
Mobile Escape Analysis for occam-pi
Frederick R.M. BARNES

School of Computing, University of Kent,
Canterbury, Kent, CT2 7NF. England.

F.R.M.Barnes@kent.ac.uk

Abstract. Escape analysis is the process of discovering boundaries of dynamically al-
located objects in programming languages. For object-oriented languages such as C++
and Java, this analysis leads to an understanding of which program objects interact
directly, as well as what objects hold references to other objects. Such information can
be used to help verify the correctness of an implementation with respect to its design,
or provide information to a run-time system about which objects can be allocated on
the stack (because they do not “escape” the method in which they are declared). For
existing object-oriented languages, this analysis is typically made difficult by aliasing
endemic to the language, and is further complicated by inheritance and polymorphism.
In contrast, the occam-π programming language is a process-oriented language, with
systems built from layered networks of communicating concurrent processes. The lan-
guage has a strong relationship with the CSP process algebra, that can be used to rea-
son formally about the correctness of occam-π programs. This paper presents early
work on a compositional escape analysis technique for mobiles in the occam-π pro-
gramming language, in a style not dissimilar to existing CSP analyses. The primary
aim is to discover the boundaries of mobiles within the communication graph, and
to determine whether or not they escape any particular process or network of pro-
cesses. The technique is demonstrated by analysing some typical occam-π processes
and networks, giving a formal understanding of their mobile escape behaviour.

Keywords. occam-pi, escape analysis, concurrency, CSP

Introduction

The occam-π programming language [1] is a highly concurrent process-oriented language,
derived from classical occam [2], in which systems are built from layered networks of com-
municating processes. The semantics of classical occam are based largely on those of Hoare’s
Communicating Sequential Processes (CSP) [3], an algebra that can be used to reason about
the concurrent behaviour of occam programs [4,5].

To occam, occam-π adds new mechanisms and language constructs for data, channel and
process mobility, inspired by Milner’s π-calculus [6]. In addition occam-π offers a wealth
of other features that allow the construction of dynamic and evolving software systems [7].
Some of these extensions, such as dynamic process creation, mobile barriers and channel-
bundles, have already had CSP semantics defined for them [8,9,10], providing ways for for-
mal reasoning about these. These semantics are sufficient for reasoning about most occam-π
programs in terms of interactions between concurrent components, typically to guarantee the
absence of deadlock, or refinement of a specification. However, these semantics do not ad-
equately deal with escape analysis of the various mobile types, i.e. knowing in advance the
range of movement of mobiles between processes and process networks.

The escape analysis information for an individual process or network of processes is
useful in several ways:

• For checking design-level properties of a system, e.g. ensuring that private mobile
data in one part of a system does not escape.

• For the implementation, as it describes the components tightly coupled by mobile
communication — relevant in shared-memory systems, where pointers are communi-
cated between processes, and for the breakdown of concurrent systems in distributed
execution.

The remainder of this paper describes an additional mobility analysis for occam-π programs,
in a style similar to the well-known traces, failures and divergences analyses of CSP [11].
Section 1 provides a brief overview of occam-π and its mobility mechanisms, in addition
to current analysis techniques for occam-π programs. Section 2 describes the additions for
mobile escape analysis, in particular, a new mobility model. Section 3 describes how mobile
escape analysis is performed for occam-π program code, followed by initial applications
of this to occam-π systems in section 4. Related research is discussed in section 5, with
conclusions and consideration for future work in section 6.

1. occam-π and Formal Analysis

The occam-π language provides a natural expression for concurrent program implementa-
tion, based on a communicating processes model as described by CSP. Whole systems are
built from layered networks of communicating processes, which interact through a variety of
synchronisation and communication mechanisms.

The primary mechanism for process interaction is through channel communication,
where two processes synchronise (with the semantics of CSP events), and communicate data.
The occam-π “BARRIER” type provides synchronisation between any number of processes, but
allows no communication (although barriers can be used to provide safe access to shared
data [12]). The barrier type is roughly equivalent to the general CSP event, though our im-
plementation does not support interleaving — synchronisation between subsets of enrolled
processes.

There are four distinct groups of mobile types in the occam-π language, that cover all
of the occam-π mobility extensions. These are mobile data, mobile channel-ends, mobile
processes and mobile barriers. The operational semantics of these vary depending on the
type of mobile (described below).

Mobile variables, of all mobile types, are implemented primarily as pointers to dynami-
cally allocated memory. To avoid the need for complex garbage collection (GC), strict alias-
ing rules are applied. For all mobile types, routines exist in the run-time system that allow
these to be manipulated safely including: allocation, release, input, output, assignment and
duplication.

1.1. Operational Semantics of Mobile Types

Mobile data exists largely for performance reasons. Ordinarily, data is communicated over
occam-π channels using a copying semantics — i.e. the outputting process keeps its original
data unchanged, and the inputting process receives a copy (overwriting a local variable or
parameter). With large data (e.g. 100 KiB or more), the cost of this copy becomes significant,
compared with the cost of the synchronisation. With mobile data, only a reference to the
actual data is ever copied — a small fixed overhead [13]. However, in order to maintain the
aliasing laws of occam (and to avoid parallel race-hazards on shared data), the outputting
process must lose the data it is sending — i.e. it is moved to the receiving process. A “CLONE”
operator exists for mobile data that creates a copy, for cases where the outputting process
needs to retain the data after the output.

Mobile barriers allow synchronisation between arbitrary numbers of parallel processes.
This has uses in a variety of applications, such as the simulation of complex systems [14],
where barriers can be used to protect access to shared data (using a phased access pattern of
global read then local write). When output by a process, a reference to a mobile barrier is
moved, unless it is explicitly cloned, in which case the receiving process is enrolled on the
barrier before the communication completes.

