Santa Claus — with Mobile
Reindeer and Elves

Cod! L’a

RQ‘

Complex Systems Modelling and Simulation infrastructure

Peter Welch (phw@kent.ac . uk)
Matt Pedersen (matt@faculty.egr.unlv.edu)

CPA 2008 (09/07/2008)

MOB I LE processes ...

Santa Claus ...

Mobile Process Types

An eccam-n mobile process, embedded anywhere in a
dynamically evolving network, may suspend itself mid-
execution, be safely disconnected from its local

environment, moved (by channel communication) to a

new environment, reconnected to that new environment
and reactivated.

AA N P

C R Q

Mobile Process Types

An eccam-n mobile process, embedded anywhere in a
dynamically evolving network, may suspend itself mid-
execution, be safely disconnected from its local

environment, moved (by channel communication) to a

new environment, reconnected to that new environment
and reactivated.

AA N P N

Mobile Process Types

An eccam-n mobile process, embedded anywhere in a
dynamically evolving network, may suspend itself mid-
execution, be safely disconnected from its local

environment, moved (by channel communication) to a

new environment, reconnected to that new environment
and reactivated.

/46\ /P}\

C R Q

\ 4

Mobile Process Types

An eccam-n mobile process, embedded anywhere in a
dynamically evolving network, may suspend itself mid-
execution, be safely disconnected from its local

environment, moved (by channel communication) to a

new environment, reconnected to that new environment
and reactivated.

AR N L N

C R Q

Mobile Process Types

An eccam-n mobile process, embedded anywhere in a
dynamically evolving network, may suspend itself mid-
execution, be safely disconnected from its local
environment, moved (by channel communication) to a
new environment, reconnected to that new environment
and reactivated.

Upon reactivation, the process resumes from the
same state (i.e. data values and code positions) it
held when suspended. Its view of that environment is
unchanged, since that is abstracted by its channel
interface. The environment on the other side of that
abstraction, however, will usually be different.

The mobile process may itself contain any number of
levels of dynamically evolving parallel sub-network.

Mobile Process Types

Mobile processes are entities encapsulating state and
code. They may be active or passive. Initially, they

are passive.
m

passive active

(self)

The state of a mobile process can only be felt by interacting
with it when active. When passive, its state is locked — even
against reading.

Mobile Process Types

When passive, they may be activated or moved. A
moved process remains passive. An active process
cannot be moved or activated in parallel.

m

passive active

(self)

When an active mobile process suspends, it becomes
passive — retaining its state and code position. When it
moves, its state moves with it. When re-activated, it sees
Its previous state and continues from where it left off.

Mobile Process Types

Mobile processes exist in many technologies — such as
applets, agents and in distributed operating systems.

occam-n offers (will offer) support for them with a
formal denotational and refinement semantics,
safety and very low overheads.

Process mobility semantics follows naturally from that
for mobile data and mobile channel-ends.

We need to introduce a concept of process types and
variables.

Mobile Process Types

Process type declarations give names to PROC header
templates. Mobile processes may implement types
with synchronisation parameters only (i.e. channels,
barriers, buckets, etc.) plus records and fixed-size
arrays of the same. For example:

PROC TYPE IN.OUT.SUSPEND (CHAN INT in?, out!, suspend?):

The above declares a process type called IN.OUT.SUSPEND.
Processes implementing this will be given three channels by
the (re-)activating host process: two for input (in?, suspend?)
and one for output (out!), all carrying InT traffic.

Process types are used in two ways: for the declaration
of process variables and to define the connection
interface to a mobile process.

Mobile Process Example

in

A 4

out

v

integrate.suspend

A 4

suspend

MOBILE PROC integrate.suspend (CHAN INT in?, out!, suspend?)
IMPLEMENTS IN.OUT.SUSPEND
INITIAL INT total 1S O: -- local state
WHILE TRUE
INT x:
PRI ALT
suspend ? X
SUSPEND -- control returns to activator
-- control resumes here when next activated
in ? x
SEQ
total := total + X
out ! total

Mobile Processes and Types

A process type may be implemented by many mobile
processes — each offering different behaviours.

