
Analysing gCSP Models Using
Runtime and Model Analysis
Algorithms
Communicating Process Architectures 2009

Maarten Bezemer, Marcel Groothuis and Jan Broenink
Control Engineering, University of Twente, The Netherlands

02-11-2009 Analysing gCSP Models Using Runtime and Model Analysis Algorithms 2

Contents

 Introduction

 Runtime Analysis Algorithm

 Model Analysis Algorithm

 Conclusions

02-11-2009 Analysing gCSP Models Using Runtime and Model Analysis Algorithms 3

 CSP usage at Control Engineering
 Modelling tool → gCSP

Introduction

Par4 = REP_P || REP_C
REP_C = Seq_C; REP_C
Seq_C = Consumer1; Consumer2
Consumer1 = C1_Rd; C1_C
Consumer2 = C2_Rd; C2_C
REP_P = Seq_P; REP_P
Seq_P = Producer1; Producer2
Producer1 = P1_C; P1_Wr
Producer2 = P2_C; P2_Wr

02-11-2009 Analysing gCSP Models Using Runtime and Model Analysis Algorithms 4

 CSP usage at Control Engineering
 Modelling tool → gCSP

 Code generation for (robotic) controllers
 Using Communicating Threads (CT) library

 Debugging possibilities while running the code
 Animating the model (processes and channels)
 Stepping through model, while showing channel values

Introduction

02-11-2009 Analysing gCSP Models Using Runtime and Model Analysis Algorithms 5

Introduction Problem

 Designer Point of View
 Detailed modelling
 Lots of small processes

 Executing Point of View
 Fast code
 A few bigger processes

 Both Points of View conflict!

02-11-2009 Analysing gCSP Models Using Runtime and Model Analysis Algorithms 6

Introduction Solution

 Translate Designer PoV to Executing PoV

 Requires
 Analysis of the gCSP model
 Model transformation

 Solution: two analysis algorithms
 Runtime analysis for static ordering of processes
 Model analysis for process scheduling

02-11-2009 Analysing gCSP Models Using Runtime and Model Analysis Algorithms 7

Contents

 Introduction

 Runtime Analysis Algorithm
 Introduction
 Algorithms
 Results

 Model Analysis Algorithm

 Conclusions

02-11-2009 Analysing gCSP Models Using Runtime and Model Analysis Algorithms 8

Runtime Analysis Algorithm

 Why static ordering of processes
 No complex scheduler required
 Possibility for grouping of processes

 Goal of Runtime Analysis Algorithm
 Find a static running order for the processes

02-11-2009 Analysing gCSP Models Using Runtime and Model Analysis Algorithms 9

Runtime Analysis Algorithm Processes

 Process states
 New Process is created
 Ready Process is ready to be started
 Running Process is started and still running
 Blocked Process is blocked
 Finished Process is ended

 Algorithm mainly uses Finished state to determine the
static running order

02-11-2009 Analysing gCSP Models Using Runtime and Model Analysis Algorithms 10

Runtime Analysis Algorithm Notations

 Set of chains
 Clear view of groups of processes
 Cross-Reference types
 To other chain
 To start of same chain

 Comparable with a CSP Trace

 Traces
 Finished processes of running model
 For demonstration purposes

D → C → F → B → (B,D*)
B → E → A → C → (D)
[start] → A → B → C → D → (B)

A → B → C → D → B → E → A → C → E → A → C → D → C → F →…

02-11-2009 Analysing gCSP Models Using Runtime and Model Analysis Algorithms 11

[start]

Runtime Analysis Algorithm Algorithm

 Process Ordering Rules
 Chains with no cross-refs (the active chain is not finished yet)
 Add processes to chain

 Rules
 If the state of a process changes to Finished add it to the end

of the active chain.
 If a process is Finished and is already present in the active

chain, it will become a cross-reference of this chain pointing to
a chain starting with this process.

A → B → C → B → D → E → F → B [start] → A → B → C
B
[start] → A → B → C → (B)
B → D → E → F → (B*)
[start] → A → B → C → (B)

02-11-2009 Analysing gCSP Models Using Runtime and Model Analysis Algorithms 12

Runtime Analysis Algorithm Algorithm

 Process Ordering Rules
 Chains with cross-refs (the active chain got finished already)
 Perform validation on chains

 Rules
 If the active process does not match the Finished process the

chain must be split.

