
Mobile Escape Analysis for occam-pi
CPA-2009

Fred Barnes

School of Computing, University of Kent, Canterbury

F.R.M.Barnes@kent.ac.uk

http://www.cs.kent.ac.uk/~frmb/

Introduction

Summary

We’ve been developing occam-π programs for some time now:

traditional process-oriented design of
concurrent processes and communication

dynamics added from Milner’s π-calculus:
mobile data, channels and processes

real applications for complex systems simulation (CoSMoS) and
operating systems (RMoX)

Semantics from CSP [1, Hoare-1985], on which the original occam
language was based:

provides formal reasoning for parallel processes and their interactions

We also have CSP models for mobile data, channels and processes:

largely for an understanding of their operational behaviour

What we do not yet have:

a denotational and compositional understanding of how mobile
systems evolve

Introduction

Summary

We’ve been developing occam-π programs for some time now:

traditional process-oriented design of
concurrent processes and communication

dynamics added from Milner’s π-calculus:
mobile data, channels and processes

real applications for complex systems simulation (CoSMoS) and
operating systems (RMoX)

Semantics from CSP [1, Hoare-1985], on which the original occam
language was based:

provides formal reasoning for parallel processes and their interactions

We also have CSP models for mobile data, channels and processes:

largely for an understanding of their operational behaviour

What we do not yet have:

a denotational and compositional understanding of how mobile
systems evolve

Introduction

Summary

We’ve been developing occam-π programs for some time now:

traditional process-oriented design of
concurrent processes and communication

dynamics added from Milner’s π-calculus:
mobile data, channels and processes

foo bar

zog

real applications for complex systems simulation (CoSMoS) and
operating systems (RMoX)

Semantics from CSP [1, Hoare-1985], on which the original occam
language was based:

provides formal reasoning for parallel processes and their interactions

We also have CSP models for mobile data, channels and processes:

largely for an understanding of their operational behaviour

What we do not yet have:

a denotational and compositional understanding of how mobile
systems evolve

Introduction

Summary

We’ve been developing occam-π programs for some time now:

traditional process-oriented design of
concurrent processes and communication

dynamics added from Milner’s π-calculus:
mobile data, channels and processes

foo bar

zog

real applications for complex systems simulation (CoSMoS) and
operating systems (RMoX)

Semantics from CSP [1, Hoare-1985], on which the original occam
language was based:

provides formal reasoning for parallel processes and their interactions

We also have CSP models for mobile data, channels and processes:

largely for an understanding of their operational behaviour

What we do not yet have:

a denotational and compositional understanding of how mobile
systems evolve

Introduction

Summary

We’ve been developing occam-π programs for some time now:

traditional process-oriented design of
concurrent processes and communication

dynamics added from Milner’s π-calculus:
mobile data, channels and processes

foo bar

zog

real applications for complex systems simulation (CoSMoS) and
operating systems (RMoX)

Semantics from CSP [1, Hoare-1985], on which the original occam
language was based:

provides formal reasoning for parallel processes and their interactions

We also have CSP models for mobile data, channels and processes:

largely for an understanding of their operational behaviour

What we do not yet have:

a denotational and compositional understanding of how mobile
systems evolve

Introduction

Summary

We’ve been developing occam-π programs for some time now:

traditional process-oriented design of
concurrent processes and communication

dynamics added from Milner’s π-calculus:
mobile data, channels and processes

foo bar

zog

real applications for complex systems simulation (CoSMoS) and
operating systems (RMoX)

Semantics from CSP [1, Hoare-1985], on which the original occam
language was based:

provides formal reasoning for parallel processes and their interactions

We also have CSP models for mobile data, channels and processes:

largely for an understanding of their operational behaviour

What we do not yet have:

a denotational and compositional understanding of how mobile
systems evolve

Introduction

Summary

We’ve been developing occam-π programs for some time now:

traditional process-oriented design of
concurrent processes and communication

dynamics added from Milner’s π-calculus:
mobile data, channels and processes

foo bar

zog

real applications for complex systems simulation (CoSMoS) and
operating systems (RMoX)

Semantics from CSP [1, Hoare-1985], on which the original occam
language was based:

provides formal reasoning for parallel processes and their interactions

We also have CSP models for mobile data, channels and processes:

largely for an understanding of their operational behaviour

What we do not yet have:

a denotational and compositional understanding of how mobile
systems evolve

Introduction

Summary

We’ve been developing occam-π programs for some time now:

traditional process-oriented design of
concurrent processes and communication

dynamics added from Milner’s π-calculus:
mobile data, channels and processes

foo bar

zog

real applications for complex systems simulation (CoSMoS) and
operating systems (RMoX)

Semantics from CSP [1, Hoare-1985], on which the original occam
language was based:

provides formal reasoning for parallel processes and their interactions

We also have CSP models for mobile data, channels and processes:

largely for an understanding of their operational behaviour

What we do not yet have:

a denotational and compositional understanding of how mobile
systems evolve

Introduction

Mobile Escape Analysis

Existing semantic models: traces, failures and divergences.

New semantic model: mobility.

primarily interested in how mobiles move around a system.
to determine the boundaries of any particular mobile item within the
communication graph.
where that graph may be dynamic and evolve at run-time.

Semantic Models

Traces, Failures, Divergences

Using a simple occam-π process as an example:

PROC id (CHAN INT in?, out!)
WHILE TRUE

INT x:
SEQ

in ? x
out ! x

:

id
in? out!

Can generate (automatically [2, Barnes,Ritson-2009]) a CSP
model of this process:

ID(in, out) = in → out → ID(in, out)

And from that the semantic models:

traces ID = {〈〉, 〈in〉, 〈in, out〉, 〈in, out, in〉, ...}

failures ID = {(〈〉, {out}), (〈in〉, {in}), (〈in, out〉, {out}), ...}

divergences ID = {}

Semantic Models

Traces, Failures, Divergences

Using a simple occam-π process as an example:

PROC id (CHAN INT in?, out!)
WHILE TRUE

INT x:
SEQ

in ? x
out ! x

:

id
in? out!

