
Communicating Process Architectures 2008
P.H. Welch et al. (Eds.)
IOS Press, 2008
c© 2008 The authors and IOS Press. All rights reserved.

411

YASS: a Scaleable Sensornet Simulator
for Large Scale Experimentation

Jonathan TATE and Iain BATE

Department of Computer Science, University of York

{jt , iain.bate} @cs.york.ac.uk

Abstract. Sensornets have been proposed consisting of thousands or tens of thou-
sands of nodes. Economic and logistical considerations imply predeployment evalu-
ation must take place through simulation rather than field trials. However, most cur-
rent simulators are inadequate for networks with more than a few hundred nodes. In
this paper we demonstrate some properties of sensornet application and protocols that
only emerge when considered at scale, and cannot be effectively addressed by repre-
sentative small-scale simulation. We propose a novel multi-phase approach to radio
propagation modelling which substantially reduces computational overhead without
significant loss in accuracy.

Keywords. sensornets, networks, simulation, scalability.

Introduction

Wireless Sensor Networks, or sensornets, are an emerging discipline of embedded system and
network design. Large numbers of minimally resourced nodes are equipped with sensors to
monitor their physical environment. Nodes cooperate to manage ad-hoc wireless networks,
within which distributed applications distill voluminous raw data about sensed physical phe-
nomena into meaningful information with utility to end users. Real-time interaction with the
real world is not merely a factor to consider in sensornet design; it is the fundamental purpose
of the sensornet.

Wireless sensor networks are currently at an interesting point in their evolution. Some
real-world deployments have been implemented but at relatively small scale. These small tri-
als have validated the concept as workable and useful. However, despite considerable inter-
est, wireless sensor networks have not yet made the transition from the laboratory to com-
monplace real-world usage. What is holding back these real-world deployments?

One contributing factor is the lack of confidence that a given network design will func-
tion adequately in a given environmental scenario. Few experimental studies employ large
numbers of sensornet nodes, and consequently there is relatively little experimental measure-
ment of sensornet protocol scalability [12]. Until such time as there exists a large number
of previous sensornet installations from which to draw experience, simulation offers a low-
risk and low-cost environment in which to assess the viability of proposed solutions, and to
improve the quality and relevance of any putative solutions. Answers offered by simulation
can be only as good as the model from which simulation results derive. Nevertheless, simu-
lation is a valuable first stage in weeding out unworkable solutions, and in identifying which
options are worthy of further study.

Good practice generally suggests the reuse of existing tools wherever possible to avoid
wasteful duplication of effort. However, where existing tools are inappropriate, unusable,

412 J. Tate and I. Bate / YASS: a Scaleable Sensornet Simulator for Large Scale Experimentation

or simply unavailable, it is often necessary to develop new tools to address pressing needs.
Most existing simulators focus on low-level simulation of small networks [34]. However, this
is infeasible where many simulation instances are required to rigorously explore parameter
landscapes, for example in protocol evolution or multi-objective optimisation experiments.

Poor performance also precludes the simulation of large sensornets. This latter point is
of key importance where interesting behaviours are evident only in large sensornets, and in
assessing the capability of candidate protocols at scale. Most existing simulators can handle
at most a few hundred nodes before runtime becomes intolerable, as poor time complexity
implies lengthy wall time for network problem instances of moderate but realistic scale [16].
Real sensornets may contain thousands of nodes, and proposals exist for sensornets contain-
ing millions of nodes. It is clear that simulation scalability cannot be ignored in this context.

The decision was therefore taken to develop yass, “Yet Another Sensornet Simulator”.
yass is a high-level sensornet simulator which prioritises speed over accuracy to render fea-
sible the exploration of large sets of scenarios in acceptable time. Our current work uses yass
to model sensornets for a wide range of purposes including the tuning of existing protocols,
the design of new protocols, and multi-objective optimisation of sensornet applications.

The structure of the remainder of this document is as follows. Section 1 discusses related
work on sensornet simulation. Section 2 enumerates the research objectives addressed by
this paper. Section 3 describes the yass simulator and the novel optimisations it implements.
Section 4 considers the performance profile of these optimisations, and section 5 assesses
the impact on accuracy. Section 6 describes experiments to validate yass. Finally, section 8
presents conclusions against the research objectives.

1. Related Work

Sensornet design and evaluation frequently requires simulation and emulation; large-scale
testbeds or field trials are infeasible and costly [4]. Formal analysis of sensornets may [18]
or may not [30] be feasible; regardless of feasibility, it is rarely attempted.

Investigators must determine acceptable accuracy-scalability tradeoffs [31]; simulation-
derived results are meaningless if simulated behaviour does not sufficiently match real be-
haviour [29] and are particularly sensitive to timing discrepancies [23]. Wireless communi-
cation models are usually the component with highest computational cost [27] but represent
the greatest source of inaccuracy [20].

Discrete event simulators are well suited to computer network simulation [3]. Simulation
models [4] are constructed, similar to those used in model checking [33], and executed in sim-
ulation engines [13]. Incorporating real application code, execution environments, hardware,
network connections, or other real entities, into simulation models yields emulation models
[13], improving accuracy but harming scalability [35]. Real and simulated entities interact
directly in hybrid simulations [24].

Numerous sensornet-relevant simulators and emulators exist. Unfortunately, no current
examples offer total accuracy or reach desired scalability. TOSSIM offers cycle-accurate low-
level emulation of Berkeley motes running TinyOS but very simplistic network modelling
[25]. More detailed modelling might be required where observable phenomena are very sen-
sitive to minor variation in network conditions [20].

ns-2, the predominant network simulator in sensornet research [25,5], uses highly-
detailed network models [5] but is single-threaded [16] and scales only to around 100 sim-
ulated nodes [27]. ns-2 was not originally designed for wireless network simulation, sup-
port for which must be added through extensions [5]. Much of the popularity of ns-2 can be
attributed to the breadth of reusable libraries and protocol models developed by numerous
researchers. However, the complexity stemming from this lack of focus and the underlying

J. Tate and I. Bate / YASS: a Scaleable Sensornet Simulator for Large Scale Experimentation 413

architecture can make working with or extending ns-2 time-consuming and difficult [16].
J-Sim offers similar facilities to ns-2, also providing a component model which can be

scripted and customised through the Tcl language. J-Sim is less widely used than ns-2 but
better suited to sensornet simulation as it was designed for this purpose, and has more detailed
support for modelling physical environments and network-environment interaction. It also
offers limited multithreading support within a single processing host [2].

The high computation cost of network simulation might be addressed by task parallelisa-
tion. Interentity communication across parallel simulation hosts [32] may negate some bene-
fit of additional processors by Amdahl’s Law [1,34]. However, this is not to say that parallel
processing has no role to play, merely that care must be taken to ensure that simulator designs
work harmoniously with the characteristics of a given target parallel processing environment.

Simulating sensornet-scale networks of millions of nodes requires entity concatenation
[3] and layer concatenation [5] to reduce memory footprint [6], further sacrificing simula-
tion accuracy. GloMoSim exploits parallel execution by multithreaded simulation, scaling to
10000 simulated nodes across 10 processors [38]. However, to achieve this scale GloMoSim
consolidates many independent entities of the simulated system into single compound enti-
ties, necessarily sacrificing low-level accuracy for performance.

