
Analysing gCSP Models Using
Runtime and Model Analysis
Algorithms
Communicating Process Architectures 2009

Maarten Bezemer, Marcel Groothuis and Jan Broenink
Control Engineering, University of Twente, The Netherlands

02-11-2009 Analysing gCSP Models Using Runtime and Model Analysis Algorithms 2

Contents

 Introduction

 Runtime Analysis Algorithm

 Model Analysis Algorithm

 Conclusions

02-11-2009 Analysing gCSP Models Using Runtime and Model Analysis Algorithms 3

 CSP usage at Control Engineering
 Modelling tool → gCSP

Introduction

Par4 = REP_P || REP_C
REP_C = Seq_C; REP_C
Seq_C = Consumer1; Consumer2
Consumer1 = C1_Rd; C1_C
Consumer2 = C2_Rd; C2_C
REP_P = Seq_P; REP_P
Seq_P = Producer1; Producer2
Producer1 = P1_C; P1_Wr
Producer2 = P2_C; P2_Wr

02-11-2009 Analysing gCSP Models Using Runtime and Model Analysis Algorithms 4

 CSP usage at Control Engineering
 Modelling tool → gCSP

 Code generation for (robotic) controllers
 Using Communicating Threads (CT) library

 Debugging possibilities while running the code
 Animating the model (processes and channels)
 Stepping through model, while showing channel values

Introduction

02-11-2009 Analysing gCSP Models Using Runtime and Model Analysis Algorithms 5

Introduction Problem

 Designer Point of View
 Detailed modelling
 Lots of small processes

 Executing Point of View
 Fast code
 A few bigger processes

 Both Points of View conflict!

02-11-2009 Analysing gCSP Models Using Runtime and Model Analysis Algorithms 6

Introduction Solution

 Translate Designer PoV to Executing PoV

 Requires
 Analysis of the gCSP model
 Model transformation

 Solution: two analysis algorithms
 Runtime analysis for static ordering of processes
 Model analysis for process scheduling

02-11-2009 Analysing gCSP Models Using Runtime and Model Analysis Algorithms 7

Contents

 Introduction

 Runtime Analysis Algorithm
 Introduction
 Algorithms
 Results

 Model Analysis Algorithm

 Conclusions

02-11-2009 Analysing gCSP Models Using Runtime and Model Analysis Algorithms 8

Runtime Analysis Algorithm

 Why static ordering of processes
 No complex scheduler required
 Possibility for grouping of processes

 Goal of Runtime Analysis Algorithm
 Find a static running order for the processes

02-11-2009 Analysing gCSP Models Using Runtime and Model Analysis Algorithms 9

Runtime Analysis Algorithm Processes

 Process states
 New Process is created
 Ready Process is ready to be started
 Running Process is started and still running
 Blocked Process is blocked
 Finished Process is ended

 Algorithm mainly uses Finished state to determine the
static running order

02-11-2009 Analysing gCSP Models Using Runtime and Model Analysis Algorithms 10

Runtime Analysis Algorithm Notations

 Set of chains
 Clear view of groups of processes
 Cross-Reference types
 To other chain
 To start of same chain

 Comparable with a CSP Trace

 Traces
 Finished processes of running model
 For demonstration purposes

D → C → F → B → (B,D*)
B → E → A → C → (D)
[start] → A → B → C → D → (B)

A → B → C → D → B → E → A → C → E → A → C → D → C → F →…

02-11-2009 Analysing gCSP Models Using Runtime and Model Analysis Algorithms 11

[start]

Runtime Analysis Algorithm Algorithm

 Process Ordering Rules
 Chains with no cross-refs (the active chain is not finished yet)
 Add processes to chain

 Rules
 If the state of a process changes to Finished add it to the end

of the active chain.
 If a process is Finished and is already present in the active

chain, it will become a cross-reference of this chain pointing to
a chain starting with this process.

A → B → C → B → D → E → F → B [start] → A → B → C
B
[start] → A → B → C → (B)
B → D → E → F → (B*)
[start] → A → B → C → (B)

02-11-2009 Analysing gCSP Models Using Runtime and Model Analysis Algorithms 12

Runtime Analysis Algorithm Algorithm

 Process Ordering Rules
 Chains with cross-refs (the active chain got finished already)
 Perform validation on chains

 Rules
 If the active process does not match the Finished process the

chain must be split.

