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Introduction

Summary

We’ve been developing occam-π programs for some time now:

traditional process-oriented design of
concurrent processes and communication

dynamics added from Milner’s π-calculus:
mobile data, channels and processes

real applications for complex systems simulation (CoSMoS) and
operating systems (RMoX)

Semantics from CSP [1, Hoare-1985], on which the original occam
language was based:

provides formal reasoning for parallel processes and their interactions

We also have CSP models for mobile data, channels and processes:

largely for an understanding of their operational behaviour

What we do not yet have:

a denotational and compositional understanding of how mobile
systems evolve
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Introduction

Mobile Escape Analysis

Existing semantic models: traces, failures and divergences.

New semantic model: mobility.

primarily interested in how mobiles move around a system.
to determine the boundaries of any particular mobile item within the
communication graph.
where that graph may be dynamic and evolve at run-time.



Semantic Models

Traces, Failures, Divergences

Using a simple occam-π process as an example:

PROC id (CHAN INT in?, out!)
WHILE TRUE

INT x:
SEQ

in ? x
out ! x

:

id
in? out!

Can generate (automatically [2, Barnes,Ritson-2009]) a CSP
model of this process:

ID(in, out) = in → out → ID(in, out)

And from that the semantic models:

traces ID = {〈〉, 〈in〉, 〈in, out〉, 〈in, out, in〉, ...}

failures ID = {(〈〉, {out}), (〈in〉, {in}), (〈in, out〉, {out}), ...}

divergences ID = {}
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Semantic Models

Mobility Analysis

Similar in concept to the traces model – and borrows its syntax.

describes what the mobile behaviour of a process is.

For the earlier ‘ID’ process (which does not involve mobiles):

mobility ID = {}

For an ‘MID’ process that transports/buffers mobiles:

Same traces, failures and divergences as before, however:

mobility MID = {in?a, out!a}
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Semantic Models

Mobility Sequences

Like traces, specify what a process might do, not necessarily what it
does do (though the ‘ID’ processes can only progress one way).

In general, S is a set of mobility sequences:

S = {R1,R2, ...}

Where each R is a sequence of mobile actions:

R = 〈X1,X2,X3, ...〉

And each X is either a mobile input or a mobile output:

X1 = C !x , X2 = D?v

Names within a sequence (C , x , D, v) are bound within any
particular set (including formal parameters) – renaming may be
required to avoid capture. Other useful operations:

concatenation : 〈X1,X2, ...〉ˆ〈Y1,Y2, ...〉 = 〈X1,X2, ...,Y1,Y2, ...〉

restriction : 〈X1,C , ...〉 − {C} = 〈X1, ...〉
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Code Analysis

Generating Models of occam-π Programs

Input, output and assignment are largely straightforward:

As are choice (ALT, IF, CASE) and parallelism (PAR).

simply the set union of the different branches.
hiding is more complex – e.g. as above with ‘Lc’.
essentially matching outputs with inputs, and combining those
sequences (potentially expansive!)
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Code Analysis

Higher Order Communication

Things get more interesting when we start moving channels around.

The syntax ‘x̄ ’ represents the server-end of a mobile channel-type.

Shared mobiles are represented as ‘x+’

The resulting expression here indicates a system in which a mobile
‘b’ is communicated internally over some mobile channel-bundle
‘x , x̄ ’, but which never escapes.
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Using Mobile Analysis
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When composed in parallel, with renaming for parameter passing
and avoiding capture, this gives the mobility set:

mobility net = {〈A?a,X !a〉, 〈A?b, p!b〉, 〈B?c , q!c〉, 〈B?d , r !d 〉

〈s!e〉, 〈p?f ,Y !f 〉, 〈q?g ,Y !g 〉, 〈r?h〉, 〈s?h〉} \ {p, q, r , s}
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Hiding the internal channels gives:

\{p}
−→ {〈A?a,X !a〉, 〈A?b,Y !b〉, 〈B?c , q!c〉, 〈B?d , r !d 〉, 〈s!e〉, 〈q?g ,Y !g 〉,
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\{s}
−→ {〈A?a,X !a〉, 〈A?b,Y !b〉, 〈B?c ,Y !c〉, 〈B?d 〉}

net
A?