Mobile channel-ends refer to the end-points of mobile channel bundles. These are struc-
tured types that incorporate a number of ordinary channels. Unlike ordinary channels, how-
ever, these mobile channel-ends may be moved between processes — dynamically restructur-
ing the process network. Mobile channel ends may be shared or unshared. Unshared ends are
always moved on output. Shared channel-ends are always cloned on output. Communication
on the individual channels inside a shared channel-end must be done within a “CLAIM” block,
to ensure mutually exclusive access to those channels.

Mobile processes provide a mechanism for process mobility in occam-π [1]. Mobile pro-
cesses are either active, meaning that they are connected to an environment and are running
(or waiting for an event), or are inactive, meaning that they are disconnected from any envi-
ronment and are free to be moved between processes. Like mobile data, there is no concept
of a shared mobile process, though a mobile process may contain other mobiles (shared and
unshared) as part of its internal state.

The rules for mobile assignment follow those for communication — in line with the
existing laws of occam. For example, assuming “x” and “y” are integer (“INT”) variables, the
two following fragments of code are semantically equivalent:

x := y ≡

CHAN INT c:
PAR
c ! y
c ? x

This rule must be preserved when dealing with mobiles, whose references are either
moved or duplicated, depending on the mobile type used. The semantics of communication
are also used when passing mobile parameters to dynamically created (forked) processes [15]
— renaming semantics are used for ordinary procedure calls.

1.2. Analysis of occam-pi Programs

Starting with an occam-π process, it is moderately straightforward to construct a CSP expres-
sion that captures the process’s behaviour [4,5]. Figure 1 shows the traditional “id” process
and its implementation, that acts as a one-place buffer within a process network.

PROC id (CHAN INT in?, out!)
WHILE TRUE
INT x:
SEQ
in ? x
out ! x

:

in? out!
id

Figure 1. One place buffer process.

If the specification is for a single place buffer, this code represents the most basic im-
plementation — all other implementations meeting the same specification are necessarily
equivalent. The parameterised CSP equation for this process is simply:

ID(in, out) = in → out → ID(in, out)

This captures the behaviour of the process (interaction with its environment by synchro-
nisation on “in” and “out” alternately), but makes no statements about individual data values.
CSP itself provides only a limited support for describing the stateful data of a system. Where
such reasoning is required, it would be preferable to use related algebras such as Circus [16]
or CSP‖B [17].

Using existing and largely mechanical techniques, the traces, failures and divergences of
this “ID” process can be obtained:

traces ID = {〈〉, 〈in〉, 〈in, out〉, 〈in, out , in〉, . . .}

failures ID =
{

(〈〉, {out}), (〈in〉, {in}),

(〈in, out〉, {out}),

(〈in, out , in〉, {in}), . . .
}

divergences ID = {}

As described in [11], the traces of a process are the sequences of events that it may
perform. For the ID process, this is ultimately an infinite trace containing “in” and “out”
alternatively.

The failures of a process describe under what conditions a process will deadlock (behave
as STOP). These are pairs of traces and event-sets, e.g. (X ,E), which state that if a process
has performed the trace X and the events E are offered, then it will deadlock. For example,
the first failure for the ID process states that if the process has not performed any externally
visible events, and it is only offered “out”, then it will deadlock — because the process is
actively only waiting for “in”.

The divergences of a process are similar to failures, except these describe the conditions
under which a process will livelock (behaves as div). The ID process is divergence free.

2. Mobility Analysis

The primary purpose of the extra analysis is to track the escape of mobile items from pro-
cesses. With respect to mobile items, processes can:

• create new mobile items;
• transport existing mobiles through their interfaces; and
• destroy mobile items.

Unlike traces, failures and divergences, the mobility of a process cannot be derived from
a CSP expression of an occam-π process alone — requiring either the original code from
which we would generate a CSP expression, or an augmented version of CSP that provides a
more detailed representation of program behaviour, specifically the mobile operations listed
above.

The remainder of this section describes the representation (syntax) used for mobility
sequences, and some simple operations on these.

2.1. Representation

The mobility of a process is defined as a set of sequences of tagged events, where the events
involved represent channels in the process’s environment. For the non-mobile “id” process
discussed in section 1.2, this would simply be the empty set:

mobility ID = {}

For a version of the “id” process that transports mobile data items:

mobility MID = {〈in?a , out !a〉}
The name “a” introduced in the mobility specification has scope across the whole set of

sequences (though in this case there is only a single sequence) and indicates that the mobile
data received from “in” is the same as that output on “out”. The direction (input or output)
is relevant, since escape is asymmetric. Processes that create or destroy mobiles instead of
transporting them are defined in similar ways.

The syntax for representing and manipulating mobility sequences borrows heavily from
CSP [3,11], specifically the syntax associated with traces.

2.1.1. Shared Mobiles

For unshared mobile items, simple mobility sequences will have at most two items1, reflecting
the fact that a process acquires a mobile and then loses it — and therefore always in the order
of an input followed by an output. For shared mobile items, mobility sequences may contain
an arbitrary number of outputs, as a process can duplicate references to that mobile. Where
there is more than one output, the order is unimportant — knowing that the mobile escapes
is sufficient.