2. Research Objectives

Given a set of typical and broadly comparable sensornet configurations, and a typical sen-
sornet application implementing a tuneable networking protocol, we define the following
objectives that form the principal contributions of this paper:

Objective 1: Identify techniques through which to improve upon the performance of existing
sensornet simulators

Objective 2: Measure the extent to which these optimising techniques improve performance
and enable larger-scale simulation

Objective 3: Improve the range of simulated network measures made available to the inves-
tigator

Objective 4: Validate optimised simulation to ensure that performance gains do not sacrifice
solution quality

3. Yet Another Sensornet Simulator

yass (Yet Another Sensornet Simulator) is distributed under the GNU General Public Li-
cense. Source code and API documentation can be downloaded from the project web pages:
http://www.cs.york.ac.uk/rts/yass/

3.1. Motivation and Concept

Simulation is an important and accepted tool for network researchers, offering reduced cost,
time and risk in comparison to real-world experiments. They represent a sensible first step in
development, and are of particular importance where real-world experiments are infeasible.

It could be argued that researchers would be well advised to reuse one of the numerous
extant network simulators in their investigative work. However, common practice in the net-
work research community does not follow this strategy. One study of 287 peer-to-peer net-
work research papers [26] finds that approximately 49% obtain experimental results through
simulation. Of these 50% do not mention which simulator was used, and 30% use a custom
simulator for which there has usually been no attempt to perform empirical validation. Al-

414 J. Tate and I. Bate / YASS: a Scaleable Sensornet Simulator for Large Scale Experimentation

though some cases may be explained by “Not Invented Here syndrome”, these figures sug-
gest that experimenters are often forced to develop their own tools where no existing tool is
adequate for the task in hand.

As the name suggests, yass is simulation software for evaluation of sensornets and sen-
sornet applications in silico. The main principle underpinning the design of yass is that signif-
icant performance gains are possible without sacrificing accuracy, simply by avoiding unnec-
essary work. If the results of a calculation will never be used, then that calculation should not
be performed. yass addresses two aspects of simulation in which this approach yields useful
performance gains; the production of statistical measures, and radio propagation modelling.

3.2. Statistical Measures and Event Traces

Statistics offer a powerful tool with which to understand the behaviour of networks and net-
working protocols at an appropriate level, without becoming swamped with the great quan-
tities of unnecessary detail pertaining to the mechanisms underpinning the higher-level be-
haviour. Unfortunately, many existing simulators are weak at revealing statistical information
required by investigators [26] such as delivery latency or throughput.

This is particularly true where investigators do not know in advance which statistical
measures will provide the answers they require, and hence these required measures are not
taken; the experiments must be repeated. Conversely, valuable resources are often squandered
in the production of a myriad of metrics in which the investigator has no interest and are not
required by the simulator itself.

yass takes a different approach. As the simulation progresses noteworthy network events
are recorded in an event trace [17]. This event trace records the behaviour of the simulated
network elements rather than that of the simulator, and is backed by a relational DBMS to
enable large datasets to be handled efficiently and to allow the usage of common data analysis
tools. Each event is timestamped by simulation time rather than wall time to allow events
to be logged out of their natural ordering, for example when two or more event-generating
processes are scheduled unpredictably.

Standard trace operations can be applied during trace analysis. The trace sequence con-
sists of the interleaving of all subsequences deriving from individual nodes, such that re-
striction might be applied to filter those events relating to network elements of interest to
an investigator, or specific traffic flows. If the desired behaviour of a given network protocol
is well-defined it is possible to determine whether a given trace records correct or incorrect
network behaviour by determing whether that trace is in the set of all possible correct traces.
This offers a powerful non-statistical tool for network analysis by simulation.

Statistical measures are not taken online during simulation but are instead obtained post
hoc from the event trace offline, allowing data mining across multiple scenarios and extrac-
tion of metrics not originally considered by investigators. We demonstrate this principle in
section 6 by running sets of simulations, then upon completion analysing multiple recorded
simulation traces to derive metrics. These observations address Objective 3’s requirements.

The tradeoff for these performance gains is that metrics are not available during simula-
tion. Should investigators require online metric availability for online scenario adaptation it
is possible to calculate these from a partial trace at the point of usage by the same method as
applied to the complete trace at the end of the simulation.

3.3. Radio Propagation Model

Scalability is a weakness of many existing simulators [4]. Proposed sensornets may involve
thousands or tens of thousands of nodes, but most existing simulators struggle with more
than a few hundred simulated nodes [16]. Scalability problems generally stem from O(n2)

J. Tate and I. Bate / YASS: a Scaleable Sensornet Simulator for Large Scale Experimentation 415

growth in possible node pair interactions, depending ultimately on interacting broadcasts in
the shared wireless medium.

yass implements a three-phase radio propagation model to calculate damage sustained
to messages being received at sensornet nodes inflicted by other concurrent transmissions
that cannot be prevented by the CSMA mechanism. A corollary is that nodes which are
not receiving messages need not be tested at all. This considerably reduces the computation
overhead for lightly-loaded networks.

The phases are ordered by increasing cost such that expensive tests are only applied
when strictly necessary. As soon as the simulator has determined that a given packet recep-
tion has already been damaged beyond the capability for error detection and correction pro-
cesses to recover, there is no benefit in applying further checks. This effectively implements
a lazy evaluation approach explicitly in the simulation model, rather than implicitly through
a language which supports lazy evaluation.

Phase one considers random environmental noise not influenced by network activity.
Phases two and three apply a clipping strategy to determine nodes posing an interaction risk
due to proximity. Phase two considers nearby nodes which are very likely to cause reception
corruption, obtaining a fast first approximation. Phase three obtains a better approximation
using a more expensive calculation. This multi-phase approach, outlined in Algorithm 1,
addresses the requirements of Objective 1.

3.3.1. Three-Phase Radio Algorithm

Consider a sensornet composed of similar nodes distributed in a plane. Assume some node,
N, is currently receiving a message being transmitted in the wireless medium by some other
node, T . Background 1/f noise is present at all times but can be rejected at N provided it is
sufficiently weak. Inevitably, however, bursts of noise above the rejection threshold will be
observed at a predictable rate but at unpredictable times [22]. Lines 1 to 1 of Algorithm 1
model this effect, phase 1 of the algorithm.

Within a circle of radius r, the typical communication range of the node hardware, exist
other nodes with which N can reliably detect, receive and send messages. Nodes enclosed
by r can reliably communicate with N through the wireless medium, or can refrain from
transmitting if the local wireless medium is determined busy by CSMA.

However, it is feasible that N could lie between two other nodes O and P, such that
||−→NO|| ≤ r and ||−→NP|| ≤ r but ||−→OP|| > r. If N is receiving from O at some time, P cannot
detect this and may start to broadcast simultaneously. This broadcast by P is very likely to
corrupt the unrelated reception at N, as ||−→NP|| is within broadcast range. This hidden terminal
problem [11] is addressed by lines 1 to 1 of Algorithm 1 which describe this second phase.

This offers a good first approximation and has been successfully employed in wireless
ad-hoc network research [9] but may not in isolation capture all relevant behaviour. It is
known that nodes can occasionally exert influence at a surprisingly long distance [12], as
signals are merely attenuated with distance in the wireless medium rather than abruptly dis-
appearing. On the other hand, if two nodes are sufficiently distant the probability of their
interaction is vanishingly small, and the impact on network behaviour is negligible.

We address this by considering nodes falling within an annulus defined by radii r and s,
where r < s and s is beyond the communication range of nodes. Consider a node Q falling
within this annulus. Reliable pairwise communication between N and Q is impossible as
||−→NQ|| > r. However, as ||−→NQ|| ≤ s, N and Q are sufficiently close that some interaction
between N and Q is possible due to random fluctuations in the wireless medium, transmission
gain of Q, and reception gain of N.