… → D → E → F → B → D → G → H
B → D → E → F → (B*)
[start] → A → B → C → (B)

G
E → F → (B)
B → D → (E,G)
[start] → A → B → C → (B)

G → H
E → F → (B)
B → D → (E,G)
[start] → A → B → C → (B)

Rules for ‘chains with no cross-references’ applied

02-11-2009 Analysing gCSP Models Using Runtime and Model Analysis Algorithms 13

Runtime Analysis Algorithm Results

 Set of chains as expected
 All processes could be placed in one big process

 Writer-Reader combinations can be removed
 Channels become internal variables

P1_C → C1_Rd → C1_C → P1_Wr → P2_C →
P2_Wr → C2_Rd → C2_C →(P1_C*)

[start]→(P1_C)

02-11-2009 Analysing gCSP Models Using Runtime and Model Analysis Algorithms 14

Runtime Analysis Algorithm Results

 Scalability of the algorithm
 Complex traces
 Hard to verify results

 Static ordering available

 Working Cartesian plotter model

02-11-2009 Analysing gCSP Models Using Runtime and Model Analysis Algorithms 15

Runtime Analysis Algorithm Results

 Working Cartesian plotter model
1

2

3

4
→

Sc_Rd8 → DoubletoBooleanConversion → Sc_Wr17 → Sa_Wr8 → Sa_Rd4 →
MC_Wr4 → Sa_Rd7 → MC_Wr7 → Sa_Rd6 → MC_Wr6 → Sa_Rd5 → MC_Wr5 →
Sa_Rd_ESX2_2 → Sa_Rd_ESX2_1 → Sa_Rd_ESX1_2 → Sa_Rd_ESX1_1 → MC_Rd12 →
MC_Rd13 → Safety_X → Sa_Rd_ESY1 → Sa_Rd_ESY2 → Safety_Y → Safety_Z →
MC_Rd1 → MS_Wr1 → MC_Rd2 → MS_Wr2 → Sa_Wr9 → Sc_Rd9 → MC_Rd3 →
LongtoDoubleConversion → Controller → MS_Wr3 → Sc_Rd10 → Sa_Wr10 →
(Sc_Rd11)

Sc_Rd11 → DoubletoShortConversion → Sc_Wr14 → Sc_Wr15 → Sc_Wr16
→ Sa_Wr11 → (Sc_Rd8, HPGLParser)

MC_Rd12 → MC_Rd13 → Sa_Rd_ESX2_2 → Sa_Rd_ESX2_1 → Sa_Rd_ESX1_2 →
Sa_Rd_ESX1_1 → MC_Rd1 → MS_Wr1 → Safety_X → Sa_Rd_ESY1 → Sa_Rd_ESY2 →
Safety_Y → Safety_Z → MC_Rd2 → MS_Wr2 → MC_Rd3 →
LongtoDoubleConversion → Controller → MS_Wr3 → Sa_Wr9 → Sc_Rd9 →
Sc_Rd10 → Sa_Wr10 → (HPGLParser)

HPGLParser → (MC_Rd12, Sc_Rd11)

[start] → MC_Rd12 → MC_Rd13 → HPGLParser → MS_Wr1 → MC_Rd1 → MC_Rd2 →
MS_Wr2 → MC_Rd3
→ LongtoDoubleConversion → Controller → MS_Wr3 → MC_Wr5 → Sa_Rd5 →

MC_Wr6 → Sa_Rd6 → MC_Wr7
→ Sa_Rd7 → MC_Wr4 → Sa_Rd4 → (HPGLParser)

02-11-2009 Analysing gCSP Models Using Runtime and Model Analysis Algorithms 16

Contents

 Introduction

 Runtime Analysis Algorithm

 Model Analysis Algorithm
 Introduction
 Algorithm
 Results

 Conclusions

02-11-2009 Analysing gCSP Models Using Runtime and Model Analysis Algorithms 17

Model Analysis Algorithm

 More towards model analysis/ model transformation
 What processes are related?
 How to schedule large models onto a target system?