Can generate (automatically [2, Barnes,Ritson-2009]) a CSP
model of this process:

ID(in, out) = in → out → ID(in, out)

And from that the semantic models:

traces ID = {〈〉, 〈in〉, 〈in, out〉, 〈in, out, in〉, ...}

failures ID = {(〈〉, {out}), (〈in〉, {in}), (〈in, out〉, {out}), ...}

divergences ID = {}

Semantic Models

Traces, Failures, Divergences

Using a simple occam-π process as an example:

PROC id (CHAN INT in?, out!)
WHILE TRUE

INT x:
SEQ

in ? x
out ! x

:

id
in? out!

Can generate (automatically [2, Barnes,Ritson-2009]) a CSP
model of this process:

ID(in, out) = in → out → ID(in, out)

And from that the semantic models:

traces ID = {〈〉, 〈in〉, 〈in, out〉, 〈in, out, in〉, ...}

failures ID = {(〈〉, {out}), (〈in〉, {in}), (〈in, out〉, {out}), ...}

divergences ID = {}

Semantic Models

Mobility Analysis

Similar in concept to the traces model – and borrows its syntax.

describes what the mobile behaviour of a process is.

For the earlier ‘ID’ process (which does not involve mobiles):

mobility ID = {}

For an ‘MID’ process that transports/buffers mobiles:

Same traces, failures and divergences as before, however:

mobility MID = {in?a, out!a}

Semantic Models

Mobility Analysis

Similar in concept to the traces model – and borrows its syntax.

describes what the mobile behaviour of a process is.

For the earlier ‘ID’ process (which does not involve mobiles):

mobility ID = {}

For an ‘MID’ process that transports/buffers mobiles:

Same traces, failures and divergences as before, however:

mobility MID = {in?a, out!a}

Semantic Models

Mobility Analysis

Similar in concept to the traces model – and borrows its syntax.

describes what the mobile behaviour of a process is.

For the earlier ‘ID’ process (which does not involve mobiles):

mobility ID = {}

For an ‘MID’ process that transports/buffers mobiles:

PROC mid (CHAN MOBILE THING in?, out!)
WHILE TRUE

MOBILE THING x:
SEQ

in ? x
out ! x

:

mid
in? out!

Same traces, failures and divergences as before, however:

mobility MID = {in?a, out!a}

Semantic Models

Mobility Analysis

Similar in concept to the traces model – and borrows its syntax.

describes what the mobile behaviour of a process is.

For the earlier ‘ID’ process (which does not involve mobiles):

mobility ID = {}

For an ‘MID’ process that transports/buffers mobiles:

PROC mid (CHAN MOBILE THING in?, out!)
WHILE TRUE

MOBILE THING x:
SEQ

in ? x
out ! x

:

mid
in? out!

Same traces, failures and divergences as before, however:

mobility MID = {in?a, out!a}

Semantic Models

Mobility Sequences

Like traces, specify what a process might do, not necessarily what it
does do (though the ‘ID’ processes can only progress one way).

In general, S is a set of mobility sequences:

S = {R1,R2, ...}

Where each R is a sequence of mobile actions:

R = 〈X1,X2,X3, ...〉

And each X is either a mobile input or a mobile output:

X1 = C !x , X2 = D?v

Names within a sequence (C , x , D, v) are bound within any
particular set (including formal parameters) – renaming may be
required to avoid capture. Other useful operations:

concatenation : 〈X1,X2, ...〉ˆ〈Y1,Y2, ...〉 = 〈X1,X2, ...,Y1,Y2, ...〉

restriction : 〈X1,C , ...〉 − {C} = 〈X1, ...〉

Semantic Models

Mobility Sequences

Like traces, specify what a process might do, not necessarily what it
does do (though the ‘ID’ processes can only progress one way).

In general, S is a set of mobility sequences:

S = {R1,R2, ...}

Where each R is a sequence of mobile actions:

R = 〈X1,X2,X3, ...〉

And each X is either a mobile input or a mobile output:

X1 = C !x , X2 = D?v

Names within a sequence (C , x , D, v) are bound within any
particular set (including formal parameters) – renaming may be
required to avoid capture. Other useful operations:

concatenation : 〈X1,X2, ...〉ˆ〈Y1,Y2, ...〉 = 〈X1,X2, ...,Y1,Y2, ...〉

restriction : 〈X1,C , ...〉 − {C} = 〈X1, ...〉

Semantic Models

Mobility Sequences

Like traces, specify what a process might do, not necessarily what it
does do (though the ‘ID’ processes can only progress one way).

In general, S is a set of mobility sequences:

S = {R1,R2, ...}

Where each R is a sequence of mobile actions:

R = 〈X1,X2,X3, ...〉

And each X is either a mobile input or a mobile output:

X1 = C !x , X2 = D?v

Names within a sequence (C , x , D, v) are bound within any
particular set (including formal parameters) – renaming may be
required to avoid capture. Other useful operations:

concatenation : 〈X1,X2, ...〉ˆ〈Y1,Y2, ...〉 = 〈X1,X2, ...,Y1,Y2, ...〉

restriction : 〈X1,C , ...〉 − {C} = 〈X1, ...〉

Semantic Models

Mobility Sequences

Like traces, specify what a process might do, not necessarily what it
does do (though the ‘ID’ processes can only progress one way).