In other words, should Q broadcast at full power the effective power received at N is

416 J. Tate and I. Bate / YASS: a Scaleable Sensornet Simulator for Large Scale Experimentation

Algorithm 1 : Three-phase radio algorithm
1: for each node, n do
2: determine if n is actively receiving data
3: if n is currently receiving then
4: determine if environmental noise corrupts reception at n
5: if reception corrupted at n by noise then
6: reception at n fails
7: jump back to line 1 for next n
8: end if
9: find set of nodes R with distance < r

10: for each node, m, in R do
11: if m is transmitting then
12: reception at n fails
13: jump back to line 1 for next n
14: end if
15: end for
16: find set of nodes S with r < distance < s
17: for each node, m, in S do
18: if m is transmitting then
19: apply expensive radio model to find effective received power, p, from m at n
20: if p > sensitivity(n) then
21: determine if error detection + correction at n can nullify influence of p
22: if error correction fails at n then
23: reception at n fails
24: jump back to line 1 for next n
25: end if
26: end if
27: end if
28: end for
29: end if
30: end for

below the sensitivity threshold but at times might interfere with an unrelated signal being
received at N. For nodes like Q we must consider the distribution function for effective re-
ceived power at N; sometimes the received power will be above the threshold and at other
times below. It is for nodes like Q that the higher cost of sophisticated but expensive radio
interference models can be justified. Lines 1 to 1 of Algorithm 1 describe this third phase.

Finally, consider a node X located such that ||−→NX ||> s. X is sufficiently distant from N
that, should X transmit at full power, the effective received power at N is below the sensi-
tivity threshold even when random fluctuations are taken into account. Transmissions from
X cannot be distinguished from background noise at N, and hence need not be considered
at all in Algorithm 1. In large networks there may be many such distant nodes, and hence a
significant saving can be obtained by this optimisation.

In non-planar networks radii r and s define spheres rather than circles and annuli but the
algorithm remains unchanged. For a given point isotropic source the enclosing surface de-
fined by a given radius is a hollow sphere of zero thickness provided that transmission occurs
in an empty void. An infinite number of such surfaces can be defined for the continuous range
of possible attenuation, with zero radius representing zero attenuation and infinite radius rep-
resenting full attenuation. If transmission does not occur within an empty void it is appropri-
ate to instead interpret radii r and s as nonspherical surfaces of equivalent attenuation, with

J. Tate and I. Bate / YASS: a Scaleable Sensornet Simulator for Large Scale Experimentation 417

equivalent results. Surfaces of equivalent attenuation for complex radio environments may
be defined by surveying deployment regions or by specialised propagation models, but only
spherical surfaces are considered within the scope of this paper.

3.3.2. Cost Analysis

From the definition of Algorithm 1 it is evident that the number of computational steps is
dependent on the size of various sets of nodes defined for each message-receiving node.
Assume all network nodes are found in the set N, and that all nodes are alike. For each node
x ∈ N, the following sets are defined:

• Ax: all other nodes within radius r with which reliable communication is possible
• Bx: all other nodes within radius s with which interaction is possible, where Ax ⊆ Bx
• Cx = Bx \Ax: all other nodes with which interaction is possible but reliable communi-

cation is impossible
• Dx = N \Bx: all other nodes with which no interaction is possible

Ax, Bx and Cx can either be defined implicitly by deciding set membership at the point of
use, or precalculated and cached for improved efficiency under a staged simulation approach
[36]. Note that the cost of maintaining these cached sets is non-trivial for networks containing
mobile nodes, being O(n2) in total node count to rebuild. Membership of Dx need not be
defined explicitly as members cannot interact with x and play no role in Algorithm 1.

The cardinalities of Ax, Bx and Cx are independent of total network size, and are depen-
dent only on spatial density in the region around x. Clipping spheres of radius r and s centred
on a given node, x, enclose the volumes vr and vs respectively. Multiplying these volumes
by the local node density (measured in node m−3) yields the number of nodes mxr and mxs
falling within clipping spheres of radii r and s respectively.

From these node counts we see that |Ax|= mxr, |Bx|= mxs, and |Cx|= |Bx|−|Ax|. Each is
O(d) in local node density d and O(1) in overall network size. Assuming uniform spatial node
distribution and homogenous nodes throughout the network we can ignore the identity of
node x, yielding |A|, |B| and |C|. These set cardinalities, and the corresponding computational
cost per individual node, are independent of total network size, a highly desirable property
for scalable simulation of large networks.

3.3.3. Complexity Analysis

Consider the total cost for all nodes passively monitoring the wireless medium, waiting to
begin receiving data. For a given node x ∈ N we need check only members of Ax for starting
transmissions as other nodes cannot establish communications with x. Assuming each pair-
wise check completes in constant time, uniform |A| for all nodes, and i idly listening nodes,
the total cost is i|A|. If i is O(n) in network size and |A| is O(d) in spatial density d, total
cost is O(nd) and hence linear in total network size |N|. A similar cost is observed for nodes
establishing that the local wireless medium is free prior to packet transmission as this entails
similar local passive monitoring.

Consider the total cost for all nodes actively transmitting to the wireless medium. Triv-
ially this is zero, and hence O(1) in network size |N|, because after transmission of the packet
body begins the transmitting node makes no further checks on the local wireless medium.

Now consider the total cost for all nodes actively receiving from the wireless medium.
As described in Algorithm 1 in the worst case this requires for each node x ∈ N to perform
pairwise checks between x and all potentially interfering nodes y ∈ Bx. In the worst case the
radii r and s are such that for each node x ∈ N a significant proportion of N is represented
in Ax and Bx, and every ongoing message reception must be tested against every ongoing
message transmission.

418 J. Tate and I. Bate / YASS: a Scaleable Sensornet Simulator for Large Scale Experimentation

Assume at some time t that some proportion αt of nodes are actively transmitting and
some proportion βt of nodes are actively receiving, with αt ,βt ∈ [0,1] and αt + βt ≤ 1. The
set of transmitters, F , has |F |= αt |N|, and the set of receivers, G, has |G|= βt |N|. Under the
optimised model the number of pairwise interaction tests required is no greater than |F ||G|=
αtβt |N|2, as opposed to the |N|2 tests required under the unoptimised model. Optimised cost
remains O(n2) in network size |N| if total network activity is dependent on network size
as described above. However, as αt ,βt ∈ [0,1] optimised cost is generally lower, and never
higher, than unoptimised cost.

As αt ,βt → 0, network activity decreases and cost savings under optimisation increase.
Total cost under the optimised model only reaches that of the unoptimised model when every
node is actively participating in network activity, and every node potentially interacts with
every other node. This is of particular relevance to the simulation of sensornets, in which
network traffic is minimised in order that energy consumption resulting from network activity
be minimised. Energy-efficient network applications accordingly require less real time for
simulation to complete.

3.4. Parallelism

yass is a time-driven rather than event-driven simulator, in which any simulated entity can
interact with any other and simulated time progresses in small increments. There is no re-
quirement that consistency must be maintained during the calculations which progress from
one consistent state to another, but each simulated time increment transforms the simulation
model from one consistent state to another consistent state. A dependency exists from any
given state to the preceding state from which it was derived, implicitly requiring that the se-
quence of simulated periods must be addressed sequentially. However, there is no require-
ment that calculation within a simulated period be conducted serially.

