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Introduction

Summary

m We've been developing occam-Tt programs for some time now:
m traditional process-oriented design of foo bar ‘
concurrent processes and communication

m dynamics added from Milner’s Tecalculus:

zog
mobile data, channels and processes ‘

m real applications for complex systems simulation (CoSMoS) and
operating systems (RMoX)

m Semantics from CSP [1, Hoare-1985], on which the original occam
language was based:

m provides formal reasoning for parallel processes and their interactions
m We also have CSP models for mobile data, channels and processes:
m largely for an understanding of their operational behaviour
m What we do not yet have:

m a denotational and compositional understanding of how mobile
systems evolve



Introduction

Mobile Escape Analysis

m Existing semantic models: traces, failures and divergences.

m New semantic model: mobility.
m primarily interested in how mobiles move around a system.
m to determine the boundaries of any particular mobile item within the

communication graph.
m where that graph may be dynamic and evolve at run-time.
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WHILE TRUE
INT x:

SEQ in? idl out!
in 7 x —

out ! x
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Semantic Models

Traces, Failures, Divergences

m Using a simple occam-Tt process as an example:

PROC id (CHAN INT in?, out!)

WHILE TRUE
INT x: -
SEQ n id out!
in 7 x I
out ! x

m Can generate (automatically [2, Barnes,Ritson-2009]) a CSP
model of this process:

ID(in, out) = in — out — ID(in, out)
m And from that the semantic models:
traces ID = {(), (in), (in, out), {in, out, in), ...}

failures ID = {((), {out}), ({in), {in}), ((in, out),{out}),...}
divergences ID = {}
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Semantic Models

Mobility Analysis

m Similar in concept to the traces model — and borrows its syntax.
m describes what the mobile behaviour of a process is.

m For the earlier ‘ID’ process (which does not involve mobiles):
mobility ID = {}

m For an ‘MID’ process that transports/buffers mobiles:

PROC mid (CHAN MOBILE THING in?, out!)
WHILE TRUE
MOBILE THING x:
SEQ
in ? x
out ! x

. out!
mid

m Same traces, failures and divergences as before, however:
mobility MID = {in??, out!®}
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Semantic Models

Mobility Sequences

m Like traces, specify what a process might do, not necessarily what it
does do (though the ‘ID’ processes can only progress one way).

m In general, S is a set of mobility sequences:
S={R, R, ...}

m Where each R is a sequence of mobile actions:
R = (X, X5, X5, ...)

m And each X is either a mobile input or a mobile output:
Xy = , X, = D7
m Names within a sequence (C, x, D, v) are bound within any
particular set (including formal parameters) — renaming may be
required to avoid capture. Other useful operations:
concatenation : <X1, Xz, > - <Y1, Yo, > = <X1, X2, ..., Y1, Y5, >
restriction : (X1, C,...) — {C} = (Xy,...)
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Code Analysis

Generating Models of occam-Tt Programs

m Input, output and assignment are largely straightforward:

PROC R (CHAN MOBILE THING in?, out!) mobility P = {{out!*)}
MOBILE THING v, w:
SEQ mobility Q = {(in?")}
in 7?7 v
wois v mobility R = {(in?", Lc!Y),
]
out ' w (L™ out!™)} \ {Lc}
| CHAN INT c: . o u
based on th.e imy = PR = {{(in?", out!")}
equivalence: oo

m As are choice (ALT, IF, cASE) and parallelism (PaRr).
m simply the set union of the different branches.
m hiding is more complex — e.g. as above with ‘Lc’.
m essentially matching outputs with inputs, and combining those
sequences (potentially expansive!)
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server SEQ
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Code Analysis

Higher Order Communication

m Things get more interesting when we start moving channels around.

PROC generator (CHAN CT.F0O! out.c!,
CHAN CT.F00? out.s!)

generator CT.F0OO? svr:
E— CT.FOO! cli:
SEQ
cli, svr := MOBILE CT.FOO
PAR

out.c ! cli
out.s ! svr
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Higher Order Communication

m Things get more interesting when we start moving channels around.

PROC client (CHAN CT.FOO! in?)

generator CT.FOO! cli:
|: MOBILE THING v:
—_— SEQ
in ? cli
. initialise ‘v’

mobility GEN = | clilc) t v
{{out.c*, out.s*)} '

mobility CLI = {(in?2, a!P)}

=1

m The syntax ‘X’ represents the server-end of a mobile channel-type.
m Shared mobiles are represented as ‘x4’
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Higher Order Communication

m Things get more interesting when we start moving channels around.