 Goal
 Schedule processes on cores/ networked nodes

02-11-2009 Analysing gCSP Models Using Runtime and Model Analysis Algorithms 18

Model Analysis Algorithm Architecture

 Algorithm Architecture
 Build modular

 gCSP model & User Interface feed the algorithm with data
 Process weights (or execution times)
 Available cores or networked nodes
 Communication (setup) time

02-11-2009 Analysing gCSP Models Using Runtime and Model Analysis Algorithms 19

Model Analysis Algorithm Algorithms

 Model Tree Creator
 Recreates the model tree
 Only for displaying purposes for the user interface

 Dependency Graph Creator
 Finds dependencies between processes
 Sequential relations
 Channels

 Critical Path Creator
 Finds the critical path using the

dependencies

02-11-2009 Analysing gCSP Models Using Runtime and Model Analysis Algorithms 20

Model Analysis Algorithm Heaps

 Heaps
 Groups of ‘related’ processes
 Influenced by
 Process weight
 Communication (setup) time

 Reduce complexity of core scheduler
 Index blocks
 Subdivision of heaps
 When multiple outgoing

dependencies are available

02-11-2009 Analysing gCSP Models Using Runtime and Model Analysis Algorithms 21

Model Analysis Algorithm Cores

 Cores
 Groups of processes to be scheduled on the

same core/ networked node
 Find optimum for end time
 Amount of cores
 Relative speed of cores

02-11-2009 Analysing gCSP Models Using Runtime and Model Analysis Algorithms 22

Model Analysis Algorithm Results

 The processes are optimally scheduled
 For the given process weights
 For the given communication times
 For the given target systems (mostly)

 Scalable for models of real-life setups
 Cartesian plotter model
 Production cell model
 597 Processes
 210 Heaps
 ~50 Cores for optimal ending time

02-11-2009 Analysing gCSP Models Using Runtime and Model Analysis Algorithms 23

Model Analysis Algorithm Results

02-11-2009 Analysing gCSP Models Using Runtime and Model Analysis Algorithms 24

Contents

 Introduction

 Runtime Analysis Algorithm

 Model Analysis Algorithm

 Conclusions

02-11-2009 Analysing gCSP Models Using Runtime and Model Analysis Algorithms 25

Conclusions

 Both analysis algorithms work as expected
 Functional
 Scale well

 Both analysis algorithms complement each other
 Runtime analysis algorithm
 Groups processes into bigger processes
 Reduces the amount of context switches

 Model analysis algorithm
 Schedules processes onto multiple cores
 Reduces the amount of network communication

 Both reduce execution time
 Without losing concurrency aspects

02-11-2009 Analysing gCSP Models Using Runtime and Model Analysis Algorithms 26

Recommendations

 Refinements are necessary
 Better representation of the results
 Include more CSP constructs
 Support for allocating specific processes on a core
 Better support for networked nodes

 Next steps
 Include model transformations after the analysis phase
 Implement the algorithms in the gCSP2 tool

02-11-2009 Analysing gCSP Models Using Runtime and Model Analysis Algorithms 27

02-11-2009 Analysing gCSP Models Using Runtime and Model Analysis Algorithms 28

Runtime Analysis Algorithm Algorithm

 The active chain should be split at process B when process p
is unexpected, but a chain starting with process B is present.
 Compare the processes after B with the chain starting with

process B → equal!
 Remove the remaining process (E) in the active chain starting at

process B.
 Add the cross-references (G) to the chain starting with B if they

are not present at this chain.
 Create a new chain starting with I and make it the active chain.

A → B → C → B → D → E → F → B → D → G → H → B → D → G → H → I

I
G → H → (B, I)
E → F → (B)
B → D → (E,G)
A → B → C → (B)

G → H → B → D → (G*)
E → F → (B)
B → D → (E,G)
A → B → C → (B)

02-11-2009 Analysing gCSP Models Using Runtime and Model Analysis Algorithms 29

Cartesian plotter

 56 processes
 10 heaps
 ~4 cores

 1 core is almost optimal

02-11-2009 Analysing gCSP Models Using Runtime and Model Analysis Algorithms 30

Ongoing Work

 gCSP2
 Eclipse based
 Much more stable

compared to gCSP