B?

X!

Y!

Which indicates that mobiles arriving on A escape on X and Y; and
that mobiles arriving on B escape on Y or are consumed internally.

by what is not present: no mobiles received on A are discarded
internally; and that no internally generated mobiles escape.
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A semantic model that can be used to reason about the escape of
mobile items within an occam-π system.

handles the movement of mobile channels and subsequent
communication on then.
can be used to reason about safety properties of systems involving
mobiles – and to inform optimisation or distribution.

The paper contains more details on the semantics, as well as more
complex examples taken from real systems.

Future work includes:

generation of these models automatically by the compiler.
tools to manipulate models (not as complex as FDR).
complete denotational semantics.
application of the techniques to other process-oriented systems.
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Extras

Mobility Refinement

With the ordinary semantic models, we have a notion of refinement.

no reason why one should not exist for the mobility model presented
here:

P ⊑M Q ≡ mobility Q ⊆ mobility P

The informal interpretation is that Q is “less leaky” than P, when it
comes to mobile escape.

some fudge required in the subset operation: e.g. {〈c?
x〉} refines

{〈c?
x
, d !

x〉}, as does {〈d !
y 〉}.

can arise in an implementation that copies data between mobiles.



Extras

Expansive Hiding

Hiding is not always an reducing operation:

can easily blow-up, reflecting the different possibilities for mobiles.

{〈A?a, c !a〉, 〈B?b, c !b〉, 〈c?f ,X !f 〉, 〈c?g ,Y !g 〉, 〈c?h,Z !h〉}

\{c}
−→ {〈A?a,X !a〉, 〈A?a,Y !a〉, 〈A?a,Z !a〉,

〈B?b,X !b〉, 〈B?b,Y !b〉, 〈B?b,Z !b〉}

Worse-case is limited by type compatibility.



Extras

Denotational Semantics

Alphabets (for any particular occam-π process):

output channels: Σ
!, input channels: Σ

?, such that Σ = Σ
! ∪ Σ

?.
also grouped by type: Σt , where t is a valid occam-π protocol and
t ∈ T, where T is the set of valid occam-π protocols.

following on: Σt = Σ!
t ∪ Σ?

t , and ∀ t : T · Σt ⊆ Σ.

for shared mobiles: Σ+ = Σ
!
+ ∪ Σ

?
+.

Primitive processes:

mobility SKIP = 〈〉

mobility STOP = 〈〉

mobility div = mobility CHAOS =

{〈C !a〉 | C ∈ Σ!} ∪ {〈D?x〉 | D ∈ Σ?}∪

{〈C?v ,D!v 〉 | ∀ t : T · (C ,D) ∈ Σ?

t × Σ!

t)}



Extras

Denotational Semantics

Choice:

mobility (P 2 Q) = (mobility P) ∪ (mobility Q)

mobility (P ⊓ Q) = (mobility P) ∪ (mobility Q)

Interleaving and parallelism:

mobility (P ‖ Q) = (mobilityP) ∪ (mobility Q)

Hiding:

mobility (P \ x) =
{

M ˆN[α/β] |
(

M ˆ〈x !α〉, 〈x?β〉ˆN
)

∈ mobility P × mobilityP
}

∪
(

(mobility P) −
({

F ˆ〈x !α〉 | F ˆ〈x !α〉 ∈ mobility P
}

∪
{

〈x?β〉ˆG | 〈x?β〉ˆG ∈ mobility P
}))

∪
{

H | (H ˆ〈x !α〉) ∈ mobility P ∧ (〈x?β〉ˆ I ) /∈ mobility P ∧ H 6= 〈〉
}

∪
{

J | (〈x?β〉ˆJ) ∈ mobility P ∧ (J ˆ〈x !α〉) /∈ mobility P ∧ J 6= 〈〉
}
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