In general, S is a set of mobility sequences:

S = {R1,R2, ...}

Where each R is a sequence of mobile actions:

R = 〈X1,X2,X3, ...〉

And each X is either a mobile input or a mobile output:

X1 = C !x , X2 = D?v

Names within a sequence (C , x , D, v) are bound within any
particular set (including formal parameters) – renaming may be
required to avoid capture. Other useful operations:

concatenation : 〈X1,X2, ...〉ˆ〈Y1,Y2, ...〉 = 〈X1,X2, ...,Y1,Y2, ...〉

restriction : 〈X1,C , ...〉 − {C} = 〈X1, ...〉

Semantic Models

Mobility Sequences

Like traces, specify what a process might do, not necessarily what it
does do (though the ‘ID’ processes can only progress one way).

In general, S is a set of mobility sequences:

S = {R1,R2, ...}

Where each R is a sequence of mobile actions:

R = 〈X1,X2,X3, ...〉

And each X is either a mobile input or a mobile output:

X1 = C !x , X2 = D?v

Names within a sequence (C , x , D, v) are bound within any
particular set (including formal parameters) – renaming may be
required to avoid capture. Other useful operations:

concatenation : 〈X1,X2, ...〉ˆ〈Y1,Y2, ...〉 = 〈X1,X2, ...,Y1,Y2, ...〉

restriction : 〈X1,C , ...〉 − {C} = 〈X1, ...〉

Code Analysis

Generating Models of occam-π Programs

Input, output and assignment are largely straightforward:

As are choice (ALT, IF, CASE) and parallelism (PAR).

simply the set union of the different branches.
hiding is more complex – e.g. as above with ‘Lc’.
essentially matching outputs with inputs, and combining those
sequences (potentially expansive!)

Code Analysis

Generating Models of occam-π Programs

Input, output and assignment are largely straightforward:

PROC P (CHAN MOBILE THING out!)
MOBILE THING x:
SEQ

... initialise ‘x’
out ! x

:

As are choice (ALT, IF, CASE) and parallelism (PAR).

simply the set union of the different branches.
hiding is more complex – e.g. as above with ‘Lc’.
essentially matching outputs with inputs, and combining those
sequences (potentially expansive!)

Code Analysis

Generating Models of occam-π Programs

Input, output and assignment are largely straightforward:

PROC P (CHAN MOBILE THING out!)
MOBILE THING x:
SEQ

... initialise ‘x’
out ! x

:

mobility P = {〈out!x〉}

As are choice (ALT, IF, CASE) and parallelism (PAR).

simply the set union of the different branches.
hiding is more complex – e.g. as above with ‘Lc’.
essentially matching outputs with inputs, and combining those
sequences (potentially expansive!)

Code Analysis

Generating Models of occam-π Programs

Input, output and assignment are largely straightforward:

mobility P = {〈out!x〉}PROC Q (CHAN MOBILE THING in?)
MOBILE THING y:
SEQ

in ? y
... use ‘y’

:

As are choice (ALT, IF, CASE) and parallelism (PAR).

simply the set union of the different branches.
hiding is more complex – e.g. as above with ‘Lc’.
essentially matching outputs with inputs, and combining those
sequences (potentially expansive!)

Code Analysis

Generating Models of occam-π Programs

Input, output and assignment are largely straightforward:

mobility P = {〈out!x〉}PROC Q (CHAN MOBILE THING in?)
MOBILE THING y:
SEQ

in ? y
... use ‘y’

:

mobility Q = {〈in?y 〉}

As are choice (ALT, IF, CASE) and parallelism (PAR).

simply the set union of the different branches.
hiding is more complex – e.g. as above with ‘Lc’.
essentially matching outputs with inputs, and combining those
sequences (potentially expansive!)

Code Analysis

Generating Models of occam-π Programs

Input, output and assignment are largely straightforward:

mobility P = {〈out!x〉}

mobility Q = {〈in?y 〉}

PROC R (CHAN MOBILE THING in?, out!)
MOBILE THING v, w:
SEQ

in ? v
w := v
out ! w

:

As are choice (ALT, IF, CASE) and parallelism (PAR).

simply the set union of the different branches.
hiding is more complex – e.g. as above with ‘Lc’.
essentially matching outputs with inputs, and combining those
sequences (potentially expansive!)

Code Analysis

Generating Models of occam-π Programs

Input, output and assignment are largely straightforward:

mobility P = {〈out!x〉}

mobility Q = {〈in?y 〉}

PROC R (CHAN MOBILE THING in?, out!)
MOBILE THING v, w:
SEQ

in ? v
w := v
out ! w

:

mobility R = {〈in?v , Lc!v 〉,

〈Lc?w , out!w 〉} \ {Lc}

As are choice (ALT, IF, CASE) and parallelism (PAR).

simply the set union of the different branches.
hiding is more complex – e.g. as above with ‘Lc’.
essentially matching outputs with inputs, and combining those
sequences (potentially expansive!)

Code Analysis

Generating Models of occam-π Programs

Input, output and assignment are largely straightforward:

mobility P = {〈out!x〉}

mobility Q = {〈in?y 〉}

PROC R (CHAN MOBILE THING in?, out!)
MOBILE THING v, w:
SEQ

in ? v
w := v
out ! w

:

mobility R = {〈in?v , Lc!v 〉,

〈Lc?w , out!w 〉} \ {Lc}

based on the
equivalence:

x := y ≡
CHAN INT c:
PAR

c ! y
c ? x

= {〈in?u, out!u〉}

As are choice (ALT, IF, CASE) and parallelism (PAR).

simply the set union of the different branches.
hiding is more complex – e.g. as above with ‘Lc’.
essentially matching outputs with inputs, and combining those
sequences (potentially expansive!)