The mobile process from the last slide, integrate.suspend,
Implements the process type, IN.OUT.SUSPEND, defined
earlier. Other processes could implement the same type.

A process variable has a specific process type. Its value
may be undefined or some mobile process implementing
Its type. A process variable may be bound to different
mobile processes, offering different behaviours, at
different times in its life. When defined, it can only be
activated according to that type.

Mobile Process Example

process.out

A e

PROC A (CHAN IN.OUT.SUSPEND process.out!)

IN.OUT.SUSPEND p:

SEQ
-—- p is not yet defined (can®t move or activate it)
p = MOBILE integrate.suspend
-— p is now defined (can move and activate)
process.out ! p
-— p is now undefined (can’t move or activate it)

Mobile Process Example

inl lsuspend

process. in process.out

> B -

lout

PROC B (CHAN IN.OUT.SUSPEND process.in?, process.out!,
CHAN INT in?, out!, suspend?)
WHILE TRUE
IN.OUT.SUSPEND q:
SEQ

Input a process to q
plug into local channels and activate q
when finished, send 1t on 1ts way

Mobile Process Example

inl lsuspend

process. in process.out

> |B —
lout
WHILE TRUE

IN.OUT.SUSPEND q:
SEQ

-- g is not yet defined (can®t move or activate it)
process.in ? q

-- g is now defined (can move and activate)

q (in?, out!, suspend?)

-— g is still defined (can move and activate)

process.out ! q
-- g is now undefined (can’t move or activate it)

Mobile Process Example

inl lsuspend

> B

lout

CHAN IN.OUT.SUSPEND c, d:
CHAN INT @in, out, suspend:
... other channels
PAR
A (c!)
B (c?, d!, in?, out!, suspend?)
other processes

MOB I LE processes ...

Santa Claus ...

Santa repeatedly sleeps until wakened by either all of his
nine reindeer (back from their holidays) or by a group of
three of his ten elves (who have left their workbenches).

If awakened by the reindeer, he harnesses each of them to
his sleigh, delivers toys with them and finally unharnesses
them (allowing them to go back on holiday).

If awakened by a group of elves, he shows each of the
group into his study, consults with them on toy R&D and
finally shows each of them out (allowing them to go back
to work).

Santa should give priority to the reindeer in the case that
there is both a group of elves and a group of reindeer
waiting.

J.A.Trono, “A new exercise in concurrency”,
SIGCSE Bulletin 26(3), pp. 8-10, 1994.

First: a static network (classical
occam, shared channels, barriers
and partial barriers)

report

Reindeer (0) Reindeer (1)

—_

)

reindeer.2.santa

ust.reindeer

Reindeer (8)

Santa

TS |

santa.reindeer

report

EIf (0) EIf (1) SR EIf (9)

just.elves (3)

Santa
elves.2.santa

Y

santa.elves (4)

report

Reindeer (0) Reindeer (1)

—_

)

reindeer.2.santa

ust.reindeer

Reindeer (8)

Santa

TS |

santa.reindeer

report

EIf (0) EIf (1) SR EIf (9)

just.elves (3)

Santa
elves.2.santa

Y

santa.elves (4)

Xp.bar (3)

Santa

p.bar (4) pe=

just.elves.a

just.elves.b

elves.2.santa

santa.elves.a

santa.elves.b

Third: a dynamic network (mobile
processes)

report
compound (n.elves)

report
gather (g.elves)

report
ompound (n.reindee
gather (n.reindeer

>

report

= Dd®Dd®AS =D =
»w o< =0

«

r.knock e.knock

santa’s grotto

report

A reindelf : either a reindeer or an elf

report
in
< ‘ report e
@]
A — % _
station - >
{ out v

PROC station (VAL INT id, seed, kind, away.time,
SHARED CHAN MOBILE AGENT in?, out!,
SHARED CHAN AGENT.MESSAGE report!)
MOBILE AGENT agent:
SEQ
agent := MOBILE reindelf
--- initialise agent
... loop (send agent; receive agent; run agent)

A reindelf : either a reindeer or an elf
report .‘_

in
< ‘ report
station initialise
; out
>

{{{ Iinitialise agent
CHAN AGENT.INITIALISE initialise:
-.- Ssome dummy channels

PAR
initialise ! id; seed; kind; away.time
agent (initialise?, report!, ...)

