] , MAX: ? [ i n t ] , i ns : Seq [ ? [ T ] ] , out : ! [ T ] ) =
proc
{ var min = 0

var max = ins . leng th − 1
p r i a l t ( MIN ==> { min = MIN? }

| MAX ==> { max = MAX? }
| | ( for ( i <− 0 u n t i l i ns . leng th ) yie ld

i ns ( i ) (max>= i && i >=min ) ==> { out ! ( i ns ( i ) ? ) } )
) repeat

}

5.3. Timed Alternation

An alternation may be qualified with a deadline, after which failure of any of its enabled ports
to become ready causes an Abort exception to be thrown. It may also be qualified with code to
be executed in case of a timeout – in which case no exception is thrown.20 We illustrate both
of these features with an extended example, that defines the transmitter and receiver ends of
an inter-JVM buffer that piggybacks “heartbeat” confirmation to the receiving end that the
transmitting end is still alive.

First we define a Scala type Message whose values are of one of the forms Ping or Data(v).

t r a i t Message
case object Ping extends Message {}
case class Data [ T ] ( data : T ) extends Message {}

The transmitter end repeatedly forwards data received from in to out, but intercalates Ping
messages whenever it has not received anything for pulse milliseconds.

def t r a n s m i t t e r [ T ] ( pulse : long , i n : ? [T ] , out : ! [ Message ] ) =
proc
{ a l t ( i n==>{out ! Data ( i n ? )} ) before pulse orelse { out ! Ping } repeat }

The receiver end (whose pulse should be somewhat slower than that of the transmitter)
repeatedly reads from in, discarding Ping messages and forwarding ordinary data to out. If (in
each iteration) a message has not been received before the timeout, then a message is sent to
the fail channel.

def r ece i ve r [ T ] ( pulse : long , i n : ? [ Message ] , out : ! [ T ] , f a i l : ! [ Un i t ] ) =
proc
{ a l t ( i n ==>

{ i n ? match
{ case Ping => ( )

case Data ( d : T ) => out ! d
}

}
) before pulse orelse { f a i l ! ( ) } repeat

}

20The implementation of this feature is straightforward, and not subject to any potential races.
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Though timeout is cheap and safe to implement,21 the technique used above may not be
suitable for use in components where there is a need for more subtle interplay between timing
and channel input. But such components can always be constructed (and in a way that may
be more familiar to occam programmers) by using periodic timers, such as the simple and
straighforward one shown in program 6.

For example, program 5 shows the definition of an alternative transmitter component
that “pings” if the periodic timer ticks twice without an intervening input becoming available
from in, and “pongs” every two seconds regardless of what else happens.

def t r a n s m i t t e r 2 [ T ] ( pulse : long , i n : ? [T ] , out : ! [ Message ] ) =
proc
{ val t i c k = per iod icT imer ( pulse )

val tock = per iod icT imer (2000)
var t i c k s = 0
p r i a l t ( tock ==> { out ! Pong ; tock? }

| i n ==> { out ! Data ( i n ? ) ; t i c k s = 0 }
| t i c k ==> { t i c k s +=1; i f ( t i c k s >1) out ! Ping ; t i c k ? }
) repeat ;

t i c k . c lose
tock . c lose

}

Program 5. A conventionally-programmed transmitter

In the periodic timer of program 6 the fork method of a process is used to start a new
thread that runs concurrently with the current thread and periodically writes to the channel
whose input port represents the timer. Closing the input port terminates the repeat the next
time the interval expires, and thereby terminates the thread.

def per iod icT imer ( i n t e r v a l : long ) : ? [ Un i t ] =
{ val chan = OneOne [ Un i t ]

proc { repeat { sleep ( i n t e r v a l ) ; chan ! ( ) } } . f o r k
return chan

}

Program 6. A simple periodic timer

6. Port Type Variance

As we have seen, port types are parameterized by the types of value that are expected to be
read from (written to) them. In contrast to Java, in which all parameterized type constructors
are covariant in their parameter types, Scala lets us specify the variance of the port type
constructors precisely. Below we argue that the InPort constructor should be covariant in
its type parameter, and the OutPort constructor contravariant in its type parameter. In other
words:

1. If T ′ is a subtype of T , then a ?[T ′] will suffice in a context that requires a ?[T ]; but
not vice-versa.

21By imposing an explicit time limit on the wait call that implements the notional second phase of the alt .
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2. If T ′ is a subtype of T , then a ![T ] will suffice in a context that requires a ![T ′]; but
not vice-versa.

Our argument is, as it were, by contradiction. To take a concrete example, suppose that
we have an interface Printer which has subtype BonjourPrinter that has an additional method,
bonjour.