PROC server (CHAN CT.F00? in?)

Sl CT.F00? svr:
MOBILE THING x:
—_— SEQ
in ? svr

— svrlc] 7 x
mobi/ity GEN = . ... use ‘x’

{{out.c*, out.s*)} ’
mobility CLI = {<in?a, a!b>}

mobility SVR = {(in?9, d?¢)}

=1
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m Shared mobiles are represented as ‘x4’
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m Things get more interesting when we start moving channels around.
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m Things get more interesting when we start moving channels around.

generator

CHAN CT.FOO! c:

CHAN CT.F0O? s:

PAR
generator (c!, s!)
client (c?)
server (s7)

mobility GEN =
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m Shared mobiles are represented as ‘x4’



Code Analysis

Higher Order Communication

m Things get more interesting when we start moving channels around.

generator

CHAN CT.FOO! c:

CHAN CT.F0O? s:

PAR
generator (c!, s!)
client (c?)
server (s7)

mobility GEN =

{{out.c*, out.s*)} mobility = {(c1, s1), (c?2, alb),
mobility CLI = {(in?2, a!P)} (s79,d7¢)} \ {c, s}
mobility SVR = {(in?9,d?¢)} = {(x!P), (x79)}

=1

m The syntax ‘X’ represents the server-end of a mobile channel-type.

m Shared mobiles are represented as ‘x4’
m The resulting expression here indicates a system in which a mobile

‘b’ is communicated internally over some mobile channel-bundle
‘x, X', but which never escapes.
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Example

Using Mobile Analysis

mobility delta = {(in??, out0!?),

A? "E‘ X! (in?®, out11P)}
— 2 e Y! mobility choice = {(in??, out0!?),

. - q | (in?b, out11b)}

™| choice r mobility gen = {(out!?)}

s sink ‘ mobility plex = {(in072, out!?),

gen (in17% out!P)}
net mobility sink = {(in0?72), (in17%)}




Using Mobile Analysis

X!
A? ‘
> delta
s
Y!
lex
q p
? .
B? choice .
sink

gen

net

Example

mobility delta = {(in??, out0!?),
(in??, out1!P)}

mobility choice = {(in??, out0!?),
(in?P, out1!P)}

mobility gen = {(out!?)}

mobility plex = {(in072, out!?),
(in17% out!P)}

mobility sink = {(in0?72), (in17%)}

m When composed in parallel, with renaming for parameter passing
and avoiding capture, this gives the mobility set:

mobility net = {(A??, X17), (A?®, pl®), (B7°, q1°), (B?9, 1)
<S!e>7 <p?fa Y!f>7 <q?g’ Y!g>a <r?h>a <5?h>} \ {p, q,r, S}
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m Hiding the internal channels gives:
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Bz | Net | v




Using Mobile Analysis

m Hiding the internal channels gives:
MPEgare, X12), (AP, Y1) (B7€,q1€), (B?9, r19) (1), (q78, Y18,
(r2hy, (s7M)}

MAL A X2y, (A7, Y18, (B29, Y1), (B2, 1Y), (s19), (r2h), (s7)}

Bz | Net | v




Using Mobile Analysis

m Hiding the internal channels gives:

== {(AT7 X1, (A78, YIP), (BY€, g1€), (B7Y, 1), (s1%), (q7%, Y1€),

(r2"), (s2)}
MAL A X2y, (A7, Y18, (B29, Y1), (B2, 1Y), (s19), (r2h), (s7)}
\r}

ML fgare, X1y, (A8, Y18), (B2, YI9), (B9, (s1°), (7))

A? X!

net
B? Y!




Using Mobile Analysis

m Hiding the internal channels gives:

S {(A77, X13) (A?P Y1BY (B q1€), (B9, r19), (s1€), (q?8, Y€),
(r7"), (s7")}

Ma (A7, X12), (AP, Y1BY (B7€, YI€) (B, 19 (s19), (r2hY (570}

M (A7, X12), (A8, YIB) (29, Y1), (B29), (s1°), (s7%))

ML fgare X7, (A7P, V1B (B7€, Y1), (B7Y)} AL X,

Bz | Net | v




Using Mobile Analysis

m Hiding the internal channels gives:

UPL {(ar, x19), (A28, Y19), (B2, 1), (B2, 119), (s19), (75, Y1),
GURELY

Ml rara x12), (70, Y1BY (B7€, YI€Y, (B?9, 1Y, (s19), (r7hY, (s7P))

MA - roara, X12), (A28, Y1BY, (B2€, YI9), (B29), (s19), (s7M)}

WL (ar xe), (ar vy (7, v1e) (YY) AT X,
Bz | net | v

m Which indicates that mobiles arriving on A escape on X and Y; and
that mobiles arriving on B escape on Y or are consumed internally.