1335

o
.
.
.
o
o

.
e

A reindelf : either a reindeer or an elf

report
in
< ‘ report o
. . . . ﬁ / . _ 1
station initialise L ° >
{ out v
>

PROC station (VAL INT id, seed, kind, away.time,
SHARED CHAN MOBILE AGENT in?, out!,
SHARED CHAN AGENT.MESSAGE report!)
MOBILE AGENT agent:
SEQ
agent := MOBILE reindelf
--- initialise agent
... loop (send agent; receive agent; run agent)

A reindelf : either a reindeer or an elf
report .‘_

in
< report P
station initialise Ce
{ out v
>

{{{ loop (send agent; receive agent; run agent)
WHILE TRUE
SEQ
CLAIM out ! agent
CLAIM in ? agent
CHAN AGENT.INITIALISE dummy.init:
--- Mmore dummy channels
agent (dummy.init?, report!, ...)

1335

PROC TYPE AGENT IS (CHAN AGENT.INITIALISE initialise?,
SHARED CHAN AGENT.MESSAGE report!,

report reindelf (an agent)
in g
< T report o
s .
. —_— X
station initialise © o >
; out ""
>

{{{ loop (send agent; receive agent; run agent)
WHILE TRUE
SEQ
CLAIM out ! agent
CLAIM in ? agent
CHAN AGENT.INITIALISE dummy.init:
--- Mmore dummy channels
agent (dummy.init?, report!, ...)

1335

PROC TYPE AGENT IS (CHAN AGENT.INITIALISE initialise?,
SHARED CHAN AGENT.MESSAGE report!,

R)=

MOBILE PROC reindelf (CHAN AGENT.INITHIALISE initialise?,
SHARED CHAN AGENT.MESSAGE report!,
---) IMPLEMENTS AGENT
INT id, seed, kind, away.time:
SEQ
initialise ? id; seed; kind; away.time
WHILE TRUE
SEQ
CLAIM report ! away; kind; id
... away time (random delay up to away.time)
CLAIM report ! ready; kind; id
SUSPEND -- move to gathering place
SUSPEND -- move to santa’s grotto

SUSPEND -- move to compound

report
.
initialise ® —

A 4

MOBILE PROC reindelf (CHAN AGENT.INITHIALISE initialise?,
SHARED CHAN AGENT.MESSAGE report!,
---) IMPLEMENTS AGENT
INT id, seed, kind, away.time:
SEQ
initialise ? id; seed; kind; away.time
WHILE TRUE
SEQ
CLAIM report ! away; kind; id
... away time (random delay up to away.time)
CLAIM report ! ready; kind; id
SUSPEND -- move to gathering place
SUSPEND -- move to santa’s grotto

SUSPEND -- move to compound

A reindelf : either a reindeer or an elf

report
in
< ‘ report e
station initialise L ° >
v out v
>

PROC station (VAL INT id, seed, kind, away.time,
SHARED CHAN MOBILE AGENT in?, out!,
SHARED CHAN AGENT.MESSAGE report!)
MOBILE AGENT agent:
SEQ
agent := MOBILE reindelf
--- initialise agent
... loop (send agent; receive agent; run agent)

report

report
compound (n.elves)

report
gather (g.elves)

report
ompound (n.reindee
gather (n.reindeer

>

report

= Dd®Dd®AS =D =
»w o< =0

«

r.knock e.knock

santa’s grotto

inl
report report

- > gather (n) |

initialise -
Out1 > knOCk

PROC gather (VAL INT n, CHAN MOBILE AGENT in?, out!,
SHARED CHAN AGENT.MESSAGE report!,
CHAN BOOL knock!)
WHILE TRUE
[N]MOBILE AGENT agent:
SEQ
SEQ # = 0 FOR n
SEQ
in ? agent[i]
--- Pplug in agent (let it make brief report)
knock ! TRUE -- knock on santa’s door
SEQ # = 0 FOR n
out ! agent[i]
knock ! TRUE -- wait for door to slam

A 4

P
<

in 1
report report

- > gather (n) |

initialise -
' Out1 > knOCk

{{{ plug in agent (let it make brief report)

A 4

P

CHAN AGENT.INITIALISE dummy.init:
--- Mmore dummy channels
agent[i] (dummy.init?, report!, ...)