… → D → E → F → B → D → G → H
B → D → E → F → (B*)
[start] → A → B → C → (B)

G
E → F → (B)
B → D → (E,G)
[start] → A → B → C → (B)

G → H
E → F → (B)
B → D → (E,G)
[start] → A → B → C → (B)

Rules for ‘chains with no cross-references’ applied

02-11-2009 Analysing gCSP Models Using Runtime and Model Analysis Algorithms 13

Runtime Analysis Algorithm Results

 Set of chains as expected
 All processes could be placed in one big process

 Writer-Reader combinations can be removed
 Channels become internal variables

P1_C → C1_Rd → C1_C → P1_Wr → P2_C →
P2_Wr → C2_Rd → C2_C →(P1_C*)

[start]→(P1_C)

02-11-2009 Analysing gCSP Models Using Runtime and Model Analysis Algorithms 14

Runtime Analysis Algorithm Results

 Scalability of the algorithm
 Complex traces
 Hard to verify results

 Static ordering available

 Working Cartesian plotter model

02-11-2009 Analysing gCSP Models Using Runtime and Model Analysis Algorithms 15

Runtime Analysis Algorithm Results

 Working Cartesian plotter model
1

2

3

4
→

Sc_Rd8 → DoubletoBooleanConversion → Sc_Wr17 → Sa_Wr8 → Sa_Rd4 →
MC_Wr4 → Sa_Rd7 → MC_Wr7 → Sa_Rd6 → MC_Wr6 → Sa_Rd5 → MC_Wr5 →
Sa_Rd_ESX2_2 → Sa_Rd_ESX2_1 → Sa_Rd_ESX1_2 → Sa_Rd_ESX1_1 → MC_Rd12 →
MC_Rd13 → Safety_X → Sa_Rd_ESY1 → Sa_Rd_ESY2 → Safety_Y → Safety_Z →
MC_Rd1 → MS_Wr1 → MC_Rd2 → MS_Wr2 → Sa_Wr9 → Sc_Rd9 → MC_Rd3 →
LongtoDoubleConversion → Controller → MS_Wr3 → Sc_Rd10 → Sa_Wr10 →
(Sc_Rd11)

Sc_Rd11 → DoubletoShortConversion → Sc_Wr14 → Sc_Wr15 → Sc_Wr16
→ Sa_Wr11 → (Sc_Rd8, HPGLParser)

MC_Rd12 → MC_Rd13 → Sa_Rd_ESX2_2 → Sa_Rd_ESX2_1 → Sa_Rd_ESX1_2 →
Sa_Rd_ESX1_1 → MC_Rd1 → MS_Wr1 → Safety_X → Sa_Rd_ESY1 → Sa_Rd_ESY2 →
Safety_Y → Safety_Z → MC_Rd2 → MS_Wr2 → MC_Rd3 →
LongtoDoubleConversion → Controller → MS_Wr3 → Sa_Wr9 → Sc_Rd9 →
Sc_Rd10 → Sa_Wr10 → (HPGLParser)

HPGLParser → (MC_Rd12, Sc_Rd11)

[start] → MC_Rd12 → MC_Rd13 → HPGLParser → MS_Wr1 → MC_Rd1 → MC_Rd2 →
MS_Wr2 → MC_Rd3
→ LongtoDoubleConversion → Controller → MS_Wr3 → MC_Wr5 → Sa_Rd5 →

MC_Wr6 → Sa_Rd6 → MC_Wr7
→ Sa_Rd7 → MC_Wr4 → Sa_Rd4 → (HPGLParser)

02-11-2009 Analysing gCSP Models Using Runtime and Model Analysis Algorithms 16

Contents

 Introduction

 Runtime Analysis Algorithm

 Model Analysis Algorithm
 Introduction
 Algorithm
 Results

 Conclusions

02-11-2009 Analysing gCSP Models Using Runtime and Model Analysis Algorithms 17

Model Analysis Algorithm

 More towards model analysis/ model transformation
 What processes are related?
 How to schedule large models onto a target system?