Example

Using Mobile Analysis

m Hiding the internal channels gives:

UPL {(ar, x19), (A28, Y19), (B2, 1), (B2, 119), (s19), (75, Y1),
GURELY

Ml rara x12), (70, Y1BY (B7€, YI€Y, (B?9, 1Y, (s19), (r7hY, (s7P))

MA - roara, X12), (A28, Y1BY, (B2€, YI9), (B29), (s19), (s7M)}

WL (ar xe), (ar vy (7, v1e) (YY) AT X,
Bz | net | v

m Which indicates that mobiles arriving on A escape on X and Y; and
that mobiles arriving on B escape on Y or are consumed internally.
m by what is not present: no mobiles received on A are discarded
internally; and that no internally generated mobiles escape.



Conclusions

m A semantic model that can be used to reason about the escape of
mobile items within an occam-Tt system.
m handles the movement of mobile channels and subsequent

communication on then.
m can be used to reason about safety properties of systems involving
mobiles — and to inform optimisation or distribution.

Backmatter



Backmatter

Conclusions

m A semantic model that can be used to reason about the escape of
mobile items within an occam-Tt system.
m handles the movement of mobile channels and subsequent
communication on then.
m can be used to reason about safety properties of systems involving
mobiles — and to inform optimisation or distribution.

m The paper contains more details on the semantics, as well as more
complex examples taken from real systems.



Backmatter

Conclusions

m A semantic model that can be used to reason about the escape of
mobile items within an occam-Tt system.
m handles the movement of mobile channels and subsequent
communication on then.
m can be used to reason about safety properties of systems involving
mobiles — and to inform optimisation or distribution.

m The paper contains more details on the semantics, as well as more
complex examples taken from real systems.
m Future work includes:

m generation of these models automatically by the compiler.
tools to manipulate models (not as complex as FDR).
complete denotational semantics.

application of the techniques to other process-oriented systems.
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The End

= Any questions?

m This work was funded by EPSRC grant EP/D061822/1.
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Extras

Mobility Refinement

m With the ordinary semantic models, we have a notion of refinement.

m no reason why one should not exist for the mobility model presented
here:

PCy @ = mobility @ C mobility P

m The informal interpretation is that Q is “less leaky” than P, when it
comes to mobile escape.
m some fudge required in the subset operation: e.g. {{c?*)} refines
{{c?,d™)}, as does {(d")}.
® can arise in an implementation that copies data between mobiles.



Extras

Expansive Hiding

m Hiding is not always an reducing operation:
m can easily blow-up, reflecting the different possibilities for mobiles.

{(A?%,c12), (B?P, c1P), (27, XIT), (28, Y18) (c?h Z1M))
M ar, Xy (A7, Y R), (A7, 219),

(B?°, X1%), (B?P, Y1), (B?", Z1°)}

m Worse-case is limited by type compatibility.



Extras

Denotational Semantics

m Alphabets (for any particular occam-Tt process):

m output channels: &', input channels: 7, such that £ = ' U 7.
m also grouped by type: ¥, where t is a valid occam-Tt protocol and
t € T, where T is the set of valid occam-Tt protocols.

m following on: ¥y = SLUX!, and Vt: T -5, C X
m for shared mobiles: ¥} = %', UX}.

m Primitive processes:

mobility SKIP = ()
mobility STOP = ()
mobility div = mobility CHAOS =
(™| Ccex'tu{(D?)|Dex" U
{(C?v,D") |Vt :T-(C,D) e X! x 2}



Denotational Semantics

m Choice:

mobility (P O Q) = (mobility P)U (mobility Q)
mobility (P M Q) = (mobility P) U (mobility Q)

m Interleaving and parallelism:
mobility (P || Q) = (mobility P) U (mobility Q)
m Hiding:
mobility (P\ x) = {M" Nla/g] |
(M”(x1%), (x?8)" N) € mobility P x mobility P}U
((mobility P) — ({F"(x!*) | F~(x!*) € mobility P}
U {(x?%)" G | (x?%)" G € mobility P}))U
{H | (H"(x!*)) € mobility P A ((x??)"1) & mobility P A H # () }U
{J] ((x?%)"J) € mobility P A (J"(x!*)) & mobility P\ J # ()}
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