The radio model described in section 3.3 enables the most costly element of the simula-
tion to be addressed using parallelism. Within each simulated period the three phases of the
radio model must be executed serially. Within each phase the work can readily be divided
between any number of processing units, and the results combined prior to commencing the
next phase. This is feasible because each calculation considers only a single pairing of nodes
which can be performed independently of all other pairings, and can be performed without
large volumes of shared state. However, this implies the existence of a single master which
delegates work to numerous slaves, regardless of whether this delegation uses multiple CPU
cores, multiple clustered hosts, or any other similar architecture. The delegation of node pair-
ings need only be performed once if the set of simulated nodes and the set of processing units
does not change, though fresh data would need to be distributed for each simulation quantum.

Although there is no fundamental impediment to concurrent execution of sections of
the simulation model, the current implementation of yass uses a purely sequential approach
as the bottleneck is I/O throughput rather than CPU speed. Recording the event trace from
which statistical measures and network metrics are derived (see section 3.2) can generate data
at a rate orders of magnitude greater than typical hard disks can store it. It follows that no
real performance gain would be observed by splitting the processing work between multiple
processing units unless atypically high-performance storage resources are available. This is a
consequence of prioritising offline processing over online processing in the simulator design.

In the absence of performance gain in a typical execution environment the decision was
taken to favour a simple serial implementation of the radio algorithm. However, if I/O volume
could be reduced by capturing fewer simulated events, or by storing only a representative
sample of all simulated events, CPU capacity could become the primary bottleneck. Under
this condition it would be highly desirable to re-implement the radio model in yass to exploit
fine-grained parallelism as described above. In the first stages of experimental work the key

J. Tate and I. Bate / YASS: a Scaleable Sensornet Simulator for Large Scale Experimentation 419

challenge is often to establish which of the measurable values yield useful insight. Once this is
known it is possible to reduce the volume of data captured to the bare minimum necessary to
derive the required measures and discard the remainder, increasing the feasibility of obtaining
useful performance improvements through exploitation of parallelism.

The current implementation of yass does exploit coarse-grained parallelism. One of the
main use cases of the simulator is to efficiently explore parameter landscapes through large
numbers of simulations, each test case evaluating some fixed point of the landscape. Several
such test case simulations can be executed in parallel in separate threads as simulations do not
interact, allowing simple test suite coordination with no interthread coordination overhead
other than managing access to disks constituting the database backing storage.

yass has built-in support for scripting large numbers of simulation scenarios and schedul-
ing n such simulations to be running at all times until the set of test cases is exhausted. Usu-
ally n would be defined to be equal to the number of CPU cores available on the host; setting
it lower allows these cores to be devoted to other work, whereas setting it higher yields no
further performance gains. Again, I/O throughput is the limiting factor on overall simulation
throughput, but more efficient use of I/O is possible as other threads can continue to make
progress while any given thread performs I/O activity.

3.5. Implementation Details

yass is a time-driven rather than event-driven simulator. The times at which simulated events
occur are quantised to the boundaries of discrete periods during which the simulation model
transitions from one consistent state to another. Shorter quanta yield greater accuracy but
slower progress. The length of all such quanta need not be equal, such that a smaller simula-
tion quantum could be applied for network periods of particular interest to the researcher or
during which network behaviour is particularly sensitive to inaccuracy.

The simulator is written in the Java language and as such can be executed without recom-
pilation on any host with a Java Virtual Machine capable of supporting at least version 5.0 of
the Java language. The event trace data is managed by a DBMS accessed through JDBC. The
Apache Derby DBMS is used by default to minimise end-user configuration, but any DBMS
which supports at least SQL-92 and is accessible through JDBC should be compatible.

All simulated entities are represented as objects which are responsible for managing
their own state. As a consequence there is very little global state to be managed. Nodes
are composed of hardware modules, each of which can adopt a number of states to balance
performance and energy efficiency. Hardware module state can be changed by other modules
or by the application, either immediately or through a built-in scheduler. Applications are
composed of a set of packet producers, a chain of packet consumers, and a packet dispatcher.

4. Evaluating Performance

A set of timing experiments was run to assess the performance of yass. Each experiment was
repeated nine times on the same machine to minimise influence of outliers and to smooth the
effects of the stochastic simulated application. The GNU time command was used to measure
CPU time allocated by the scheduler, with timing data given to ±1×10−2s precision. Each
problem instance reused the same simulated network, to block effects of uncontrolled factors,
for each of 21 distinct rebroadcast probabilities distributed evenly in the interval [0,1] running
for a fixed number of simulated seconds. Packet source and destination node was randomly
selected for each packet.

The first two experiments considered performance for simulated networks of size rang-
ing between 50 and 1000 nodes, varying in 50 node increments, with constant spatial density
of 4.0×10−8 node m−3. Simulated nodes were based on the MICA2 mote [8] with an IEEE

420 J. Tate and I. Bate / YASS: a Scaleable Sensornet Simulator for Large Scale Experimentation

802.11 MAC layer and radio range of around 150m, although this detail is irrelevant to sim-
ulation runtime. The first experiment was conducted with the optimisations of Algorithm 1
enabled, and the second with these optimisations disabled. The results are shown in figure 1.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 200 400 600 800 1000

T
im

e
(s

)

Network size (nodes)

Network size versus simulation runtime

Without optimisations: A
With optimisations: B

Figure 1. Network size versus simulation runtime

Trace A shows the runtime with simulation optimisations disabled, and trace B with
simulation optimisations enabled. It can be seen that in all cases the runtimes illustrated in
trace B are less than those of A, indicating that in all problem instances considered here the
optimisations offer measurable time savings.

Trace A approximates a quadratic curve, which is as expected from the O(n2) behaviour
predicted by section 3.3. The plotted curve is not perfectly smooth, an expected consequence
of experimental noise induced by the simulated network application’s stochastic behaviour.

Trace B also approximates a quadratic curve but with much shallower curvature, again as
predicted by section 3.3. The curve of trace B is sufficiently shallow when considered against
trace A that a linear approximation is reasonable within this range of network sizes.

Very large networks of the order of tens of thousands of nodes may require adoption of
further abstractions in order for simulations to complete in acceptable time [38]. Most such
abstractions would adversely affect simulation accuracy, so care must be taken to minimise
this effect. Ideally these abstractions would follow the natural structure of the network.

For example, with clusters of multiple cooperating nodes, each cluster could be repre-
sented as a single entity when modelling intercluster traffic. However, experiments using sim-
ulations of the order of thousands of nodes are entirely feasible with commodity hardware
without these additional abstractions and sources of inaccuracy.

The latter two experiments considered performance for networks of density ranging be-
tween 1.0× 10−8 and 1.2× 10−7 node m−3, with constant network size of 500 nodes. The
third experiment was conducted with simulation optimisations enabled, and the fourth with
optimisations disabled. Nodes were based on the MICA2 mote [8] with an IEEE 802.11 MAC
layer and communication range of around 150m, although again this detail is irrelevant to
runtime. Results are shown in figure 2.

Figure 2 shows two traces for simulations of the same problem instances. Trace C shows
runtime with simulation optimisations disabled, and trace D shows runtime with simulation
optimisations enabled. It can be seen that in all cases the runtimes illustrated in trace D are

J. Tate and I. Bate / YASS: a Scaleable Sensornet Simulator for Large Scale Experimentation 421

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 2 4 6 8 10 12

T
im

e
(s

)

Network density x 10^-8 (nodes m^-3)

Network density versus simulation runtime

Without optimisations: C
With optimisations: D

Figure 2. Network density versus simulation runtime

less than those of C, indicating that in problem instances considered here the optimisations
offer measurable time savings.