Code Analysis

Generating Models of occam-π Programs

Input, output and assignment are largely straightforward:

mobility P = {〈out!x〉}

mobility Q = {〈in?y 〉}

PROC R (CHAN MOBILE THING in?, out!)
MOBILE THING v, w:
SEQ

in ? v
w := v
out ! w

:

mobility R = {〈in?v , Lc!v 〉,

〈Lc?w , out!w 〉} \ {Lc}

based on the
equivalence:

x := y ≡
CHAN INT c:
PAR

c ! y
c ? x

= {〈in?u, out!u〉}

As are choice (ALT, IF, CASE) and parallelism (PAR).

simply the set union of the different branches.
hiding is more complex – e.g. as above with ‘Lc’.
essentially matching outputs with inputs, and combining those
sequences (potentially expansive!)

Code Analysis

Generating Models of occam-π Programs

Input, output and assignment are largely straightforward:

mobility P = {〈out!x〉}

mobility Q = {〈in?y 〉}

PROC R (CHAN MOBILE THING in?, out!)
MOBILE THING v, w:
SEQ

in ? v
w := v
out ! w

:

mobility R = {〈in?v , Lc!v 〉,

〈Lc?w , out!w 〉} \ {Lc}

based on the
equivalence:

x := y ≡
CHAN INT c:
PAR

c ! y
c ? x

= {〈in?u, out!u〉}

As are choice (ALT, IF, CASE) and parallelism (PAR).

simply the set union of the different branches.
hiding is more complex – e.g. as above with ‘Lc’.
essentially matching outputs with inputs, and combining those
sequences (potentially expansive!)

Code Analysis

Higher Order Communication

Things get more interesting when we start moving channels around.

The syntax ‘x̄ ’ represents the server-end of a mobile channel-type.

Shared mobiles are represented as ‘x+’

The resulting expression here indicates a system in which a mobile
‘b’ is communicated internally over some mobile channel-bundle
‘x , x̄ ’, but which never escapes.

Code Analysis

Higher Order Communication

Things get more interesting when we start moving channels around.

generator

client

server

The syntax ‘x̄ ’ represents the server-end of a mobile channel-type.

Shared mobiles are represented as ‘x+’

The resulting expression here indicates a system in which a mobile
‘b’ is communicated internally over some mobile channel-bundle
‘x , x̄ ’, but which never escapes.

Code Analysis

Higher Order Communication

Things get more interesting when we start moving channels around.

generator

client

server

PROC generator (CHAN CT.FOO! out.c!,
CHAN CT.FOO? out.s!)

CT.FOO? svr:
CT.FOO! cli:
SEQ

cli, svr := MOBILE CT.FOO
PAR
out.c ! cli
out.s ! svr

:

The syntax ‘x̄ ’ represents the server-end of a mobile channel-type.

Shared mobiles are represented as ‘x+’

The resulting expression here indicates a system in which a mobile
‘b’ is communicated internally over some mobile channel-bundle
‘x , x̄ ’, but which never escapes.

Code Analysis

Higher Order Communication

Things get more interesting when we start moving channels around.

generator

client

server

PROC generator (CHAN CT.FOO! out.c!,
CHAN CT.FOO? out.s!)

CT.FOO? svr:
CT.FOO! cli:
SEQ

cli, svr := MOBILE CT.FOO
PAR
out.c ! cli
out.s ! svr

:

The syntax ‘x̄ ’ represents the server-end of a mobile channel-type.

Shared mobiles are represented as ‘x+’

The resulting expression here indicates a system in which a mobile
‘b’ is communicated internally over some mobile channel-bundle
‘x , x̄ ’, but which never escapes.

Code Analysis

Higher Order Communication

Things get more interesting when we start moving channels around.

generator

client

server

PROC generator (CHAN CT.FOO! out.c!,
CHAN CT.FOO? out.s!)

CT.FOO? svr:
CT.FOO! cli:
SEQ

cli, svr := MOBILE CT.FOO
PAR
out.c ! cli
out.s ! svr

:

The syntax ‘x̄ ’ represents the server-end of a mobile channel-type.

Shared mobiles are represented as ‘x+’

The resulting expression here indicates a system in which a mobile
‘b’ is communicated internally over some mobile channel-bundle
‘x , x̄ ’, but which never escapes.

Code Analysis

Higher Order Communication

Things get more interesting when we start moving channels around.

generator

client

server

PROC generator (CHAN CT.FOO! out.c!,
CHAN CT.FOO? out.s!)

CT.FOO? svr:
CT.FOO! cli:
SEQ

cli, svr := MOBILE CT.FOO
PAR
out.c ! cli
out.s ! svr

:

The syntax ‘x̄ ’ represents the server-end of a mobile channel-type.

Shared mobiles are represented as ‘x+’

The resulting expression here indicates a system in which a mobile
‘b’ is communicated internally over some mobile channel-bundle
‘x , x̄ ’, but which never escapes.

Code Analysis

Higher Order Communication

Things get more interesting when we start moving channels around.

generator

client

server

PROC generator (CHAN CT.FOO! out.c!,
CHAN CT.FOO? out.s!)

CT.FOO? svr:
CT.FOO! cli:
SEQ

cli, svr := MOBILE CT.FOO
PAR
out.c ! cli
out.s ! svr

:

mobility GEN =
{〈out.c !x , out.s!x̄〉}

The syntax ‘x̄ ’ represents the server-end of a mobile channel-type.

Shared mobiles are represented as ‘x+’

The resulting expression here indicates a system in which a mobile
‘b’ is communicated internally over some mobile channel-bundle
‘x , x̄ ’, but which never escapes.

Code Analysis

Higher Order Communication

Things get more interesting when we start moving channels around.

generator

client

server

mobility GEN =
{〈out.c !x , out.s!x̄〉}

PROC client (CHAN CT.FOO! in?)
CT.FOO! cli:
MOBILE THING v:
SEQ

in ? cli
... initialise ‘v’
cli[c] ! v

:

mobility CLI = {〈in?a, a!b〉}

The syntax ‘x̄ ’ represents the server-end of a mobile channel-type.