1335

inl

o A gather (n) -

initialise e
Out1 > knOCk

MOBILE PROC reindelf (CHAN AGENT.INITIALISE initialise?,
SHARED CHAN AGENT.MESSAGE report!,
---) IMPLEMENTS AGENT
... local state declarations
SEQ
--- iIn station compound (initialise local state)
WHILE TRUE
SEQ
-.- In station compound
SUSPEND -- move to gathering place
CLAIM report ! walting; kind; id
SUSPEND -- move to santa’s grotto
-.- In santa®s grotto
SUSPEND -- move to compound

(0]
v

P
<

inl
report report

- > gather (n) |

initialise -
Out1 > knOCk

PROC gather (VAL INT n, CHAN MOBILE AGENT in?, out!,
SHARED CHAN AGENT.MESSAGE report!,
CHAN BOOL knock!)
WHILE TRUE
[N]MOBILE AGENT agent:
SEQ
SEQ # = 0 FOR n
SEQ
in ? agent[i]
--- Pplug in agent (let it make brief report)
knock ! TRUE -- knock on santa’s door
SEQ # = 0 FOR n
out ! agent[i]
knock ! TRUE -- wait for door to slam

A 4

P
<

report
compound (n.elves)

report
gather (g.elves)

report
ompound (n.reindee
gather (n.reindeer

>

report

= Dd®Dd®AS =D =
»w o< =0

«

r.knock e.knock

santa’s grotto

\V 4

.Statio

.Statio

.Statio

A 4

A 4

A 4

\ 4

A 4

santa’s
grotto

santa

report

A

A

A

\V/

.statio

.statio
L]

.Statio

In U Aout

santa.a report

A

A 4

santa.a

santa.b

santa.b
— o

—>| g.station [~ | L
1 initialise ®

A 4

report v v v

PROC grotto.station (SHARED CHAN MOBILE AGENT in?, out!,
SHARED CHAN AGENT.MESSAGE report!,
SHARED CHAN INT santa.a!, santa.b!)
WHILE TRUE
MOBILE AGENT agent:
SEQ
CLAIM in ? agent
CHAN AGENT.INITIALISE dummy.init:
agent (dummy.init?, report!, santa.a!, santa.b!)
CLAIM out ! agent

PROC TYPE AGENT IS (CHAN AGENT.INITIALISE initialise?,
SHARED CHAN AGENT.MESSAGE report!,
SHARED CHAN INT santa.a!, santa.b!):

santa.a

report santa.b
o ~

ﬁ _
initialise - >

MOBILE PROC reindelf (CHAN AGENT.INITIALISE initialise?,
SHARED CHAN AGENT.MESSAGE report!,
SHARED CHAN INT santa.a!, santa.b!)
IMPLEMENTS AGENT

\V 4

.Statio

.Statio

.Statio

A 4

A 4

A 4

\ 4

A 4

santa’s
grotto

santa

report

A

A

A

\V/

.statio

.statio
L]