Simulation runtime increases in network density, but traces C and D show runtime
asymptotically approaching maximum values as density increases. Potential communication
partner count per node grows with increasing density, with commensurate growth in pairwise
communication as packets are flooded to more neighbours.

However, as each message transmission occupies the wireless medium for non-zero time
there is also growth in network congestion. Simulated packets have length randomly selected
in the interval [128, 1024] bits, including header. With the MICA2 radio having transmit
speed of 3.84× 104bits−1 [8] this gives per-packet transmit times in the interval [3.33×
10−3,2.67× 10−2] seconds. When packet transmission begins the local wireless medium is
occupied for some duration in this interval.

The tendency for network traffic to increase as more pairwise message exchanges be-
come possible is countered by the tendency for increased congestion to restrict pairwise mes-
sage exchange, as illustrated in figure 3. As density increases the level of attempted network
activity increases, but there is decreasing spare capacity in which to accommodate the addi-
tional potential traffic.

Small periods in which the wireless medium remains unused are an expected conse-
quence of the simulated stochastic application, becoming sparser and smaller in the time do-
main as the network becomes busier. CSMA with exponential backoff defers packet transmis-
sion until the wireless medium is free, when it is implicitly claimed for the full transmission
period. There is no local or global coordination of traffic beyond this mechanism.

As network utilisation increases there are decreasingly many unoccupied periods fit-
ted between occupied periods because increasingly many nodes attempt to claim the
wireless medium per unit volume. Unoccupied periods tend to become shorter as many
simultaneously-running backoff procedures attempt to claim the medium.

Smaller packets occupy the wireless medium for a smaller period, accommodating more
packets within a given duration. Packets are forbidden from becoming smaller than the min-
imal header size, an integral number of bits, and hence it is not possible for the network to
fill all unoccupied timeslots with sufficiently small transmissions. Eventually the network

422 J. Tate and I. Bate / YASS: a Scaleable Sensornet Simulator for Large Scale Experimentation

becomes saturated with the wireless medium occupied in places at all usable times.
This pattern of behaviour in which each subsequent increase in network density yields

a smaller increase in simulation runtime suggests that a reasonable approximation to the
observed behaviour could be obtained by fitting a logarithmic or harmonic series to the data
points over the range of densities considered in the experiment.

 40

 50

 60

 70

 80

 90

 100

 0 0.2 0.4 0.6 0.8 1

D
el

iv
er

y
ra

te
 %

Gossip probability

Point-to-point delivery success

Transmit success
Receive success

Figure 3. Point-to-point success vs rebroadcast probability

5. Evaluating Accuracy

A set of experiments were run to assess the influence of the proposed simulation optimi-
sations on the accuracy of measured network metrics. Note that the scope of this section
is restricted to comparison within the yass context, and does not address other simulation
environments. General simulation validation is considered in section 6.

Each simulation reused the same 200-node network and simulated application, thus pro-
viding blocking of uncontrolled factors. Simulated nodes were based on the MICA2 mote [8]
with an IEEE 802.11 MAC layer and radio range of around 150m. A single controlled factor,
rebroadcast probability, was varied within the interval [0,1] with 10 intermediate steps. Each
simulation was repeated 9 times and the arithmetic mean taken for each of three network
performance metrics. The simulation set was repeated both with and without optimisations
enabled, and the results plotted on the same axes for comparison.

Figure 4 illustrates the success rates for point-to-point packet transmission, point-to-
point packet reception, and end-to-end packet delivery. For each metric there are a pair of
traces; one obtained with, and one without, simulation optimisations enabled. It can be seen
in each case that the paired traces are very similar across the range of gossip probability
values considered in these experiments.

Experimental errors introduced by simulation optimisations are indicated by any diver-
gence between the plots for a given metric. Trace pairs for the point-to-point metrics are so
close as to be indistinguishable. The trace pair for the end-to-end metric shows slight diver-
gence, resulting from compounding of multiple smaller point-to-point errors and borderline
cases along delivery paths.

J. Tate and I. Bate / YASS: a Scaleable Sensornet Simulator for Large Scale Experimentation 423

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.2 0.4 0.6 0.8 1

S
uc

ce
ss

 %

Gossip probability

Network activity success

Point-to-point TX, unoptimised
Point-to-point RX, unoptimised

End-to-end TX, unoptimised

Point-to-point TX, optimised
Point-to-point RX, optimised

End-to-end TX, optimised

Figure 4. Network metrics with/without optimisation

With each point-to-point packet exchange the abstraction of the simulation model is a
source of inaccuracy. A multi-hop delivery path has numerous such point-to-point exchanges,
and hence compounds this inherent error for each hop. However, we see from Figure 4 that
cumulative experimental error magnitude remains very small in comparison with the magni-
tude of the measured values.

More importantly, the overall trends and general shapes of response curves are retained
when comparing the paired unoptimised and optimised traces. This is significant for exper-
imenters seeking to identify emergent effects in large-scale network behaviour, or to estab-
lish the relative merit of two or more candidate protocol configurations. Under these experi-
mental goals it is more important that relative trends and orderings across the parameters are
demonstrated than to obtain accurate absolute values for any solution quality metric.

Where accuracy is prioritised, experimenters can employ a two-phase approach. yass
can be used to quickly establish which input configuration gives the most desirable simulated
behaviour. A more detailed but slower simulator can then be used to obtain accurate absolute
response measures yielded by this optimal input configuration.

Combining the findings of sections 3.3, 4 and 5 it can be seen that the proposed optimi-
sations allow simulations to be completed in significantly reduced time with only a minimal
impact on solution accuracy. This addresses Objective 2 as defined in section 2.

6. Validating Simulation Results

We have demonstrated that the novel optimisations implemented by the yass simulator offer
real and substantial performance improvements. However, these improvements are of little
consequence if the accuracy of simulation results is unduly compromised. We examine the
quality of solutions obtained under optimised simulation by validating yass against theoret-
ical findings and experimental results published elsewhere, and examining observed trends
against expected behaviour. We also consider the advantage conferred by simulating larger
sensornets by comparing against results derived from smaller-scale simulations. The experi-
ment designs and results described in this section address the requirements of Objective 4.

424 J. Tate and I. Bate / YASS: a Scaleable Sensornet Simulator for Large Scale Experimentation

All experiments simulate networks employing the GOSSIP1(p) protocol defined by Haas
et. el. [14] with gossip probability, p, taking 21 values with equidistant spacing in the in-
terval [0,1]. This simple protocol was selected as it has been thoroughly examined in the
literature [14,37], which predicts a readily-identifiable and theoretically explicable sigmoid
curve when gossip probability is plotted versus end-to-end delivery success rates. Presence
(or absence) of this characteristic curve is deemed indicative of the accuracy (or inaccuracy)
of the yass simulator. Additionally, flooding and gossiping protocols are essential compo-
nents of many more sophisticated protocols. For example, AODV [28] and DSR [19] use
simple flooding for route discovery, but may observe improved performance by substituting
probabilistic gossiping [14].

Each value of p is evaluated within an otherwise-identical simulated problem instance
for blocking of uncontrolled factors. Each simulation instance is repeated 10 times and the
arithmetic mean of the analytical results plotted. Each plotted curve therefore represents the
outcome of 210 independent simulation runs. Each simulation continues until 60 seconds of
simulated time elapse, allowing performance metrics to settle on stable values.