Shared mobiles are indicated explicitly — decorated with a “+”. For example, a version
of the “id” process that transports shared mobiles has the model:

mobility SMID = {〈in?a+, out !a+〉}

2.1.2. Client and Server Channel Ends

As described in section 1.1, mobile channel bundles are represented in code as pairs of con-
nected ends, termed client and server. In practice these refer to the same mobile item, but for
the purpose of analysis we distinguish the individual ends — e.g. for some mobile channel
bundle “a”, we use “a” for the client-end and “ā” for the server-end. A version of “id” that
transports unshared server-ends of a particular channel-type would have the mobility model:

mobility USMID = {〈in?ā , out !ā〉}
These are slightly different from other mobiles in that they can appear as both super-

scripts (mobile items) and channel-names (carrying other mobile items). Recursive mobile
channel-end structures can also carry themselves, expressed as, e.g. 〈a!a〉.

Where there are multiple channels inside a mobile channel-end, the individual channels
can be referred to by their index, e.g. 〈a[0]?

x 〉, 〈a[1]!
a〉, to make clear which particular channel

(for communication) is involved.

2.1.3. Undefinedness

In certain situations, that are strictly program errors, there is a potential for undefined mobile
items to escape a process. Such an undefined mobile cannot be used in any meaningful way,
but should be treated formally. A process that declares a mobile and immediately outputs it
undefined, for example, would have the mobility model:

mobility BAD = {〈out !γ〉}
The absence of such things can be used to prove that a process, or process network, does

not generate any undefined mobiles.

1Higher order operations, e.g. communicating channels over channels, can produce mobility sequences con-
taining more than two items — see section 3.7.

2.1.4. Alphabets

As is standard in CSP, we use sigma (Σ) to refer to the set of names on which a process
can communicate. For mobility sequences, this can be divided into output channels (Σ!) and
input channels (Σ?), such that Σ = Σ! ∪ Σ?. Ordinary mobile items (data, barriers) are not
part of this alphabet, mobile channel-ends are however.

The various channels that are in the alphabet of an occam-π process can also be grouped
according to their type: Σt , where t is any valid occam-π protocol and T is the set of available
protocols, such that t ∈ T. Following on, Σt = Σ!

t ∪ Σ?
t , and ∀ t : T · Σt ⊆ Σ.

For referring to all channels that carry shared mobiles we have Σ+, with Σ+ = Σ!
+∪Σ?

+.

2.2. Operations on Mobility Sequences

For convenience, the following operations are defined for manipulating mobility sequences.
To illustrate these, the name S refers to a set of mobility sequences, S = {R1,R2, . . .}, each
of which is a sequence of mobile actions, R = 〈X1,X2, . . .〉. Each mobile action is either an
input, X1 = C !x , or an output, X2 = D?v .

2.2.1. Concatenation

For joining mobility sequences:

〈X1,X2, . . .〉ˆ〈Y1,Y2, . . .〉 = 〈X1,X2, . . . ,Y1,Y2, . . .〉

2.2.2. Channel Restriction

Used to remove named channels from mobility sequences:

〈X1,C !x , . . .〉 − {C} = 〈X1, . . .〉

Note that this is not quite the same as hiding, the details of which are described later.

3. Analysing occam-pi for Mobility

This section describes the specifics of extracting mobile escape information for occam-π
processes. Where appropriate, the semantics of these in terms of CSP operators are given. A
refinement relation over mobility sets is also considered.

3.1. Primitive Processes

The two primitive CSP processes STOP and SKIP are expressed in occam-π using “STOP”
and “SKIP” respectively. Although “STOP” is often not used explicitly, it is implicit in certain
occam-π constructs — for example, in an “IF” structure, if none of the conditions evaluate
to true, or in an “ALT” with no enabled guards. Both SKIP and STOP have empty mobil-
ity models. Divergence and chaos, for which there is no exact occam-π equivalent, have un-
defined though legal mobility behaviours — and are able to do anything that an occam-π
process might.

mobility SKIP = 〈〉
mobility STOP = 〈〉

mobility div = mobility CHAOS =

{〈C !a〉 | C ∈ Σ!} ∪ {〈D?x 〉 | D ∈ Σ?}∪

{〈C ?v ,D !v〉 | ∀ t : T · (C ,D) ∈ Σ?
t × Σ!

t)}

The models of divergence and chaos specify that the process may output defined mobiles
on any of its output channels, consume mobiles from any of its input channels, and forward
mobiles from any of its input channels to any of its output channels (where the types are com-
patible). However, neither divergence or chaos will generate (and output) undefined mobiles,
but may forward undefined mobiles if these were ever received.

3.2. Input, Output and Assignment

Input and output are the basic building blocks of mobile escape in occam-π — they provide
the means by which mobile items are moved. For example, a process that generates and
outputs a mobile (which escapes):

PROC P (CHAN MOBILE THING out!)
MOBILE THING x:
SEQ
... initialise ‘x’
out ! x

:

mobility P = {〈out !x 〉}

Correspondingly, a process that consumes a mobile:

PROC Q (CHAN MOBILE THING in?)
MOBILE THING y:
SEQ
in ? y
... use y

:

mobility Q = {〈in?y〉}

A similar logic applies to assignment, based on the earlier equivalence with communication.
For example:

PROC R (CHAN MOBILE THING in?, out!)
MOBILE THING v, w:
SEQ
in ? v
w := v
out ! w

:

mobility R = {〈in?v ,Lc!v〉,
〈Lc?w , out !w〉} \ {Lc}

The local channel-name Lc comes from the earlier model for assignment (as a communica-
tion between two parallel processes). The semantics for parallelism and hiding are described
in the following sections. A compiler does not need to model assignment directly in this
manner, however — it can track the movement of mobiles between local variables itself, and
generate simpler (but equivalent) mobility sequences. For the above process “R”:

mobility R = {〈in?u , out !u〉}

3.3. Sequential Composition

Sequential composition provides one mechanism by which a mobile received on one channel
can escape on another. In the case of the “id” process, whose mobility model is intuitively
obvious (but best determined automatically by a compiler or other tool):

SEQ
in ? v
out ! v

mobility ID = {〈in?v , out !v〉}

In general, the mobility model for sequential processes, i.e. mobility(P ; Q), is formed
by combining input sequences from mobility P with output sequences from mobility Q ,
matched by the particular mobile variable input or output. When combining processes in this
and other ways, the individual variables representing mobile items may need to be renamed
to avoid unintentional capture.