Suppose also that we have process generators:

def p r i n t S e r v e r ( p r i n t e r s : ! [ P r i n t e r ] ) : PROC = . . .
def bon jou rC l i en t ( p r i n t e r s : ? [ Bon jou rP r i n te r ] ) : PROC = . . .

Then under the uniformly covariant regime of Java the following program would be type
valid, but it would be unsound:

val connector = new OneOne [ Bon jou rP r i n te r ]
( p r i n t S e r v e r ( connector ) | | p r i n t C l i e n t ( connector ) ) ( )

The problem is that the server could legitimately write a non-bonjour printer that would be
of little use to a client that expects to read and use bonjour printers. This would, of course,
be trapped as a runtime error by the JVM, but it is, surely, bad engineering practice to rely
on this lifeboat if we can avoid launching a doomed ship in the first place!22 And we can: for
under CSO’s contravariant typing of outports, the type of connector is no longer a subtype of
![ Printer ], and the expression printServer(connector) would, therefore, be ill-typed.

7. Bidirectional Connections

In order to permit client-server forms of interaction to be described conveniently CSO defines
two additional interface traits:

t r a i t Connection . C l i e n t [ Request , Reply ] extends OutPort [ Reply ]
with I nPo r t [ Request ] { . . . }

t r a i t Connection . Server [ Request , Reply ] extends OutPort [ Request ]
with I nPo r t [ Reply ] { . . . }

Thus a Server interface is something to which requests are written and from which replies
are read, while a Client interface is something from which requests are read and to which
replies are written.

A Connection[Request,Reply] has a client interface and a server interface:

t r a i t Connection [ Request , Reply ]
{ def c l i e n t : Connection . C l i e n t [ Request , Reply ]

def server : Connection . Server [ Request , Reply ]
}

The implicit contract of a connection implementation is that requests written to its server
interface by the code of a client should eventually be readable by the code of the correspond-
ing server in the order in which they were written; likewise responses written to its client
interface by the code of a server should eventually be readable by the code of the correspond-
ing client in the order they were written. Different connection implementations implement
“eventually” in different ways. The simplest of these is a

22This difficulty is analogous to the well-known difficulty in Java caused by the covariance of the array
constructor.
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Connection .OneOne [ Request , Reply ]

which connects both directions synchronously.
It is worth noticing that both Client and Server interfaces can be viewed as both an InPort

and an OutPort. This lends an air of verisimilitude to the wrong idea that “a connection is a
bidirectional channel”, but nevertheless contributes to the lack of formal clutter in the pro-
gramming of clients and servers.

For example, program 7 shows a process farmer component that acquires requests from
its in port, and farms them out to servers from which it eventually forwards replies to its out
port. This implementation is a little inefficient because we enable all the server guards when
any server is busy.

def farmer [ Req , Rep ] ( i n : ? [Req ]
, out : ! [ Rep ]
, servers : Seq [ Server [ Req , Rep ] ]
) =

proc
{ var busy = 0 / / number o f busy servers

val f r ee = new Queue [ ! [ Req ] ] / / queue of f r ee server connect ions
f r ee ++= servers / / i n i t i a l l y a l l are f ree
/ / INVARIANT : busy+ f ree . leng th=servers . leng th
a l t ( | ( for ( server <− servers ) yie ld

server ( busy>0) ==>
{ out ! ( server ?)

f r ee += server
busy = busy−1

}
)

| i n ( f r ee . length >0) ==>
{ val server = f ree . dequeue

busy = busy+1
server ! ( i n ?)

}
) repeat

}

Program 7. A Process Farmer

8. Performance

The Commstime benchmark has been used as a measure of communication and thread
context-swap efficiency for a number of implementations of occam and occam-like languages
and library packages. Its core consists of a cyclic network of three processes around which an
integer value, initially zero, is circulated. On each cycle the integer is replaced by its succes-
sor, and output to a fourth process, Consumer, that reads integers in batches of ten thousand,
and records the time per cycle averaged over each batch.

The network is shown diagrammatically in figure 1. Its core components are defined (in
two variants) with CSO in program 8, and with Actors in program 9. The SeqCommstime vari-
ant writes to Succ and Consumer sequentially. The ParCommstime variant writes to Consumer
and Succ concurrently, thereby providing a useful measure of the overhead of starting the
additional thread per cycle needed to implement ParDelta.