Simulated nodes are modelled on the MICA2 mote [8] with IEEE 802.11 MAC layer and
radio range of around 150m, and always transmit at maximum available power and maximum
available rate. Two networks are considered of 100 nodes and 1000 nodes respectively, with
the former being a subset of the latter. Spatial distribution of nodes within a bounding volume
is random and even, with constant spatial density of 4.0×10−8 node m−3.

The simulated application assumes a flat network hierarchy. Each node acts as a packet
destination and periodic source, with any source-destination pair being equally likely in a
unicast communication paradigm. Offset, period, and per-period production probability differ
between nodes, but remain constant throughout and between simulations. Simulated packets
have length randomly selected in the interval [128, 1024] bits, including header.

It is assumed that delivery of a given packet fails if it does not arrive at the intended
destination node prior to the end of the simulation. Point-to-point packet exchange may fail
due to corruption wherever a nearby node is transmitting with sufficient power, for example
due to the hidden terminal problem [11]. Stochastic failure may also result from background
noise with probability of 0.05 over the duration of each transmission.

6.1. Bimodal Delivery Behaviour

Previous results published in the literature predict bimodal behaviour for probabilistic re-
broadcast algorithms such as gossiping [14,37]. As rebroadcast probability is increased it
passes through a critical value. Below this critical value it is expected that packet distribution
dies out quickly, and few nodes receive the packet. Above this critical value it is expected
that most packets will reach most nodes.

Figure 5 demonstrates the end-to-end delivery ratio versus rebroadcast probability for a
typical network and networked application employing the gossiping protocol. Graphing ex-
perimental results for the 1000-node network yields the sigmoid shape predicted in the litera-
ture [14,37], in which the steepest curve section contains the critical probability predicted by
theoretical analysis. This demonstrates qualitatively that the relationship between rebroadcast
probability and end-to-end delivery ratio is as expected. Quantitatively, rebroadcast proba-
bilities in the interval [0.6, 0.8] are expected to deliver most packets to most nodes [14]. In
figure 5 we see that for p > 0.65 delivery ratio remains within 90-92%, near-constant within
experimental error, matching expected behaviour.

The 100-node network shows similar but less acutely defined behaviour, as discussed in
the next section. Note also that end-to-end delivery success is higher for the 100-node net-
work than the 1000-node network for small rebroadcast probabilities. This is because a larger

J. Tate and I. Bate / YASS: a Scaleable Sensornet Simulator for Large Scale Experimentation 425

proportion of the network falls within the range of a transmitting node, and hence a greater
proportion of the network is directly reachable without any packet routing mechanism.

The proportion of the network covered by packet flooding grows exponentially in con-
tinuous time, represented by a number of discrete rounds of the flooding algorithm. In each
round, every node which received a given packet in the previous round is a rebroadcast can-
didate. If each node has on average i nodes with which pairwise communication is possible,
the initial packet broadcast at the source node will reach up to i rebroadcast candidates in the
first round. In the second round, if each candidate is able to rebroadcast, then each can reach
up to another i nodes, and so on for each subsequent round.

Assume packet transmission takes negligible time such that network congestion is negli-
gible. Ignoring corrupted broadcasts, and assuming no other network activity, after r rounds
of flooding the number of nodes rebroadcasting the packet in the nth round is ir having re-
ceived the packet in the r−1th round. If the rebroadcast probability is now changed from 1.0
to p we find that the average number of concurrent rebroadcasts is (pi)r. This gives the level
of network activity, and hence potential network congestion, due to this packet at this time.
It is entirely possible that none of the neighbours of a given node will choose to rebroadcast
as there is no local coordination.

At the completion of the rth round, all neighbours of each broadcasting node have been
exposed to the packet, as have the outermost nodes reached in previous rounds. As the rth
round completes, all neighbours of broadcasting nodes have been exposed to the packet in
addition to those exposed in previous rounds. Flooding terminates when there are no further
rebroadcast candidates. Disallowing multiple rebroadcasts of any given packet ensures flood-
ing terminates in finite time, preventing packets endlessly circulating within the network.

Take the number of nodes covered by a packet as nr at the end of the rth round, and
n0 = 1 as the source node has already got the packet before flooding begins. Assume that
a node which has already been considered as a rebroadcast candidate for a given packet in
a previous round is still able to receive that same packet again, even though it will not be
considered as a rebroadcast candidate again. In particular, a node will be able to re-receive
during the next flooding round after it has itself rebroadcast.

If each node has on average i neighbours, and during the rth round there are (pi)r con-
current rebroadcasts, up to i(pi)r nodes can receive a given packet during the rth round. As-
sume that q rounds complete before flooding terminates, q being O(x) in network diameter x
[21]. The total number of possible packet receptions completed at the end of the rth round is

given by
q

∑
r=1

i(pi)r.

Each packet reception represents a delivery of a packet to some node. It is entirely fea-
sible that a given node will receive a given packet multiple times, but will only be a rebroad-
cast candidate on the first reception. Provided that at least one of these successful packet
receiptions occurs at the intended destination, the packet has been delivered.

Any given node is likely to be a potential communication partner for a number of other
nodes. The communication range sphere for any given node is likely to enclose a number of
other nodes, such that the neighbour-node sets corresponding to these spheres are unlikely to
be identical in the majority of cases. Put another way, it is likely that any given node pairing
can be joined by multiple paths through the network graph defined by communication range,
and may therefore receive a given packet multiple times along different routes.

In an otherwise quiet network it is therefore very likely that most nodes will receive at
least one copy of a given packet even if not all nodes rebroadcast this packet on reception.
However, as the expanding ring of network coverage radiates from the source node, it is not
guaranteed that all nodes will have received this packet. For example, nodes may have re-
ceived a corrupted signal, or may have been occupied with unrelated wireless communica-

426 J. Tate and I. Bate / YASS: a Scaleable Sensornet Simulator for Large Scale Experimentation

tions, or may simply have not been near enough to a broadcast.
As p approaches 1.0 the delivery success improvement achieved by increasing it further

becomes smaller. This is because each node can receive a packet from multiple neighbours
but only the first occurrence is necessary for delivery or rebroadcast candidacy. As p grows
larger the proportion of nodes which have received at least one copy of a given packet in-
creases, but most additional network activity induced by this growth simply increases re-
peated reception. The average number of receipts of a given successfully delivered packet
per node grows from exactly 1 to just over 3 as p grows from 0 to 1 in the experiments from
which figures 5 and 6 derive.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.2 0.4 0.6 0.8 1

S
uc

ce
ss

 r
at

e
%

Gossip probability

End-to-end packet delivery success

100-node network
1000-node network

Figure 5. End-to-end packet delivery ratio versus rebroadcast probability for 100-node and 1000-node net-
works

6.2. Emergent Effects at Scale

Further evidence of the merit of larger-scale simulation is found in comparing network per-
formance metrics obtained by simulation of otherwise-similar networks differing in node
count. To observe the behavioural differences between small and large networks we generate
network performance statistics for two networks. The networks differ in size by an order of
magnitude; a 100-node network and a 1000-node network, in which the former is a subset
of the latter. We measure packet delivery success ratio and end-to-end delivery latency, as
measured by Das et al. in earlier comparative work [10], but omit routing overhead as it is
always zero for gossip-based networks.

Consider figure 6 in which end-to-end delivery latency is plotted versus rebroadcast
probability, normalised against maximum latency observed for the corresponding network
size. In both cases we see average end-to-end latency increases until rebroadcast probabil-
ity reaches around 0.4. For the 1000-node network we see that latency peaks around this
rebroadcast probability, and then falls as rebroadcast probability increases further. However,
in the 100-node network we do not see a similar fall in latency as rebroadcast probability
increases further.