3.4. Choice

Programs may make choices either internally (e.g. with “IF” and “CASE”) or externally (with
an “ALT” or “PRI ALT”). The rules for internal and external choice are straightforward —
simply the union of the sets representing the individual choice branches. For example:

PROC plex.data (CHAN MOBILE THING in0?, in1?, out!)
WHILE TRUE
MOBILE THING v:
ALT
in0 ? v
out ! v

in1 ? v
out ! v

:

mobility PD = {〈in0?a , out !a〉,

〈in1?b , out !b〉}

In general:

mobility (P � Q) = (mobility P) ∪ (mobility Q)

mobility (P u Q) = (mobility P) ∪ (mobility Q)

3.5. Interleaving and Parallelism

Interleaving and parallelism, both specified by “PAR” in occam-π, have straightforward mo-
bility models. For example, a “delta” process for SHARED mobile channel-ends, that performs
its outputs in parallel:

PROC chan.delta (CHAN SHARED CT.FOO! in?, out0!, out1!)
WHILE TRUE
SHARED CT.FOO! x:
SEQ
in ? x
PAR
out0 ! CLONE x
out1 ! CLONE x

:

mobility CD = {〈in?a+, out0!a+〉,

〈in?b+, out1!b+〉}

This captures the fact that a mobile input on the “in” channel escapes to both the output
channels, indistinguishable from a non-interleaving process that makes an internal choice
about where to send the mobile. In general:

mobility (P ‖ Q) = (mobilityP) ∪ (mobility Q)

Interleaving (e.g. P ||| Q) is a special form of the more general alphabetised parallelism,
therefore it is not of huge concern for mobile escape analysis.

3.6. Hiding

Hiding is used to model the declaration and scope of channels in occam-π. In particular, it
is also responsible for collapsing mobility structures — by removing channel names from
them. Where occam-π programs are concerned, channel declarations typically accompany
“PAR” structures. For example:

PROC network (CHAN MOBILE THING in?, out!)
CHAN INT c:
PAR
thing.id (in?, c!)
thing.id (c?, out!)

:

mobility NET = {〈in?a , c!a〉,

〈c?b , out !b〉} \ {c}

This reduces to the set:

mobility NET = {〈in?a , out !a〉}

The general rule for which is:

mobility (P \ x) =
{
M ˆN [α/β] |(
M ˆ〈x !α〉, 〈x?β〉ˆN

)
∈ mobility P ×mobilityP

}
∪(

(mobility P)−
({

Fˆ〈x !α〉 | Fˆ〈x !α〉 ∈ mobility P
}

∪
{
〈x?β〉ˆG | 〈x?β〉ˆG ∈ mobility P

}))
∪{

H | (H ˆ〈x !α〉) ∈ mobility P ∧ (〈x?β〉ˆI) /∈ mobility P ∧ H 6= 〈〉
}
∪{

J | (〈x?β〉ˆJ) ∈ mobility P ∧ (Jˆ〈x !α〉) /∈ mobility P ∧ J 6= 〈〉
}

The above specifies the joining of sequences that end with outputs on the channel x with
sequences that begin with inputs on the channel x . The matching sequences are removed
from the resulting set, however, the starts of unmatched output sequences and the ends of
unmatched input sequences are preserved.

3.7. Higher Order Communication

So far, only the transport of mobiles over static process networks has been considered. How-
ever, in many real applications, mobile channels will be used to setup connections between
processes, which are later used to transport other mobiles (including other mobile channel-
ends). Assuming that the “CT.FOO” channel-type contains a single channel named “c”, itself
carrying mobiles, we might write:

PROC high.order.cli (CHAN CT.FOO! in?)
CT.FOO! cli:
MOBILE THING v:
SEQ
in ? cli
... initialise ‘v’
cli[c] ! v

:

mobility HOC =
{
〈in?a , a!b〉

}

This captures the fact that the process emits mobiles on the bound name “a”, which it received
from its “in” channel. The type “CT.FOO!” specifies the client-end of the mobile channel2. A
similar process for the server-end of the mobile channel could be:

PROC high.order.svr (CHAN CT.FOO? in?)
CT.FOO? svr:
MOBILE THING x:
SEQ
in ? svr
svr[c] ? x
... use ‘x’

:

mobility HOS =
{
〈in?c̄, c̄?d〉

}

Connecting these in parallel with a generator process (that generates a pair of connected
channel-ends and outputs them), and renaming for parameter passing:

PROC foo.generator (CHAN CT.FOO! c.out!, CHAN CT.FOO? s.out!)
CT.FOO? svr:
CT.FOO! cli:
SEQ
cli, svr := MOBILE CT.FOO
PAR
c.out ! cli
s.out ! svr

:

mobility FG =
{
〈c.out !x 〉, 〈s .out !x̄ 〉

}

CHAN CT.FOO! c:
CHAN CT.FOO? s:
PAR
foo.generator (c!, s!)
high.order.cli (c?)
high.order.svr (s?)

mobility =
{
〈c!x 〉, 〈s !x̄ 〉, 〈c?a , a!b〉,

〈s?c̄, c̄?d〉
}
\ {c, s}

=
{
〈x !b〉, 〈x̄?d〉

}
This indicates a system in which a mobile is transferred internally, but never escapes. As

such, we can hide the mobile channel event “x” (also “x̄”), giving an empty mobility set —
concluding that no mobiles escape this small system, as we would have expected.

