UNIVERSITY OF TWENTE.

Analysing gCSP Models Using Runtime and Model Analysis Algorithms

Communicating Process Architectures 2009

Maarten Bezemer, Marcel Groothuis and Jan Broenink Control Engineering, University of Twente, The Netherlands

Contents

Introduction

- Runtime Analysis Algorithm
- Model Analysis Algorithm
- Conclusions

UNIVERSITY OF TWENTE.

Introduction

- CSP usage at Control Engineering
 - Modelling tool → gCSP

02-11-2009

Analysing gCSP Models Using Runtime and Model Analysis Algorithms

Introduction

- CSP usage at Control Engineering
 - Modelling tool \rightarrow gCSP
 - Code generation for (robotic) controllers
 - Using Communicating Threads (CT) library
 - Debugging possibilities while running the code
 - Animating the model (processes and channels)
 - Stepping through model, while showing channel values

Introduction Problem

- Designer Point of View
 - Detailed modelling
 - Lots of small processes
- Executing Point of View
 - Fast code
 - A few bigger processes
- Both Points of View conflict!

Introduction Solution

- Translate Designer PoV to Executing PoV
- Requires
 - Analysis of the gCSP model
 - Model transformation
- Solution: two analysis algorithms
 - Runtime analysis for static ordering of processes
 - Model analysis for process scheduling

- Introduction
- Runtime Analysis Algorithm
 - Introduction
 - Algorithms
 - Results
- Model Analysis Algorithm
- Conclusions

Runtime Analysis Algorithm

- Why static ordering of processes
 - No complex scheduler required
 - Possibility for grouping of processes
- Goal of Runtime Analysis Algorithm
 - Find a static running order for the processes

Runtime Analysis Algorithm Processes UNIVERSITY OF TWENTE.

Process states

- New Process is created
- Ready Process is ready to be started
- Running Process is started and still running
- Blocked Process is blocked
- Finished Process is ended
- Algorithm mainly uses Finished state to determine the static running order

Runtime Analysis Algorithm Notations UNIVERSITY OF TWENTE.

- Set of chains
 - Clear view of groups of processes
 - Cross-Reference types
 - To other chain
 - To start of same chain
 - Comparable with a CSP Trace

```
Traces
```

- Finished processes of running model
- For demonstration purposes

 $D \rightarrow C \rightarrow F \rightarrow B \rightarrow (B, D^*)$ $B \rightarrow E \rightarrow A \rightarrow C \rightarrow (D)$ $[\text{start}] \rightarrow A \rightarrow B \rightarrow C \rightarrow D \rightarrow (B)$

Runtime Analysis Algorithm Algorithm UNIVERSITY OF TWENTE.

Process Ordering Rules

- Chains with no cross-refs (the active chain is not finished yet)
 - Add processes to chain

Rules

- If the state of a process changes to Finished add it to the end of the active chain.
- If a process is Finished and is already present in the active chain, it will become a cross-reference of this chain pointing to a chain starting with this process.

Runtime Analysis Algorithm Algorithm UNIVERSITY OF TWENTE.

Process Ordering Rules

- Chains with cross-refs (the active chain got finished already)
 - Perform validation on chains

Rules

If the active process does not match the Finished process the chain must be split.

Runtime Analysis Algorithm Results

UNIVERSITY OF TWENTE.

- Set of chains as expected
 - All processes could be placed in one big process
 - Writer-Reader combinations can be removed
 - Channels become internal variables

Runtime Analysis Algorithm Results

UNIVERSITY OF TWENTE.

- Scalability of the algorithm
 - Complex traces
 - Hard to verify results
 - Static ordering available
- Working Cartesian plotter model

Runtime Analysis Algorithm Results

- Working Cartesian plotter model
- **1** Sc_Rd8 \rightarrow DoubletoBooleanConversion \rightarrow Sc_Wr17 \rightarrow Sa_Wr8 \rightarrow Sa_Rd4 \rightarrow MC_Wr4 \rightarrow Sa_Rd7 \rightarrow MC_Wr7 \rightarrow Sa_Rd6 \rightarrow MC_Wr6 \rightarrow Sa_Rd5 \rightarrow MC_Wr5 \rightarrow Sa_Rd_ESX2_2 \rightarrow Sa_Rd_ESX2_1 \rightarrow Sa_Rd_ESX1_2 \rightarrow Sa_Rd_ESX1_1 \rightarrow MC_Rd12 \rightarrow MC_Rd13 \rightarrow Safety_X \rightarrow Sa_Rd_ESY1 \rightarrow Sa_Rd_ESY2 \rightarrow Safety_Y \rightarrow Safety_Z \rightarrow MC_Rd1 \rightarrow MS_Wr1 \rightarrow MC_Rd2 \rightarrow MS_Wr2 \rightarrow Sa_Wr9 \rightarrow Sc_Rd9 \rightarrow MC_Rd3 \rightarrow LongtoDoubleConversion \rightarrow Controller \rightarrow MS_Wr3 \rightarrow Sc_Rd10 \rightarrow Sa_Wr10 \rightarrow (Sc_Rd11)