In table 1 we present the results of running the benchmark for the current releases of
Scala Actors, CSO and JCSP using the latest available Sun JVM on each of a range of host
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Figure 1. The Commstime network

val a , b , c , d = OneOne [ i n t ]
val P r e f i x = proc { a ! 0 ; repeat { a ! ( b?) }}
val Succ = proc { repeat { b ! ( c?+1) } }
val SeqDelta = proc { repeat { val n=a ?; c ! n ; d ! n } }
val SeqCommstime = ( P r e f i x | | SeqDelta | | Succ | | Consumer )

val ParDelta = proc { var n = a ?;
val out = proc{c ! n} | | proc{d ! n}
repeat { out ( ) ; n=a? }

}
val ParCommstime = ( P r e f i x | | ParDelta | | Succ | | Consumer )

Program 8. Parallel and Sequential variants of the Commstime network defined with CSO

type Node = OutputChannel [ i n t ]
val Succ : Node =

actor { loop { receive { case n : i n t => P r e f i x ! (1+ n )}}}
val P r e f i x : Node =

actor { Del ta ! ( 0 ) ; loop { receive { case n : i n t => Del ta ! n}}}
val Del ta : Node =

actor { loop { receive { case n : i n t => {Succ ! n ; Consume ! n}}}}

Program 9. The Commstime network defined with Actors

types. The JCSP code we used is a direct analogue of the CSO code: it uses the specialized
integer channels provided by the JCSP library. Each entry shows the range of average times
per cycle over 10 runs of 10k cycles each.

Table 1. Commstime performance of Actors, CSO and JCSP (Range of Avg. µs per cycle)

Host JVM Actors
CSO
Seq

JCSP
Seq

CSO
Par

JCSP
Par

4× 2.66GHz Xeon, OS/X 10.4 1.5 28-32 31-34 44-45 59-66 54-56
2× 2.4GHz Athlon 64X2 Linux 1.6 25-32 26-39 32-41 24-46 27-46
1× 1.83GHz Core Duo, OS/X 1.5 62-71 64-66 66-69 90-94 80-89
1× 1.4GHz Centrino, Linux 1.6 42-46 30-31 28-32 49-58 36-40

8.1. Performance Analysis: CSO v. JCSP

It is worth noting that communication performance of CSO is sufficiently close to that of
JCSP that there can be no substantial performance disadvantage to using completely generic
component definitions.
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val a , b , c , d = Buf [ i n t ] ( 4 )
val B u f f P r e f i x = proc { a ! 0 ; a ! 0 ; a ! 0 ; a ! 0 ; repeat { a ! ( b?) } }
. . .
val BuffCommstime = ( B u f f P r e f i x | | SeqDelta | | Succ | | Consumer )

Program 10. Buffered Commstime for Actors v. CSO benchmark

It is also worth noting that process startup overhead of CSO is somewhat higher than
that of JCSP. This may well reflect the fact that the JCSP Parallel construct caches the threads
used in its first execution, whereas the analogous CSO construct re-acquires threads from its
pool on every execution of the parallel construct.

8.2. Performance Analysis: Actors v. Buffered CSO

At first sight it appears that performance of the Actors code is better than that of CSO and
JCSP: but this probably reflects the fact that Actors communications are buffered, and com-
munication does not force a context switch. So in order to make a like-for-like comparison
of the relative communication efficiency of the Actors and CSO libraries we ran a modified
benchmark in which the CSO channels are 4-buffered, and 4 zeros are injected into the net-
work by Prefix to start off each batch. The CSO modifications were to the channel decla-
rations and to Prefix – as shown in program 10; the Actors version of Prefix was modified
analogously. The results of running the modified benchmark are provided in table 2.

Host JVM Actors CSO

4× 2.66 GHz Xeon, OS/X 10.4 1.5 10-13 10-14
2× 2.4 GHz Athlon 64X2 Linux 1.6 16-27 4-11

1× 1.83 GHz Core Duo, OS/X 10.4 1.5 27-32 14-21
1× 1.4 Ghz Centrino, Linux 1.6 42-45 17-19

Table 2. Buffered Commstime performance of Actors and CSO (Range of Avg. µs per cycle)

Space limitations preclude our presenting the detailed results of the further experiments
we conducted, but we noted that even when using an event-based variant of the Actors code,
the performance of the modified CSO code remains better than that of the Actors code, and
becomes increasingly better as the number of initially injected zeros increases. The account
of the Actors design and implementation given in [12,13] suggests to us that this may be a
consequence of the fact that the network is cyclic.23

9. Prospects

We remain committed to the challenge of developing Scala+CSO both as a pedagogical tool
and in the implementation of realistic programs. Several small-scale and a few medium-
scale case studies on networked multicore machines have given us some confidence that our
implementation is sound, though we have neither proofs of this nor a body of successful (i.e.
non-failed) model checks. The techniques pioneered by Welch and Martin in [10] show the
way this could be done.