3.8. Mobility Refinement

The previous sections have illustrated a range of mobility sets for various processes and their
compositions. Within CSP and related algebras is the concept of refinement, that operates on
the traces, failures and divergences of processes, and can in general be used to test whether a
particular implementation meets a given specification. In general, we write P v Q to mean
that P is refined by Q , or that Q is more deterministic than P .

2The variable “cli” is a mobile channel bundle containing just one channel (named “c”), identified by a
record subscript syntax: cli[c].

For mobile escape analysis, it is reasonable to suggest that there may be a related mobility
refinement, whose definition is:

P vM Q ≡ mobility Q ⊆ mobility P

The interpretation of this is that Q “contributes less to mobile escape” than P , and where
the subset relation takes account of renaming within sets. This is not examined in detail here
(an item for future work), but on initial inspection appears sensible — e.g. to test whether a
specific implementation meets a general specification.

4. Application

As previously discussed, the aim of this analysis is to determine what mobiles (if any) escape
a particular network of occam-π processes, and if so, how they escape with respect to that
process network (i.e. on which input and output channels).

Two examples of the technique are discussed here, one for static process networks and
one for dynamically evolving process networks. The former is more typical of small-scale
systems, such as those used in small (and memory limited) devices.

4.1. Static Process Networks

Figure 2 shows a network of parallel processes and the code that implements it. The individ-
ual components have the following mobile escape models:

mobility delta = {〈in?a , out0!a〉, 〈in?b , out1!b〉}

mobility choice = {〈in?a , out0!a〉, 〈in?b , out1!b〉}
mobility gen = {〈out !a〉}

mobility plex = {〈in0?a , out !a〉, 〈in1?b , out !b〉}

mobility sink = {〈in0?a〉, 〈in1?b〉}

A?

B?

X!

Y!

gen

p

q

r

s

delta

choice

plex

sink

PROC net (CHAN MOBILE THING A?, B?,
X!, Y!)

CHAN MOBILE THING p, q, r, s:
PAR
delta (A?, X!, p!)
choice (B?, q!, r!)
gen (s!)
plex (p?, q?, Y!)
sink (r?, s?)

:

Figure 2. Parallel process network.

When combined, with appropriate renaming for parameter passing (and to avoid unin-
tentional capture), this gives the mobility set:

mobility Net = {〈A?a ,X !a〉, 〈A?b , p!b〉, 〈B?c, q !c〉, 〈B?d , r !d〉,

〈s !e〉, 〈p?f ,Y !f 〉, 〈q?g ,Y !g〉, 〈r?h〉, 〈s?h〉} \ {p, q , r , s}

Applying the rule for hiding to the channels p, q , r and s gives:

\{p}−→
{
〈A?a ,X !a〉, 〈A?b ,Y !b〉, 〈B?c, q !c〉, 〈B?d , r !d〉, 〈s !e〉, 〈q?g ,Y !g〉, 〈r?h〉, 〈s?h〉

}
\{q}−→

{
〈A?a ,X !a〉, 〈A?b ,Y !b〉, 〈B?c,Y !c〉, 〈B?d , r !d〉, 〈s !e〉, 〈r?h〉, 〈s?h〉

}
\{r}−→

{
〈A?a ,X !a〉, 〈A?b ,Y !b〉, 〈B?c,Y !c〉, 〈B?d〉, 〈s !e〉, 〈s?h〉

}
\{s}−→

{
〈A?a ,X !a〉, 〈A?b ,Y !b〉, 〈B?c,Y !c〉, 〈B?d〉

}
The resulting mobility analysis indicates that mobiles input on A escape through output

on X and Y , and that inputs received on B either escape through Y or are consumed in-
ternally. The fact that certain mobility sequences are not present in the result provides more
information: that mobiles input on A are never discarded internally, and that the resulting
network does not generate escaping mobiles.

4.2. Dynamic Process Networks

In dynamically evolving systems, RMoX in particular [18,19], connections are often estab-
lished within a system for the sole purpose of establishing future connections. An example
of this is an application process that connects to the VGA framebuffer (display) device via a
series of other processes, then uses that new connection to exchange mobile data with the un-
derlying device. Figure 3 shows a snapshot of connected graphics processes within a running
RMoX system.

driver.core

gfx.core

vga.fb vga

service.core

kernel

application

Figure 3. RMoX driver connectivity.

Escape analysis allows for certain optimisations in process networks such as these. If the
compiler (and associated tools) can determine that mobile data generated in “vga” or “vga.fb”
is not discarded internally, nor escapes through the processes “gfx.core” and “application”,
then it will be safe to pass the real framebuffer (video) memory around for rendering. Without
the guarantees provided by this analysis, there is a danger that parts of the video memory
could escape into the general memory pool — with odd and often undesirable consequences3.

Assuming that framebuffer memory originates and is consumed within “vga.fb”, we
have an occam-π process with the structure:

PROC vga.fb (CT.DRV? link)
CT.GUI.FB! fb.cli:
CT.GUI.FB? fb.svr:

3Mapping process memory (typically a process’s workspace) into video memory, or vice-versa, does provide
an interesting way of visualising process behaviour in RMoX, however.