Shared mobiles are represented as ‘x+’

The resulting expression here indicates a system in which a mobile
‘b’ is communicated internally over some mobile channel-bundle
‘x , x̄ ’, but which never escapes.

Code Analysis

Higher Order Communication

Things get more interesting when we start moving channels around.

generator

client

server

mobility GEN =
{〈out.c !x , out.s!x̄〉}

mobility CLI = {〈in?a, a!b〉}

PROC server (CHAN CT.FOO? in?)
CT.FOO? svr:
MOBILE THING x:
SEQ

in ? svr
svr[c] ? x
... use ‘x’

:

mobility SVR = {〈in?d̄ , d̄?e〉}

The syntax ‘x̄ ’ represents the server-end of a mobile channel-type.

Shared mobiles are represented as ‘x+’

The resulting expression here indicates a system in which a mobile
‘b’ is communicated internally over some mobile channel-bundle
‘x , x̄ ’, but which never escapes.

Code Analysis

Higher Order Communication

Things get more interesting when we start moving channels around.

generator

client

server

mobility GEN =
{〈out.c !x , out.s!x̄〉}

mobility CLI = {〈in?a, a!b〉}

mobility SVR = {〈in?d̄ , d̄?e〉}

CHAN CT.FOO! c:
CHAN CT.FOO? s:
PAR

generator (c!, s!)
client (c?)
server (s?)

c

s

mobility = {〈c !x , s!x̄〉, 〈c?a, a!b〉,

〈s?d̄ , d̄?e〉} \ {c , s}

The syntax ‘x̄ ’ represents the server-end of a mobile channel-type.

Shared mobiles are represented as ‘x+’

The resulting expression here indicates a system in which a mobile
‘b’ is communicated internally over some mobile channel-bundle
‘x , x̄ ’, but which never escapes.

Code Analysis

Higher Order Communication

Things get more interesting when we start moving channels around.

generator

client

server

mobility GEN =
{〈out.c !x , out.s!x̄〉}

mobility CLI = {〈in?a, a!b〉}

mobility SVR = {〈in?d̄ , d̄?e〉}

CHAN CT.FOO! c:
CHAN CT.FOO? s:
PAR

generator (c!, s!)
client (c?)
server (s?)

c

s

mobility = {〈c !x , s!x̄〉, 〈c?a, a!b〉,

〈s?d̄ , d̄?e〉} \ {c , s}

= {〈x !b〉, 〈x̄?d〉}

The syntax ‘x̄ ’ represents the server-end of a mobile channel-type.

Shared mobiles are represented as ‘x+’

The resulting expression here indicates a system in which a mobile
‘b’ is communicated internally over some mobile channel-bundle
‘x , x̄ ’, but which never escapes.

Code Analysis

Higher Order Communication

Things get more interesting when we start moving channels around.

generator

client

server

mobility GEN =
{〈out.c !x , out.s!x̄〉}

mobility CLI = {〈in?a, a!b〉}

mobility SVR = {〈in?d̄ , d̄?e〉}

CHAN CT.FOO! c:
CHAN CT.FOO? s:
PAR

generator (c!, s!)
client (c?)
server (s?)

c

s

mobility = {〈c !x , s!x̄〉, 〈c?a, a!b〉,

〈s?d̄ , d̄?e〉} \ {c , s}

= {〈x !b〉, 〈x̄?d〉}

The syntax ‘x̄ ’ represents the server-end of a mobile channel-type.

Shared mobiles are represented as ‘x+’

The resulting expression here indicates a system in which a mobile
‘b’ is communicated internally over some mobile channel-bundle
‘x , x̄ ’, but which never escapes.

Example

Using Mobile Analysis

delta

choice

gen

plex

sink

When composed in parallel, with renaming for parameter passing
and avoiding capture, this gives the mobility set:

mobility net = {〈A?a,X !a〉, 〈A?b, p!b〉, 〈B?c , q!c〉, 〈B?d , r !d 〉

〈s!e〉, 〈p?f ,Y !f 〉, 〈q?g ,Y !g 〉, 〈r?h〉, 〈s?h〉} \ {p, q, r , s}

Example

Using Mobile Analysis

delta

choice

gen

plex

sink

delta
in?

out0!

out1!

mobility delta = {〈in?a
, out0!a〉,

〈in?b
, out1!b〉}

When composed in parallel, with renaming for parameter passing
and avoiding capture, this gives the mobility set:

mobility net = {〈A?a,X !a〉, 〈A?b, p!b〉, 〈B?c , q!c〉, 〈B?d , r !d 〉

〈s!e〉, 〈p?f ,Y !f 〉, 〈q?g ,Y !g 〉, 〈r?h〉, 〈s?h〉} \ {p, q, r , s}

Example

Using Mobile Analysis

delta

choice

gen

plex

sink

mobility delta = {〈in?a
, out0!a〉,

〈in?b
, out1!b〉}

choice
in?

out0!

out1!

mobility choice = {〈in?a
, out0!a〉,

〈in?b
, out1!b〉}

When composed in parallel, with renaming for parameter passing
and avoiding capture, this gives the mobility set:

mobility net = {〈A?a,X !a〉, 〈A?b, p!b〉, 〈B?c , q!c〉, 〈B?d , r !d 〉

〈s!e〉, 〈p?f ,Y !f 〉, 〈q?g ,Y !g 〉, 〈r?h〉, 〈s?h〉} \ {p, q, r , s}

Example

Using Mobile Analysis

delta

choice

gen

plex

sink

mobility delta = {〈in?a
, out0!a〉,

〈in?b
, out1!b〉}

mobility choice = {〈in?a
, out0!a〉,

〈in?b
, out1!b〉}

gen
out!