 Goal
 Schedule processes on cores/ networked nodes

02-11-2009 Analysing gCSP Models Using Runtime and Model Analysis Algorithms 18

Model Analysis Algorithm Architecture

 Algorithm Architecture
 Build modular

 gCSP model & User Interface feed the algorithm with data
 Process weights (or execution times)
 Available cores or networked nodes
 Communication (setup) time

02-11-2009 Analysing gCSP Models Using Runtime and Model Analysis Algorithms 19

Model Analysis Algorithm Algorithms

 Model Tree Creator
 Recreates the model tree
 Only for displaying purposes for the user interface

 Dependency Graph Creator
 Finds dependencies between processes
 Sequential relations
 Channels

 Critical Path Creator
 Finds the critical path using the

dependencies

02-11-2009 Analysing gCSP Models Using Runtime and Model Analysis Algorithms 20

Model Analysis Algorithm Heaps

 Heaps
 Groups of ‘related’ processes
 Influenced by
 Process weight
 Communication (setup) time

 Reduce complexity of core scheduler
 Index blocks
 Subdivision of heaps
 When multiple outgoing

dependencies are available

02-11-2009 Analysing gCSP Models Using Runtime and Model Analysis Algorithms 21

Model Analysis Algorithm Cores

 Cores
 Groups of processes to be scheduled on the

same core/ networked node
 Find optimum for end time
 Amount of cores
 Relative speed of cores

02-11-2009 Analysing gCSP Models Using Runtime and Model Analysis Algorithms 22

Model Analysis Algorithm Results

 The processes are optimally scheduled
 For the given process weights
 For the given communication times
 For the given target systems (mostly)

 Scalable for models of real-life setups
 Cartesian plotter model
 Production cell model
 597 Processes
 210 Heaps
 ~50 Cores for optimal ending time

02-11-2009 Analysing gCSP Models Using Runtime and Model Analysis Algorithms 23

Model Analysis Algorithm Results

02-11-2009 Analysing gCSP Models Using Runtime and Model Analysis Algorithms 24

Contents

 Introduction

 Runtime Analysis Algorithm

 Model Analysis Algorithm

 Conclusions

02-11-2009 Analysing gCSP Models Using Runtime and Model Analysis Algorithms 25

Conclusions

 Both analysis algorithms work as expected
 Functional
 Scale well

 Both analysis algorithms complement each other
 Runtime analysis algorithm
 Groups processes into bigger processes
 Reduces the amount of context switches

 Model analysis algorithm
 Schedules processes onto multiple cores
 Reduces the amount of network communication

 Both reduce execution time
 Without losing concurrency aspects

02-11-2009 Analysing gCSP Models Using Runtime and Model Analysis Algorithms 26

Recommendations

 Refinements are necessary
 Better representation of the results
 Include more CSP constructs
 Support for allocating specific processes on a core
 Better support for networked nodes

 Next steps
 Include model transformations after the analysis phase
 Implement the algorithms in the gCSP2 tool

02-11-2009 Analysing gCSP Models Using Runtime and Model Analysis Algorithms 27

02-11-2009 Analysing gCSP Models Using Runtime and Model Analysis Algorithms 28

Runtime Analysis Algorithm Algorithm

 The active chain should be split at process B when process p
is unexpected, but a chain starting with process B is present.
 Compare the processes after B with the chain starting with

process B → equal!
 Remove the remaining process (E) in the active chain starting at

process B.
 Add the cross-references (G) to the chain starting with B if they

are not present at this chain.
 Create a new chain starting with I and make it the active chain.

A → B → C → B → D → E → F → B → D → G → H → B → D → G → H → I

I
G → H → (B, I)
E → F → (B)
B → D → (E,G)
A → B → C → (B)

G → H → B → D → (G*)
E → F → (B)
B → D → (E,G)
A → B → C → (B)

02-11-2009 Analysing gCSP Models Using Runtime and Model Analysis Algorithms 29

Cartesian plotter

 56 processes
 10 heaps
 ~4 cores

 1 core is almost optimal

02-11-2009 Analysing gCSP Models Using Runtime and Model Analysis Algorithms 30

Ongoing Work

 gCSP2
 Eclipse based
 Much more stable

compared to gCSP