4 HPGLParser \rightarrow (MC_Rd12, Sc_Rd11)

→ [start] → MC_Rd12 → MC_Rd13 → HPGLParser → MS_Wr1 → MC_Rd1 → MC_Rd2 → MS_Wr2 → MC_Rd3 → LongtoDoubleConversion → Controller → MS_Wr3 → MC_Wr5 → Sa_Rd5 → MC_Wr6 → Sa_Rd6 → MC_Wr7 → Sa_Rd7 → MC_Wr4 → Sa_Rd4 → (HPGLParser)

- Introduction
- Runtime Analysis Algorithm
- Model Analysis Algorithm
 - Introduction
 - Algorithm
 - Results
- Conclusions

Model Analysis Algorithm

- More towards model analysis/ model transformation
 - What processes are related?
 - How to schedule large models onto a target system?
- Goal
 - Schedule processes on cores/ networked nodes

Model Analysis Algorithm Architecture UNIVERSITY OF TWENTE.

- Algorithm Architecture
 - Build modular

- gCSP model & User Interface feed the algorithm with data
 - Process weights (or execution times)
 - Available cores or networked nodes
 - Communication (setup) time

Model Analysis Algorithm Algorithms UNIVERSITY OF TWENTE.

- Model Tree Creator
 - Recreates the model tree
 - Only for displaying purposes for the user interface
- Dependency Graph Creator
 - Finds dependencies between processes(
 - Sequential relations
 - Channels
- Critical Path Creator
 - Finds the critical path using the dependencies

19

02-11-2009

50

Model Analysis Algorithm Heaps

Heaps

- Groups of 'related' processes
- Influenced by
 - Process weight
 - Communication (setup) time
- Reduce complexity of core scheduler

30

40

Index blocks

- Subdivision of heaps
- When multiple outgoing dependencies are available

10

20

same core/ networked node

Groups of processes to be scheduled on the

- Find optimum for end time
 - Amount of cores

Cores

Relative speed of cores

c1

2

c3

```
02-11-2009 Analysing gCSP Models Using Runtime and Model Analysis Algorithms
```

Model Analysis Algorithm Cores

Model Analysis Algorithm Results

- The processes are optimally scheduled
 - For the given process weights
 - For the given communication times
 - For the given target systems (mostly)
- Scalable for models of real-life setups
 - Cartesian plotter model
 - Production cell model
 - 597 Processes
 - 210 Heaps
 - ~50 Cores for optimal ending time

Model Analysis Algorithm Results

UNIVERSITY OF TWENTE.

02-11-2009

Analysing gCSP Models Using Runtime and Model Analysis Algorithms

- Introduction
- Runtime Analysis Algorithm
- Model Analysis Algorithm
- Conclusions

Conclusions

- Both analysis algorithms work as expected
 - Functional
 - Scale well
- Both analysis algorithms complement each other
 - Runtime analysis algorithm
 - Groups processes into bigger processes
 - Reduces the amount of context switches
 - Model analysis algorithm
 - Schedules processes onto multiple cores
 - Reduces the amount of network communication
 - Both reduce execution time
 - Without losing concurrency aspects

Recommendations

- Refinements are necessary
 - Better representation of the results
 - Include more CSP constructs
 - Support for allocating specific processes on a core
 - Better support for networked nodes

- Next steps
 - Include model transformations after the analysis phase
 - Implement the algorithms in the gCSP2 tool

UNIVERSITY OF TWENTE.

Runtime Analysis Algorithm Algorithm UNIVERSITY OF TWENTE.

- The active chain should be split at process B when process p is unexpected, but a chain starting with process B is present.
 - Compare the processes after **B** with the chain starting with process $\mathbf{B} \rightarrow$ equal!
 - Remove the remaining process (E) in the active chain starting at process B.
 - Add the cross-references (G) to the chain starting with B if they are not present at this chain.
 - Create a new chain starting with I and make it the active chain.

02-11-2009

Analysing gCSP Models Using Runtime and Model Analysis Algorithms

Cartesian plotter

UNIVERSITY OF TWENTE.

- 56 processes
- 10 heaps
- ~4 cores

1 core is almost optimal

02-11-2009

Analysing gCSP Models Using Runtime and Model Analysis Algorithms

Ongoing Work

- gCSP2
 - Eclipse based
 - Much more stable compared to gCSP