mobility gen = {〈out!a〉}

When composed in parallel, with renaming for parameter passing
and avoiding capture, this gives the mobility set:

mobility net = {〈A?a,X !a〉, 〈A?b, p!b〉, 〈B?c , q!c〉, 〈B?d , r !d 〉

〈s!e〉, 〈p?f ,Y !f 〉, 〈q?g ,Y !g 〉, 〈r?h〉, 〈s?h〉} \ {p, q, r , s}

Example

Using Mobile Analysis

delta

choice

gen

plex

sink

mobility delta = {〈in?a
, out0!a〉,

〈in?b
, out1!b〉}

mobility choice = {〈in?a
, out0!a〉,

〈in?b
, out1!b〉}

mobility gen = {〈out!a〉}

plex out!

in0?

in1?

mobility plex = {〈in0?a
, out!a〉,

〈in1?b
, out!b〉}

When composed in parallel, with renaming for parameter passing
and avoiding capture, this gives the mobility set:

mobility net = {〈A?a,X !a〉, 〈A?b, p!b〉, 〈B?c , q!c〉, 〈B?d , r !d 〉

〈s!e〉, 〈p?f ,Y !f 〉, 〈q?g ,Y !g 〉, 〈r?h〉, 〈s?h〉} \ {p, q, r , s}

Example

Using Mobile Analysis

delta

choice

gen

plex

sink

mobility delta = {〈in?a
, out0!a〉,

〈in?b
, out1!b〉}

mobility choice = {〈in?a
, out0!a〉,

〈in?b
, out1!b〉}

mobility gen = {〈out!a〉}

mobility plex = {〈in0?a
, out!a〉,

〈in1?b
, out!b〉}

sink

in0?

in1?

mobility sink = {〈in0?a〉, 〈in1?b〉}

When composed in parallel, with renaming for parameter passing
and avoiding capture, this gives the mobility set:

mobility net = {〈A?a,X !a〉, 〈A?b, p!b〉, 〈B?c , q!c〉, 〈B?d , r !d 〉

〈s!e〉, 〈p?f ,Y !f 〉, 〈q?g ,Y !g 〉, 〈r?h〉, 〈s?h〉} \ {p, q, r , s}

Example

Using Mobile Analysis

mobility delta = {〈in?a
, out0!a〉,

〈in?b
, out1!b〉}

mobility choice = {〈in?a
, out0!a〉,

〈in?b
, out1!b〉}

mobility gen = {〈out!a〉}

mobility plex = {〈in0?a
, out!a〉,

〈in1?b
, out!b〉}

mobility sink = {〈in0?a〉, 〈in1?b〉}

delta

choice

gen

plex

sink

When composed in parallel, with renaming for parameter passing
and avoiding capture, this gives the mobility set:

mobility net = {〈A?a,X !a〉, 〈A?b, p!b〉, 〈B?c , q!c〉, 〈B?d , r !d 〉

〈s!e〉, 〈p?f ,Y !f 〉, 〈q?g ,Y !g 〉, 〈r?h〉, 〈s?h〉} \ {p, q, r , s}

Example

Using Mobile Analysis

mobility delta = {〈in?a
, out0!a〉,

〈in?b
, out1!b〉}

mobility choice = {〈in?a
, out0!a〉,

〈in?b
, out1!b〉}

mobility gen = {〈out!a〉}

mobility plex = {〈in0?a
, out!a〉,

〈in1?b
, out!b〉}

mobility sink = {〈in0?a〉, 〈in1?b〉}

delta

choice

gen

plex

sink

p

q

r

s

A?

B?

X!

Y!

net

When composed in parallel, with renaming for parameter passing
and avoiding capture, this gives the mobility set:

mobility net = {〈A?a,X !a〉, 〈A?b, p!b〉, 〈B?c , q!c〉, 〈B?d , r !d 〉

〈s!e〉, 〈p?f ,Y !f 〉, 〈q?g ,Y !g 〉, 〈r?h〉, 〈s?h〉} \ {p, q, r , s}

Example

Using Mobile Analysis

mobility delta = {〈in?a
, out0!a〉,

〈in?b
, out1!b〉}

mobility choice = {〈in?a
, out0!a〉,

〈in?b
, out1!b〉}

mobility gen = {〈out!a〉}

mobility plex = {〈in0?a
, out!a〉,

〈in1?b
, out!b〉}

mobility sink = {〈in0?a〉, 〈in1?b〉}

delta

choice

gen

plex

sink

p

q

r

s

A?

B?

X!

Y!

net

When composed in parallel, with renaming for parameter passing
and avoiding capture, this gives the mobility set:

mobility net = {〈A?a,X !a〉, 〈A?b, p!b〉, 〈B?c , q!c〉, 〈B?d , r !d 〉

〈s!e〉, 〈p?f ,Y !f 〉, 〈q?g ,Y !g 〉, 〈r?h〉, 〈s?h〉} \ {p, q, r , s}

Example

Using Mobile Analysis

Hiding the internal channels gives:

\{p}
−→ {〈A?a,X !a〉, 〈A?b,Y !b〉, 〈B?c , q!c〉, 〈B?d , r !d 〉, 〈s!e〉, 〈q?g ,Y !g 〉,

〈r?h〉, 〈s?h〉}

\{q}
−→ {〈A?a,X !a〉, 〈A?b,Y !b〉, 〈B?c ,Y !c〉, 〈B?d , r !d 〉, 〈s!e〉, 〈r?h〉, 〈s?h〉}

\{r}
−→ {〈A?a,X !a〉, 〈A?b,Y !b〉, 〈B?c ,Y !c〉, 〈B?d 〉, 〈s!e〉, 〈s?h〉}

\{s}
−→ {〈A?a,X !a〉, 〈A?b,Y !b〉, 〈B?c ,Y !c〉, 〈B?d 〉}

net
A?