Now consider figure 5 in which end-to-end delivery success rate is plotted versus re-
broadcast probability. Both plots follow similarly-shaped sigmoid curves in which delivery
success transitions from subcritical to supercritical state as rebroadcast probability passes a

J. Tate and I. Bate / YASS: a Scaleable Sensornet Simulator for Large Scale Experimentation 427

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

La
te

nc
y

(s
)

Gossip probability

Latency of first receipt

100-node network
1000-node network

Figure 6. Normalised end-to-end latency versus rebroadcast probability for 100-node and 1000-node networks

critical value. However, the expected sigmoid shape is much more clearly defined in the 1000-
node network plot than the 100-node network plot. Increasing network size further yields
ever more sharply defined sigmoid curves. This is consistent with percolation theory which
states that the transition between subcritical to supercritical states becomes more abrupt as
network size increases [37], because the message blocking influence of individual nodes on
the greater network becomes lesser [14].

We observe a qualitative difference in simulated behaviour between the small and large
networks. This is of key importance in the design of real-time networks carrying time-
sensitive data. Although the 100-node network is a subset of the 1000-node network, simu-
lating the smaller network is not sufficient to capture all behaviour demonstated in the larger
network. Whereas other behavioural effects might be evident in simulations of varying scale,
the extent to which these effects are expressed may also vary. This latter observation is of
critical importance where we hope to exploit simulation to discover new effects, rather than
to confirm already-known effects.

Sensornet designers utilising simulation techniques must ensure that the scale of the
simulated network is comparable to that of the proposed real network. This precludes use of
simulators with poor scalability characteristics.

Consider a 1000-node network in which there exists a requirement for average end-to-
end latency to be no greater than 0.8s. A designer with access only to data for 100-node
networks may determine that this requirement can be met only where gossip probability
p < 0.25 (figure 6). However, a designer with access to data for 1000-node networks would
determine that this requirement can be met with 0.00 ≤ p < 0.30, or 0.65 < p ≤ 1.00. If
critical probability pc at which bimodal transition [14] is observed is around 0.4 (figure 5) it
may be greatly preferable to select some value of p > 0.65 to achieve acceptable delivery.

7. Future work

The three-phase radio algorithm described in section 3.3.1 is inherently parallelisable because
each phase consists of a set of independent pairwise node-node tests. The model requires the
preservation of the phase execution ordering only, and does not require any specific ordering

428 J. Tate and I. Bate / YASS: a Scaleable Sensornet Simulator for Large Scale Experimentation

of calculations within phases or prohibit these being performed concurrently. However, the
current implementation in yass performs these tests serially, with coarse parallelism achieved
by running several independent simulations in parallel. Plans exist to reimplement the algo-
rithm in a parallelised form, allowing larger individual simulations to be executed in a given
time, in which each set of tests is divided between a set of threads which may or may not
execute on the same machine. Plans also exist for a GPGPU implementation, exploiting the
cheap power offered by commodity many-core GPUs. The algorithm is an excellent candi-
date for this type of acceleration as it consists of many independent but similar calculations
and small shared datasets, mapping neatly onto GPU kernels and textures respectively [15].

The yass tool serves both as a simulation environment and as a testbed for experimen-
tal simulator components. It would be feasible to extract the three-phase radio algorithm de-
scribed in section 3.3.1 and reimplement this for other network simulators such as ns-2 [5] or
J-Sim [2]. If successful this would permit similar performance improvement in widely-used
simulation tools as in yass. However, the work may be non-negligible and require modifica-
tion of underlying component architecture and interfaces if the data used within the algorithm
are not currently exposed to the simulation components responsible for radio modelling.

Section 6 showed that simulation results obtained using yass are consistent with theo-
retical results and simulation results published by other researchers. It would be useful to
make further comparisons, across a representative cross-section of typical sensornet scenar-
ios, against other simulators and real testbed networks. Showing the results produced by yass
to be equivalent, within some acceptable margin of error, would be sufficient validation to ac-
cept usage of yass in any situation where otherwise a real testbed network or some other less
efficient simulator would otherwise have been required. Unfortunately, within the sensornet
research community there does not currently exist any broadly accepted validation test suite,
the development and acceptance of which is a necessary prerequisite for this work.

Section 3.2 discusses the post-hoc analysis of simulation trace data captured during exe-
cution of test cases. Recording this trace data is generally very expensive due to the number of
distinct elements and overall volume, such that overall simulation performance is I/O-bound.
Reducing I/O overhead would permit more simulated behaviour to be evaluated per unit time,
enabling evaluation of longer simulated periods, evaluation of larger simulated systems, or
simply to obtain results more quickly.

One approach is to record only a partial trace containing some fraction of simulated
events and discard the remainder, with the assumption that the recorded subset is sufficiently
representative of the whole. Sampling approaches such as Cisco NetFlow [7] record every
nth packet, hence reducing the volume of recorded data to 1

n of the unexpurgated dataset.
It would be possible to mandate that simulated time progressed as some multiple of wall
time, dropping any trace records which cannot be recorded within deadline, dynamically bal-
ancing quality and performance. It remains an open question whether these partial sampling
approaches are appropriate in low-traffic wireless sensor networks which are fundamentally
unlike the conventional high-traffic wired LANs for which they were developed.

8. Conclusions

In section 2 a set of desired research objectives was defined, against which we now state our
findings.

Objective 1: Identify techniques through which to improve upon the performance of existing
sensornet simulators

A novel multi-phase model is presented by which computational costs of the most expen-
sive element of sensornet simulation, modelling effects of radio propagation on low-level

J. Tate and I. Bate / YASS: a Scaleable Sensornet Simulator for Large Scale Experimentation 429

communications activity, is reduced substantially.

Objective 2: Measure the extent to which these optimising techniques improve performance
and enable larger-scale simulation

The proposed optimisations transform the quadratic relationship between simulated network
size and simulation runtime to near-linear for networks of the order of 1000 nodes, and that
increased time savings are obtained as network size and network density increase.

Objective 3: Improve the range of simulated network measures made available to the inves-
tigator

Offline analysis performed once at the end of simulation activity can produce any measure
that is producable by online analysis performed continually during simulation but with re-
duced overhead. Offline analysis also enables production of analytical results not foreseen
prior to commencement of simulation activity.

Objective 4: Validate optimised simulation to ensure that performance gains do not sacrifice
solution quality

Simulated results are as predicted by theoretical analysis, and as demonstrated by other sim-
ulators. Simulation results obtained under optimised simulation match closely those obtained
for unoptimised simulation.

Acknowledgements

The authors would like to thank the anonymous reviewers for the helpful and constructive
criticism which was invaluable in the preparation of this document.

References

[1] G. Amdahl. Validity of the single processor approach to achieving large scale computing capabilities. In
Proceedings of the AFIPS Spring Joint Computer Conference, pages 483–485, Atlantic City, April 1967.

[2] A.Sobeih, W. Chen, J. Hou, L. Kung, N. Li, H. Lim, H. Tyan, and H. Zhang. J-Sim: A simulation envi-
ronment for wireless sensor networks. In Annual Simulation Symposium, pages 175–187, 2005.

[3] R. Bagrodia and R. Meyer. PARSEC: A Parallel Simulation Environment for Complex Systems. IEEE
Computer, pages 77–85, October 1998.

[4] S. Bajaj, L. Breslau, D. Estrin, K. Fall, S. Floyd, P. Haldar, M. Handley, A. Helmy, J. Heidemann, P. Huang,
S. Kumar, S. McCanne, R. Rejaie, P. Sharma, K. Varadhan, Y. Xu, H. Yu, and D. Zappala. Improving
simulation for network research. Technical Report 99-702, USC Computer Science Dept., March 1999.