SEQ
fb.cli, fb.svr := MOBILE CT.GUI.FB -- create channel-bundle

... other initialisation and declarations

PAR
WHILE TRUE
link[in] ? CASE
CT.DRV.R! ret:
open.device; ret -- request to open device
IF
DEFINED fb.cli
ret[out] ! device; fb.cli -- return bundle client-end

TRUE
ret[out] ! device.busy

... other cases

PLACED MOBILE []BYTE framebuffer AT ...:
WHILE TRUE
fb.svr[in] ? CASE -- request from connected client
get.buffer
fb.svr[out] ! buffer; framebuffer -- outgoing framebuffer

put.buffer; framebuffer -- incoming framebuffer
SKIP

:

That has the mobility model:

mobility VFB =
{
〈link?r , r !a〉, 〈ā[1]!

b〉, 〈ā[0]?
c〉

}
The escape information here indicates that mobiles are generated and consumed at the server-
end of the channel bundle ā, whilst the client-end of this bundle, a, escapes through another
channel bundle r that the process receives from its link parameter.

Instead of going into detail for the other processes involved, that would require a signif-
icant amount of space, the generic forwarding and use of connections is considered.

4.2.1. Client Processes

The mechanism by which dynamic connections to device-drivers and suchlike are established
involves sending the client-end of a return channel-bundle along with the request. A client
process (e.g. “application” from figure 3) therefore typically has the structure:

PROC client (SHARED CT.DRV! to.drv)
CT.DRV.R! r.cli:
CT.DRV.R? r.svr:
CT.GUI.FB! guilink:
SEQ
r.cli, r.svr := MOBILE CT.DRV.R -- create response channel-bundle

CLAIM to.drv
to.drv[in] ! open.device; r.cli -- send request

r.svr[out] ? CASE -- wait for response
device.busy
... fail gracefully

device; guilink
... use ’guilink’

:

This has the mobility model:

mobility CLI =
{
〈to.drv !e〉, 〈ē?f 〉

}
∪M

where M is the mobility model for the part of the process that uses the “guilink” connection
to the underlying service, and will communicate directly on the individual channels within f .

Connecting this client and the “vga.fb” processes directly, with renaming for parameter
passing, gives the following mobility set:{

〈Ā?r , r !a〉, 〈ā[1]!
b〉, 〈ā[0]?

c〉, 〈A!e〉, 〈ē?f 〉
}
∪M

Hiding the internal link A, Ā gives:{
〈e!a〉, 〈ā[1]!

b〉, 〈ā[0]?
c〉, 〈ē?f 〉

}
∪M

If we take a well-behaved client implementation for M — i.e. one that inputs a mobile
(framebuffer) from the underlying driver, modifies it in some way and then returns it, without
destroying or creating these (M = {〈f[1]?

x , f[0]!
x 〉}) — we get:{

〈e!a〉, 〈ā[1]!
b〉, 〈ā[0]?

c〉, 〈ē?f 〉, 〈f[1]?
x , f[0]!

x 〉
}

Subsequently hiding e, which represents the “CT.DRV.R” link, causes f to be renamed to a,
giving the set: {

〈ā[1]!
b〉, 〈ā[0]?

c〉, 〈a[1]?
x , a[0]!

x 〉
}

Logically speaking, and for this closed system, b and c must represent the same thing —
in this case, mobile framebuffers. Thus we have a guarantee that mobiles generated within
the “vga.fb” process are returned there, for this small system.

On the other hand, a less well-behaved client implementation for M could be one
that occasionally loses one of the framebuffers received, instead of returning it (i.e. M =
{〈f[1]?

x , f[0]!
x 〉, 〈f[1]?

y〉}). This ultimately gives the mobility set:{
〈ā[1]!

b〉, 〈ā[0]?
c〉, 〈a[1]?

x , a[0]!
x 〉, 〈a[1]?

y〉
}

As before, b and c must represent the same mobiles, so the only mobiles received back
must have been those sent. However, the presence of the sequence 〈a[1]?

y〉 indicates that
framebuffers can be received and then discarded by this client.

Another badly behaved client implementation is one that generates mobiles and returns
these as framebuffers, in addition to the normal behaviour, e.g. M = {〈f[1]?

x , f[0]!
x 〉, 〈f[0]!

z 〉}.
This gives the resulting mobility set:{

〈ā[1]!
b〉, 〈ā[0]?

c〉, 〈a[1]?
x , a[0]!

x 〉, 〈a[0]!
z 〉

}
In this case, b and c do not necessarily represent the same mobiles — as while x can

only be b, c can be either x (and therefore b) or z . Thus there is the possibility that mobiles
are returned to the “vga.fb” driver that did not originate there.

4.2.2. Infrastructure

Within RMoX, such client and server processes are normally connected through a net-
work of processes that route requests around the system. From figure 3, this includes the
“driver.core”, “service.core” and “kernel” processes.

In earlier versions of RMoX [19], both requests and their responses were routed through
the infrastructure. This is no longer the case — requests now include, as part of the request,

a mobile channel-end that is used for the response. This is a cleaner approach in many re-
spects and is more efficient in most cases. From the client’s perspective, a little more work is
involved when establishing connections, since the return channel-bundle must be allocated.
Most of the infrastructure components within RMoX consist of a single server-end channel-
bundle on which requests are received, whose client-end is shared between multiple pro-
cesses, and multiple client-ends connecting to other server processes such as “vga.fb” and
other infrastructure components.