B?

X!

Y!

Which indicates that mobiles arriving on A escape on X and Y; and
that mobiles arriving on B escape on Y or are consumed internally.

by what is not present: no mobiles received on A are discarded
internally; and that no internally generated mobiles escape.

Example

Using Mobile Analysis

Hiding the internal channels gives:

\{p}
−→ {〈A?a,X !a〉, 〈A?b,Y !b〉, 〈B?c , q!c〉, 〈B?d , r !d 〉, 〈s!e〉, 〈q?g ,Y !g 〉,

〈r?h〉, 〈s?h〉}

\{q}
−→ {〈A?a,X !a〉, 〈A?b,Y !b〉, 〈B?c ,Y !c〉, 〈B?d , r !d 〉, 〈s!e〉, 〈r?h〉, 〈s?h〉}

\{r}
−→ {〈A?a,X !a〉, 〈A?b,Y !b〉, 〈B?c ,Y !c〉, 〈B?d 〉, 〈s!e〉, 〈s?h〉}

\{s}
−→ {〈A?a,X !a〉, 〈A?b,Y !b〉, 〈B?c ,Y !c〉, 〈B?d 〉}

net
A?

B?

X!

Y!

Which indicates that mobiles arriving on A escape on X and Y; and
that mobiles arriving on B escape on Y or are consumed internally.

by what is not present: no mobiles received on A are discarded
internally; and that no internally generated mobiles escape.

Example

Using Mobile Analysis

Hiding the internal channels gives:

\{p}
−→ {〈A?a,X !a〉, 〈A?b,Y !b〉, 〈B?c , q!c〉, 〈B?d , r !d 〉, 〈s!e〉, 〈q?g ,Y !g 〉,

〈r?h〉, 〈s?h〉}

\{q}
−→ {〈A?a,X !a〉, 〈A?b,Y !b〉, 〈B?c ,Y !c〉, 〈B?d , r !d 〉, 〈s!e〉, 〈r?h〉, 〈s?h〉}

\{r}
−→ {〈A?a,X !a〉, 〈A?b,Y !b〉, 〈B?c ,Y !c〉, 〈B?d 〉, 〈s!e〉, 〈s?h〉}

\{s}
−→ {〈A?a,X !a〉, 〈A?b,Y !b〉, 〈B?c ,Y !c〉, 〈B?d 〉}

net
A?

B?

X!

Y!

Which indicates that mobiles arriving on A escape on X and Y; and
that mobiles arriving on B escape on Y or are consumed internally.

by what is not present: no mobiles received on A are discarded
internally; and that no internally generated mobiles escape.

Example

Using Mobile Analysis

Hiding the internal channels gives:

\{p}
−→ {〈A?a,X !a〉, 〈A?b,Y !b〉, 〈B?c , q!c〉, 〈B?d , r !d 〉, 〈s!e〉, 〈q?g ,Y !g 〉,

〈r?h〉, 〈s?h〉}

\{q}
−→ {〈A?a,X !a〉, 〈A?b,Y !b〉, 〈B?c ,Y !c〉, 〈B?d , r !d 〉, 〈s!e〉, 〈r?h〉, 〈s?h〉}

\{r}
−→ {〈A?a,X !a〉, 〈A?b,Y !b〉, 〈B?c ,Y !c〉, 〈B?d 〉, 〈s!e〉, 〈s?h〉}

\{s}
−→ {〈A?a,X !a〉, 〈A?b,Y !b〉, 〈B?c ,Y !c〉, 〈B?d 〉}

net
A?

B?

X!

Y!

Which indicates that mobiles arriving on A escape on X and Y; and
that mobiles arriving on B escape on Y or are consumed internally.

by what is not present: no mobiles received on A are discarded
internally; and that no internally generated mobiles escape.

Example

Using Mobile Analysis

Hiding the internal channels gives:

\{p}
−→ {〈A?a,X !a〉, 〈A?b,Y !b〉, 〈B?c , q!c〉, 〈B?d , r !d 〉, 〈s!e〉, 〈q?g ,Y !g 〉,

〈r?h〉, 〈s?h〉}

\{q}
−→ {〈A?a,X !a〉, 〈A?b,Y !b〉, 〈B?c ,Y !c〉, 〈B?d , r !d 〉, 〈s!e〉, 〈r?h〉, 〈s?h〉}

\{r}
−→ {〈A?a,X !a〉, 〈A?b,Y !b〉, 〈B?c ,Y !c〉, 〈B?d 〉, 〈s!e〉, 〈s?h〉}

\{s}
−→ {〈A?a,X !a〉, 〈A?b,Y !b〉, 〈B?c ,Y !c〉, 〈B?d 〉}

net
A?

B?

X!

Y!

Which indicates that mobiles arriving on A escape on X and Y; and
that mobiles arriving on B escape on Y or are consumed internally.

by what is not present: no mobiles received on A are discarded
internally; and that no internally generated mobiles escape.

Example

Using Mobile Analysis

Hiding the internal channels gives:

\{p}
−→ {〈A?a,X !a〉, 〈A?b,Y !b〉, 〈B?c , q!c〉, 〈B?d , r !d 〉, 〈s!e〉, 〈q?g ,Y !g 〉,

〈r?h〉, 〈s?h〉}

\{q}
−→ {〈A?a,X !a〉, 〈A?b,Y !b〉, 〈B?c ,Y !c〉, 〈B?d , r !d 〉, 〈s!e〉, 〈r?h〉, 〈s?h〉}

\{r}
−→ {〈A?a,X !a〉, 〈A?b,Y !b〉, 〈B?c ,Y !c〉, 〈B?d 〉, 〈s!e〉, 〈s?h〉}

\{s}
−→ {〈A?a,X !a〉, 〈A?b,Y !b〉, 〈B?c ,Y !c〉, 〈B?d 〉}

net
A?