[5] L. Breslau, D. Estrin, K. Fall, S. Floyd, J. Heidemann, A. Helmy, P. Huang, S. McCanne, K. Varadhan,
Y. Xu, and H. Yu. Advances in network simulation. Computer, 33(5):59–67, 2000.

[6] D. Cavin, Y. Sasson, and A. Schiper. On the accuracy of MANET simulators. In Proceedings of the
Second ACM International Workshop on Principles of Mobile Computing, pages 38–43, 2002.

[7] B. Claise. RFC 3954: Cisco Systems NetFlow Services Export Version 9. Downloaded from
http://www.ietf.org/rfc/rfc3954.txt (checked 12/06/2008), 2004.

[8] Crossbow Technology Inc. MICA2 datasheet, part number 6020-0042-08 Rev A.
[9] B. Das and V. Bharghavan. Routing in ad-hoc networks using minimum connected dominating sets. In

IEEE International Conference on Communications (ICC), pages 376–380, 1997.
[10] S. Das, C. Perkins, and E. Royer. Performance comparison of two on-demand routing protocols for ad hoc

networks. In INFOCOM (1), pages 3–12, 2000.
[11] C. Fullmer and J. Garcia-Luna-Aceves. Solutions to hidden terminal problems in wireless networks. In

SIGCOMM’97, pages 39–49, New York, NY, USA, 1997. ACM.
[12] D. Ganesan, B. Krishnamachari, A. Woo, D. Culler, D. Estrin, and S. Wicker. Complex behavior at

scale: An experimental study of low-power wireless sensor networks. Technical Report CSD-TR 02-0013,
UCLA, February 2002.

430 J. Tate and I. Bate / YASS: a Scaleable Sensornet Simulator for Large Scale Experimentation

[13] E. Goturk. Emulating ad hoc networks: Differences from simulations and emulation specific problems. In
New Trends in Computer Networks, volume 1. Imperial College Press, October 2005.

[14] Z. Haas, J. Halpern, and L. Li. Gossip-based ad hoc routing. IEEE/ACM Transactions on Networking,
14(3):479–491, 2006.

[15] M. Harris. GPU Gems 2, chapter 31: Mapping Computational Concepts to GPUs, pages 493–508. Addison
Wesley, 2005.

[16] T. Henderson, S. Roy, S. Floyd, and G. Riley. ns-3 project goals. In WNS2 ’06: Proceedings of the 2006
workshop on ns-2: the IP network simulator, pages 13–20, New York, NY, USA, 2006. ACM Press.

[17] C. Hoare. Communicating Sequential Processes. Prentice Hall International, 1985.
[18] P. Huang, D. Estrin, and J. Heidemann. Enabling large-scale simulations: Selective abstraction approach

to the study of multicast protocols. In MASCOTS, pages 241–248, 1998.
[19] D. Johnson, D. Maltz, and J. Broch. DSR: The Dynamic Source Routing Protocol for Multihop Wireless

Ad Hoc Networks, chapter 5, pages 139–172. Addison-Wesley, 2001.
[20] D. Kotz, C. Newport, and C. Elliott. The mistaken axioms of wireless-network research. Technical Report

TR2003-467, Dept. of Computer Science, Dartmouth College, July 2003.
[21] J. Kulik, W. Heinzelman, and H. Balakrishnan. Negotiation-based protocols for disseminating information

in wireless sensor networks. Wireless Networks, 8(2-3):169–185, 2002.
[22] K. Kundert. Introduction to RF simulation and its application. IEEE Journal of Solid-State Circuits,

34(9):1298–1319, Sep 1999.
[23] O. Landsiedel, K. Wehrle, B. Titzer, and J. Palsberg. Enabling detailed modeling and analysis of sensor

networks. Praxis der Informationsverarbeitung und Kommunikation, 28(2):101–106, 2005.
[24] J. Lehnert, D. Gsrgen, H. Frey, and P. Sturm. A scalable workbench for implementing and evaluating

distributed applications in mobile ad hoc networks. In Proceedings of Mobile Ad Hoc Networks, Western
Simulation MultiConference WMC’04, 2004.

[25] P. Levis, N. Lee, M. Welsh, and D. Culler. TOSSIM: Accurate and scalable simulation of entire TinyOS
applications. In SenSys ’03: Embedded Network Sensor Systems, pages 126–137, 2003.

[26] S. Naicken, A. Basu, B. Livingston, and S. Rodhetbhai. Towards yet another peer-to-peer simulator. In
Performance Modelling and Evaluation of Heterogeneous Networks (HET-NETs) 2006, 2006.

[27] V. Naoumov and T. Gross. Simulation of large ad hoc networks. In MSWIM ’03: Modeling analysis and
simulation of wireless and mobile systems, pages 50–57, New York, NY, USA, 2003. ACM Press.

[28] C. Perkins and E. Royer. Ad-hoc On-demand Distance Vector routing. In Proceedings of Second IEEE
Workshop on Mobile Computer Systems and Applications, pages 90–100, New Orleans, LA, Feb 1999.

[29] L. F. Perrone and D. M. Nicol. A scalable simulator for TinyOS applications. In Proceedings of the 2002
Winter Simulation Conference (WSC’02), volume 1, pages 679–687, 2002.

[30] D. Rao and P. Wilsey. Modeling and simulation of active networks. In Proceedings of the 34th Annual
Simulation Symposium (SS01), pages 177–184, Washington, DC, USA, 2001. IEEE Computer Society.

[31] D. Rao and P. Wilsey. Multi-resolution network simulations using dynamic component substitution. In
Proceedings of the Ninth International Symposium in Modeling, Analysis and Simulation of Computer and
Telecommunication Systems, pages 142–149, Washington, DC, USA, 2001. IEEE Computer Society.

[32] G. Riley, R. Fujimoto, and M. Ammar. A generic framework for parallelization of network simulations.
In MASCOTS’99, pages 128–144, 1999.

[33] A. Sobeih, M. Viswanathan, and J. Hou. Check and simulate: A case for incorporating model checking in
network simulation. In Proc. of ACM-IEEE MEMOCODE’04, pages 27–36, June 2004.

[34] B. Titzer, D. Lee, and J. Palsberg. Avrora: scalable sensor network simulation with precise timing. In
Proceedings of Information Processing in Sensor Networks (IPSN’05), pages 67–72. IEEE Press, 2005.

[35] A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan, D. Kostic, J. Chase, and D. Becker. Scalability and
accuracy in a large-scale network emulator. In Proc. of the 5th symposium on Operating Systems Design
and Implementation, pages 271–284, New York, NY, USA, December 2002. ACM.

[36] K. Walsh and E. Sirer. Staged simulation: A general technique for improving simulation scale and perfor-
mance. ACM Transactions on Modeling and Computer Simulation, 14(2):170–195, 2004.

[37] A. Schiper Y. Sasson, D. Cavin. Probabilistic broadcast for flooding in wireless mobile ad hoc networks.
In Proceedings of IEEE Wireless Communications and Networking (WCNC03), volume 2, pages 1124 –
1130, March 2003.

[38] X. Zeng, R. Bagrodia, and M. Gerla. GloMoSim: a library for parallel simulation of large-scale wireless
networks. In Proceedings of the 12th workshop on Parallel and Distributed Simulation, pages 154–161,
Washington, DC, USA, 1998. IEEE Computer Society.