A very general implementation of an infrastructure component is:

PROC route (CT.DRV? in, CT.DRV! out.this, SHARED CT.DRV! out.next)
WHILE TRUE
in[in] ? CASE

CT.DRV.R! ret:
open.device; ret

IF
request.for.this
out.this[in] ! open.device; ret

NOT invalid
CLAIM out.next!
out.next[in] ! open.device; ret

TRUE
ret[out] ! no.such.device

... other cases
:

The mobility model of this process is:

mobility Rt =
{
〈in?a , out .this !a〉, 〈in?b , out .next !b〉, 〈in?c〉

}
The last component indicates that this routing process may discard the request (and the re-
sponse channel-end) internally — after it has reported an error back on the response channel,
of course.

With the “route” process as it is, there would need to be an additional process at the end
of this chain that responds to all connection requests with an error, e.g.:

PROC end.route (CT.DRV? in)
WHILE TRUE
in[in] ? CASE

CT.DRV.R! ret:
open.device; ret
ret[out] ! no.such.device

... other cases
:

mobility ERt =
{
〈in?x 〉

}

Combining one “route” process and one “end.route” process with the existing “vga.fb” and
“client” processes produces the network shown in figure 4.
This has the following mobility model:

{
〈C̄ ?r , r !a〉, 〈ā[1]!

b〉, 〈ā[0]?
c〉, 〈A!e〉, 〈ē?f 〉, 〈B̄?x 〉, 〈Ā?a ,C !a〉, 〈Ā?b ,B !b〉, 〈Ā?c〉

}
∪M

A B

C

route

vga.fb end.route

client

Figure 4. RMoX routing infrastructure.

Hiding the internal links A, B and C gives:

\{A}−→
{
〈C̄ ?r , r !a〉, 〈ā[1]!

b〉, 〈ā[0]?
c〉, 〈ē?f 〉, 〈B̄?x 〉, 〈C !e〉, 〈B !e〉

}
∪M

\{B}−→
{
〈C̄ ?r , r !a〉, 〈ā[1]!

b〉, 〈ā[0]?
c〉, 〈ē?f 〉, 〈C !e〉

}
∪M

\{C}−→
{
〈e!a〉, 〈ā[1]!

b〉, 〈ā[0]?
c〉, 〈ē?f 〉

}
∪M

This system has an identical mobile escape model to the earlier directly connected
“client” and “vga.fb” system. As such, the system can still be sure that framebuffer mobiles
generated by “vga.fb” are returned there.

5. Related Research

The use of escape analysis for determining various properties of dynamic systems stems
from the functional programming community. One use here is for determining which parts
of an expression escape a particular function, and if they can therefore be allocated on the
stack (i.e. they are local to the function) [20]. More recently, escape analysis has been used
in conjunction with object-oriented languages, such as Java [21]. Here it can be used to
determine the boundaries of object references within the object graph, for the purposes of
stack allocation and other garbage collector (GC) optimisations [22]. With the increasing use
of multi-core and multi-processor systems, this type of analysis is also used to discover which
objects are local to which threads (known as thread escape analysis), allowing a variety of
optimisations [23].

While escape analysis for functional languages is generally well-understood, it gets ex-
tremely complex for object-oriented languages such as C++ and Java. Features inherent to
object-oriented languages, inheritance and polymorphism in particular, have a significant im-
pact on formal reasoning. The number of objects typically involved also create problems for
automated analysis (state-space explosion).

The escape analysis described here is more straightforward, but is sufficient for deter-
mining the particular properties identified earlier. The compositional nature of occam-π and
CSP helps significantly, allowing analysis to be done in a divide-and-conquer manner, or
to enable analysis to be performed on a subset of processes within a system (as shown in
section 4.2.2).

6. Conclusions and Future Work

This paper has presented a straightforward technique for mobile escape analysis in occam-π,
and its application to various kinds of process network. The analysis provides for the checking
of particular design-time properties of a system and can permit certain optimisations in the

implementation. At the top-level of a system, this escape analysis can also provide hints
towards efficient distribution of the system across multiple nodes — by identifying those parts
interconnected through mobile communication (and whose efficiency of implementation is
greatly increased with shared-memory). Although the work here has focused on occam-π, the
techniques are applicable to other process-oriented languages and frameworks.

The semantic model for mobility presented here is not quite complete. Some of the
formal rules for process composition have yet to be specified, though we have a good informal
understanding of their operation. Another aspect yet to be fully considered is one of mobile
processes. These can contain other mobiles as part of their state (within local variables), and
as such warrant special treatment. The analysis techniques shown provide a very general
model for mobile processes — in practice this either results in a larger state-space (where
mobiles within mobile processes are tracked individually), or a loss in accuracy (e.g. treating
a mobile process as CHAOS). Once a complete semantic model has been established, it can
be checked for validity, and the concept of mobility refinement investigated thoroughly.

For the practical application of this work, the existing occam-π compiler needs to be
modified to analyse and generate machine readable representations of mobile escape. Some
portion of this work is already in place, discussed briefly in [24], where the compiler has been
extended to generate CSP style behavioural models (in XML) of individual PROCs occam-π
code. The mobile escape information obtained will be included within these XML models,
incorporating attributes such as type. A separate but not overly complex tool will be required
to manipulate and check particular properties of these — e.g. that an application process
does not discard or generate framebuffer mobiles (section 4.2). How such information can be
recorded and put to use for compiler and run-time optimisations is an issue for future work.

Acknowledgements

This work was funded by EPSRC grant EP/D061822/1. The author would like to thank the
anonymous reviewers for their input on an earlier version of this work.

References

[1] P.H. Welch and F.R.M. Barnes. Communicating mobile processes: introducing occam-pi. In A.E. Abdal-
lah, C.B. Jones, and J.W. Sanders, editors, 25 Years of CSP, volume 3525 of Lecture Notes in Computer
Science, pages 175–210. Springer Verlag, April 2005.