.Statio

PROC santa (CHAN INT elf.a?, elf.b?,
CHAN INT reindeer.a?, reindeer.b?,
CHAN BOOL elf.knock?, reindeer.knock?,
SHARED CHAN SANTA.MESSAGE report)
WHILE TRUE
BOOL any:
PRI ALT
reindeer.knock ? any
SEQ
CLAIM report ! agent.ready; REINDEER.KIND
--- engage with reindeer
elf.knock ? any
SEQ
CLAIM report ! agent.ready; ELF.KIND
-.- engage with elves

r.knock e.knock

PROC engage (VAL INT group.size, kind,
CHAN INT agent.a?, agent.b?,
CHAN BOOL knock?,
SHARED CHAN SANTA.MESSAGE report!)
INT id:
BOOL any:
SEQ
SEQ i = 0 FOR group.size
SEQ
agent.a ? id
CLAIM report ! greet; kind; id
knock ? any -- slam the door
SEQ i = 0 FOR group.size
agent.b ? id
CLAIM report ! engaged; kind
--- pause for a (random) while
CLAIM report ! disengaged; kind
SEQ i = 0 FOR group.size
agent.a ? id
SEQ i = 0 FOR group.size
agent.b ?? id
CLAIM report ! goodbye; kind, id

\V 4

.Statio

.Statio

.Statio

A 4

A 4

A 4

\ 4

A 4

santa’s
grotto

santa

report

A

A

A

\V/

.statio

.statio
L]

.Statio

in V out
A santa.a

santa.a
report santa.b

santa.b
—> g.station [~ | — ° \
1 initialise e

A
A 4

A 4

report v v 2

PROC grotto.station (SHARED CHAN MOBILE AGENT in?, out!,
SHARED CHAN AGENT.MESSAGE report!,
SHARED CHAN INT santa.a!, santa.b!)
WHILE TRUE
MOBILE AGENT agent:
SEQ
CLAIM in ? agent
CHAN AGENT.INITIALISE dummy.init:
agent (dummy.init?, report!, santa.a!, santa.b!)
CLAIM out ! agent

> santa.b
—>| g.station |~ | L —f © \
1 initialise e

santa.a
santa.a

report santa.b

A

A 4

v

\ 4

report v v Y

MOBILE PROC reindelf (CHAN AGENT.INITHIALISE initialise?,
SHARED CHAN AGENT.MESSAGE report!,
SHARED CHAN INT santa.al!, santa.b!)

IMPLEMENTS AGENT
... local state declarations

SEQ
... iIn station compound (initialise local state)
WHILE TRUE
SEQ

--.- In station compound
SUSPEND -- move to gathering place
--- In the gathering place
SUSPEND -- move to santa®s grotto

... iIn santa®s grotto
SUSPEND -- move to compound

in U out
A santa.a

santa.a report santa.b
< »| . santa.b
—> g.station [~ | o —y © \\ R
> initialise S g
report v V v l ‘ v
{{{ In santa’s grotto
CLAIM santa.a ! id -- say hello to santa
CLAIM santa.b ! id -- sync with other agents
-- and santa

CLAIM report ! busy; kind; id

CLAIM santa.a ! id -- wait for santa to finish
-- working with me

CLAIM report ! done; kind; id

CLAIM santa.b ! id -- say goodbye to santa

1335

report
ompound (n.reindee
report
gather (n.reindeer)

report
compound (n.elves)

i

report
gather (g.elves)

\V/

>

= D®Dd®AAS — D =
»w o< =0

«

r.knock

santa’s grotto

report

report
ompound (n.reindee
report
gather (n.reindeer)

report
compound (n.elves)

i

report
gather (g.elves)

\V/

>

= D®Dd®AAS — D =
»w o< =0

«

r.knock

santa’s grotto

\7 U

.statio ‘ 5 .statio
.statio ‘ b .statio
santa’s
LI grOtto LI
.statio ‘ .statio
> santa ‘

report 9

santa.a

report santa.b

. h

. . . ﬁ _
initialise - g

MOBILE PROC reindelf (CHAN AGENT.INITIALISE initialise?,
SHARED CHAN AGENT.MESSAGE report!,
SHARED CHAN INT santa.a!, santa.b!)

IMPLEMENTS AGENT
... local state declarations

SEQ
--- iIn station compound (initialise local state)
WHILE TRUE
SEQ

... iIn station compound
SUSPEND -- move to gathering place
--- In the gathering place
SUSPEND -- move to santa’s grotto

--.- In santa®s grotto
SUSPEND -- move to compound