B?

X!

Y!

Which indicates that mobiles arriving on A escape on X and Y; and
that mobiles arriving on B escape on Y or are consumed internally.

by what is not present: no mobiles received on A are discarded
internally; and that no internally generated mobiles escape.

Backmatter

Conclusions

A semantic model that can be used to reason about the escape of
mobile items within an occam-π system.

handles the movement of mobile channels and subsequent
communication on then.
can be used to reason about safety properties of systems involving
mobiles – and to inform optimisation or distribution.

The paper contains more details on the semantics, as well as more
complex examples taken from real systems.

Future work includes:

generation of these models automatically by the compiler.
tools to manipulate models (not as complex as FDR).
complete denotational semantics.
application of the techniques to other process-oriented systems.

Backmatter

Conclusions

A semantic model that can be used to reason about the escape of
mobile items within an occam-π system.

handles the movement of mobile channels and subsequent
communication on then.
can be used to reason about safety properties of systems involving
mobiles – and to inform optimisation or distribution.

The paper contains more details on the semantics, as well as more
complex examples taken from real systems.

Future work includes:

generation of these models automatically by the compiler.
tools to manipulate models (not as complex as FDR).
complete denotational semantics.
application of the techniques to other process-oriented systems.

Backmatter

Conclusions

A semantic model that can be used to reason about the escape of
mobile items within an occam-π system.

handles the movement of mobile channels and subsequent
communication on then.
can be used to reason about safety properties of systems involving
mobiles – and to inform optimisation or distribution.

The paper contains more details on the semantics, as well as more
complex examples taken from real systems.

Future work includes:

generation of these models automatically by the compiler.
tools to manipulate models (not as complex as FDR).
complete denotational semantics.
application of the techniques to other process-oriented systems.

Backmatter

The End

Any questions?

This work was funded by EPSRC grant EP/D061822/1.

Thanks to the anonymous reviewers and colleagues for their
feedback.

Backmatter

References

C.A.R. Hoare.

Communicating Sequential Processes.
Prentice-Hall, London, 1985.
ISBN: 0-13-153271-5.

Frederick R. M. Barnes and Carl G. Ritson.

Checking process-oriented operating system behaviour using CSP and refinement.
In PLOS 2009. ACM.
To Appear.

R. Milner.

Communicating and Mobile Systems: the Pi-Calculus.
Cambridge University Press, 1999.
ISBN: 0-52165-869-1.

Extras

Mobility Refinement

With the ordinary semantic models, we have a notion of refinement.

no reason why one should not exist for the mobility model presented
here:

P ⊑M Q ≡ mobility Q ⊆ mobility P

The informal interpretation is that Q is “less leaky” than P, when it
comes to mobile escape.

some fudge required in the subset operation: e.g. {〈c?
x〉} refines

{〈c?
x
, d !

x〉}, as does {〈d !
y 〉}.

can arise in an implementation that copies data between mobiles.

Extras

Expansive Hiding

Hiding is not always an reducing operation:

can easily blow-up, reflecting the different possibilities for mobiles.

{〈A?a, c !a〉, 〈B?b, c !b〉, 〈c?f ,X !f 〉, 〈c?g ,Y !g 〉, 〈c?h,Z !h〉}

\{c}
−→ {〈A?a,X !a〉, 〈A?a,Y !a〉, 〈A?a,Z !a〉,

〈B?b,X !b〉, 〈B?b,Y !b〉, 〈B?b,Z !b〉}

Worse-case is limited by type compatibility.

Extras

Denotational Semantics

Alphabets (for any particular occam-π process):

output channels: Σ
!, input channels: Σ

?, such that Σ = Σ
! ∪ Σ

?.
also grouped by type: Σt , where t is a valid occam-π protocol and
t ∈ T, where T is the set of valid occam-π protocols.

following on: Σt = Σ!
t ∪ Σ?

t , and ∀ t : T · Σt ⊆ Σ.

for shared mobiles: Σ+ = Σ
!
+ ∪ Σ

?
+.

Primitive processes:

mobility SKIP = 〈〉

mobility STOP = 〈〉

mobility div = mobility CHAOS =

{〈C !a〉 | C ∈ Σ!} ∪ {〈D?x〉 | D ∈ Σ?}∪

{〈C?v ,D!v 〉 | ∀ t : T · (C ,D) ∈ Σ?

t × Σ!

t)}

Extras

Denotational Semantics

Choice:

mobility (P 2 Q) = (mobility P) ∪ (mobility Q)

mobility (P ⊓ Q) = (mobility P) ∪ (mobility Q)

Interleaving and parallelism:

mobility (P ‖ Q) = (mobilityP) ∪ (mobility Q)

Hiding:

mobility (P \ x) =
{

M ˆN[α/β] |
(

M ˆ〈x !α〉, 〈x?β〉ˆN
)

∈ mobility P × mobilityP
}

∪
(

(mobility P) −
({

F ˆ〈x !α〉 | F ˆ〈x !α〉 ∈ mobility P
}

∪
{

〈x?β〉ˆG | 〈x?β〉ˆG ∈ mobility P
}))

∪
{

H | (H ˆ〈x !α〉) ∈ mobility P ∧ (〈x?β〉ˆ I) /∈ mobility P ∧ H 6= 〈〉
}

∪
{

J | (〈x?β〉ˆJ) ∈ mobility P ∧ (J ˆ〈x !α〉) /∈ mobility P ∧ J 6= 〈〉
}

	Introduction
	Semantic Models
	Code Analysis
	Example
	Backmatter
	Extras