23This result reinforces our feeling that the only solution of the scaleability problem addressed by the Ac-
tors library is a reduction in the cost of “principled” threading. We are convinced that this reduction could be
achieved by (re-)introducing a form of lighter-weight (green) threads, and by providing OS-kernel/JVM collab-
oration for processor-scheduling.
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The open nature of the Scala compiler permits, at least in principle, a variety of compile-
time checks on a range of design rules to be enforced. It remains to be seen whether there
are any combinations of expressively useful Scala sublanguage and “CSO design rule” that
are worth taking the trouble to enforce. We have started our search with an open mind but in
some trepidation that the plethora of possibilities for aliasing might render it fruitless – save
as an exercise in theory.

Finally, we continue to be inspired and challenged by the work of the JCSP team. We
hope that new communication and synchronization components similar to some of those they
describe in [4] and a networking framework such as that described in [11] will soon find their
way into CSO; and if this happens then the credit will be nearly all theirs.
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Appendix: Thumbnail Scala and the Coding of CSO

In many respects Scala is a conventional object oriented language semantically very similar
to Java, though notationally somewhat different.24 It has a number of features that have led
some to describe it as a hybrid functional and object-oriented language, notably

• Case classes make it easy to represent free datatypes and to program with them.
• Functions are first-class values. The type expression T=>U denotes the type of func-

tions that map values of type T into values of type U. One way of denoting such a
function anonymously is { bv => body } (providing body has type U).25

The principal novel features of Scala we used in making CSO notationally palatable were:

• Syntactic extensibility: objects may have methods whose names are symbolic opera-
tors; and an object with an apply method may be “applied” to an argument as if it were
a function.

• Call by Name: a Scala function or method may have have one or more parameters
of type => T, in which case they are given “call by name” semantics and the actual
parameter expression is evaluated anew whenever the formal parameter name is men-
tioned.

• Code blocks: an expression of the form {...} may appear as the actual parameter cor-
responding to a formal parameter of type => T.

The following extracts from the CSO implementation show these features used in the imple-
mentation of unguarded repetition and proc.

/ / From the CSO module : implementing unguarded r e p e t i t i o n
def repeat (cmd : => Uni t ) : Un i t =
{ var go = true ;

while ( go ) t ry { cmd } catch { case ox . cso . Stop ( , ) => go= fa lse }
}

/ / From the CSO module : d e f i n i t i o n o f proc syntax
def proc ( body : => Uni t ) : PROC = new Process ( nul l ) (()= >body )

Implementation of the guarded event notation of section 5 is more complex. The formation
of an InPort .Event from the Scala expression port(guard) =⇒ {cmd} takes place in two
stages: first the evaluation of port(guard) yields an intermediate InPort .GuardedEvent object,
ev; then the evaluation of ev =⇒ {cmd} yields the required event. An unguarded event is
constructed in a simple step.

24The main distributed Scala implementation translates directly into the JVM; though another compiler trans-
lates into the .net CLR. The existence of the latter compiler encouraged us to build a pure Scala CSO library
rather than simply providing wrappers for the longer-established JCSP library.

25In some contexts fuller type information has to be given, as in: { case bv: T => body }. Functions may
also be defined by cases over free types; for an example see the match expression within receiver in section 5.3
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/ / From the d e f i n i t i o n o f InPor t [ T ] : a regu la r guarded event
def apply ( guard : => boolean ) = new I nPo r t . GuardedEvent ( this , ()=>guard )

/ / From the d e f i n i t i o n o f InPor t . GuardedEvent [ T ]
def ==> (cmd : => Uni t ) = new I nPo r t . Event [ T ] ( por t , ()=>cmd, guard )

/ / From the d e f i n i t i o n o f InPor t [ T ] : implementing a t rue−guarded event
def ==> (cmd : => Uni t ) = new I nPo r t . Event [ T ] ( this , ()=>cmd, ()=> true )

Appendix: JCSP Fair Multiplexer

Program 11 shows the JCSP implementation of a fair multiplexer component (taken from [3])
for comparison with the CSO implementation of the component with the same functionality
in section 5.2.

public f i n a l class Fa i rP lex implements CSProcess {
private f i n a l Al t ingChanne l Inpu t [ ] i n ;
private f i n a l ChannelOutput out ;
public Fa i rP lex ( A l t ingChanne l Inpu t [ ] in , ChannelOutput out )
{ th is . i n = i n ; th is . out = out ; }

public void run ( ) {
f i n a l A l t e r n a t i v e a l t = new A l t e r n a t i v e ( i n ) ;
while ( true ) { f i n a l i n t i = a l t . f a i r S e l e c t ( ) ;

out . w r i t e ( i n [ i ] . read ( ) ) ;
}

}
}

Program 11. Fair Multiplexer Component using JCSP