[2] Inmos Limited. occam 2.1 Reference Manual. Technical report, Inmos Limited, May 1995. Available at:
http://wotug.org/occam/.

[3] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, London, 1985. ISBN: 0-13-153271-
5.

[4] M.H. Goldsmith, A.W. Roscoe, and B.G.O. Scott. Denotational Semantics for occam2, Part 1. In Trans-
puter Communications, volume 1 (2), pages 65–91. Wiley and Sons Ltd., UK, November 1993.

[5] M.H. Goldsmith, A.W. Roscoe, and B.G.O. Scott. Denotational Semantics for occam2, Part 2. In Trans-
puter Communications, volume 2 (1), pages 25–67. Wiley and Sons Ltd., UK, March 1994.

[6] R. Milner. Communicating and Mobile Systems: the Pi-Calculus. Cambridge University Press, 1999.
ISBN: 0-52165-869-1.

[7] P.S. Andrews, A.T. Sampson, J.M. Bjørndalen, S. Stepney, J. Timmis, D.N. Warren, and P.H. Welch.
Investigating patterns for the process-oriented modelling and simulation of space in complex systems. In
S. Bullock, J. Noble, R. Watson, and M.A. Bedau, editors, Artificial Life XI: Proceedings of the Eleventh
International Conference on the Simulation and Synthesis of Living Systems, pages 17–24. MIT Press,
Cambridge, MA, 2008.

[8] Frederick R.M. Barnes. Dynamics and Pragmatics for High Performance Concurrency. PhD thesis,
University of Kent, June 2003.

[9] P.H. Welch and F.R.M. Barnes. Mobile Barriers for occam-pi: Semantics, Implementation and Applica-
tion. In J.F. Broenink, H.W. Roebbers, J.P.E. Sunter, P.H. Welch, and D.C. Wood, editors, Communicat-

ing Process Architectures 2005, volume 63 of Concurrent Systems Engineering Series, pages 289–316,
Amsterdam, The Netherlands, September 2005. IOS Press. ISBN: 1-58603-561-4.

[10] P.H. Welch and F.R.M. Barnes. A CSP model for mobile channels. In Proceedings of Communicating
Process Architectures 2008. IOS Press, September 2008.

[11] A.W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall, 1997. ISBN: 0-13-674409-5.
[12] F.R.M. Barnes, P.H. Welch, and A.T. Sampson. Barrier synchronisations for occam-pi. In Hamid R. Arab-

nia, editor, Proceedings of PDPTA 2005, pages 173–179, Las Vegas, Nevada, USA, June 2005. CSREA
press.

[13] F.R.M. Barnes and P.H. Welch. Mobile Data, Dynamic Allocation and Zero Aliasing: an occam Exper-
iment. In Alan Chalmers, Majid Mirmehdi, and Henk Muller, editors, Proceedings of Communicating
Process Architectures 2001. IOS Press, September 2001.

[14] P.H. Welch, F.R.M. Barnes, and F.A.C. Polack. Communicating Complex Systems. In Michael G.
Hinchey, editor, Proceedings of the 11th IEEE International Conference on Engineering of Complex Com-
puter Systems (ICECCS-2006), pages 107–117, Stanford, California, August 2006. IEEE. ISBN: 0-7695-
2530-X.

[15] F.R.M. Barnes and P.H. Welch. Prioritised dynamic communicating and mobile processes. IEE Proceed-
ings – Software, 150(2):121–136, April 2003.

[16] J.C.P. Woodcock and A.L.C. Cavalcanti. The Semantics of Circus. In ZB 2002: Formal Specification and
Development in Z and B, volume 2272 of Lecture Notes in Computer Science, pages 184–203. Springer-
Verlag, 2002.

[17] S. Schneider and H. Treharne. Communicating B Machines. In ZB 2002: Formal Specification and
Development in Z and B, volume 2272 of Lecture Notes in Computer Science, pages 251–258. Springer-
Verlag, January 2002.

[18] F.R.M. Barnes, C.L. Jacobsen, and B. Vinter. RMoX: a Raw Metal occam Experiment. In J.F. Broenink and
G.H. Hilderink, editors, Communicating Process Architectures 2003, WoTUG-26, Concurrent Systems
Engineering, ISSN 1383-7575, pages 269–288, Amsterdam, The Netherlands, September 2003. IOS Press.
ISBN: 1-58603-381-6.

[19] C.G. Ritson and F.R.M. Barnes. A Process Oriented Approach to USB Driver Development. In A.A.
McEwan, S. Schneider, W. Ifill, and P.H. Welch, editors, Communicating Process Architectures 2007,
volume 65 of Concurrent Systems Engineering Series, pages 323–338, Amsterdam, The Netherlands, July
2007. IOS Press. ISBN: 978-1-58603-767-3.

[20] Y.G. Park and B. Goldberg. Higher order escape analysis: Optimizing stack allocation in functional pro-
gram implementations. In Proceedings of ESOP ’90, volume 432 of LNCS, pages 152–160. Springer-
Verlag, 1990.

[21] B. Joy, J. Gosling, and G. Steele. The Java Language Specification. Addison-Wesley, 1996. ISBN:
0-20-163451-1.

[22] B. Blanchet. Escape analysis for Java(TM): Theory and practice. ACM Transactions on Programming
Languages and Systems, 25(6):713–775, 2003.

[23] K. Lee, X. Fang, and S.P. Midkiff. Practical escape analyses: how good are they? In Proceedings of VEE
’07, pages 180–190. ACM, 2007.

[24] F.R.M. Barnes and C.G. Ritson. Checking process-oriented operating system behaviour using CSP and
refinement. In PLOS 2009. ACM, 2009. To Appear.

